diversity Article Diversity and Conservation of Cave-Dwelling Bats in the Brunca Region of Costa Rica Stanimira Deleva * ID and Gloriana Chaverri ID Recinto de Golfito, Universidad de Costa Rica, 4000 Alamedas, Golfito 60701, Costa Rica; gchaverri@upacificosur.org * Correspondence: stanimira.deleva@ucr.ac.cr; Tel.: +359-883-490-378  Received: 10 April 2018; Accepted: 30 May 2018; Published: 2 June 2018  Abstract: The Brunca region in Costa Rica contains the largest number of caves in the country, yet the diversity and distribution of bat species within those caves is currently unknown. Without this information, it is not possible to assess changes in populations and assemblages that may indicate severe damages to these critical roosting habitats, and to take evidence-based conservation actions. We present the first study to describe the diversity of cave-dwelling bat species in the Brunca region of Costa Rica in a large number of caves. We collected data of bat species diversity by direct observation and capturing bats inside roosts. Bats were observed in 38 of the 44 surveyed caves, representing 20 species from 4 families, with colony sizes ranging from a few individuals to >7500. In addition, we collected information about the human activities carried out in and around the roosts to assess potential threats that these sites face. Data indicate that caves suffer mostly from unregulated tourist visitation and that one of the most visited caves is also the one with the most species-rich bat assemblages. Our study determined the most important and vulnerable bat roosts in the region and shows the need for urgent conservation actions to protect them. Keywords: bats; Brunca region; caves; conservation; Costa Rica; diversity 1. Introduction Caves are broadly defined as natural openings in solid rock [1], and as such, they serve as the “windows” in which we glance into the underground. Caves have been attracting people’s interest from prehistoric times by serving as shelters, sacred places, or sources of artistic expression [2], but present a significant challenge for scientific research because they are largely hidden from view and hardly accessible for exploration. Most caves do not appear on topographic maps or satellite images and are neglected by mainstream scientists, making cave research a priority for only a small number of highly dedicated individuals [3]. Their unique features, the complete absence of light, almost constant temperature, and high air humidity make caves a suitable habitat for a large variety of highly specialized organisms such as cave crickets [1,4], and some vertebrates including the blind salamander and angel fish [1,5]. These organisms are so well adapted to the specific conditions in caves that they would not survive in a surface habitat. Caves are dependent on energy sources brought by several organisms that forage at the surface and which use caves as shelter, such as oilbirds, swiftlets, and bats [1,2,6]. Bats, in fact, are so tightly associated with caves and are often so abundant that they can significantly modify these ecosystems by altering their microclimatic conditions and providing significant amounts of guano, the essential food source and base of the food chain in most caves [2,7]. In turn, caves provide bats a refuge from predators and inclement weather, and a critical venue for social interactions [8–10]. Caves are so important for bats worldwide that the majority of species, including many that are vulnerable and rare, are either specialized cave-dwellers or use caves temporarily [11]. Also, the largest aggregations of Diversity 2018, 10, 43; doi:10.3390/d10020043 www.mdpi.com/journal/diversity Diversity 2018, 10, 43 2 of 15 bats are found in caves, with numbers reaching several millions of individuals [12–14], which makes them critical roosts for species that form such large colonies. Costa Rica is a bat diversity hotspot with 114 species, most of which are well represented in the southwestern Brunca region [15,16]. The Brunca region has the largest karst region (185 km2) and the largest number of caves (n = 156) in the country [17]. While many of the species that inhabit the region are known to roost in caves in other parts of their range [15,18,19], there is still no baseline information about the populations of cave-dwelling bats in this region. Cave-dwelling bats are extremely important for the local ecosystems, playing the role of pollinators, seed-dispersers, and pest-suppressors [20]. Cave-related tourism activities are also becoming popular in the Brunca region [17], which makes the caves potential sources of local income, but also endangers cave-dwelling bats, which are often vulnerable to disturbance. Other threats that bats are facing include habitat loss and direct killing at their roosts. To the best of our knowledge, there is no information on distribution and the ecology of cave-dwelling bats in this region, nor information about which roosts contain large colonies or rare species of bats that need to be considered a conservation priority [18], or even the types of threats these roosts are facing. This study is the first to assess the diversity and distribution of cave-dwelling bats species in a large number of the caves in the country. Our study provides valuable information about underground roosts of conservation importance. Monitoring cave roosts is a highly accurate method for estimating colony size, species composition, and seasonal changes in the populations of cave-dwelling bats [21,22], and in the temperate zones, it is a widely distributed activity with well-established traditions [23–25]. The regular monitoring of bat roosts is of particular importance to assess population decline in vulnerable species and for the identification of potential threats (e.g., disturbance or dangerous diseases) [26,27]. Roost monitoring is, however, uncommon in Costa Rica, where most of the research on bat diversity and distribution is conducted around research stations and with the method of mist-netting [28–30], and most recently also with acoustic monitoring at feeding or commuting sites. Our efforts are aimed at establishing roosts of national monitoring priority, which will help us assess population trends and serve as a base for conservation activities in the future. Cave-dwelling bats are facing threats worldwide such as habitat loss, pollution, disturbance, quarrying and mining, guano extraction, and vandalism [31–33]. Bats that roost in caves are particularly vulnerable to human activities due to their tendency to aggregate in large colonies in a single roost, as a single disturbance event could lead to the eradication of an entire colony [10]. In the Neotropics, cave-dwelling bats face additional threats due to direct killing, as local residents attempt to eradicate species that are considered pests, specifically vampire bats (Desmodus rotundus) [34]. These bats are chased by cattle farmers and killed inside the caves where they roost, leading to the decline of other species as well [35]. The efforts against vampire bats threaten all of the cave-roosting bats, as people aiming to kill vampire bats do not distinguish the different species and often destroy all bats in a single roost [36]. It is crucial to obtain information about the distribution of cave-dwelling bats in Costa Rica, so we can take conservation actions before important bat colonies are lost. 2. Materials and Methods 2.1. Study Region We investigated caves and artificial tunnels in the Southwestern (Brunca) region of Costa Rica (N 9.23643, W 82.84233) at sites ranging in altitude from 0 to 520 masl. The Brunca region contains the largest karst area of the country, with 185 km2 of karst surface and 156 caves [17]. The region has an average annual temperature of 26.2 ◦C and an average annual rainfall of 4398 mm [37]. The dominant habitat of the region is evergreen moist lowland forest, including large areas of well-preserved rainforests in the Corcovado and Amistad national parks [38]. For a better visual portrayal of the field sites, we roughly divided them into 5 areas (Figure 1): area A—Ballena, area B—Boruca, area C—Osa, area D—Rio Claro, and area E—Corredores. We do not provide the exact locations of the field sites to Diversity 2018, 10, 43 3 of 15 Diversity 2018, 10, x FOR PEER REVIEW 3 of 17 protect them from further disturbance; however, these data are available upon request from the digital rreeppoossitiotorryy FigshaFreig(shtatpres ://figsh(harttep.cso:/m/fi/gpshroajreec.ctso/mD/pivreorjseicttys_/Danivde_rcsoitnys_earnvda_ticoonn_soefr_vcaativoen-_dowf_ecllaivneg-_ dbwatesl_liing__thbea_tsB_riun_ntchae__rBegruionnc_ao_fr_eCgiosnt_ao_Rf_iCcao/st3a4_4R1i5c)a./34415). FFigiguurree 11. .TThhee BBrruunnccaa rreeggioionn oonn ththee mmaapp oof fCCoosstata RRicicaa aanndd ththee ggeenneerraal lloloccaatitoionn oof fththee fifieeldld wwoorrkk ssitietess ((mmaarrkkeedd bbyy bblalcakck ddotost)s, )d, idviivdiedde dinitnot 5o a5reaaresa: s(A: )( AB)alBleanllae,n (aB,)( BBo)rBuocrau, c(Ca,) (OCs)aO, (sDa,) (RDio) RCiloarCo,l aarnod, a(En)d C(Eor)rCedororreedso. res. 22.2.2. .CCaavvee SSuurrvveeyyss WWee oobbttaaiinneedd iinnffoorrmmaattiioonn aabboouutt tthhee eexxiissttiinngg ccaavveess inin tthhee BBrruunnccaa rreeggiioonn bbyy ccoonnssuultltiningg wwitithh tthhee mmeemmbbeerrss oofft hteheo nolynclyav icnagvoinrgg anoirzgaatinoinzaintioCno sitna RCicoas—taA nRtihcaro—s ASpnetlheroolos giScpael lGeroolougpi.cTalh eGorroguanpi.z aTtihoen omrgaannaigzeastioann matiaonnaaglecsa av enadtaiotanbaal scea,vceo ndtaatianbiansge,m coapntsaainnidngd emscarpips tainonds doefscmrioprteiotnhsa nof3 m40ocrea vtehsanin 3t4h0e ccaovuens tirny t[h39e] ,cowuhnictrhyw [3e9u]s, ewdhtiochse wlecet ucsaevde stofo srerleesceta crachv.esO fuorrs reelesectairocnh.o Of cuarv eseslfeocrtitohnis osft ucdavyews afosrb athseisd sotundtyh ewirassi zbeas(iendf oavno trhoefirg sriezaet e(irnl efnavgothr aonf dgrdeeaptethr )leanngdtha vaanidla bdleepitnhf)o armnda taiovnaialabboluet itnhfeorpmreasteionnce aobfobuatt tchoel opnreiessenincee xopf ebdaitt icoonlorenpieosr tisn[ 4e0x]p.eWdietisoenle rcetpedorftosr [r4e0s]e. aWrceh s1e4leccatveeds fforor mrestheaernchat i1o4n caalvdeast afbroamse tahned nsaetaiorcnhaeld dfaotrabaadsdei taionnda lsecaarvcehsebdy fionrt eardvdieiwtioinngall occaavleps eboyp lientaenrdvipewerifnogrm loincgal trpaenospelcet sainndk paresrtfoarrmeaisn.g transeOctusr inre kseaarsrct harteoaosk. p lace during the periods from December 2015–May 2016, October 2016–May 2017O, aunr dreDseeacrecmh btoerok2 0p1l7a–cFe edburruianrgy t2h0e1 p8e. rWioedsre fcroormd eDdetcheemlboecra t2i0o1n5a–nMdaayl t2i0tu16d,e Oocfteoabcehr 2c0a1v6e–uMsianyg 2a01G7P, Sanudn iDt e(Gceamrmbeinr ,2K01S7,–UFSeAbr)u. aWrye 2e0n1te8r. eWdeth reeccoarvdeesdd tuhrei nlogcdataiyolnig ahntdh aolutirtsudine gorfo euapcsh rcaanvgei nugsinfrgo ma GtwPSo utonfito u(Gr apremopinle, KusSi,n Ug SstAan).d Wared ecnatveirnegde tqhuei pcmaveenst d(iu.er.i,nhge ldmayetl,igtwhto hionudresp einn dgernotulpigs hrtasnoguinrcge sf,roamnd tpwroo tteoc ftoivuer pcleootphlien gu)s.inTgo sstuanrvdeayrdt hceavcianvge esqwuiitphmveenrtt i(ci.ael.,p haeslsmagete,s twwoe iunsdeedpetencdhennitc lailgehqt usoipumrceens,t aanndd pfroolltoewctievde tchleotahpipnrgo).a cTho osfutrhveeysi nthgele c-raovpees twecihthn ivqeuretic[4a1l ]p. aWsseaugseesd wthe euasvedai ltaebclhenciacavle emquapipsmtoenaitd aonudr fmolloovwemede tnhtei naspipdreotahceh coafv tehsea snindgtloe-fraocpileit taetcehonuiqrubea t[4s1u]r.v Weyes u. sIfedm tahpes awvaeirleabnloet caavvaei lmabalpe,s wtoe acirde aotuerd mthoevmemuesnint ginsstiadned tahred ccaavvees saunrdv etyo mfaceitlhitoadtes o[4u2r] .bTath seunruvmeybse. rIfo mf vaipssit swveareri endotb aevtwaielaebnle1, awned c4retiamteeds , tdheempe nudsiinngg sotnanthdearcdo mcapvlee xsiutyrvoefyt hmeertohoosdtsa n[4d2]t.h Tehper ensuemncbeeor fobfa vtsisditus rvinagrieodu rbfietrwsteveins i1t (aAnpdp 4e ntidmixesA, , depending on the complexity of the roost and the presence of bats during our first visit (Appendix A, Table A1, column D). If we observed only a few (<30) bats and low species richness (1 or 2 species), we visited the roost only once. When a large number of individuals or indirect traces of presence Diversity 2018, 10, 43 4 of 15 Table A1, column D). If we observed only a few (<30) bats and low species richness (1 or 2 species), we visited the roost only once. When a large number of individuals or indirect traces of presence (e.g., guano, food remains) was observed during our first visit, we performed additional monitoring and tried to obtain data in both the rainy and dry seasons if possible. Due to high water levels and technical difficulties, some caves were inaccessible during the rainy season, so we visited them in the intermediate period between seasons (December–January and May–June). In addition to the field surveys, we interviewed local people about the activities conducted in caves. We included questions about visitation, hunting, other uses of the caves, and awareness about bat populations. We focused on farmers and landowners living near the locations of the caves. We also used direct observations in and around roosts to assess additional anthropogenic activities. For example, we recorded evidence of graffiti, waste, broken speleothems, footprints, entrance blocking or traces of resource extraction inside the roosts. In proximity to the roosts (radius of 1 km), we recorded the land use activities (agriculture, deforestation, quarrying). Depending on the dimension of the activities, we evaluated them on a scale from 1 to 4, 1 being the highest and 4 the lowest disturbance. 2.3. Bat Surveys We used flashlights and binoculars to search visually for roosting bats or indirect traces of their presence (i.e., skulls, guano or food remains) [43]. Small clusters of bats (up to 50 individuals) were counted directly at the cave. We photographed larger groups of bats using a digital DSLR camera (D3200, Nikon, Tokyo, Japan) and used ImageJ software [44] to estimate the number of individuals. We determined the species of observed bats using the available literature [15,16,45] as a reference. To confirm species identification and obtain biometric data, we used a custom-made hand-held 2 m mist net to capture a few individuals within the roost. We measured forearm length, sex, age, and reproductive status of the captured bats [21]. In one vertical cave, we used a harp trap at the entrance to capture bats during their evening emerge. After taking biometric data, we released all individuals without further disturbance. No voucher specimens were collected during this study. We operated under the research permit INV-ACOSA-018-16. 2.4. Assessing Conservation Priority We evaluated the conservation priority of each cave using the Bat Cave Vulnerability Index (BCVI), based on the bat species diversity and presence of human-induced threats in the caves [46]. The index is a novel approach for conservation prioritization of bat caves and it was developed with a focus on tropical regions. It contains two components: Biotic Potential Index (BP) and Biotic Vulnerability Index (BV). The Biotic Potential Index includes several species diversity and rarity measurements, including species richness, abundance, relative abundance, endemism, conservation status [47], and rarity index. The BP index has a value between 1 and 4, with level 1 being the highest and 4 the lowest biotic potential. The Biotic Vulnerability Index includes information on cave accessibility, morphology, visitation, and land use in adjacent areas. The BV index has a value of A, B, C, and D, with A being the highest vulnerability to disturbance and D no disturbance. We classified all roosts based on the combined values of BP and BV. The roosts with indicated values of 1A and 1B were considered of highest conservation priority. The roosts with values between 1C and 3D were considered as medium conservation priority, and the roosts in category 4 of low priority. 3. Results In the study period we visited 44 underground roosts, including 40 caves, 2 artificial tunnels, and 2 abandoned gold mines. From the researched caves, 30 were described for the first time during this study and included in the National Cave Database, and named after geographical or morphological features in their respective locations (Appendix A, Table A1). From all caves, 22 were horizontal and 22 were vertical (Appendix A, Figure A1). We observed bats in 38 of the 44 roosts. We identified 20 species of bats from the families Phyllostomidae, Emballonuridae, Natalidae and Mormoopidae Diversity 2018, 10, 43 5 of 15 (Table 1, Figure 2). The most frequently observed species was Carollia perspicillata, which occurred in 25 roosts. Other common species were Peropteryx kappleri (found in 18 roosts) and Saccopteryx bilineata (14 roosts). We observed relatively large (n > 100 ind.) colonies of bats (Anoura sp., Artibeus jamaicensis, C. perspicillata, Desmodus rotundus, Natalus mexicanus, Pteronotus gymnonotus, Pteronotus parnellii, and Pteronotus personatus) in 11 caves and very large (>500 ind.) (C. perspicillata, P. gymnonotus, P. parnellii, and P. personatus) in 6 caves (Appendix A, Table A1). The largest colony of bats was observed in the Campanario cave, estimated at around 7600 individuals, and included three species of the genus Pteronotus (Appendix A, Table A1). Other large colonies are those found in the Laguna Perdida (ca. 2000 individuals) and Corredores (ca. 1500 individuals) caves. The roost with the greater species richness was Corredores, with 8 species, followed by Emus and Laguna Perdida with 7 species (Appendix A, Table A1). Three caves were inhabited by mixed colonies of Pteronotus spp.: Tortuga, Campanario, and Corredores; the first two are considered maternity colonies since we observed hundreds of pups. Both Tortuga and Campanario are very similar littoral caves, which have a single entrance, leading to a simple chamber, and are partially filled with sea water during high tides. In the Campanario cave, we observed a third species of Pteronotus, P. personatus, which is so far the only known location of the species during this study. A single bat species occurred in 14 caves, specifically the greater dog-like bat (Peropteryx kappleri) and Seba’s short-tailed bat (C. perspicillata), observed in 6 roosts each. Table 1. Observed species of bats and their respective locations. Family Species Roosts Anoura sp. Laguna Perdida, Piedras Blancas 2 Artibeus jamaicensis Arelis, Carma, Corredores, Gran Galería, Túnel ICE 2, San Pedrillo Afrodiziaco Pozo, Alma, Árbol Caido, Bananal, Bombasa, Buena Cueva, Caballo Muerto, Cinco Millones, Corredores, Dos Brazos, Carollia perspicillata Emús, Final 7 Pozo, Gran Galería, Gran Madre, Túnel ICE 1, Túnel ICE 2, San Josecito, Laguna Perdida, Los Sueños, Miramar Pozo, San Pedrillo, Sapo Gordo Pozo, Titi Mono, Tortuga Carollia sowelli Miramar Phyllostomidae Chrotopterus auritus Corredores Desmodus rotundus Alma, Bombasa, Buena Cueva, Cinco Millones, Emús, Gran Madre,Túnel ICE 2, San Josecito, Laguna Perdida, Los Sueños, Miramar Glossophaga soricina Alma, Bombasa, Corredores, Dos Brazos Lonchophylla concava San Josecito, Miramar Pozo, San Pedrillo Lonchophylla robusta Bombasa, Laguna Perdida Lonchorhina aurita Gran Madre, Miramar Phyllostomus discolor Arelis Phyllostomus hastatus Laguna Perdida Trachops cirrhosus Bombasa, San Pedrillo Alma, Arbol Caido, Arelis, Bamboo Pozo, Banano Quemado, Peropteryx kappleri Caballo Muerto, Castillo Real, Cinco Millones, Cueva 1 No Name,Cueva Cerca Cor, Emús, Gran Galería, Gran Madre, La Troja, Metros 12, Monteadores, Rectángulo, Serpiente Dormida Emballonuridae Peropteryx macrotis Emús, Gran Galería Alma, Arelis, Bamboo Pozo, Cinco Millones, Corredores, Emús, Saccopteryx bilineata Gran Galería, Gran Madre, Túnel ICE 2, Laguna Perdida, Los Sueños, Monteadores, Rectángulo, San Pedrillo Natalidae Natalus mexicanus Corredores, Emus Pteronotus gymnonotus Campanario, Corredores, Tortuga Mormoopidae Pteronotus parnellii Bombasa, Campanario, Corredores, Emus, Túnel ICE 2,Laguna Perdida, Los Sueños, Tortuga Pteronotus personatus Campanario Diversity 2018, 10, 43 6 of 15 Diversity 2018, 10, x FOR PEER REVIEW 6 of 17 Figure 2. Some of the species, observed during our study: (A) Common vampire bat (D. rotundus), (B) Figure 2. Some of the species, observed during our study: (A) Common vampire bat (D. rotundus), Big naked-backed bat (P. gymnonotus), (C) Parnell’s mustached bat (P. parnellii), and (D) Greater sac- (B) Big naked-backed bat (P. gymnonotus), (C) Parnell’s mustached bat (P. parnellii), and (D) Greater winged bat (S. bilineata) (photos: S. Deleva). sac-winged bat (S. bilineata) (photos: S. Deleva). We interviewed 10 groups of people, mainly farmers and landowners around the locations of the fiWeledi nsitteersv.i eTwheedre1 w0 gerroe urpespoorftps eoofp lheu, nmtianingl yacftairvmiteierss ainn dtwlaon doof wthnee rcsaavreosu, nind tbhoethlo coaft iwonhsicohf twhee ofibesldersvieteds .bTlohcekreedw eenrterarenpcoesr.t sMoof shtu onft itnhge afacrtimvietrise swinertew nooot finthteerceasvteeds ,iinn tbhoet hcaovfews ohnic hthweier olabnsder avnedd wbleorcek endote nvtirsaitnincges .thMemos, tbouftt hine ftawrom cearssews etrhee noowt ninetresr ewsteerde icnoltlheectcinavg eesnotnratnhceei rfelaens dfoarn tdhewire rceavneost wviistihtionugtt hoeffmer,ibnugt ointhtewr osecarvseicsetsh, esouwchn earss aw geureidceodll etcotuinrg oern ptrraonvciedfienegs sfoafretthye ierqcuaivpems ewnitt.h Douutroinffge roinugr voitshietsr, sseirxv iocfe st,hseu clahnadsowa nguerisd esdhotowuerdo rusp rnoevwid icnagvessa faentyd eaqsusiipstmede nitn. Dthuer ienxgploourratvioisnists. ,Fsrioxmof othuer olabnsderovwantieornss sihnosiwdee dthues ronoeswts,c wavee rseacnorddaesds tisratecdesi noft uhneceoxnptrloorllaetdio vniss.itFatrioomn (ofouortpobrisnetrsv aantido nwsaisntes)i dine 1th6e orfo tohset s4,4w reooresctso,r vdaenddtaralicsems o(bf ruonkceonn strpoellleeodthveismitsa taionnd (gforaoftfpitrii)n itns tawndo wcaavsetse,) ainnd1 6doisfptohsea4l 4ofr olaorsgtse, qvuanadnatiltiisems o(bf rhookuesneshpoellde owthaesmte sinan odnge rcaafvfieti.) Tinhetw aoctcivaviteiess, aonbdsedrivsepdo saarlooufnladr gtheeq cuaavnetist iienscolufdheodu ssemhaollld- wscaaslete aginricounletucraev aen. dT dheefoacretisvtaittiieosno. Obsnelryv tehdreaer ocuavneds twheercea lvoecsatiendc liund ae rdelsamtivalell-ys cuanlediasgturircbueldtu hreabaintadt (dreafionrfeosrteastti owni.thOonulty atghrrieceulctauvrees awcteivreitileosc ainte da 1in kamr erlaadtiivuesl yaruonudnids ttuhreb ecdavhea ebnittarat n(rcaei)n. fWoree setvwaliuthaoteudt tahger imcuolrtuprheoalocgtiivcaitli efseaitnuare1s komf thraed riouossatsr,o duinffdictuhletyc aovf eapenptrroaancche )(.dWisteanecvea ltuoa uterdbatnhiezemdo arprehaosl)o, gcaicvael ufesaet u(troeus roifsmth,e hruoonstitns,gd, ilfifittceurlitnygo, fetacp.)p, raonadch th(dei slatanndc-eutsoe uarcbtiavnitizieesd aarroeuans)d, ctahvee ruosoest(sto tuor icsamlc,uhlautnet itnhge, Blitiotetricin Vg,ueltnce.)r,aabnildityth Ienldanexd -(uBsVe)a. cAtivccitoireds ianrgo uton dththe eBrVoo isntsdteox,c athlcruelea tceatvhees Bhiaodti cthVeu lhniegrhaebsilti tlyevIneld eoxf (vBuVln).erAacbciloirtyd i(nLgevtoel tAhe), BaVndi n1d3 ecxa,vtehsr esheocwaveeds hhiagdh tvhuelnheirgahbeislittyle (vLeelvoefl vBu).l nTehrea breilsitt yof( Ltheev eclavAe)s, (ann d= 1237)c haavdes as hloowweerd lehvieglh ovf uvlunlenrearbaibliitlyity(L (eLveevleBl )C. )T. hOenrleys tonoef tchaevec asvheosw(ned= n2o7 )dhisatudrbaalnocwe e(rLleevveell Do)f (vTualnbleer a2b).i lity (Level C). Only one cave showed no disturbance (Level D) (Table 2). BBaasseedd oonn tthhee BBiioottiicc PPootteennttiiaall IInnddeexx ((BBPP)),, 1111 ccaavveess hhaadd hhiigghh ddiivveerrssiittyy wwiitthh llaarrggee bbaatt ppooppuullaattiioonnss aanndd hhiigghh ssppeecciieess rriicchhnneessss,, iinnccluluddiningg rraarree ssppeeccieies s(L(Leevvele l1)1.) .OOnlnyl yonoen ceacvaev we awsa cslacslsaisfsieifide ads aLseLveelv 2el, w2,iwthi trhelraetliavteivlye llyarlgaerg beabt aptoppoupluatliaotinosn, sa,nadn dthtrheree ecacvaevse swwereer eclcalsassisfiifieded aas slelevveel l33, ,wwiitthh ffeeww ssppeecciieess,, maaiinnllyy ccoommoonn,, wwiiddeesspprreeaadd,, aanndd ssmaallll ppooppuullaattiioonnss ooff bbaattss.. TThhee ootthheerr 2299 ccaavveess wweerree ccllaassssiiffiieedd aass lleevveell 44,, aass tthheeyy sshhoowweedd vveerryy llooww ssppeecciieess rriicchhnneessss,, rreepprreesseenntteedd bbyy oonnllyy aa ffeeww iinnddiivviidduuaallss ((TTaabbllee2 2)).. Wee ccoombbiinneedd tthhee twtwoo ininddexeexse stot odedteertemrminein teheth reoorsotos swtsitwh itthhe thhieghheisgth ceosntsceornvsaetirovna tpiorinorpitryio (rBitayt (CBaavteC VauvleneVrualbnielirtayb IinlidtyexI)n. dOeuxr) .reOsuulrtsr eshsuolwtsedsh tohwate ndinthe actavneins ehacvave ethseh haivgehtehset choingsheersvtactioonns eprrvioartiitoyn. The Tortuga cave received the highest BCVI (1A) due to the large bat colony and vulnerability. In addition, eight other caves (i.e., Arelis, Bombasa, Corredores, Dos Brazos, Emus, Túnel Ice 2, Laguna Diversity 2018, 10, 43 7 of 15 priority. The Tortuga cave received the highest BCVI (1A) due to the large bat colony and vulnerability. In addition, eight other caves (i.e., Arelis, Bombasa, Corredores, Dos Brazos, Emus, Túnel Ice 2, Laguna Perdida, and San Pedrillo) had a BCVI result of 1B—highest species diversity and very high vulnerability. Medium conservation priority caves were evaluated with BCVI values between 1C (High diversity and low vulnerability) and 3B (low diversity and high disturbance). The roosts with category 4A, 4B, and 4C were evaluated as low conservation priority due to their low bat diversity (Table 2). Table 2. Bat Cave Vulnerability Index (BCVI) as the combination of the Biotic Potential Index (BP) and the Biotic Vulnerability Index (BV), description of each observed category and the roosts. BCVI Priority Description * Roosts BP BV 1 A High Large population, highest site accessibility,highly prone to disturbance. Tortuga Large population, high species diversity, 1 B High high site accessibility, highly prone to Arelis, Bombasa, Corredores, Dos Brazos, Emus, disturbance. Túnel Ice 2, Laguna Perdida, San Pedrillo Large population, high species diversity, 1 C Medium low site accessibility and less prone to Campanario, Miramar disturbance. Relatively high population, low species 2 C Medium diversity, low site accessibility and less Carma prone to disturbance. Small populations, relatively high species 3 B Medium diversity, high site accessibility, highly Alma, Gran Galeria prone to disturbance. Relatively large population, low species 3 D Medium diversity, rare species present, low site Piedras Blancas 2 accessibility, not prone to disturbance. 4 A Low No bats present, highest site accessibility,highly prone to disturbance. Arco, Ventana 4 B Low Small populations, relatively high speciesdiversity, high site accessibility. San Jocesito Cataratas, Los Sueños, Gran Madre Afrodiziaco, Aprendizaje, Arbol Caido, Bamboo, Bananal, Banano Quemado, Buena Cueva, Very small population, low species Caballo Muerto, Castillo Real, Cinco millones, 4 C Low diversity, lower site accessibility and less Cueva 1, Cueva 3, Cueva 5, Cueva cerca prone to disturbance. Corredores., Final 7, Túnel ICE 2, La Troja, Lagrima, Metros 12, Monteadores, Rectangulo, Sapo Gordo, Serpiente Dormida, Titi Mono. * Based on Tanalgo et al. 2018 [46]. 4. Discussion This study represents the first significant effort to characterize bat diversity in a large number of caves in Costa Rica. We provide new data on some additional roosting resources that are available to many bat species in the region, and our study will serve as a baseline for further research on the cave-dwelling bats in the Brunca region and in the country (Appendix A, Table A1). With our results, we have identified caves with a large number of species that potentially may require strong initiatives to protect, such as the Corredores and Laguna Perdida caves [46]. We have also identified colonies of a few species that are extremely rare and were only found in one or two caves, including Corredores and Emus (N. mexicanus in both, C. auritus in the former, and Peropteryx macrotis in the latter), Miramar (L. aurita), and Campanario (P. personatus), which points to the need for establishing strict visitation controls for all visitors (including speleologists) to secure the persistence of these colonies, as some of these species may be considered of high extinction risk [48]. These caves were not categorized as high-priority by the BCVI given that they do not suffer, yet, from human disturbance, as the caves are fairly inaccessible. Furthermore, we have also identified two maternity colonies that harbor large Diversity 2018, 10, 43 8 of 15 numbers of individuals from three species of the genus Pteronotus, primarily in the Campanario cave, but also in Tortuga (Figure 3). To secure the long-term persistence of these populations, visitation of Diversity 2018, 10, x FOR PEER REVIEW 8 of 17 these sites should never be allowed during lactation (February—May) as during this period, a single edvuernitngo fthdiiss ptuerrbioadn,c ae scionugllde elevaednt toof tdhiestudrebtaacnhcme ceonutladn ldeafda ltlo (tahned dpetoascshibmlyendt eaantdh )faolfl (haunndd proedsssibolfy pduepasth[)2 5o]f. hundreds of pups [25]. FFrroomm tthhee 4444 sstutuddieiedd ccaavveess,, 3388 ((8866.3.366%%)) wweerree ooccccuuppiieedd bbyy bbaattss,, wwhhiicchh rreepprreesseennttss aa hhiigghheerr ooccccuuppaattiioonn rraattee tthhaann ssiimmiillaarr ssttuuddiieess rreeppoorrtteedd inin ooththeer rcocuountnrtireise sini nLaLtainti nAmAmeriecraic. aIn. IPnuePrutoe rRtoicRo,i cfoo,r feoxraemxapmlep, loen, olyn l3y13%1 %of otfhteh ceacvaevse isni nthteh eNNataitoionnaal lSSppeeleleoolologgyy ddaattaabbaassee aarree uusseedd aass rroooossttss [[4499]].. AA ssiimmiillaarr ssttuuddyy iinn BBrraazziill sshhoowwss tthhaatt oonnllyy aabboouutt hhaallff ooff tthhee oobbsseerrvveedd ccaavvees shhaadd bbatast s[5[05]0.] W. We ealaslos ofofuonudn dthtaht aitn icnocmobminbaintiaotnio, na,lla cllavcaevs ehsahrbaorbr oar taottaolt oalf o2f0 2s0pescpieecsi.e Hs.oHwoewveerv, ewr,ew kenokwno twhatth aatt laetaslet a4s6t s4p6escpieesc iiens tihne tBhreuBnrcuan rceagrioegni oonf CofoCstoa sRtaicRai caarea creoncsoindseirdeedr ecdavcea-vdew-dewlleerllse [r1s5[]1, 5a]n, adn tdhethreefroerfeo,r ew, ownodnedr ewr hwyh nyonnoen oef otfhethsee soethoethr esrpescpieecsi ewsewree rreecroercdoerdd eind oinuro sutur dstyu (dAyp(pAepnpdeixn dAi,x TAab, lTea Abl2e).A O2n).e Oponsesipboilsistyib iisli tthyaits otthhaetr ortohoesrtirnogo srteinsgourercseosu racrees maroerme orreeadreilayd ialyvaaivlaabillaeb tloe tboabtsa ttshtahta atraer ennoot tccaavvee--ssppeecciiaalliissttss,, ssuucchh aass sseevveerraall ssppeeccieiessw witihtihninth tehter ibtreibMe icMroicnryocnteyrcitneir(ien.ig .(,eM.gi.c, rMoniyccrtoenryiscmtericisr omtisicarnodtisL aamndpr oLnaymctperroisnybrcatecrhiyso btirsa)c, hwyhoticish), mwahyicohf tmenayro oofsttenin rhooosllto iwn htroelelosw[5 1tr]e, easn d[51A]r, taibnedu sAlrittuibreautsu sli,twurhaitcuhs, iws thyipchic aisl ltyyfpoiucanldlyr fooousntidn grouonsdtienrg fuonlidagere [f5o2li]a. gAel t[e5r2n]a. tAivletelyr,nmatoivreelvyu, lmneorraeb vleualnnedrarbarlee sapnedc ireasr,es uscphecaisesth, esucachrn aivso trhoeu scabrantiVvoamropuysr ubmat sVpeacmtrpuymruamn dspMectarcuromp haynldlu Mmamcraocprohpyhllyulmlu mma[5cr3o–p5h5y]l,lmuma y[5h3a–v5e5]a, lmreaayd yhadvisea aplpreeaadreyd dfirsoampptehaereadre farowmh etrhee tahreeam wajhoerritey thoef mstuajdoyritcya voef sstwuderye claovceast ewde,raes losucarrteodu,n adsi snugrrnoautunrdailngh anbaittuartsalf ahcaebisteavtse rfaecleo ssesvaenrde /loosrs saignndi/fiocra snitgdniefgicraandta tdioengr[a3d8a].tiHono w[3e8v]e. rH, wowe hevoepre, twhaet hsoompee tohfatth essoemoet hoefr tshpeescei eostwheirll sbpeerceiceos rdweidll abse wreecocordnetidn uase wtoe mcoonntiitnouret htoe msaomnietoarn tdhea dsadmiteio annadl caadvdeitriooonsatls cwavieth roaocsotsm wbiitnha ati oconmobf iontahteiornr eosfe oatrhcehr treecshenairqcuhe tse,cihnncliuqduiensg, icnacplutudrinesg actatphteurceasv aete tnhter acnacvee aenndtrathneceu asendo fthuelt ruasseo oufn udltdraetseocutonrds d[5e6te].ctors [56]. Figure 3. A nursery colony of Pteronotus spp. in the Tortuga cave (photo: S. Deleva). Figure 3. A nursery colony of Pteronotus spp. in the Tortuga cave (photo: S. Deleva). From the 44 caves we visited, only two (i.e., Laguna Perdida and Piedras Blancas 2) are under someF rloemvelt hoef 4p4roctaevcetisown,e avs isthiteeyd ,aoren llyoctawteod( ii.ne. ,thLea gPuiendarPase rBdliadnacaasn dNPatiieodnraals PBalrakn.c Tashe2r)ea irse nuon dlaewr spormoteecletivnegl ocfavperos teinc tiCoons,taas Rthiceay, aarnedl omcaotsetd ainret hloecPatieedd raosn Bplarinvcaatse NparotipoenratliePsa, rwk.hTichhe rmeaiskenso tlhaewir pprrootetecctitniognc aav desecinisiCoons toaf Rthicea ,laannddomwonset rasr.e Florocamte tdhoen 1p14ri vsapteecpierso poef rbtiaetss, winh Cicohsmtaa Rkiecsat,h aeti rleparsott e4c8t ioarne acadveec-isdiwonelolefrtsh eanladn ddoewpennedrs .oFnr ocmavtehse a1s1 4rosopsetcsi eisno of nbea tsdiengrCeoes toar Raincao,thaterle a[1s5t ,4587]a. reThcaisv em-dawkeesll etrhse apnrdotdeectpioennd ofo ncacvaevse asnads orothoesrt suinndoenrgerdoeugnrde erooorsatsn osuthcehr a[s1 5a,r5t7if]i.cTiahl itsumnnaekles satnhde gporlodt emctiinoens oaf mcaavtteesr aonfd tohteh ehriguhnedsetr gprroiuonridtyr.o oTshtes smucohsta sefafretcifiticviea l wtuanyn etlos apnrdesgeorvlde mthinee scaavmesa titse rtoof pthreophoigshe estht ep rriooroistyts. Tchaetemgoorsitzeefdfe catsi voefw haigyhto cpornesseerrvvaettihoen cparvieosriitsyt oaps riompopsoerttahnetr osoitsetss cfoatre gthoer izceodnsaesrovfahtiiognh coof nbsaetrsv a(Stiiotino pIrmioproitrytaansteim ppaorrat alna tCsiotnessefrovratchieónco dnes elrovsa tMiounrociféblaagtsos(S),i tbioasIemdp oornt atnhtee dpoacraumlaeCnotantsioernv aocfi óthned Lealotisn MAumrecriéiclaagno Bsa),t bCaosnedseorvnatthioend Noceutwmoernkt a[5ti8o]n. Towf oth oef Lthatei ncaAvmese wriictahn thBea thCigohnesset rcvoantisoenrvNateiotwn oprrkio[r5i8ty]., TCwoorroefdothreesc aavneds Ewmituhst, haereh igahlseos tthcoen mseorvsta thioenavpilryio raiftfye,cCteodr rbeyd oarnestharnodpoEgmenuics , aacrteivailtsieost, hseumcho sats huenacvoilnytraoflfleecdte dvibsyitaatniothnr oapnodg evnaicnadcatliivsimtie, s,asnudc hbaosthu nacroen trreoalldeidlyv iascitcaetsiosinblaen. dDvuaen dtaol istmhe, afnrdeqbuoetnht disturbance, the bat colonies in these caves are facing a dire future unless conservation groups, tour guides, and landowners join forces to set limits to visitation rates and enforce proper visitation guidelines [59]. Тhe Bat Cave Vulnerability Index (BCVI) has further allowed us to identify roosts with high species diversity that are currently subject to anthropogenic pressure, thus urgent actions are needed Diversity 2018, 10, 43 9 of 15 are readily accessible. Due to the frequent disturbance, the bat colonies in these caves are facing a dire future unless conservation groups, tour guides, and landowners join forces to set limits to visitation rates and enforce proper visitation guidelines [59]. The Bat Cave Vulnerability Index (BCVI) has further allowed us to identify roosts with high species diversity that are currently subject to anthropogenic pressure, thus urgent actions are needed to prevent further disturbance. Some roosts with high bat diversity are excluded from the list due to their difficult approach, which makes them less vulnerable to anthropogenic pressure. Others, which are highly vulnerable or already affected by anthropogenic activities, were excluded from the list due to low species diversity. We propose that if limited resources are available, we should focus our conservation efforts on the roosts of category 1A and 1B, but the other categories need further monitoring, as new visits can detect new bat species or new threats that could be prevented before extensive damage is caused to the colonies [46]. 5. Conclusions With this study, we now have the tools to develop conservation strategies to protect the most important and vulnerable roosts and baseline information to start long-term monitoring programs of the bat colonies that inhabit these caves. Previous data of cave-dwelling bats in the Brunca region are available from a few expedition reports made in 1993, conducted mainly by non-specialists, that present general information about the presence of just a few bat species without information on their abundance [40]. As such, this report does not provide reliable baseline data to gauge changes in bat colony size and species assemblages that might allow us to determine if caves are suffering from human activities conducted in them, most notably uncontrolled visitation. Our data confirm that caves in the Brunca region of Costa Rica are inhabited by a rich bat fauna and we must take urgent conservation efforts to protect them. Many of the bats in Costa Rica are of the lowest conservation priority (least concern) because of their wide distribution, but some species may be locally rare or declining. We propose cave surveys be included in the national priorities for bat research and an annual monitoring scheme for roosts to be set up. In this way, we will be able to trace the change in populations and to take actions if certain species are declining. Author Contributions: Conceptualization, S.D. and G.C.; Methodology, S.D. and G.C.; Formal Analysis, S.D. and G.C.; Investigation, S.D. and G.C.; Resources, S.D. and G.C.; Data Curation, S.D.; Writing-Original Draft Preparation, S.D.; Writing-Review & Editing, S.D. and G.C.; Visualization, S.D.; Supervision, G.C.; Funding Acquisition, S.D. and G.C. Acknowledgments: This study was funded by a Rufford Small Grant (No 16923-1), the University of Costa Rica (Grant No B6033), and partially by the Alvaro Ugalde Grant of Osa Conservation. We also received a grant from Idea Wild. We thank Carlos Goicoechea and Gustavo Quesada for providing cave location data and the invaluable help for organizing field expeditions. We would like to express our gratitude to Angel Ivanov for his support during all stages of this research. We are also very grateful to all the cavers and researchers who provided an invaluable assistance in the field work: Cristian Castillo Salazar, Karen Miranda Gamboa, Scott Trescott, Richard Solano Quesada, Michael Martinez Bonilla, Inazio Garin, Jose Alfaro, Joxerra Aihartza, Leonard Baile, Amanda Vicente-Santos, Gustavo Alfaro Jimenez, Luis Ramirez Castro, Miranda Mitchell, Victor Hugo Carvajal Rivera, Félix Eduardo, Monica Lerici, Paula Iturralde-Polit, Wilson Hernández Cabrera, Esteban Zárate Brizuela. Conflicts of Interest: The authors declare no conflict of interest. Diversity 2018, 10, 43 10 of 15 Appendix A Table A1. All field sites in the Brunca region, their location (see Figure 1), visit dates, the Bat Cave Vulnerability Index (BCVI), and the Number of individuals of each species. Cave Area Visits/mm/yy BCVI No ofSpecies A sp. ** A C C C D G L L L N P P P P P P P S T jam per sow aur rot sor con rob aur mex kap mac dis has gym par per bil cir AFRODIZIACO POZO * D 03/16 4 C 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ALMA E 02/16, 05/16, 02/17. 12/17 3 B 5 0 0 10 0 0 6 3 0 0 0 0 59 0 0 0 0 0 0 15 0 APRENDIZAJE POZO * D 03/16 4 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ARBOL CAIDO * D 03/16 4 C 2 0 0 14 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 ARCO * A 02/16, 05/16 4 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ARELIS * D 01/16; 04/16 1 B 4 0 22 0 0 0 0 0 0 0 0 0 45 0 36 0 0 0 0 55 0 BAMBOO POZO * D 03/17 4 C 2 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 14 0 BANANAL E 01/17 4 C 1 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BANANO QUEMADO E 03/16 4 C 2 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 BOMBASA * C 02/18 1 B 6 0 0 350 0 0 1 40 0 20 0 0 0 0 0 0 0 100 0 0 1 BUENA CUEVA * D 03/16 4 C 2 0 0 74 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CABALLO MUERTO * D 01/16, 03/16 4 C 2 0 0 3 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 CAMPANARIO * C 05/17, 02/18 1 C 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2000 5000 600 0 0 CARMA E 02/16 2 C 1 0 179 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CASTILLO REAL E 04/16 4 C 1 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 CINCO MILLIONES * D 03/16 4 C 4 0 0 15 0 0 4 0 0 0 0 0 26 0 0 0 0 0 0 20 0 CORREDORES E 01/16, 03.16, 02/16, 12/17 1 B 8 0 14 49 0 1 0 1 0 0 0 235 0 0 0 0 500 700 0 8 0 CUEVA 1 NO NAME * D 01/16 4 C 1 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 CUEVA 3 NO NAME * D 01/16 4 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CUEVA 5 NO NAME * D 01/16 4 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CUEVA CERCA COR E 02/16 4 C 1 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 DOS BRAZOS * C 03/17, 02/18 1 B 2 0 0 663 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 EMUS D 01/16, 04/16, 12/17 1 B 7 0 0 813 0 0 44 0 0 0 0 10 9 2 0 0 0 200 0 26 0 FINAL 7 POZO * D 03/16 4 C 1 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GRAN GALERIA E 03/16, 10/16, 12/17 3 B 5 0 49 60 0 0 0 0 0 0 0 0 15 1 0 0 0 0 0 24 0 GRAN MADRE * D 03/16, 03/16 4 C 5 0 0 16 0 0 4 0 0 0 1 0 62 0 0 0 0 0 0 31 0 ICE 1 TUNNEL B 02/17 4 C 1 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ICE 2 TUNNEL B 02/17, 12/17 1 B 5 0 320 70 0 0 39 0 0 0 0 0 0 0 0 0 0 150 0 12 0 LA TROJA E 04/16 4 C 1 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 LAGRIMA POZO * D 03/16 4 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LAGUNA PERDIDA * D 10/16, 10/16, 12/17 1 B 7 100 0 1239 0 0 176 0 0 118 0 0 0 0 0 57 0 350 0 1 0 LOS SUEÑOS * D 11/16, 02/18 4 B 4 0 0 250 0 0 25 0 0 0 0 0 0 0 0 0 0 4 0 65 0 METROS 12 NO NAME * D 01/16 4 C 1 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 MIRAMAR POZO * E 12/15, 01/16 1 C 5 0 0 134 1 0 1 0 11 0 108 0 0 0 0 0 0 0 0 0 0 MONTEADORES * E 01/16 4 C 2 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 2 0 PIEDRAS BLANCAS 2 * D 10/17 3 D 1 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RECTANGULO E 04/16 4 C 2 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 4 0 SAN JOSECITO * C 05/17, 02/18 4 B 3 0 0 35 0 0 19 0 4 0 0 0 0 0 0 0 0 0 0 0 0 SAN PEDRILLO * C 05/17 1 B 5 0 34 5 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 1 1 SAPO GORDO POZO * D 03/16 4 C 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SERPIENTE DORMIDA E 03/17 4 C 1 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 TITI MONO * D 03/16 4 C 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TORTUGA * A 05/16, 10/16, 02/17 1 A 3 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 427 400 0 0 0 VENTANA * A 05/16 4 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * New caves, according to the National Cave database. ** Species abbreviations: Anoura sp., Artibeus jamaicensis, Carollia perspicillata, Carollia sowelli, Chrotopterus auritus, Desmodus rotundus, Glossophaga soricina, Lonchophylla concava, Lonchophylla robusta, Lonchorhina aurita, Natalus mexicanus, Peropteryx kappleri, Peropteryx macrotis, Phyllostomus discolor, Phyllostomus hastatus, Pteronotus gymnonotus, Pteronotus parnellii, Pteronotus personatus, Saccopteryx bilineata, Trachops cirrhosus. Diversity 2018, 10, 43 11 of 15 Table A2. Bat species in the Brunca region, their conservation status, population trend [51], presence in caves, and cave dependence [11,15,51]. Common Name Latin Name IUCN Status Population Trend Cave-Dwelling Cave-Dependent Handley’s tailless bat Anoura cultrata LC decreasing Yes No Geoffroy’s tailless bat Anoura geoffroyi LC stable Yes No Jamaican fruit bat Artibeus jamaicensis LC stable Yes No Great fruit-eating bat Artibeus lituratus LC stable Yes No Chestnut short-tailed bat Carollia castanea LC stable Yes No Seba’s short-tailed bat Carollia perspicillata LC stable Yes No Sowell’s short-tailed bat Carollia sowelli LC stable Yes No Shaggy bat Centronycteris centralis LC unknown No No Wrinkle-faced bat Centurio senex LC stable No No Salvin’s big-eyed bat Chiroderma salvini LC stable No data No Hairy big-eyed bat Chiroderma villosum LC stable No No Godman’s long-tailed bat Choeroniscus godmani LC unknown No data No data Big-eared wooly bat Chrotopterus auritus LC stable Yes No Wagner’s sac-winged bat Cormura brevirostris LC unknown No No Aztec fruit-eating bat Dermanura azteca LC unknown Yes No Toltec fruit-eating bat Dermanura tolteca LC unknown Yes No Thomas’ fruit eating bat Dermanura watsoni LC stable No No Common vampire bat Desmodus rotundus LC stable Yes No White-winged vampire bat Diaemus youngi LC unknown Yes No Northern ghost bat Diclidurus albus LC unknown No No Hairy-legged vampire bat Diphylla ecaudata LC stable Yes No Velvety fruit-eating bat Enchisthenes hartii LC unknown No data No data Brazilian brown bat Eptesicus brasiliensis LC unknown No No Chirqui brown bat Eptesicus chiriquinus LC unknown No No Argentine brown bat Eptesicus furinalis LC unknown Yes No Big brown bat Eptesicus fuscus LC increasing Yes No Black bonneted bat Eumops auripendulus LC unknown No No Sanborn’s bonneted bat Eumops hansae LC unknown No data No data Commissaris’s long-tongued bat Glossophaga commissarisi LC stable Yes No Pallas’s long-tongued bat Glossophaga soricina LC stable Yes No Underwood’s long-tongued bat Hylonycteris underwoodi LC stable Yes Yes Yellow-throated big-eared bat Lampronycteris brachyotis LC stable Yes No Desert red bat Lasiurus blossevillii LC unknown No No Southern yellow bat Lasiurus ega LC unknown No No Dark long-tongued bat Lichonycteris obscura LC unknown No data No data Goldman’s nectar bat Lonchophylla concava LC unknown Yes No data Orange nectar bat Lonchophylla robusta LC unknown Yes Yes Tomes’s sword-nosed bat Lonchorhina aurita LC stable Yes Yes Pygmy round-eared bat Lophostoma brasiliense LC stable No No White-throated round-eared bat Lophostoma silvicolum LC unknown No No Long-legged bat Macrophyllum macrophyllum LC unknown Yes No data Hairy big-eared bat Micronycteris hirsuta LC unknown No No Diversity 2018, 10, 43 12 of 15 Table A2. Cont. Common Name Latin Name IUCN Status Population Trend Cave-Dwelling Cave-Dependent Common big-eared bat Micronycteris microtis LC stable Yes No White-bellied big-eared bat Micronycteris minuta LC unknown Yes No Schmidts’s big-eared bat Micronycteris schmidtorum LC stable No No Striped hairy-nosed bat Mimon crenulatum LC stable No No Coiban Mastiff Bat Molossus coibensis LC unknown No No Velvety free-tailed bat Molossus molossus LC unknown No No Miller’s mastiff bat Molossus pretiosus LC unknown Yes No data Black mastiff bat Molossus rufus LC stable No No Sinaloan mastiff bat Molossus sinaloae LC stable Yes No Silver-tipped myotis Myotis albescens LC stable Yes No Hairy-legged myotis Myotis keaysi LC unknown Yes No Black myotis Myotis nigricans LC stable Yes No Montane myotis Myotis oxyotus LC unknown No data No data Riparian myotis Myotis riparius LC stable No data No data Mexican funnel-eared bat Natalus mexicanus LC unknown Yes Yes Lesser bulldog bat Noctilio albiventris LC stable No No Greater bulldog bat Noctilio leporinus LC unknown Yes No Greater dog-like bat Peropteryx kappleri LC unknown Yes No Lesser doglike bat Peropteryx macrotis LC stable Yes No Pale spear-nosed bat Phyllostomus discolor LC stable Yes No Greater spear-nosed bat Phyllostomus hastatus LC stable Yes No Heller’s broad-nosed bat Platyrrhinus helleri LC stable Yes No Greater broad-nosed bat Platyrrhinus vittatus LC unknown Yes No data Naked-backed bat Pteronotus davyi LC stable Yes Yes Big naked-backed bat Pteronotus gymnonotus LC stable Yes Yes Parnell’s mustached bat Pteronotus mesoamericanus LC unknown Yes Yes Wagner’s mustached bat Pteronotus personatus LC stable Yes Yes Thomas’ yellow bat Rhogeessa io LC unknown No No Proboscis bat Rhynchonycteris naso LC unknown No No Greater sac-winged bat Saccopteryx bilineata LC unknown Yes No Lesser sac-winged bat Saccopteryx leptura LC unknown No No Talamancan yellow-shouldered bat Sturnira mordax NT stable No data No data Mexican free-tailed bat Tadarida brasiliensis LC stable Yes No Spix’s disk-winged bat Thyroptera tricolor LC unknown No No Stripe-headed round-eared bat Tonatia saurophila LC stable No No Fringe-lipped bat Trachops cirrhosus LC stable Yes No Niceforo’s big-eared bat Trinycteris nicefori LC unknown No No Tent-making bat Uroderma bilobatum LC stable No No Striped yellow-eared bat Vampyriscus nymphaea LC unknown No No Northern little yellow-eared bat Vampyressa thyone LC unknown No No Great stripe-faced bat Vampyrodes major LC unknown No No Spectral bat Vampyrum spectrum NT decreasing Yes No DiversityD2iv0e1r8si,ty1 02,01483, 10, x FOR PEER REVIEW 14 of 171 3 of 15 Figure A1. Some of the field work sites, mentioned in this study: (A) San Pedrillo cave, photo: S. FigureDAe1le.vSao; m(Be) oEfmthuse ficaevlde, wphoortkos: iSte. sT,rmesecnottti;o (nCe)d Bianmthboiso sctuavdey, :p(hAo)toS:a Cn. PCeadsrtiilllloo cSaalvaez,apr;h (oDto) :GSr.aDn eleva; (B) EmMuasdcraev cea,vpe,h pohtoot:oS: S. .T Dreeslecvoat.t ; (C) Bamboo cave, photo: C. Castillo Salazar; (D) Gran Madre cave, photo: S. Deleva. References Refere1n. cesCulver, D.; Pipan, T. The Biology of Caves and Other Subterranean Habitats; Oxford University Press: Oxford, UK, 2010. 1. C2u.l verR, oDm.;eProi,p Aa.n C, aTv.eT BhioeloBgiyo;l CogaymobfriCdagvee Us nainvderOsittyh ePrrSesusb: tCearrmabnreiadngeH, UabKit, a2t0s0;9O. xford University Press: Oxford, U3K. , 20K1a0m. besis, P. The importance of cave exploration to scientific research. J. Cave Karst Stud. 2007, 69, 46–58. 2. Ro4.m erSoc,hAilt.hCuaizveenB, Miol.;o Cgya;bCanabmanb, rAid.;g HeaUasne,i vMe.r PsiotsysiPblree sps:ecCiatmionb rwiditghe g,eUneK f,lo2w00 in9. tropical cave snails. J. Zool. 3. KambeSsyist,. PE.vTolh. Reeism. 2p0o05r,t a4n3,c 1e3o3–f1c3a8v. e exploration to scientific research. J. Cave Karst Stud. 2007, 69, 46–58. 4. Sc5h. ilthVuiidztehna,yMan.o;nC, aCb. aCnrbyaptno,toAra. ;tHhaamaiscoel,aM (W. Patoesrsfaiblll eCslipmebciinagti oCnavwe iFthishg)e tnhee flIUowCNin Rterdo pLiicsat locfa Tvheresantaeinlesd. J. Zool. Syst. ESvpoel.ciRese s2.02101.0 A5,v4a3il,ab1l3e3 o–n1l3in8e.: [hCttrpo:s//swRwefw] .iucnredlist.org/details/41407/0 (accessed on 15 March 2018). 5. Vi6d. thaByrainnkolønv, , CS..; EClreympatnosto, Cra.; tRhaatmcliifcfoe,l aJ. (OWilbaitredrsf aplrlodCulicme ebcihnogloCcaativoen sFiigsnha)lst bheeyoIUndC tNheiRr beedstL hiesatrionfg Trahnrgeea tened and adjust signal design to natural light conditions. R. Soc. Open Sci. 2017, 4, 170255, Speciedso2i0:1101.1.0A98v/arisloasb.1l7e0o2n55li. ne: http://www.iucnredlist.org/details/41407/0 (accessed on 15 March 2018). 6. Br7i.n kløLva,dSle.;, RE.l;e Fmiramnisn,oC, J..;; RMaatlchlaifdfoe,, AJ..O; Riolbdirrídgusepzr-oDduurácne, eAc.h Uonloexcpatloiorends digivnearlssitby eaynodn cdontsheerivrabtieosnt phoetaenritniagl range and adojfu nsetostirgonpaicladl ehsoitg cnavteos.n Caotnusrearlv.l iBgiholt. 2c0o1n2d, 2it6i,o 9n7s8.–R98.2S, odco.i:O10p.1en11S1c/ji..1522031-717, 349,.12071022.05159.3[6C.xr.o ssRef] [PubMed] 7. La8d. le,ORr.;teFgiar,m J.i;n Mo,aJld.;oMnadlho,a dJ. oF,eAm.a; lRe oindtreírgaucteiozn-Ds uinr áhna,reAm. Ugrnoeuxppsl orf etdhed Jiavmerasiictayn afnruditc-eoantsinegrv baatti,o Anrptiobetuesn tial of neotrojpamicailcehnosits ca(Cvehsir.oCpotenrsae:r vP. hByilollo.s2to0m12id, a2e6),. 9A78ct–a9 8C2h. i[rCoprtoersoslRogeicf]a [P2u00b6M, e8d, ]485–495, doi:10.3161/1733- 8. Ortega5,32J9.;(20M06a)8l[d4o85n:afidihog,o]J2..0.Fceom;2.a le interactions in harem groups of the Jamaican fruit-eating bat, Ar9t. ibeuMs cjaCmraacikceenn,s iGs.(; CGhuisrtoinp, tMer.a N: uPrhsiynlglo bsethoamviiodra ien) .MAecxtiacaCnh firreoep-ttaeriloeldo gbiacta m20a0te6r,n8it,y4 c8o5l–on4i9e5s.. E[CthroolosgsyR 2e0f1]0, 89, 305–321, doi:10.1111/j.1439-0310.1991.tb00376.x. 9. McCracken, G.; Gustin, M. Nursing behavior in Mexican free-tailed bat maternity colonies. Ethology 2010, 89, 10. Racey, P.; Furey, N. Conservation Ecology of cave bats. In Bats in the Anthropocene: Conservation of Bats in a 305–32C1h.a[nCgrinogs sWRoerfl]d; Voigt, C., Kingston, T., Ed.; Springer International Publishing: Berlin, Germany, 2016; pp. 10. Racey,4P6.3;–F5u00r.e y, N. Conservation Ecology of cave bats. In Bats in the Anthropocene: Conservation of Bats in a 1C1h. anSgaignogt,W Mo.;r Cldh;aVvoerigrit, ,GC. E.,fKfeicntsg osft orono,sTt s.,pEecdiasl.i;zSatpiornin ogne erxItnintcetrionna triioskn ianl bPautsb. lCisohnsienrgv.: BBioelr. l2i0n1,5G, 2e9r, m16a6n6–y, 2016; pp. 4631–65730,0 d. oi:10.1111/cobi.12546. 11. Sagot, M.; Chaverri, G. Effects of roost specialization on extinction risk in bats. Conserv. Biol. 2015, 29, 16 66–1673. [CrossRef] [PubMed] 12. Sewall, B.; Granek, E.; Trewhella, W. The endemic Comoros islands fruit bat Rousettus obliviosus: Ecology, conservation, and red list status. Oryx 2003, 37. [CrossRef] 13. Hristov, N.; Betke, M.; Theriault, D.; Bagchi, A.; Kunz, T. Seasonal variation in colony size of brazilian free-tailed bats at Carlsbad cavern based on thermal imaging. J. Mammal. 2010, 91, 183–192. [CrossRef] Diversity 2018, 10, 43 14 of 15 14. McFarlane, D.; Rentergem, G.; Ruina, A.; Lundberg, J.; Christenson, K. Estimating colony size of the wrinkle-lipped bat, Chaerephon plicatus (Chiroptera: Molossidae) at Gomantong, Sabah, by quantitative image analysis. Acta Chiropterol. 2015, 17, 171–177. [CrossRef] 15. Reid, F. A Field Guide to the Mammals of Central America & Southeast Mexico, 2nd ed.; Oxford University Press: Oxford, UK, 2009; pp. 72–176. 16. Trimm, R.; LaVal, R. A Field Key to the Bats of Costa Rica; Occasional Publication Series; Center for Latin American Studies; University of Kansas: Lawrence, KS, USA, 1999; Volume 22, pp. 1–20. 17. Ulloa, A.; Goicoechea, C. Geotourism Potential of Underground Sites in Costa Rica. Tour. Karst Areas 2013, 6, 43–56. 18. Arita, H. Conservation Biology of the cave bats of Mexico. J. Mammal. 1993, 74, 693–702. [CrossRef] 19. Bats Living in Caves, Barra Honda National Park. Available online: http://docs.projects-abroad.org/ us/conservation-management-plan/data-and-reports/costa-rica/bats-living-in-caves.pdf (accessed on 15 March 2018). 20. Kunz, T.; Braun de Torrez, E.; Bauer, D.; Lobova, T.; Fleming, T. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [CrossRef] [PubMed] 21. Kunz, T.; Hodgkison, R.; Weise, S. Methods for capturing and handling bats. In Ecological and Behavioral Methods for the Study of Bats; Kunz, T., Parsons, S., Eds.; The Johns Hopkins University Press: Baltimore, MD, USA, 2009; pp. 5–35. 22. Flaquer, C.; Torre, I.; Arrizabalaga, A. Comparison of sampling methods for inventory of bat communities. J. Mammal. 2007, 88, 526–533. [CrossRef] 23. Atanasov, N. Novata peshtera cave near the town of Peshtera. Priroda Nauka 1936, 3, 75–77. 24. Petrov, B.; Helversen, O. Bats (Mammalia: Chiroptera) of the western Rhodopes Mountain (Bulgaria and Greece). In Biodiversity of Western Rhodopes (Bulgaria and Greece); Biodiversity of Bulgaria 4; Beron, P., Ed.; Pensoft & National Museum of Natural History: Sofia, Bulgaria, 2011. 25. Battersby, J. Guidelines for Surveillance and Monitoring of European Bats; EUROBATS Publication Series No 5; UNEP/EUROBATS Secretariat: Bonn, Germany, 2010; Volume 5, p. 95. 26. Cardiff, S.; Ratrimomanarivo, F.; Rembert, G.; Goodman, S. Hunting, disturbance and roost persistence of bats in caves at Ankarana, northern Madagascar. Afr. J. Ecol. 2009, 47, 640–649. [CrossRef] 27. Foley, J.; Clifford, D.; Castle, K.; Cryan, P.; Ostfeld, R. Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 2011. [CrossRef] [PubMed] 28. Christenson, K.; Mcfarlane, D. An ecologically-significant range extension for Hahn’s short-tailed fruit bat (Carollia Subrufa) in Southwestern Costa Rica. Chiropt. Neotrop. 2007, 13, 319–321. 29. Pacheco, J.; Ceballos, G.; Daily, G.; Ehrlich, P.; Suzán, G.; Rodríguez-Herrera, B.; Marcé, E. Diversidad, historia natural y conservación de los mamíferos de San Vito De Coto Brus, Costa Rica. Rev. Biol. Trop. 2014, 54, 219. [CrossRef] 30. Landmann, A.; Walder, C.; Vorauer, A.; Bohn, S.; Weinbeer, M. Bats of the La Gamba Region, Esquinas Rainforest, Costa Rica: Species diversity, guild structure and niche segregation. In Natural and Cultural History of the Golfo Dulce Region, Costa Rica; Einbeer, M., Ed.; Oberösterreichisches Landesmuseum, Biologiezentrum: Linz, Austria, 2008; pp. 423–440. 31. Hutson, A.M.; Mickleburgh, S.P. Racey, P.A. Michrochiropteran Bats: Global Status Survey and Conservation Action Plan; IUCN/SSC Chiroptera Specialist Group; IUCN: Gland, Switzerland; Cambridge, UK, 2001. 32. Baker, A.; Genty, D. Environmental pressures on conserving cave speleothems: Effects of changing surface land use and increased cave tourism. J. Environ. Manag. 1998, 53, 165–175. [CrossRef] 33. Medellin, R.; Wiederholt, R.; Lopez-Hoffman, L. Conservation relevance of bat caves for biodiversity and ecosystem services. Biol. Conserv. 2017, 211, 45–50. [CrossRef] 34. Kobayashi, Y.; Sato, G.; Mochizuki, N.; Hirano, S.; Itou, T.; Carvalho, A.; Albas, A.; Santos, H.; Ito, F.; Sakai, T. Molecular and geographic analyses of vampire bat-transmitted cattle rabies in central Brazil. BMC Vet. Res. 2008, 4, 44. [CrossRef] [PubMed] 35. Tuttle, M.; Moreno, A. Cave-Dwelling Bats of Northern Mexico: Their Value and Conservation Needs; Bat Conservation International: Austin, TX, USA, 2005. 36. BATS Magazine Article: Conserving Costa Rica’s Bats. Available online: http://www.batcon.org/resources/ media-education/bats-magazine/bat_article/57 (accessed on 15 March 2018). Diversity 2018, 10, 43 15 of 15 37. Climate Ciudad Neily: Temperature, Climograph, Climate Table for Ciudad Neily–Climate-Data.org. Available online: https://en.climate-data.org/location/1005481/ (accessed on 14 February 2018). 38. Gilbert, L.; Christen, C.; Altrichter, M.; Longino, J.; Sherman, P.; Plowes, R.; Swartz, M.; Winemiller, K.; Weghorst, J.; Vega, A.; et al. The Southern Pacific lowland evergreen moist forest of the Osa Region. In Costa Rican Ecosystems; Kappelle, M., Ed.; University of Chicago Press: Chicago, IL, USA, 2016; pp. 360–411. 39. Registro Kárstico Nacional (RKN)|Grupo Espeleológico Anthros. Available online: http://anthros.org/es/ anthros/registro-karstico-nacional/ (accessed on 15 February 2018). 40. Peacock, N.; Hempel, J. Studies of the Rio Corredor Basin Bulletin 2–NSS Costa Rica Project; National Speleological Society Bulletin: Washington, DC, USA, 1993; Volume 55. 41. Marbach, G.; Tourte, B. Alpine Caving Techniques; Speleo Projects: Allschwil, Switzerland, 2002. 42. Paperless Cave Surveying. Available online: https://paperless.bheeb.ch/ (accessed on 15 February 2018). 43. Hayes, J.; Ober, H.; Sherwin, E. Surveying and monitoring bats. In Ecological and Behavioral Methods for the Study of Bats, 2nd ed.; Kunz, T., Parsons, S., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2009; pp. 115–132. 44. Ferreira, T.; Rasband, W. Imagej. 2012. Available online: http://imagej.nih.gov/ij/docs/guide (accessed on 7 April 2018). 45. La Val, R.; Rodriguez-Herrera, B.; Tschapka, M.; Quesada, F.; Suárez, C.A.; Sistachs, O. Costa Rica Bats, 1st ed.; Editorial Inbio: San Jose, CA, USA, 2002. 46. Tanalgo, K.; Tabora, J.; Hughes, A. Bat Cave Vulnerability Index (BCVI): A Holistic Rapid Assessment Tool to Identify Priorities for Effective Cave Conservation in the Tropics. Ecol. Indic. 2018, 89, 852–860. [CrossRef] 47. The IUCN Red List of Threatened Species. Version 2017-3. Available online: http://www.iucnredlist.org/ search?page=1 (accessed on 7 April 2018). 48. Rodriguez-Herrera, B.; Chinchilla, F.; May-Collado, L. Lista de especies, endemismo y conservación de los mamíferos de Costa Rica. Rev. Mex. Mastozool. 2002, 16, 21–57. 49. Rodriguez-Duran, A. Nonrandom aggregations and distribution of cave-dwelling bats in Puerto Rico. J. Mammal. 1998, 79, 141–146. [CrossRef] 50. Torquetti, C.; Silva, M.; Talamoni, S. Differences between caves with and without bats in a Brazilian karst habitat. Zoologia 2017, 34, 1–7. [CrossRef] 51. Medellin, R.; Wilson, D.; Daniel, L. Micronycteris brachyotis. Mamm. Species 1985, 1. [CrossRef] 52. Muñoz-Romo, M.; Herrera, E.; Kunz, T. Roosting behavior and group stability of the big fruit-eating bat Artibeus lituratus (Chiroptera: Phyllostomidae). Mamm. Biol. Z. Säugetierkunde 2008, 73, 214–221. [CrossRef] 53. Dinets, V. Long-term cave roosting in the spectral bat (Vampyrum Spectrum). Mammalia 2017, 81. [CrossRef] 54. Aguirre, L.; Mantilla, H.; Miller, B.; Dávalos, L. “Vampyrum Spectrum”. The IUCN Red List of Threatened Species 2008. Available online: http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T22843A9395576.en (accessed on 7 April 2018). 55. Pineda, W.; Rodriguez, B. Macrophyllum macrophyllum: Rodriguez, IUCN Red List of Threatened Species 2015. Available online: http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T12615A22025883.en (accessed on 7 April 2018). 56. Rodríguez-Herrera, B.; Sánchez, R.; Pineda, W. First Record of Natalus lanatus (Chiroptera: Natalidae) in Costa Rica, and Current Distribution of Natalus in the Country. Ecotropica 2011, 17, 113–117. 57. Rodríguez-Herrera, B.; Ramírez-Fernández, J.; Villalobos-Chaves, D.; Sánchez, R. Actualización De La Lista De Especies De Mamíferos Vivientes De Costa Rica. Mastozool. Neotrop. 2014, 21, 275–289. 58. Áreas Importantes Para LA Conservación De Los Murciélagos (AICOMs) AICOMs y SICOMs–RELCOM–Red Latinoamericana y del Caribe Para la Conservación de Los Murciélagos. Available online: http://www. relcomlatinoamerica.net/index.php/que-hacemos/conservacion/18-relcom/33-aicomsysicoms (accessed on 7 April 2018). 59. Sheffield, S.; Shaw, J.; Heidt, G.; McQenaghan, L. Guidelines for the protection of bat roosts. J. Mammal. 1992, 73, 707–710. [CrossRef] © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).