Diversity of deep-sea echinoderms from Costa Rica   Juan J. Alvarado1*, José L. Chacón-Monge2, Juan C. Azofeifa-Solano2, Jorge Cortés2   1Escuela de Biología, Center for Research in Marine Sciences and Limnology, Faculty of Sciences, University of Costa Rica, Costa Rica, 2Center for Research in Marine Sciences and Limnology, Faculty of Sciences, University of Costa Rica, Costa Rica   Submitted to Journal:   Frontiers in Marine Science   Specialty Section:   Deep-Sea Environments and Ecology   Article type:   Original Research Article   Manuscript ID:   918878   Received on:   12 Apr 2022   Revised on:   12 Jun 2022   Journal website link:   www.frontiersin.org In review http://www.frontiersin.org/       Conflict of interest statement   The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest       Author contribution statement   The authors contribute in equal proportions to the elaboration of the work, both in the search for information, analysis, elaboration of figures, and writing.       Keywords   Central America, Eastern Tropical Pacific, Caribbean, last frontier, New records, Ophiuroidea, Holothuroidea       Abstract Word count: 238   Echinoderms are a highly diverse group and one of the most conspicuous in the deep sea, playing ecological key roles. We present a review about the history of expeditions and studies on deep-sea echinoderms in Costa Rica, including an updated list of species. We used literature and information gathered from the databases of the California Academy of Sciences, the Benthic Invertebrate Collection of the Scripps Institution of Oceanography, the National Museum of Natural History, the Museum of Comparative Zoology and the Museo de Zoología from the Universidad de Costa Rica. A total of 124 taxa (76 confirmed species) have been collected from the Costa Rican deep sea, 112 found in the Pacific Ocean, 13 in the Caribbean Sea, and one species shared between the two basins. We report 22 new records for the Eastern Tropical Pacific, 46 for Central American waters, and 58 for Costa Rica. The most specious group was Ophiuroidea with 37 taxa, followed by Holothuroidea (34 taxa), Asteroidea (23 taxa), Echinoidea (17 taxa), and Crinoidea (11 taxa). The highest number of species (64) was found between 800 m and 1200 m depth. Only two species were found deeper than 3200 m. Further efforts on identification will be required for a better comprehension of the diversity of deep-sea echinoderms. Limited research has been done regarding the biology and ecology of deep-sea echinoderms in Costa Rica, so additional approaches will be necessary to understand their ecological functions.       Contribution to the field Dear editors, For us it is a pleasure to submit a second version of our work. In this version we include the comments of the two reviewers. The observations they made us greatly enriched the work. We hope that this new version is suitable for Frontiers and has your approval. Best regards           Funding statement   The work did not have any source of financing.       Ethics statements   Studies involving animal subjects Generated Statement: No animal studies are presented in this manuscript.       Studies involving human subjects Generated Statement: No human studies are presented in this manuscript.       Inclusion of identifiable human data Generated Statement: No potentially identifiable human images or data is presented in this study.       Data availability statement Generated Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation. In review     In review 1 Diversity of deep-sea echinoderms from Costa Rica 1 2 Juan José Alvarado1,2,3, José Leonardo Chacón-Monge1,2, Juan Carlos Azofeifa-Solano1,3 & 3 Jorge Cortés1,2,3 4 5 1. Centro de Investigación en Ciencias del Mar y Limología (CIMAR), Universidad de 6 Costa Rica, 11501-2060 San Pedro de Montes de Oca, San José, Costa Rica; 7 juan.alvarado@ucr.ac.cr; jose.chaconmonge@ucr.ac.cr; eazofeifa2@gmail.com; 8 jorge.cortes@ucr.ac.cr 9 2. Escuela de Biología, Universidad de Costa Rica, 11501-2060 San Pedro de Montes 10 de Oca, San José, Costa Rica. 11 3. Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), 12 Universidad de Costa Rica, 11501-2060 San Pedro de Montes de Oca, San José, 13 Costa Rica. 14 Orcid: JJA = 0000-0002-2620-9115, JLCM = 0000-0002-9754-1254, JCAS = 0000-0002-15 2105-1056, JC = 0000-0001-7004-8649 16 17 Abstract: Echinoderms are a highly diverse group and one of the most conspicuous in the 18 deep sea, playing ecological key roles. We present a review about the history of expeditions 19 and studies on deep-sea echinoderms in Costa Rica, including an updated list of species. We 20 used literature and information gathered from the databases of the California Academy of 21 Sciences, the Benthic Invertebrate Collection of the Scripps Institution of Oceanography, the 22 National Museum of Natural History, the Museum of Comparative Zoology and the Museo 23 de Zoología from the Universidad de Costa Rica. A total of 124 taxa (75 confirmed species) 24 have been collected from the Costa Rican deep sea, 112 found in the Pacific Ocean, 13 in the 25 Caribbean Sea, and one species shared between the two basins. We report 22 new records for 26 the Eastern Tropical Pacific, 46 for Central American waters, and 58 for Costa Rica. The 27 most specious group was Ophiuroidea with 37 taxa, followed by Holothuroidea (34 taxa), 28 Asteroidea (23 taxa), Echinoidea (17 taxa), and Crinoidea (11 taxa). The highest number of 29 species (64) was found between 800 m and 1200 m depth. Only two species were found 30 deeper than 3200 m. Further efforts on identification will be required for a better 31 comprehension of the diversity of deep-sea echinoderms. Limited research has been done 32 regarding the biology and ecology of deep-sea echinoderms in Costa Rica, so additional 33 approaches will be necessary to understand their ecological functions. 34 35 In review mailto:juan.alvarado@ucr.ac.cr mailto:jose.chaconmonge@ucr.ac.cr mailto:eazofeifa2@gmail.com mailto:jorge.cortes@ucr.ac.cr 2 Key words: Central America, Eastern Tropical Pacific, Caribbean, last frontier, New 36 Records, Ophiuroidea, Holothuroidea. 37 38 Introduction 39 40 Costa Rica is located in the Central American Isthmus facing the Caribbean Sea and 41 the Pacific Ocean, it has an oceanic island 500 km offshore (Isla del Coco), and a marine 42 extension covering 572,877 km2, that is more than 11-fold its land area, making it the largest 43 country on Central America (Cortés, 2008; Cortés 2016a, b, c). Recent studies estimated that 44 over 60% of the total area of the country is below 2,000 m depth, and over one-third below 45 3,000 m (Cortés and Benavides-Varela, in prep.). Eastern Tropical Pacific (ETP) deep waters 46 (below 200 m) constitute a particularly important ecosystem in Costa Rica, since they 47 represent about 90% of the whole territory and the last frontier in the international scientific 48 agendas (Cortés, 2019; Rojas-Jiménez et al., 2020; Azofeifa-Solano and Cortés, 2021). 49 Few explorations have been done on the Costa Rican Caribbean (Alvarado et al., 50 2013; Cortés, 2016c; Cambronero-Solano et al., 2019). The continental shelf is relatively 51 narrow, with a total area of 2,310 km2, and an Exclusive Economic Zone (EEZ) of 28,064 52 km2 (Cortés, 2016c; Cortés and Benavides-Varela, in prep.). In the nearshore area, there are 53 mangrove forests, seagrass beds, coral reefs, rocky shores, and sandy beaches, further 54 offshore the bottom is overall sandy, but muddy near river mouths, also some shallow 55 calcareous mounds have been observed (Cortés, 2016c). 56 The Costa Rican Pacific area is much larger than the Caribbean, covering 544,813 57 km2, hosting a greater variety of deep-sea environments (Cortés, 2016a, b). There are 58 mesophotic ecosystems (Cortés, 2019), methane seeps (Sahling et al., 2008; Levin et al., 59 2012, 2015), seamounts (Auscavitch, 2020), deep areas of fluid discharge (Wheat et al., 60 2019), extensive abyssal plains (Agassiz, 1898; Townsend, 1901) and a large deep pelagic 61 region. The extensive Coco Submarine Volcanic Range (CSVR, also called Cocos Ridge) 62 has been explored too (Neuhaus, 2004; Alvarado-Induni, 2021). 63 For Costa Rica, there have been registered ~306 echinoderm species (Alvarado et al., 64 2017; Cambronero-Solano et al., 2019; Chacón-Monge et al., 2021), of the 420 reported 65 species for Central America (Alvarado and Fabregat-Malé, 2021). Most of them inhabit 66 In review 3 shallow water or intertidal environments, mainly related to coral and rocky reefs, sand, and 67 mudflats (Solís-Marín et al., 2013). Most collecting efforts have been carried out on Coco, 68 Caño, and Murciélago islands in the Pacific Ocean, while on the Caribbean it has been 69 between Punta Cahuita and Punta Mona (Alvarado et al., 2017; Chacón-Monge et al., 2021). 70 However, the real status of the deep-sea echinoderm’s fauna has not been evaluated. Deep-71 water biodiversity assessments have always been a challenge due to the complexity and cost 72 in logistic operations (Costello and Chaudhary, 2017). In this paper, we undertook the task 73 of compiling the available information in the literature and museum collections about deep-74 sea echinoderms collected in Costa Rica. In this way, we are aiming to have a better 75 understanding of the deep-sea fauna contribution to the total echinoderm diversity in Costa 76 Rican waters. Likewise, to be able to identify areas or groups that require a greater sampling 77 effort for future collections and research. 78 79 Material and Methods 80 81 To compile the list of deep-sea echinoderms collected in Costa Rica, a literature 82 search was carried out to corroborate records, ecological investigations, and further aspects 83 of deep-sea Costa Rican echinoderms. In addition, the following databases of biological 84 collections were visited: 1) California Academy of Sciences (CAS: 85 http://researcharchive.calacademy.org/research/izg/); 2) Benthic Invertebrate Collection, 86 Scripps Institution of Oceanography (SIO: https://scripps.ucsd.edu/benthic-invertebrate-87 collection); 3) National Museum of Natural History, Smithsonian Institution (NMNH: 88 http://collections.nmnh.si.edu/); 4) Museum of Comparative Zoology, Harvard University 89 (MCZ: https://mcz.harvard.edu/database; and 5) Museo de Zoología, Universidad de Costa 90 Rica (MZUCR). We use the term morphospecies to indicate a group of biological organisms 91 whose members differ from all other groups in some aspect of their form and structure but 92 are so similar among themselves that they are lumped together for the purposes of analysis 93 (www.oxfordreference.com). 94 A list of deep-water echinoderms collected in Costa Rican waters was elaborated 95 (Table 1), following the phylogenetic order for the five classes of Echinodermata according 96 to the World Register of Marine Species (WoRMS, WoRMS Editorial Board 2022), 97 In review 4 including the taxonomy, location, depth, status as new record for the country or Central 98 America, the reported depth range (if available), and the references. A map of the Costa Rican 99 Exclusive Economic Zones was constructed using ArcGIS Desktop 10.8, plotting the 100 location, species richness, and abundance of specimens (Fig. 1). We followed the definition 101 for the deep sea as oceanic waters and seabed below 200 m depth (UNESCO, 2009). 102 The biogeographic affinity of the echinoderm species was estimated based on the 103 Ocean Biodiversity Information System (www.obis.org) and WoRMSthe World Register of 104 Marine Species (WoRMS Editorial Board 2022www.marinespecies.org). We used the 105 classification of marine biogeographic realms proposed by Costello et al. (2017). We found 106 biogeographic affinities for only 120 species. Based on this affinity, a presence/absence 107 matrix was developed, and a Bray-Curtis similarity matrix was made. A Non-metric Multi-108 Dimensional Scaling was elaborated, and we overlay vectors using a Pearson correlation 109 based on the realms indicated by the Similarity Percentages - species contributions analysis 110 (SIMPER). These analyzes were performed in PRIMER 7.0. 111 112 Results 113 114 A total of 124 taxa of deep-sea echinoderms have been collected in Costa Rica, 75 115 identified to species level with certainty (Tables 1, 2), the remaining 49 representing 116 morphospecies (i.e. morphologically similar individuals). There are 112 taxa for the Pacific 117 Ocean and 13 for the Caribbean Sea, with only one shared species between the two basins 118 (the holothuroid Benthodytes sanguinolenta). We found 22 new reports for the Eastern 119 Tropical Pacific, 46 for Central America, and 58 for Costa Rica (57 on the Pacific Ocean and 120 one in the Caribbean Sea) (Table 1). With this, we reached a total of 364 species of 121 echinoderms for Costa Rica, 78% of the total species registered in Central America (466). 122 34% of the echinoderm species of Costa Rica are deep-sea species. 123 In the Costa Rican deep sea, the most diverse class is Ophiuroidea with 37 taxa and 124 22 confirmed species, all from the Pacific (Table 2), with the families Ophiacanthidae and 125 Ophiopyrgidae as the most specious (five taxa each). The Holothuroidea is the second in 126 richness, with 35 taxa in 19 species, the Synallactidae had most of the taxa (five), followed 127 by Laetmogonidae and Deimatidae (four each). Asteroidea and Echinoidea have 24 and 18 128 In review 5 taxa, respectively (14 and 15 confirmed species, respectively). For the asteroids, the families 129 Goniasteridae and Astropectinidae were the richest (six taxa each). While Echinothutiridae 130 and Aspidodiadematidae were the most specious families in Echinoidea (three taxa each). 131 Finally, Crinoidea have 10 taxa and five confirmed species, where Hyocrinidae is the richest 132 family (three genera) (Table 1, 2). 133 According to their distribution and diversity (Fig. 1), the greatest collecting effort has 134 been around, the CSVR, Isla del Coco, the seamount subduction zone, and along the 135 continental margin (9°4’26.09’’-8°36’37.88’’N and 85°14’11.77’’-84°17’050’’W) on the 136 Pacific side, and in front of the Port of Limón (10°4’35.77’’N-82°54’9.38’’W) on the 137 Caribbean coast. Other areas of the country have been scarcely sampled, like the extensive 138 abyssal plains of the Pacific and most of the EEZ in the Caribbean (Fig. 1). 139 The greatest number of taxa by depth range (Fig. 2) was found between 800 and 1200 140 m with 64 taxa, followed by 52 and 51 taxa between 1600-2000 m and 1200-1600 m, 141 respectively. The holothuroid Benthodytes sanguinolenta and the ophiuroid Ophiosphalma 142 glabrum were the species with the largest bathymetric distribution range (385-3453 m and 143 1157-3400 m, respectively), and the only two species found deeper than 3200 m. One species 144 of ophiuroid, Ophiacantha similis, had a shallower deep range than previously reported, 145 while the holothuroids, Psolus aff. diomedeae, Benthodytes sanguinolenta, Oloughlinius 146 macdonaldi, and the echinoid, Clypeaster euclastus, had deeper depth ranges than previously 147 reported (Table 1). 148 Most taxa of deep-sea echinoderms collected in Costa Rica are vouchered in the 149 collections at SIO (73 morphospecies) and the NMNH (35 morphospecies) (Fig. 3). 150 Otherwise, the MZUCR and MCZ have six taxa and three species respectively. No reports 151 were found in the CAS database. Additionally, we found 49 records in the literature (Table 152 1), mostly all deposited in museum collections, except for the echinoderms reported by 153 Cambronero et al. (2019) for the Caribbean Sea. 154 About 78% of the morphospecies present in the Costa Rican deep sea have a 155 biogeographic affinity with the Eastern Tropical Pacific realm (Table 3), 23 species are 156 endemic to this region (Table 1). Other regions with higher biogeographic affinity are the 157 North Pacific (40%), followed by Tropical Indo-Pacific & coastal Indian Ocean (36%), 158 Western Tropical Atlantic (35%), offshore Western Pacific and South Australia with 33% 159 In review 6 both. By class, most of the species have an ETP affinity, there are also several species that 160 can be found in other regions (Table 3, Fig. 4). 161 162 Discussion 163 164 Historical perspectives 165 The Costa Rican coastal areas have been relatively well studied, but not so the deep 166 regions (Cortés, 2009; Cortés, 2016a, b, c). In the Caribbean, few studies have been carried 167 out, and only two publications mentioned echinoderms collected below 200 m depth (Voss, 168 1971; Cambronero-Solano et al., 2019). In 1971, the R/V John Elliot Pillsbury, cruised to 169 Central America, sampling off the Costa Rican Caribbean coast at two deep stations (Voss, 170 1971). Voss (1971) reported “small ophiuroids” (Ophiuroidea) and three “large sea biscuits” 171 (Echinoidea: Spatangoida) from a “gray muddy bottom”. 172 In 2011, the R/V Miguel Oliver, under the Central America Fisheries and Aquaculture 173 Organization (OSPESCA), trawled into two areas of the Costa Rican Caribbean. Trawls 174 ranged from 385 to 1,481 m and found six new echinoderm reports for Costa Rica 175 (Cambronero-Solano et al., 2019). Holothuroids made up 99% of the total biomass, mainly 176 comprised of Benthodytes sanguinolenta (60%) (Cambronero-Solano et al., 2019). 177 The deep waters of the Costa Rican Pacific were first studied in the late 19th century, 178 when the United States Fisheries Committee visited the area with the steamer USS Albatross, 179 with Alexander Agassiz as Chief Scientist (Agassiz, 1898, 1904; Townsend, 1901). They 180 sampled near Isla del Coco between February and March 1891 and carried dredging and 181 trawling on abyssal plains at 12 stations (#3362-3373), ranging from 95 m to 3433 m 182 (Azofeifa-Solano and Cortés, 2021). From the material collected during the Albatross 183 expeditions, Ludwig (1894, 1905), Hartlaub (1895), Agassiz (1898, 1904), Lütken and 184 Mortensen (1899), and Clark (1917) described many Central American deep-sea 185 echinoderms (Alvarado et al., 2013). Ludwig (1894) worked on Holothuroidea and recorded 186 11 species from Costa Rican deep waters. Hartlaub (1895) reported one comatulid Crinoidean 187 species. In the preliminary report on the Echini, Agassiz (1898) registered five Costa Rican 188 deep-sea urchin species, later he added one species (Agassiz, 1904). Lütken and Mortensen 189 In review 7 (1899) worked on Ophiuroidea and reported eight species from Costa Rican deep sea. Finally, 190 Ludwig (1905) reported 14 deep-sea species of Asteroidea for Costa Rican deep sea. 191 In 1925, during the oceanographic expedition of the Zoological Society of New York, 192 with the yacht Arcturus led by William Beebe, deep-sea stars were collected from one station 193 close to Isla del Coco (Fisher, 1928). 194 In 1973, the Scripps Institution of Oceanography realized the first expedition to the 195 Eastern Pacific (EP) with the R/V Agassiz, in which some sample stations included deep-sea 196 echinoderms (Luke, 1982; Cortés, 2009). In 1986, a submersible was used at Isla del Coco, 197 the Johnson Sea-Link I of Harbor Branch Oceanographic Institute (HBOI), as part of the 198 SeaPharm Project (a pharmaceutical prospecting expedition). Six dives were done ranging 199 from 105 to 785 m (Cortés, 2008). The crinoid Calamocrinus diomedae was collected 200 southeast Isla del Coco at 714 m deep and cataloged in the collections of the HBIO (Roux, 201 2004). Starting in 2007 a three-person submarine, DeepSee, able to reach 450 m has been 202 used regularly at Isla del Coco. Echinoderms and other taxonomic groups have been video 203 recorded and/or collected (Cortés, 2008; Cortés and Blum, 2008). 204 Since the 1990’s the methane seeps along the Pacific margin have drawn attention, 205 mainly from a geological point of view, but also there are some images of deep-water 206 echinoderms available (Sahling et al., 2008). The methane seeps off the Central Pacific coast 207 of Costa Rica have been studied using the Human Operated Vehicle (HOV) Alvin in 2009-208 2010, led by Lisa A. Levin, and again in 2017-2018, led by Erik E. Cordes, this last one also 209 included the exploration of several seamounts farther offshore. Echinoderms were collected 210 between 974-1866 m depth, most of the specimens were deposited at SIO. 211 Based on the 2009-2010 expeditions, Levin et al. (2012) described “hydrothermal 212 seep ecosystems” hosting high densities of ophiuroids (Ophiuridae). Levin et al. (2015) 213 demonstrated the role of authigenic carbonate rocks, providing a unique habitat and food 214 resources for macrofaunal assemblages at seep sites on the Costa Rican margin (400-1850 215 m). The presence of high densities of ophiuroids is strongly related to overlying water’s 216 hydrography. Based on those collections, Summers et al. (2014) described species of 217 Myzostomida (Annelida) which are obligate associates, mostly of echinoderms. One of them, 218 Pulvinomyzostomum inaki Summers & Rouse, 2014, was collected on the crinoid Antedon 219 sp., at Jaco Scarp in 2009. 220 In review 8 In 2019 an expedition led by Erik E. Cordes visited the methane seeps and more 221 seamounts using the ROV SuBastian onboard the R/V Falkor. Echinoderms were video 222 recorded and collected. Selig et al. (2019), reported aggregations of Pelagothuria sp. in deep 223 sea regions of minimum oxygen concentration, based on data from R/V Falkor that includes 224 observations from Costa Rica. 225 226 Deep-sea echinoderm fauna 227 According to the compiled information, the main component of the known deep sea 228 echinoderm fauna in Costa Rica inhabits from the bathyal to the abyssal zone (200-3000 m 229 depth). This view could be biased by the exploration approaches, the scientific historic 230 background and the relative representativeness of the deep sea total area covered (particularly 231 scarce in the Caribbean) and their proportional size, but depicts the biogeographic predicted 232 pattern (Sibuet, 1985; Mah and Blake, 2012; Stöhr, et al., 2012; Pérez-Ruzafa et al., 2013). 233 It is important to recognize that the taxa list reported in this study was obtained from literature 234 and zoological museum databases, in which taxa are classified at the genus level or identified 235 with affinities towards a species. Therefore, further taxonomic efforts are required. 236 For Crinoids, the genus Antendon is reported in the Costa Rican deep sea, but the only 237 species listed for the ETP is A. bifida from Chile (Solís-Marín et al., 2013). Similarly, the 238 only Psathyrometra reported before was P. bigradata, from Panama, Galapagos and Chile 239 (Solís-Marín et al., 2013), but now there is also P. fragilis from Costa Rica. For 240 Calamocrinus, the only species reported is Calamocrinus diomedae, from Panama and 241 Galapagos, while Hyocrinus foelli is also the only species reported for the genus, in Mexico 242 (Solís-Marín et al., 2013). 243 In Asteroidea, at museum collections we found Thrissacanthias sp., being T. 244 penicillatus the only species reported for Mexico and Peru (Solís-Marín et al., 2013). In other 245 genera, the situation is more complex, as there are different possible species. Pseudarchaster 246 has five species in the ETP: P. discus, P. pectinifer, P. pulcher, P. pusilus, and P. verrilli, 247 scattered from Mexico to Peru. For Patiria two species have been identified, P. chilensis 248 (Chile-Pascua) and P. miniata (Mexico-Revillagigedo), but with bathymetric distributions 249 below 40 m and 300 m respectively, while our specimen was found at 950 m. Ceramaster 250 (Fig. 5) has three species (C. grenadensis, C. patagonicus and C. leptoceramus) while 251 In review 9 Henricia has nine, all with overlapping bathymetric ranges but with geographically isolated 252 records (USA, Mexico, Galapagos, Peru and Chile) (Solís-Marín et al., 2013). Evoplosoma 253 claguei is the only reported species for this genus in Mexico, while Hippasteria has two, H. 254 phrygiana and H. falklandica, both from deep waters, but with different geographic 255 distribution, one is present in the Mexican Pacific waters while the other is from Chile (Solís-256 Marín et al., 2013). Finally, the family Caymanostellidae has been registered for the first time 257 in the ETP. The genus Belyaevostella has two recognized species, while the genus 258 Caymanostella has five. Belyaevostella hyugaensis was described from samples collected on 259 sunken wood from the Southern of Japan (Fujita et al., 1994), while Belyaevostella hispida 260 have been described from deep sea Indo-Malaysian region (Aziz and Jangoux, 1984), 261 otherwise Caymanostella spp. are widely distributed (Table 3). 262 For Ophiuroidea, Ophiocreas is a new report for Central America and has at least 16 263 species described. Asteroschema (Fig. 5) and Gorgonocephalus have two species reported 264 for the ETP (Solís-Marín et al., 2013); A. rubrum from Pascua (below 731 m) and A. sblaeve 265 from the USA (1235 m), Guatemala, Panama (1271 m), and Costa Rica (1119-1281 m); G. 266 chilensis was registered from Chile (4-900 m) while G. diomedeae was found in Panama 267 (1271 m). The worldwide distributed Ophiacantha has 25 species present in the ETP, but 268 only O. phragma is registered for Costa Rica, at Isla del Coco (Solís-Marín et al., 2013). For 269 Ophiochondrus, only O. stelliger is reported for Chile, between 73-439 m, while our 270 specimen was collected between 1005-1008 m, and for Ophiambix there are about six species 271 and is a genus widely distributed (Table 3). Ophiomitra has 11 valid species and Ophiotreta 272 17 (Stöhr et al., 2022), both genera are widely distributed (Table 3). Ophioscolecidae is a 273 new family for the ETP, where the widely distributed genus Ophiolycus has three species 274 (Stöhr et al., 2022). Ophiura has 16 species from shallow to deep sea on the ETP, two of 275 them have been identified from Isla del Coco (Solís-Marín et al., 2013). In the family 276 Ophiopyrgidae, both Ophiuroglypha and Stegophiura are widely distributed genera (Table 277 3), which have about 19 recognized species each (Stöhr et al., 2022), only one registered at 278 Isla del Coco for Ophiuroglypha (Solís-Marín et al., 2013) while Stegophiura has been found 279 in USA and Mexico. Ophiomusa is the unique genus for the family Ophiomusaidae, but it 280 has about 50 valid and widely distributed species (Table 3). Finally, Ophiolepis has five 281 species reported from the ETP nevertheless, only O. crassa, reach deeps beyond 200 m. 282 In review 10 In holothuroids, Chiridota pisanii has been the unique species found in the deep sea 283 for the genus in the ETP, but Psolus is represented by eight species at wide depths ranges. P. 284 digitatus has been listed for Panama, P. diomedae is reported for Mexico, Isla del Coco, 285 Panama, and Galapagos, while P. squamatus for Mexico and Chile (Solís-Marín et al., 2013). 286 For the genus Achlyonice, the only species reported for the ETP is A. ecalcarea, while 287 Peniagone has seven deep sea species at the ETP. P. vitrea has the largest extension range 288 including Isla del Coco, P. papillata is also presented in Panama, but others are from 289 Galapagos, Ecuador and Peru (Solís-Marín et al., 2013). The family Laetmogonidae is 290 represented with three genera, Benthogone is widely distributed and has three accepted 291 species (Table 3). The genus Pannychia has two species; P. taylorae was described from the 292 Indian Ocean (O'Loughlin et al., 2013), while P. moseleyi has been found in Mexico, Panama, 293 Galapagos and Peru. Psychronaetes hanseni is monospecific for its genus and was described 294 from the Eastern Central Pacific Ocean (Pawson, 1983). Synallactidae is represented in two 295 genera, Bathyplotes natans has been found in the Caribbean deep sea from Costa Rica but 296 also in other countries in Latin America at both Pacific and Atlantic basins and also there 297 have been another three species registered for the ETP (Solís-Marín et al., 2013). Synallactes 298 has three species reported for Panama, Colombia, Malpelo, Galapagos, Ecuador and Peru, S. 299 chuni has been reported from West Pacific (Table 3). Hadalothuria and Hansenothuria are 300 monospecific genera. Hadalothuria wolffi was described from the hadal zone (>6000 m; 301 Hansen, 1956) however, our specimen was found on the mesopelagic zone (~1000 m), 302 whereas Hansenothuria benti was described from the Tropical Western Atlantic (Miller and 303 Pawson, 1989). Gephyrothuriidae is a new family in the ETP represented by the genus 304 Paroriza, which has four recognized species, only P. prouhoi has been reported from Chile. 305 Finally, the genus Pseudostichopus registered three species at deep sea in ETP, P. mcdonaldi 306 and P. mollis were found at Isla del Coco, but the second is more widely distributed (Solís-307 Marín et al., 2013). 308 In the case of echinoids, the echinothuriids Tromikosoma and Plesiodiadema have 309 two species in the region each, and for both they have been previously listed from ETP at 310 similar depths (Solís-Marín et al., 2013). Tromikosoma hispidum and P. horridum were 311 reported for Isla del Coco and Costa Rica (Solís-Marín et al., 2013). 312 313 In review 11 Regional comparison 314 In Latin America, most echinoderm species were found only in one or two 315 bathymetric intervals, Ophiuroidea was dominant from 200 to 2000 m at Pacific and West-316 Atlantic basins, but Asteroidea and Holothuroidea (respectively) where dominant from 2000 317 to 6000 m (Pérez-Ruzafa et al., 2013). For Asteroidea as also as Ophiuroidea, it has been 318 suggested a highly conservative morphology in deep sea species and recent molecular 319 analysis are suggesting cryptic and species complexes, thus deep sea and especially abyssal 320 echinoderm diversity is considered underestimated (Mah and Blake, 2012; Stöhr et al., 2012). 321 Diversity information of deep-sea echinoderm fauna through recent research is scarce 322 (Pawson, 1982; Stöhr and Segonzac, 2005; Mecho et al., 2014; Moles et al., 2015; Calero et 323 al., 2017; Mironov et al., 2018; Setyastuti and Wirawati, 2018; Stöhr and O'Hara, 2021). 324 Strong progress has been made, especially for Colombia, Chile, Brazil, Argentina and 325 Mexico (González et al., 2002; Borrero-Pérez et al., 2003, 2012, 2019, 2020; Benavides-326 Serrato and Borrero-Pérez, 2010; Campos et al., 2010; Manso, 2010; Massin and Hendrickx, 327 2011; Hendrickx et al., 2014; Solís-Marín et al., 2014; Martínez et al., 2014, 2015, 2017, 328 2019, 2020; Martínez, 2016; Martinez and Penchaszadeh, 2017 ; Conejeros-Vargas et al., 329 2017; Rivadeneira et al., 2017, 2020; Luna-Cruz and Hendrickx, 2018, 2020, 2021; Flores et 330 al., 2019, 2021; Pertossi et al., 2019; Catalán et al., 2020). 331 The deep sea of the Colombian Caribbean has been extensively studied (González et 332 al., 2002; Borrero-Pérez et al., 2003, 2012, 2019; Benavides-Serrato and Borrero-Pérez, 333 2010; Dueñas et al., 2021). For the Southern Colombian Caribbean region, 16 species of sea 334 cucumbers are found between 596 and 2566 m (Borrero-Pérez et al., 2020), of which only 335 four have been reported for the Costa Rican Caribbean (B. sanguinolenta, Benthothuria 336 funebris, Deima validum validum, and Paroriza pallens). For the SeaFlower Biosphere 337 Reserve area (Borrero-Pérez et al., 2019), a region immediately adjacent to the exclusive 338 economic zone of Costa Rica, they found 111 deep-sea echinoderm species, that represents 339 10 times more species than those reported for the Costa Rican Caribbean (Cambronero et al., 340 2019). Dueñas et al. (2021) reported the presence at cold-seep communities in the Colombian 341 Caribbean between 2300 and 3300 m including the sea star family, Solasteridae, and two sea 342 cucumbers, Chiridota cf. heheva and Pseudostichopus sp. This indicates a high potential for 343 research and discovery of new reports for our waters. 344 In review 12 In the ETP, Stöhr and O'Hara (2021) report 17 species of ophiuoids from waters 345 deeper than 400 m as part of the Danish Galathea II Expedition, at stations in Nicaragua and 346 Panama. Of these 17 species, only three are reported in Costa Rican waters in our review 347 (Astrodia plana, Ophiosphalma glabrum, and Ophiura flagellata), which indicates a high 348 potential for an increase in the number of ophiuroids in our region. Manso (2010) reports the 349 presence of 15 species of brittle stars in Chile, of which only three are present in our list 350 (Gorgonocephalus chilensis, Ophiolimna bairdi and Ophiomusium lymani). According to 351 Stöhr et al. (2012), globally, the greatest diversity of ophiuroids occurs in shallow waters 352 between 0 and 200 m deep, with 1313 species. Between 200 and 3500 m they indicate that 353 there are 1297 species. For the ETP, they mention that the greatest diversity occurs between 354 200 and 3500 m with 111 species, while for shallow waters only 92 species. For the abyssal 355 and hadal zone they indicate 28 and one species, respectively. For the Western Atlantic, the 356 species richness of brittle stars is quite similar between the platform (217) and the bathyal 357 zone (229), and only 16 species for the abyssal zone. 358 Perhaps the country in the region that has the most complete evaluation of its deep-359 sea fauna is Mexico (Solís-Marín et al., 2014). This country has 348 species of echinoderms 360 that inhabit deep waters, which corresponds to 54.4% of the total species reported for the 361 country. At the Caribbean and Gulf of Mexico they have been listed 111 and 103 deep sea 362 species respectively (Crinoidea 25, Asteroidea 39, Ophiuroidea 100, Holothuroidea 9, 363 Echinoidea 41) but sharing some species, while for the Pacific coast a total of 188 species 364 are included (Crinoidea 3, Asteroidea 63, Ophiuroidea 61, Holothuroidea 34, Echinoidea 26) 365 (Solís-Marín et al., 2014; Conejeros-Vargas et al. 2017). For the west coast of the Baja 366 California Peninsula, Luna-Cruz and Hendrickx (2021) indicate the presence of 18 species 367 of sea cucumbers between 554 m and 2082 m depth. Probably many of the widespread West-368 Atlantic or Pacific deep sea Asteroidea and Ophiuroidea present in Mexico are also found in 369 Costa Rica (Pawson et al., 2015; Conejeros-Vargas et al. 2017; Luna-Cruz and Hendrickx 370 2021). In Costa Rica, the deep fauna corresponds to 33% of the total diversity of echinoderms, 371 while the Mexican coast and its economic exclusive zone are much larger than those of Costa 372 Rica, and the sampling effort has been greater due to the presence of several oceanographic 373 vessels such as the R/V Puma or R/V Justo Sierra of the National Autonomous University of 374 Mexico, among others. 375 In review 13 376 Threats for conservation 377 The deep sea is under increasing pressure from exploration and extraction activities 378 during the last decades, fueled by modern technological advances, depletion of terrestrial and 379 shallow-water resources, growing global population with rising demands for food, energy, 380 and raw materials (Ramírez-Llodra et al., 2011; Norse et al., 2012; Hefferman, 2019), climate 381 change (Levin and Le Bris 2015; Sweetman et al., 2017), and ocean acidification (Solís-382 Marín et al., 2014). Deep-sea species and ecosystems are more vulnerable than its shallow-383 water counterparts, due to the life-history traits of most deep-sea species such as slow growth, 384 delayed maturity, extended longevities, and slow colonization (Clark et al., 2006; Cheung et 385 al., 2007). In addition, recovery of deep-sea habitats is slow, studies have found that 386 extraction impacts (scars on the sea bottom) are still visible after 26 years (1989-2015), while 387 some organisms found prior to the extraction have not returned (e.g., sponges, soft corals, or 388 sea anemones) (Hefferman, 2019). 389 Costa Rica has prohibited oil, gas and mineral exploration and exploitation in the sea 390 until 2050 through the government moratorium decree 36693-MINAET (MINAET, 2010). 391 Nonetheless, the debate on whether Costa Rica should or should not exploit the deep-sea 392 mineral resources has been increasing in media articles and social media recently. The only 393 known fishing activity that exploited resources deeper than 200 m in Costa Rica was shrimp 394 trawling. The target species were the kolibri shrimp (Solenocera agassizii), the northern 395 nylon shrimp (Heterocarpus vicarius), and to a less extent the three-spined nylon shrimp 396 (Heterocarpus affinis) (Wehrtmann and Nielsen-Muñoz, 2009). Data from scientific surveys 397 indicated a decreasing deep-sea shrimp catch while bycatch was increasing (Wehrtmann and 398 Nielsen-Muñoz, 2009; Wehrtmann et al., 2012). These surveys did not record any 399 echinoderm (I. Wehrtmann per. comm.). The shrimp trawling is currently prohibited in Costa 400 Rica (Sala Constitucional, 2013), however, there has been recent and continuous efforts to 401 re-activate this activity. Finally, litter has also been observed in Costa Rican deep-sea waters 402 around Isla del Coco, composed mainly of plastics and lost fishing gear (Naranjo-Elizondo 403 and Cortés, 2018), and in much deeper areas in several locations (J. Cortés per. obs.). 404 405 Future perspectives 406 In review 14 The current knowledge on deep-sea echinoderms is limited and more research is 407 needed. Publishing diversity records with taxonomic precision contributes to improve future 408 efforts in research and management and contributes to assess future impacts on the marine 409 ecosystems (Worm et al., 2006; Costello et al., 2013). 410 Deep-sea research is costly and requires highly specialized vessels, equipment, and 411 trained scientists. These issues preclude research of deep-sea habitats in most developing and 412 undeveloped countries. Companies will continue to be important allies in the exploration of 413 the deep sea, including in Costa Rica (Brewin et al., 2007; Wehrtmann and Nielsen-Muñoz, 414 2009). Further collaborations with international institutions will be necessary to advance our 415 knowledge on deep-sea echinoderms. 416 There is no doubt that the deep sea plays a unique and outstanding role on sustaining 417 the health and functioning of the oceans (Sweetman et al., 2017). Deep-sea ecosystems 418 provide habitat provision for commercial species (e.g., tuna, large bill fishes), nutrient 419 cycling, heat absorption, trophic and diversity support services, and carbon sequestration, all 420 of which are vital ecological processes to maintain diversity and humanity (Thurber et al., 421 2014). Van Dover (2011) suggest that having a coherent conservation, management, and 422 mitigation framework for the deep sea is necessary before undergoing deep-sea resources 423 exploitation. We call for further active action and advocacy for working towards science-424 based management conservation of the deep sea in Costa Rica, following the precautionary 425 principles since the impacts on the deep sea could be irreversible at human timescale (Roberts, 426 2002; Waller et al., 2007; Hefferman, 2019). 427 428 Acknowledgments 429 430 We thank the University of Costa Rica for supporting basic research in all topics, and 431 especially the Vicerrectoría de Investigación and the logistic support of the Center for 432 Research in Marine Science and Limnology (CIMAR). We are grateful to the Undersea 433 Hunter Group for their support and access to their submarine DeepSee, and all the videos. 434 We greatly appreciate the invitation by Erik Cordes, Lisa Levin, Victoria Orphan, Greg 435 Rouse, and Shana Goffredi, to participate in deep-sea expeditions off the Pacific coast of 436 Costa Rica. We thank the crew and staff of the R/V Atlantis and the HOV Alvin, and the 437 In review 15 crew and staff of the R/V Falkor and the ROV SuBastian. We are thankful to Odalisca Breedy, 438 Beatriz Naranjo and Charlotte Seid for their collaboration in deep-sea research. We 439 appreciate the help with picture identifications by Rebeca Granja-Fernández, Francisco A. 440 Solis-Marin, Tania Pineda-Enríquez, Carlos A. Conejeros-Vargas and Arturo Angulo. 441 442 References 443 444 Agassiz, A. 1898. Reports on the dredging operations off the west coast of Central America 445 to the Galápagos, to the west coast of Mexico, and in the Gulf of California, in charge 446 of Alexander Agassiz, carried on by the U.S. Fish Commission steamer “Albatross”, 447 Lieut. Commander Z.L. Tanner U.S.N., commanding. XXIII. Preliminary report on the 448 echini. Bull. Mus. Comp. Zoöl., Harvard Coll. 32, 71-86. 449 Agassiz, A.1904. Reports on an exploration off the west coast of Mexico, Central and south 450 America, and off Galapagos Islands, in charge of Alexander Agassiz, by the U.S. Fish 451 Commission Steamer “Albatross”, during 1891, Lieut. Commander Z.L. Tanner, U.S. 452 Commanding. XXXII. The Panamic deep sea echini. Mem. Mus. Comp. Zoöl., Harvard 453 Coll. 31, 1-246. 454 Alvarado, J. J. Fabregat-Malé, S. 2021. Echinoderm research perspectives: A Central 455 American bibliometric review. UNED Res. Jour., 13, e3535. 456 https://doi.org/10.22458/urj.v13i2.3535 457 Alvarado, J.J., Barraza, E., Sancho-Mejía, T. 2013. Chapter 3: Central America 458 Echinoderms: diversity, ecology and future perspectives. In: Alvarado, J.J., Solís-459 Marín, F.A. (Eds.), Echinoderm Research and Diversity in Latin America. Springer, 460 Berlin, p. 67-106. https://doi.org/10.1007/s12526-009-0032-5 461 Alvarado, J.J., Chacón-Monge, J.L., Solís-Marín, F.A., Pineda-Enríquez, T., Caballero-462 Ochoa, A.A., Solano-Rivera, S., Romero-Chaves, R. 2017. Equinodermos del Museo 463 de Zoología de la Universidad de Costa Rica. Rev. Biol. Trop. 65 (Suppl. 1), S272-464 S287. https://doi.org/10.15517/RBT.V65I1-1.31695 465 Alvarado-Induni, G.E. 2021. Costa Rica y sus volcanes. Ed. Universidad de Costa Rica, San 466 José, Costa Rica. ISBN 978-9968-46-776-6 467 Auscavitch, S.R. 2020. Deep-sea Coral Biogeography and Community Structure in Tropical 468 Seamount Environments. PhD Dissertation, Temple University, Philadelphia, 469 Pennsylvania, USA. 470 Azofeifa-Solano, J.C., Cortés, J. 2021. Chapter 24: Diversity and biology of deep-water 471 crustaceans in Costa Rica. In: Hendrickx, M.E. (Ed.), Deep-Sea Pycnogonids and 472 Crustaceans of the Americas. Springer Nature, Switzerland, p. 633-658. 473 https://doi.org/10.1007/978-3-030-58410-8_24 474 Aziz, A., Jangoux, M. 1984. Description de quatre nouvelles especes d'asterides profonds 475 (Echinodermata) de la region Indo-Malaise. Indo-Malayan Zool., 2, 187-194. 476 Benavides-Serrato, M., Borrero-Pérez, G.H. 2010. Equinodermos de la plataforma y la franja 477 superior del talud continental del Caribe colombiano. In: Invemar (Eds), Biodiversidad 478 del margen continental del Caribe colombiano. Serie de Publicaciones Especiales, 479 INVEMAR 20, 255-266. 480 Borrero-Pérez, G.H., Benavides-Serrato, M., Solano, O.D., Navas, G.R. 2003. Equinoideos 481 (Echinodermata: Echinoidea) colectados en la franja superior del talud continental del 482 In review https://doi.org/10.22458/urj.v13i2.3535 https://doi.org/10.1007/s12526-009-0032-5 https://doi.org/10.15517/RBT.V65I1-1.31695 https://doi.org/10.1007/978-3-030-58410-8_24 16 Caribe Colombiano. Bol. Invest. Cost. Mar. 30, 133-166. 483 https://doi.org/10.25268/bimc.invemar.2002.31.0.289 484 Borrero-Pérez, G.H., Benavides-Serrato, M., Diaz-Sánchez, C.M. 2012. Equinodermos del 485 Caribe colombiano II: Echinoidea y Holothuroidea. Ser. Publ. Esp. INVEMAR 30, 1-486 250. 487 Borrero-Pérez, G.H., Benavides-Serrato, M., Campos, N.H., Galeano-Galeano, E., Gavio, B., 488 Medina, J., Abril-Howard, A. 2019. Echinoderms of the Seaflower Biosphere Reserve: 489 state of knowledge and new findings. Front. Mar. Sci. 6, 188. 490 https://doi.org/10.3389/fmars.2019.00188 491 Borrero-Pérez, G.H., Dueñas, L.F., León, J., Puentes, V. 2020. Deep-sea holothurians 492 (Echinodermata, Holothuroidea) from the Colombian Southern Caribbean Sea. Check 493 List 16, 535-551. https://doi.org/16.3.535 494 Brewin, P.E., Stocks, K.I., Menezes, G. 2007. A history of seamount research. In: Pitcher, 495 T.J., Morato, T., Hart, P.J.B., Clark, M.R., Haggan, N., Santos, R.S. (Eds.), 496 Seamounts: Ecology, Conservation and Management. Blackwell, Oxford, p 41–61. 497 https://doi.org/10.1002/9780470691953.ch3 498 Calero, B., Ramil, F., Ramos, A. 2017. Echinoderms of the Mauritanian Deep-Sea Waters. 499 In: Ramos, A., Ramil, F., Sanz, J.L. (Eds), Deep-Sea Ecosystems Off Mauritania. 500 Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1023-5_12 501 Cambronero-Solano, S., Benavides, R., Solís-Marín, F.A., Alvarado, J.J. 2019. New reports 502 of echinoderms on the Caribbean continental slope of Central America. Zoosymposia 503 15, 5-12. https://doi.org/10.11646/zoosymposia.15.1.3 504 Campos, L.S., Moura, R.B., Veríssimo, I., Curbelo-Fernandez, M.P., Cavalcanti, G.H, Brasil, 505 A.C.S. 2010. ROV imaging of deep-sea echinoderms from the Brazilian continental 506 margin, Southwest Atlantic, In: Harris, L.G, Böttger, S.A., Walker, C.W, Lesser, M.P. 507 (Eds.). Echinoderms: Durham. Proc. of the 12th Int. Echinoderm Conf. Balkema, 508 Leiden, p. 147-152. 509 Catalán, J., Merino-Yunnissi, C., Martínez, A., Sellanes, J., Ibáñez, C.M. 2020. Nuevos 510 registros de crinoideos (Echinodermata: Crinoidea) en el talud continental de Chile. 511 Rev. Biol. Mar. Oceanogr. 55, 68-72. https://doi.org/10.22370/rbmo.2020.55.1.2395 512 Chacón-Monge, J.L., Azofeifa-Solano, J.C., Alvarado, J.J., Cortés, J. 2021. Área de 513 Conservación Guanacaste echinoderms, North Pacific of Costa Rica. Rev. Biol. Trop. 514 69 (Suppl. 1), S487-S500. https://doi.org/10.15517/rbt.v69iSuppl.1.46391 515 Cheung, W.W.L., Watson, R., Morato, T., Pitcher, T.J., Pauly, D. 2007. Intrinsic 516 vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1-12. 517 https://doi.org/10.3354/meps333001 518 Clark, H.L. 1917. Reports on the scientific results of the expedition to the tropical Pacific in 519 charge of Alexander Agassiz, on the U.S. Fish Commission Steamer “Albatross” from 520 August 1899 to March 1900, commander Jefferson F. Mooser, U.S.N Commanding. 521 XVIII. Reports on the scientific results of the expedition to the tropical Pacific in 522 charge of Alexander Agassiz, on the U.S. Fish Commission Steamer “Albatross” from 523 October 1904 to March 1905, Lieut. Commander L.M. Garret, U.S.N. Commanding. 524 Bull. Mus. Comp. Zoöl., Harvard Coll. 61, 429-466. 525 Clark, M.R., Tittensor, D., Rogers, A.D., Brewin, P., Schlacher, T., Rowden, A., Stocks, K., 526 Consalvey, M. 2006. Seamounts, Deep-Sea Corals and Fisheries: Vulnerability of 527 Deep-Sea Corals to Fishing on Seamounts Beyond Areas of National Jurisdiction. 528 UNEP-WCMC/UNEP Regional Seas, Cambridge. ISBN: 978-92-807-2778-4 529 In review https://doi.org/10.25268/bimc.invemar.2002.31.0.289 https://doi.org/10.3389/fmars.2019.00188 https://doi.org/16.3.535 https://doi.org/10.1002/9780470691953.ch3 https://doi.org/10.1007/978-94-024-1023-5_12 https://doi.org/10.11646/zoosymposia.15.1.3 https://doi.org/10.15517/rbt.v69iSuppl.1.46391 https://doi.org/10.3354/meps333001 17 Conejeros-Vargas, C.A., Solís-Marín, F.A., Laguarda-Figueras, A. 2017. Equinoideos de 530 mar profundo (Echinodermata: Echinoidea) del Pacífico mexicano. Rev. Biol. Trop. 531 65(Suppl. 1), S244-S252. https://doi.org/10.15517/RBT.V65I1-1.31692 532 Cortés, J. 2008. Historia de la investigación marina de la Isla del Coco, Costa Rica. Rev. Biol. 533 Trop. 56(Suppl 2), 1-18. https://doi.org/10.15517/RBT.V56I2.26934 534 Cortés, J. 2009. A history of marine biodiversity scientific research in Costa Rica. In: 535 Wehrtmann, I.S., Cortés, J. (Eds.), Marine Biodiversity of Costa Rica, Central 536 America. Springer, Dordrecht, p. 47-80. https://doi.org/10.1007/978-1-4020-8278-537 8_2 538 Cortés, J. 2016a. The Pacific coastal and marine ecosystems. In: M. Kappelle (Ed.), Costa 539 Rican Ecosystems. University of Chicago Press, Chicago, p. 97-138. 540 https://doi.org/10.7208/chicago/9780226121642.003.0005 541 Cortés, J. 2016b. Isla del Coco: Coastal and marine ecosystems. In: M. Kappelle (Ed.), Costa 542 Rican Ecosystems. University of Chicago Press, Chicago, p. 162-191. 543 https://doi.org/10.7208/chicago/9780226121642.003.0007 544 Cortés, J. 2016c. The Caribbean coastal and marine ecosystems. In: M. Kappelle (Ed.), Costa 545 Rican Ecosystems. University of Chicago Press, Chicago, p. 591-617. 546 https://doi.org/10.7208/chicago/9780226121642.003.0017 547 Cortés, J. 2019. Isla del Coco, Costa Rica, Eastern Tropical Pacific. In: Loya, Y., Puglise, 548 K.A., Bridge, T.C.L. (Eds.), Mesophotic Coral Ecosystems. Coral Reefs of the World 549 12. Springer Nature, Switzerland, p. 465-474. https://doi.org/10.1007/978-3-319-550 92735-0_26 551 Cortés, J., Blum, S. 2008. Life to 450 m depth at Isla del Coco, Costa Rica. Rev. Biol. Trop. 552 56 (Suppl. 2), 189-206. https://doi.org/10.15517/RBT.V56I2.27018 553 Costello, M.J., Chaudhary, C. 2017. Marine biodiversity, biogeography, deep-sea gradients, 554 and conservation. Curr. Biol. 27, R511–R527. 555 http://dx.doi.org/10.1016/j.cub.2017.04.060 556 Costello, M.J., Michener, W.K., Gahegan, M., Zhang, Z.Q., Bourne, P.E. 2013. Biodiversity 557 data should be published, cited, and peer reviewed. Trends Ecol. Evol. 28, 454-461. 558 https://doi.org/10.1016/j.tree.2013.05.002 559 Costello, M.J, Tsai, P., Wong, P.S., Cheung, A.K.L., Basher, Z., Chaudhary, C. 2017. Marine 560 biogeograohic realms and species endemicity. Nat. Comm. 8, 1057. 561 https://doi.org/10.1038/s41467-017-01121-2 562 Dueñas, L.F., Puentes, V., León, J., Herrera, S. 2021. Fauna associated with cold seeps in the 563 deep Colombian Caribbean. Deep–Sea Research I 173 (2021) 103552. 564 https://doi.org/10.1016/j.dsr.2021.103552 565 Fisher, W.K. 1928. Sea stars from the Arcturus Oceanographic Expedition. Zool. 8, 487-493. 566 Flores, J.N., Brogger, M.I., Penchaszadeh, P.E. 2019. Reproduction and development of the 567 brooding sea urchin Austrocidaris canaliculata from deep-sea off Argentina. Deep Sea 568 Res. I: Oceanogr. Res. Pap. 143, 35-42. https://doi.org/10.1016/j.dsr.2018.11.012 569 Flores, J.N., Penchaszadeh, P.E., Brogger, M.I. 2021. Heart urchins from the depths: 570 Corparva lyrida gen. et sp. nov. (Palaeotropidae), and new records for the 571 southwestern Atlantic Ocean. Rev. Biol. Trop. 69 (Suppl. 1), S14-S34. 572 https://doi.org/10.15517/rbt.v69iSuppl.1.46320 573 Fujita, T., Stampanato, S., Jangoux, M. 1994. Belyaevostella hyugaensis, a new species of 574 deep-sea asteroid (Asteroidea, Caymanostellidae) found on a sunken wood from off 575 Southern Japan. Bull. Nat. Sci. Mus. Tokyo A, 20, 183-188. 576 In review https://doi.org/10.15517/RBT.V65I1-1.31692 https://doi.org/10.15517/RBT.V56I2.26934 https://doi.org/10.1007/978-1-4020-8278-8_2 https://doi.org/10.1007/978-1-4020-8278-8_2 https://doi.org/10.7208/chicago/9780226121642.003.0005 https://doi.org/10.7208/chicago/9780226121642.003.0007 https://doi.org/10.7208/chicago/9780226121642.003.0017 https://doi.org/10.1007/978-3-319-92735-0_26 https://doi.org/10.1007/978-3-319-92735-0_26 https://doi.org/10.15517/RBT.V56I2.27018 http://dx.doi.org/10.1016/j.cub.2017.04.060 https://doi.org/10.1016/j.tree.2013.05.002 https://doi.org/10.1038/s41467-017-01121-2 https://doi.org/10.1016/j.dsr.2018.11.012 https://doi.org/10.15517/rbt.v69iSuppl.1.46320 18 González, G., Dunia, N., Solano, P., Oscar, D., Navas, S. 2002. Equinodermos colectados 577 por la expedición CIOH-INVEMAR-Smithsonian desde Cartagena hasta el Golfo de 578 Urabá, Caribe Colombiano. Bol. Invest. Mar. Cost. 31, 85-132. 579 Hansen, B. 1956. Holothurioidea from depths exceeding 6000 meters. Galathea Rep, 2, 33-580 54. 581 Hartlaub, C. 1895. Reports on the dredging operations off the west coasts of Central America 582 to the Galapagos, to the west coast of Mexico, and in the Gulf of California, in charge 583 of Alexander Agassiz, carried on by the U.S. Fish Commission steamer “Albatross”, 584 during 1891, Lieut. Commander Z.L. Tanner, U.S.N., commanding. XVIII. Die 585 Comatuliden. Bull. Mus. Comp. Zoöl., Harvard Coll. 27 (4), 127-152. 586 Hefferman, O. 2019. Deep-sea dilemma. Nature 571, 465-468. 587 Hendrickx, M.E., Pawson, D., Mejía-Mercado, B.E., Ayón-Parente, M., Hinojosa-Corona, A. 588 2014. Registros de especies de Holothuroidea (Echinodermata). In: Mejía-Mercado, 589 B.E., Hinojosa-Corona, A., Hendrickx, M.E. (Eds.), Explorando el Mar Profundo del 590 Golfo de California 2008-2014. CICESE, p. 177-191. 591 Levin, L.A., Le Bris, N. 2015. The deep ocean under climate change. Science 350, 766-768. 592 https://doi.org/10.1126/science.aad0126 593 Levin, L.A., Orphan, V.J., Rouse, G.W., Rathburn, A.E., Ussler, W., Cook, G.S., Goffredi, 594 S.K., Perez, E.M., Waren, A., Grupe, B.M., Chadwick, G., Strickrott, B. 2012. A 595 hydrothermal seep on the Costa Rica margin: middle ground in a continuum of 596 reducing ecosystems. Proc. R. Soc. B 279, 2580-2588. 597 https://doi.org/10.1098/rspb.2012.0205 598 Levin, L.A., Mendoza, G.F., Grupe, B.M., Gonzalez, J.P., Jellison, B., Rouse, G.W., Thurber, 599 A.R. & Warén, A. 2015. Biodiversity on the rocks: macrofauna inhabiting authigenic 600 carbonate at Costa Rica methane seeps. PLoS ONE 10, e0136129. 601 https://doi.org/10.1371/journal.pone.0131080 602 Ludwig, H. 1894. Reports on an exploration off the west coast of Mexico, Central America 603 and South America, and off the Galápagos Islands, in charge of Alexander Agassiz, 604 by the U.S. Fish Commission steamer “Albatross”, during 1891. XII. The 605 Holothurioidea. Mem. Mus. Comp. Zoöl., Harvard Coll. 17 (3), 1-183. 606 Ludwig, H. 1905. Reports on the exploration off the west coasts of Mexico, Central and 607 South America, and off the Galapagos Islands, in charge of Alexander Agassiz by the 608 U.S. Fish Commission Steamer "Albatross," during 1891, Lieut.-Commander Z.L. 609 Tanner, U.S.N., Commanding. XXXV. Reports on the scientific results of the 610 expedition to the tropical Pacific in charge of Alexander Agassiz, by the U.S. Fish 611 Commission Steamer "Albatross", from August, 1899, to March, 1900, Commander 612 Jefferson F. Moser, U.S. N., Commanding. VII. Asteroidea. Mem. Mus. Comp. Zoöl., 613 Harvard Coll. 32, 1-291. 614 Luke, R. 1982. Catalog of the Benthic Invertebrate Collections of the Scripps Institution of 615 Oceanography. Echinodermata. Scripps Institution of Oceanography. Ref. Ser. 82-5. 616 Luna-Cruz, A.K., Hendrickx, M.E. 2018. New records of Synallactes virgulasolida Massin 617 & Hendrickx, 2010 (Echinodermata: Holothuroidea) from the eastern Pacific. Zootaxa 618 4444, 491–500. https://doi.org/10.11646/zootaxa.4444.4.9 619 Luna-Cruz, A.K., Hendrickx, M.E. 2020. Rediscovery of the deep-water species 620 Ypsilocucumis californiae Massin & Hendrickx, 2011(Echinodermata; Holothuroidea; 621 Ypsilothuriidae) in western Mexico. Zootaxa 4742, 139–148. 622 https://doi.org/10.11646/zootaxa.4742.1.9 623 In review https://doi.org/10.1126/science.aad0126 https://doi.org/10.1098/rspb.2012.0205 https://doi.org/10.1371/journal.pone.0131080 https://doi.org/10.11646/zootaxa.4444.4.9 https://doi.org/10.11646/zootaxa.4742.1.9 19 Luna-Cruz, A.K., Hendrickx, M.E. 2021. Deep-water holothuroids Echinodermata, 624 Holothuroidea) collected off the west coast of Baja California península, Mexico 625 during the TALUD cruises. Geomare Zool. 3, 31-40. 626 Lütken, C.F., T. Mortensen. 1899. Reports on an exploration off the west coast of Mexico, 627 Central America and South America, and off the Galápagos Islands, in charge of 628 Alexander Agassiz byU.S Fish Commission Steamer “Albatross”, during 1891, 629 Lieut.-Commander Z.L. Tanner, U.S.N., Commanding. XXV. The Ophiuridae. Mem. 630 Mus. Comp. Zoöl., Harvard Coll. 23 (2), 93-208. 631 Mah, C.L., Blake, D.B. 2012. Global diversity and phylogeny of the Asteroidea 632 (Echinodermata). PLoSONE, 7, e35644. https://doi.org/10.1371/journal.pone.0035644 633 Manso, C.L.C. 2010. Deep-water Ophiuroidea (Echinodermata) from off Chile in the Eastern 634 South Pacific. Biota Neotrop. 10 (2), 185-199. https://doi.org/10.1590/S1676-635 06032010000200023 636 Martínez, M.I. 2016. The sea cucumber Psolus patagonicus Ekman 1925 (Echinodermata: 637 Holothuroidea) from the southwestern Atlantic, redescription of the holotype and new 638 synonym. Rev. Mus. Arg. Cien. Nat. 18, 237-241. 639 https://doi.org/10.22179/REVMACN.18.474 640 Martinez, M.I., Penchaszadeh, P.E. 2017. A new species of brooding Psolidae 641 (Echinodermata: Holothuroidea) from deep-sea off Argentina, Southwestern Atlantic 642 Ocean. Deep-Sea Res. Part II, 146, 13-17. http://dx.doi.org/10.1016/j.dsr2.2017.05.007 643 Martínez, M.I., Solís-Marín, F.A., Penchaszadeh, P.E. 2014. Benthodytes violeta, a new 644 species of a deep-sea holothuroid (Elasipodida: Psychropotidae) from Mar del Plata 645 Canyon (south-western Atlantic Ocean). Zootaxa 3760, 89-95. 646 http://dx.doi.org/10.11646/zootaxa.3760.1.6 647 Martínez, M.I., Arribas, L.P., Berecoechea, J.J., Brogger, M.I., Penchaszadeh, P.E. 2015. 648 Echinoderm diversity in the Southwestern Atlantic. Rev. Biol. Trop. 63 (Suppl. 2), 115-649 120. https://doi.org/10.15517/RBT.V63I2.23132 650 Martínez, M.I., Solís-Marín, F.A., Penchaszadeh, P.E. 2019. First report of Paelopatides 651 (Synallactida, Synallactidae) for the SW Atlantic, with description of a new species 652 from the deep-sea off Argentina. Zool. Anzeiger 278, 21e27. 653 https://doi.org/10.1016/j.jcz.2018.10.010 654 Martinez, M.I., Alba‑ Posse, E.J., Lauretta, D., Penchaszadeh, P.E. 2020. Reproductive 655 features in the sea cucumber Pentactella perrieri (Ekman, 1927) (Holothuroidea: 656 Cucumariidae): a brooding hermaphrodite species from the southwestern Atlantic 657 Ocean. Pol. Biol. 43, 1383-1389. https://doi.org/10.1007/s00300-020-02715-1 658 Massin, C., Hendrickx, M.E. 2011. Deep-water Holothuroidea (Echinodermata) collected 659 during the TALUD cruises off the Pacific coast of Mexico, with the description of two 660 new species. Rev. Mex. Biodiv. 82, 413-443. 661 https://doi.org/10.22201/ib.20078706e.2011.2.476 662 Mecho, A., Billett, D.S.M., Ramírez-Llodra, E., Aguzzi, J., Tyler, P.A., Company, J.B. 2014. 663 First records, rediscovery and compilation of deep-sea echinoderms in the middle and 664 lower continental slope of the Mediterranean Sea. Sci. Mar. 78, 281-302. 665 http://dx.doi.org/10.3989/scimar.03983.30C 666 MINAET. 2010. Se decreta Moratoria en Minería. Decreto Nº35982-MINAET. Gaceta Nº 667 90. San José, Costa Rica. 668 Miller, J.E., Pawson, D.L. 1989. Hansenothuria benti, new genus, new species 669 (Echinodermata: Holothuroidea) from the tropical western Atlantic: a bathyal, 670 In review https://doi.org/10.1371/journal.pone.0035644 https://doi.org/10.1590/S1676-06032010000200023 https://doi.org/10.1590/S1676-06032010000200023 https://doi.org/10.22179/REVMACN.18.474 http://dx.doi.org/10.1016/j.dsr2.2017.05.007 http://dx.doi.org/10.11646/zootaxa.3760.1.6 https://doi.org/10.15517/RBT.V63I2.23132 https://doi.org/10.1016/j.jcz.2018.10.010 https://doi.org/10.1007/s00300-020-02715-1 https://doi.org/10.22201/ib.20078706e.2011.2.476 20 epibenthic holothurian with swimming abilities. Proc. Biol. Soc. Wash., 102, 977-671 986. 672 Mironov, A.N., Minina, K.V., Dilmana, A.B., Smirnovb, I.S. 2018. Deep-sea echinoderms 673 of the Sea of Okhotsk. Deep-Sea Res. Part II 154, 342-357. 674 https://doi.org/10.1016/j.dsr2.2017.10.003 675 Moles, J., Figuerola, B., Campanya-Llovet, N., Monleón-Getino, T., Taboada, S., Avila, C. 676 2015. Distribution patterns in Antarctic and Subantarctic echinoderms. Pol. Biol, 38, 677 799-813. https://doi.org/10.1007/s00300-014-1640-5 678 Naranjo-Elizondo, B., Cortés, J. 2018. Observations of litter deposited in the deep waters of 679 Isla del Coco National Park, Eastern Tropical Pacific. Front. Mar. Sci. 5, 91. 680 https://doi.org/10.3389/fmars.2018.00091 681 Neuhaus, B. 2004. Description of Campyloderes cf. vanhoeffeni (Kinorhyncha, 682 Cyclorhagida) from the Central American East Pacific deep with a review of the 683 genus. Meiofauna Mar. 13, 3-20. 684 Norse, E.A., Brooke, S., Cheung, W.W.L., Clark, M.R., Ekeland, I., Froese, R., Gjerde, K.M., 685 Haedrich, R.L., Heppell, S.S., Morato, T., Morgan, L.E., Pauly, D., Sumaila, R.U., 686 Watson, R. 2012. Sustainability of deep-sea fisheries. Mar. Pol. 36, 307-320. 687 https://doi.org/10.1016/j.marpol.2011.06.008 688 O'Loughlin, P.M., Mackenzie, M., VandenSpiegel, D. 2013. New sea cucumber species from 689 the seamounts on the Southwest Indian Ocean Ridge (Echinodermata: Holothuroidea: 690 Aspidochirotida, Elasipodida, Dendrochirotida). Mem. Mus. Victoria, 70, 37–50. 691 Pawson, D. L., 1982. Deep-sea echinoderms in the Tongue of the Ocean, Bahama Islands: a 692 survey, using the research submersible Alvin. Aust. Mus. Mem. 16: 129-145. 693 https://doi.org/10.3853/j.0067-1967.16.1982.362 694 Pawson, D.L. 1983. Psychronaetes hanseni, a new genus and species of elasipodan sea 695 cucumber from the eastern central Pacific (Echinodermata: Holothurioidea). Proc. 696 Biol. Soc. Wash., 96, 154-159. 697 Pawson, D.L., Nizinski, M., Lewis, C., Pawson, D. 2015. Deep-sea echinoids and 698 holothurians (Echinodermata) near cold seeps and coral communities in the northern 699 Gulf of Mexico. Bull. Mar. Sci., 91, 167–204. https://doi.org/10.5343/bms.2014.1064 700 Pérez-Ruzafa, A., Alvarado, J.J. Solís-Marín, F.A., Hernández, J.C., Morata, A., Marcos, C., 701 Abreu-Pérez, M., Aguilera, O., Alió, J., Bacallado-Aránega, J.J., Barraza, E., 702 Benavides-Serrato, M., Benítez-Villalobos, F., Betancourt-Fernández, L., Borges, 703 M., Brandt, M., Brogger, M.I., Borrero-Pérez, G.H., Buitrón-Sánchez, B.E., Campos, 704 L.S., Cantera, J.R., Clemente, S., Cohen-Renfijo, M., Coppard, S.E., Costa-Lotufo, 705 L.V., del Valle-García, R., Díaz de Vivar, M.E., Díaz-Martínez, J.P., Díaz, Y., Durán-706 González, A. Epherra, L., Escolar, M., Francisco, V., Freire, C.A., García-Arrarás, 707 J.E., Gil, D.G., Guarderas, P., Hadel, V.F., Hearn, A., Hernández-Delgado, E.A., 708 Herrera-Moreno, A., Herrero-Pérezrul, M.D., Hooker, Y., Honey-Escandón, M.B.I., 709 Lodeiros, C., Luzuriaga, M., Manso, C.L.C., Martín, A., Martínez, M.L., Martínez, 710 S., Moro-Abad, L., Mutschke, E., Navarro, J.C., Neira, R., Noriega, N., Palleiro-711 Nayar, J. S., Pérez, A. F., Prieto-Ríos, E., Reyes, J., Rodríguez-Barreras, R., Rubilar, 712 T., Sancho-Mejías, T.I., Sangil, C., Silva, J.R.M.C., Sonnenholzner, J.I., Ventura, 713 C.R.R., Y., C.G., Tuya, F., & Williams, S.M. (2013). Appendix. In: Alvarado, J.J., 714 Solís-Marín, F.A. (Eds.), Echinoderm Research and Diversity in Latin America. 715 Springer, Berlin, p. 543-654. 716 In review https://doi.org/10.1016/j.dsr2.2017.10.003 https://doi.org/10.1007/s00300-014-1640-5 https://doi.org/10.3389/fmars.2018.00091 https://doi.org/10.1016/j.marpol.2011.06.008 https://doi.org/10.3853/j.0067-1967.16.1982.362 https://doi.org/10.5343/bms.2014.1064 21 Pertossi, R.M., Brogger, M.I., Penchaszadeh, P.E., Martinez, M.I. 2019. Reproduction and 717 developmental stages in the crinoid Isometra vivipara Mortensen, 1917 from the 718 southwestern Atlantic. Pol. Biol. 42, 807-816. https://doi.org/10.1007/s00300-019-719 02477-5 720 Ramírez-Llodra, E.R., Tyler, P.A., Baker, M.C., Bergstad, O.A., Clark, M.R., Escobar, E., 721 Levin, L.A., Menot, L., Rowden, A.A., Smith, C.R., Van Dover, C.L. 2011 Man and 722 the last great wilderness: human impact on the deep sea. PLoS ONE 6, e22588. 723 https://doi.org/10.1371/journal.pone.0022588 724 Rivadeneira, P.R., Brogger, M.I., Penchaszadeh, P.E. 2017. Aboral brooding in the deep 725 water sea star Ctenodiscus australis Lütken, 1871 (Asteroidea) from the Southwestern 726 Atlantic. Deep-Sea Res. Part I: Oceanogr. Res. Pap. 123, 105-109. 727 https://doi.org/10.1016/j.dsr.2017.03.011 728 Rivadeneira, P.R., Martinez, M.I., Penchaszadeh, P.E., Brogger, M.I. 2020. Reproduction 729 and description of a new genus and species of deep-sea asteriid sea star 730 (Echinodermata; Asteroidea) from the southwestern Atlantic. Deep Sea Res. Part I: 731 Oceanogr. Res. Pap. 163, 0967-0637. https://doi.org/10.1016/j.dsr.2020.103348 732 Roberts, C.M. 2002. Deep impact: the rising toll of fishing in the deep sea. Trends Ecol. Evol. 733 17, 242-245. https://doi.org/10.1016/S0169-5347(02)02492-8 734 Rojas-Jiménez, K., Grossart, H.P., Cordes, E., Cortés, J. 2020. Fungal communities in 735 sediments along a depth gradient in the eastern tropical Pacific. Front. Microbiol. 11, 736 575207. https://doi.org/10.3389/fmicb.2020.575207 737 Roux, M. 2004. New Hyocrinid crinoids (Echinodermata) from submersible investigations 738 in the Pacific Ocean. Pac. Sci. 58, 597-613. https://doi.org/10.1353/psc.2004.0042 739 Sahling, H., Masson, D.G., Ranero, C.R., Hühnerbach, V., Weinrebe, W., Klaucke, I., Bürk, 740 D., Brückmann, W., Suess, E. 2008. Fluid seepage at the continental margin offshore 741 Costa Rica and southern Nicaragua. Geochem. Geophys. Geosyst. 9(5), 1-22. 742 https://doi.org/10.1029/2008GC001978 743 Sala Constitucional. 2013. Resolución Nº 10540-2013 del 7 de agosto de 2013. San José, 744 Costa Rica. 745 Selig, G.M., Netburn, A.N., Malik, M. 2019. Distributions of the pelagic holothurian 746 Pelagothuria in the Central Pacific Ocean as observed by remotely-operated vehicle 747 surveys. Front. Mar. Sci. 6, 684. https://doi.org/10.3389/fmars.2019.00684 748 Setyastuti, A., Wirawati, I. 2018. The Banda Sea: a hotspot of deep-sea echinoderms diversity 749 in Indonesia. IOP Conf. Series: Earth Environ. Sci. 184, 012003 750 https://doi.org/10.1088/1755-1315/184/1/012003 751 Sibuet, M. 1985. Quantitative distribution of echinoderms (Holothuroidea, Asteroidea, 752 Ophiuroidea, Echinoidea) in relation to organic matter in the sediment, in deep sea 753 basins of the Atlantic Ocean. In: Keegan, B.F. & O’Connor, B.D.S. (Eds.), 754 Echinodermata. Proceedings of the Fifth International Echinoderm Conference, 755 Galway, 24–29. 756 Solís-Marín, F.A., Laguarda-Figueras, A., Durán-González, A., Vázquez-Bader, A.R., 757 Gracia-Gasca, A. 2014. Biodiversidad de los equinodermos (Echinodermata) del mar 758 profundo mexicano. In: Low-Pfeng, A., Peters, E. (Eds.), La frontera final: el océano 759 profundo. INECC, México, p. 207-246. 760 Solís-Marín, F.A., Alvarado, J.J., Abreu-Pérez, M., Aguilera, O., Alió, J., Bacallado-Aránega, 761 J.J., Barraza, E., Benavides-Serrato, M., Benítez-Villalobos, F., Betancourt-762 Fernández, L., Borges, M., Brandt, M., Brogger, M.I., Helena Borrero-Pérez, G., 763 In review https://doi.org/10.1007/s00300-019-02477-5 https://doi.org/10.1007/s00300-019-02477-5 https://doi.org/10.1371/journal.pone.0022588 https://doi.org/10.1016/j.dsr.2017.03.011 https://doi.org/10.1016/j.dsr.2020.103348 https://doi.org/10.1016/S0169-5347(02)02492-8 https://doi.org/10.3389/fmicb.2020.575207 https://doi.org/10.1353/psc.2004.0042 https://doi.org/10.1029/2008GC001978 https://doi.org/10.3389/fmars.2019.00684 https://doi.org/10.1088/1755-1315/184/1/012003 22 Buitrón-Sánchez, B.E., Campos, L.S., Cantera, J., Clemente, S., Cohen-Renfijo, M., 764 Coppard, S., Costa-Lotufo, L.V., del Valle-García, R., Díaz, Y., Díaz de Vivar, M.E., 765 Díaz-Martínez, J.P., Durán-González, A., Epherra, L., Escolar, M., Francisco, V., 766 Freire, C.A., García-Arrarás, J.E., Gil, D.G., Guarderas, P., Hadel, V.F., Hearn, A., 767 Hernández, J.C., Hernández-Delgado, E.A., Herrera-Moreno, A., Herrero-Pérezrul, 768 M.D., Hooker, Y., Honey-Escandón, M.B.I., Lodeiros, C., Luzuriaga, M., Manso, 769 C.L.C., Martín, A., Martínez, M.I., Martínez, S., Moro-Abad, L., Mutschke, E., 770 Navarro, J.C., Neira, R., Noriega, N., Palleiro-Nayar, J.S., Pérez, A.F., Pérez-Ruzafa, 771 A., Prieto-Rios, E., Reyes, J., Rodríguez, R., Rubilar, T., Sancho-Mejia, T., Sangil, 772 C., Silva, J.R.M.C., Sonnenholzner, J.I., Ventura, C.R., Tablado, A., Tavares, Y., 773 Tiago, C.G., Tuya, F., Williams, S.M. (2013). Appendix. In: Alvarado, J.J., Solís-774 Marín, F.A. (Eds.), Echinoderm Research and Diversity in Latin America. Springer, 775 Berlin, p. 543-654. 776 Stöhr, S., Segonzac, M. 2005. Deep-sea ophiuroids (Echinodermata) from reducing and non-777 reducing environments in the North Atlantic Ocean. J. Mar. Biol. Assoc. U.K. 85, 383-778 402. https://doi.org/10.1017/S0025315405011318h 779 Stöhr, S., O’Hara, T.D. 2021. Deep-sea Ophiuroidea (Echinodermata) from the Danish 780 Galathea II Expedition, 1950–52, with taxonomic revisions. Zootaxa, 4963, 505-529. 781 https://doi.org/10.11646/zootaxa.4963.3.6 782 Stöhr, S., O’Hara, T.D., Thuy, B. 2012. Global diversity of brittle stars (Echinodermata: 783 Ophiuroidea). PLoS ONE 7, e31940. https://doi.org/10.1371/journal.pone.0031940 784 Stöhr, S., O’Hara, T., Thuy, B. 2022. World Ophiuroidea Database. Accessed through: World 785 Register of Marine Species at: 786 https://www.marinespecies.org/aphia.php?p=taxdetails&id=123598 on 2022-04-08 787 Summers, M.M., Al-Hakim, I.I., Rouse, G.W. 2014. Turbo-taxonomy: 21 new species of 788 Myzostomida (Annelida). Zootaxa 3873, 301-344. 789 https://doi.org/10.11646/zootaxa.3873.4.1 790 Sweetman, A.K., Thurber, A.R., Smith, C.R., Levin, L.A., Mora, C., Wei, C.L., Gooday, A.J., 791 Jones, D.O.B., Rex, M., Yasuhara, M., Ingels, J., Ruhl, H.A., Frieder, C.A., Danovaro, 792 R., Würzberg, L., Baco, A., Grupe, B.M., Pasulka, A., Meye, K.S., Dunlop, K.M., 793 Henry, L.A., Roberts, J.M. 2017. Major impacts of climate change on deep-sea 794 benthic ecosystems. Elementa Sci. Anthrop. 5, 4. 795 https://doi.org/10.1525/elementa.203 796 Thurber, A.R., Sweetman, A.K., Narayanaswamy, B.E., Jones, D.O.B., Ingels, J., Hansman, 797 R.L. 2014. Ecosystem functions and services in the deep sea. Biogeosciences 11, 798 3941-3963. https://doi.org/10.5194/bg-11-3941-2014 799 Townsend, C.H. 1901. Dredging and other records of the United States Fish Commission 800 Steamer “Albatross”, with bibliography relative to the work of the vessel. U.S. Fish. 801 Comm. Rep. 1900, 387-562. 802 UNESCO. 2009. Global Open Oceans and Deep Seabed (GOODS) – biogeographic 803 classification. IOC Technical Series, Vol. 84. UNESCO-IOC, Paris. 804 Van Dover, C. 2011. Tighten regulations on deep-sea mining. Nature 470, 31-33. 805 https://doi.org/10.1038/470031a 806 Voss, G.L. 1971. Narrative of RV John Elliot Pillsbury Cruise P-7101: Central America, 807 January 20-February 5, 1971. Miami, Florida: School of Marine and Atmospheric 808 Science, University of Miami. 809 In review https://doi.org/10.11646/zootaxa.4963.3.6 https://doi.org/10.1371/journal.pone.0031940 https://doi.org/10.11646/zootaxa.3873.4.1 https://doi.org/10.1525/elementa.203 https://doi.org/10.1038/470031a 23 Waller, R., Watling, L., Auster, P., Shank, T. 2007. Anthropogenic impacts on the Corner 810 Rise seamounts, north-west Atlantic Ocean. J. Mar. Biol. Assoc. UK 87, 1075-107. 811 https://doi.org/10.1017/S0025315407057785 812 Wehrtmann, I.S., Nielsen-Muñoz, V. 2009. The deepwater fishery along the Pacific coast of 813 Costa Rica, Central America. Lat. Amer. J. Aquat. Res. 37, 543-554. 814 https://doi.org/10.3856/vol37-issue3-fulltext-19 815 Wehrtmann, I.S., Arana, P.M., Barriga, E., Gracia, A., Pezzuto, P.R. 2012. Deep-water 816 shrimp fisheries in Latin America: a review. Lat. Amer. J. Aquat. Res. 40, 497-535. 817 https://doi.org/10.3856/vol40-issue3-fulltext-2 818 Wheat, C.G., Hartwell, A.M., McManus, J., Fisher, A.T., Orcutt, B.N., Schlicht, L.E.M., 819 Niedenzu, S., Bach, W. 2019. Geology and fluid discharge at Dorado Outcrop, a low 820 temperature ridge-flank hydrothermal system. Geochem. Geophys. Geosyst., 20, 487-821 504. https://doi.org/10.1029/2018GC007933 822 Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Watson, R. 823 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787-824 790. https://doi.org/10.1126/science.1132294 825 WoRMS Editorial Board. 2022. World Register of Marine Species. Available from 826 https://www.marinespecies.org. doi: https://doi.org/10.14284/170 827 828 In review https://doi.org/10.1017/S0025315407057785 https://doi.org/10.3856/vol37-issue3-fulltext-19 https://doi.org/10.3856/vol40-issue3-fulltext-2 https://doi.org/10.1126/science.1132294 https://www.marinespecies.org/ 24 Table 1. Taxonomic list of deep-sea echinoderms from Costa Rican waters. CR: Costa Rica; CA: Central America; P: Pacific; C: 829 Caribbean; PC: Pacific and Caribbean; n.d: no data; ETP: Eastern Tropical Pacific; CAS: California Academy of Sciences; SIO: Scripps 830 Institution of Oceanography; NMHN: National Museum of Natural History, Smithsonian Institution; MCZ: Museum of Comparative 831 Zoology, Harvard University; MZUCR: Museo de Zoología, Universidad de Costa Rica. + = deeper depth range; * = shallower depth 832 range. ϵ: Eastern Tropical Pacific endemic. 833 834 Class Order Family Scientific name P C PC Depth range Costa Rica (m) CR new report CA new report Reported depth range (Solís-Marin et al. 2013) References Crinoidea Comatulida Antedonidae cf. Antedon sp. X 1246-1390 X X n.d. SIO; Summers et al., 2014 Fariometra parvula X 1788-1789 n.d Hartlaub, 1895; A.H. Clark, 1917 Bathycrinidae Bathycrinus mendeleevi X 1371 X X n.d., ETP new report SIO Bourgueticrinidae Bourgueticrinus sp. X 3031 X X n.d., ETP new report SIO Comasteridae Neocomatella pulchella X 1095 + 3-695 Cambronero et al., 2019 Thalassometridae Thalassometra agassizii X 1030-1180 596-1429 SIO Zenometridae Psathyrometra fragilis? X 644-1908 X X n.d., ETP new report SIO Psathyrometra sp. X 644-1148 X X n.d SIO Hyocrinida Hyocrinidae Calamocrinus diomedae X 714-2209 + X 717-1431 SIO; Roux, 2004 Calamocrinus sp. X 1158 X X 717-1158 SIO Hyocrinus sp. X 1087-1807 X X n.d. SIO Asteroidea Spinulosida Echinasteridae Henricia sp. X 1071 X X 0-2001 SIO Paxillosida Astropectinidae Astropecten benthophilus ϵ X 1408 1408 USNM; MCZ; Ludwig, 1905 Leptychaster inermis X 1143-1408 732-1593 Ludwig, 1905; Fisher, 1928 Persephonaster armiger X 1951 n.d., ETP new report Ludwig, 1905 In review 25 Class Order Family Scientific name P C PC Depth range Costa Rica (m) CR new report CA new report Reported depth range (Solís-Marin et al. 2013) References Tethyaster canaliculatus ϵ X 1908 + X 23-300 SIO Thrissacanthias penicillatus X 1000 X X 55-1503 SIO Thrissacanthias sp. X 1119-1281 X X n.d. MZUCR Porcellanasteridae Porcellanaster ceruleus X 1408-2149 1158-6035 USNM; Ludwig, 1905 Eremicaster pacificus X 2149 1463-5780 USNM; Ludwig ,1905 Pseudarchasteridae Pseudarchaster spp. X 1119-1281 X 98-3575 MZUCR Notomyotida Benthopectinidae Cheiraster (Cheiraster) planus X 485-596 226-1339 Cambronero et al., 2019 Pectinaster agassizi X 1789-1951 790-2323 USNM; Ludwig, 1905 Benthopecten acanthonotus X 1157-1454 X 1800-1936 SIO Benthopecten spinuliger ϵ X 1789-1847 1618-2323 USNM; Ludwig, 1905 Valvatida Asterinidae? cf. Patiria X 950 X X n.d. SIO Goniasteridae Bathyceramaster elegans ϵ X 1789 X X 1789, ETP new report USNM; Ludwig, 1905 cf. Ceramaster sp. X 910-1000 X X n.d. SIO Evoplosoma claguei? X 1097 X X n.d. SIO cf. Hippasteria cf. phrygiana X 910 + X X 0-400 SIO Nymphaster diomedeae ϵ X 1000-1408 702-1810 SIO; USNM; Ludwig, 1905: Fisher, 1928 Pillsburiaster ernesti ϵ X 2149 2149 USNM; Ludwig, 1905 Velatida Caymanostellidae Belyaevostella sp. X 967-1005 X X n.d., ETP new report SIO Caymanostella sp. X 974-1887 X X n.d., ETP new report SIO Ophiuroidea Euryalida Asteronychidae Astrodia plana ϵ X 1807-2109 X 717-3058 SIO Euryalidae Asteroschema sp. X 1097-1854 X 350-1271 SIO Asteroschema sublaeve X 1119-1281 X 1271 MZUCR Ophiocreas sp. X 1097-1886 + X X n.d SIO In review 26 Class Order Family Scientific name P C PC Depth range Costa Rica (m) CR new report CA new report Reported depth range (Solís-Marin et al. 2013) References Gorgonocephalidae Gorgonocephalus cf. chilensis X 665 X X 4-900 SIO Gorgonocephalus diomedeae X 1009 X 1271 SIO Gorgonocephalus sp. X 1004-1040 n.d. SIO Ophiacanthida Ophiacanthidae Ophiacantha quadrispina X 156-273 183-549 MZUCR Ophiacantha similis X 130-1180* 717-1097 SIO Ophiacantha sp. X 606-1908 0-5203 SIO Ophiochondrus sp. X 967-1751 X X n.d. SIO Ophiambix sp. X 988-2091 X X n.d., ETP new report SIO Ophiotomidae Ophiomitra sp. X 741-745 X X n.d., ETP new report SIO Ophiotoma paucispina X 2149 1643-4082 Lütken & Mortensen, 1899 Ophiotreta sp. X 1009 X X n.d., ETP new report SIO Ophioscolecida Ophioscolecidae Ophiolycus sp.? X 997-998 X X n.d., ETP new report SIO Ophioleucida Ophioleucidae Ophioleuce gracilis X 1751-1908 X X n.d., ETP new report SIO Ophiurida Ophiuridae Ophiocten hastatum X 1157-1847 1159-2877 USNM; SIO; Lütken & Mortensen, 1899 Ophiura flagellata X 1662 128-2014 SIO Ophiura sp. X 1000-1866 n.d. SIO Ophiura (Ophiura) nana X 1650 1650 USNM; Lütken & Mortensen, 1899 Ophiopyrgidae Amphiophiura abcisa X 245 245-3714 USNM; MCZ; Lütken & Mortensen, 1899 Amphiophiura paucisquama ϵ X 820 n.d. MZUCR Ophiuroglypha irrorata irrorata X 1951-2149 405-5869 USNM; Lütken & Mortensen, 1899 Ophiuroglypha sp. X 974-1866 0-5869 SIO Stegophiura sp. X 1791-1800 X X n.d. SIO Ophiomusaidae Ophiomusa faceta? X 1009 X X n.d. SIO Ophiomusa lymani X 1408-2149 51-2906 USNM; SIO; Lütken & Mortensen, 1899 In review 27 Class Order Family Scientific name P C PC Depth range Costa Rica (m) CR new report CA new report Reported depth range (Solís-Marin et al. 2013) References Ophiosphalmidae Ophiosphalma glabrum X 1157-3400 878-5203 USNM; SIO; Lütken & Mortensen, 1899 Amphilepididae Amphilepis patens X 1157-1454 X 304-4087 SIO Amphilepidida Amphiuridae Amphiura koreae X 1157-1454 X X n.d. SIO Amphiura serpentina X 1157-1454 X 770-1865 SIO Amphiura seminuda X 1157-1454 X X 9-4096 SIO Ophiothamnidae Histampica duplicata X 156-256 125-2870 MZUCR Hemieuryalidae Ophiozonella alba ϵ X 1408-2149 1408-2487 USNM; Lütken & Mortensen, 1899 Ophiolepididae Ophiolepis sp. X 1157-1454 X 0-230. SIO Ophiacanthidae Ophiolimna bairdi X 1157-1454 X X n.d. SIO Holothuroidea Apodida Chiridotidae Chiridota? X 1408 n.d. SIO Dendrochirotid a Cucumariidae Abyssocucumis abyssorum X 2149 3241-4000 USNM; Ludwig, 1894 Psolidae Psolus aff. diomedeae ϵ X 1157-1454 + 13-302 USNM; SIO Ypsilothuriidae Ypsilothuria bitentaculata X 974-1866 255-4082 SIO Elasipodida Elpidiidae Achlyonice sp. X 1886-1869 X X n.d. SIO cf. Peniagone sp. X 1859-1868 X X n.d. SIO Peniagone vitrea X 1789-2149 1160-4507 USNM; Ludwig, 1894 Laetmogonidae Benthogone? sp. X 1854-1886 n.d., ETP new report SIO Pannychia sp. X 924-1908 n.d SIO Pannychia moseleyi X 1408 199-2599 USNM; Ludwig, 1894 Psychronaetes sp. X 1097-1982 X X 3852-4289 SIO Pelagothuriidae Pelagothuria natatrix ϵ X 982-1650 0-4505 SIO; Ludwig, 1894; Selig et al. 2019 Psychropotidae Benthodytes sanguinolenta X X X 385-3453 + P=978-2323; C=914-3100 USNM; SIO; Ludwig, 1894; Cambronero et al., 2019 Holothuriida Mesothuriidae Mesothuria multipes ϵ X 2149 725-4064 USNM; Ludwig, 1894 Zygothuria láctea X 704-1292 484-5100 Cambronero et al., 2019 In review 28 Class Order Family Scientific name P C PC Depth range Costa Rica (m) CR new report CA new report Reported depth range (Solís-Marin et al. 2013) References Caudinidae X 1782 0-2850 SIO Molpadida Molpadiidae Molpadia granulata ϵ X 2690 2690-5869 Ludwig, 1894 Molpadia musculus X 1951-2149 37-6134 USNM Synallactida Deimatidae Deima validum pacificum X 1789-2149 1618-2487 USNM; Ludwig, 1894 Deima validum validum X 1017-1300 914-2780 Cambronero et al., 2019 Orphnurgus vitreus X 1847 X X n.d., ETP new report USNM Oneirophanta setigera X 2149 X X 3667-4088 USNM; Ludwig, 1894 Synallactidae Bathyplotes natans X 496-1308 210-1644 Cambronero et al., 2019 Bathyplotes sp. X 677-1908 n.d. USNM; SIO Oloughlinius macdonaldi ϵ X 2149 + X X 1644 USNM; Ludwig, 1894 Synallactes cf. chuni X 1000 X X n.d., ETP new report SIO Synallactes sp. X 910-1065 n.d. SIO Persiculida incertae sedis Benthothuria funebris X 1225 n.d. Cambronero et al., 2019 cf. Hadalothuria sp. X 1065 X X n.d., ETP new report SIO Hansenothuria sp. X 742-1481 n.d. Cambronero et al., 2019 Gephyrothuriidae Paroriza pallens X 385-1481 n.d. Cambronero et al., 2019 Paroriza sp. X 987-1046 X X n.d., ETP new report USNM Pseudostichopodidae Pseudostichopus mollis X 245-1951 100-5203 USNM, Ludwig, 1894 Pseudostichopus peripatus X 1789 1158-3667 USNM Pseudostichopus sp. X 1951 n.d. USNM Echinoidea Cidaroida Cidaridae Centrocidaris doederleini ϵ X 265 87-550 SIO; Cortés & Blum, 2008 Histiocidaridae Histocidaris variabilis X 571 X X n.d., ETP new report SIO Camarodonta Strongylocentrotidae? X 1782 X X 0-1200 SIO Echinothurioid a Echinothuriidae Araeosoma leptaleum X 964-1271 X X 740-1046 SIO Tromikosoma cf. tenue X 2067 X X n.d., ETP new report SIO In review 29 Class Order Family Scientific name P C PC Depth range Costa Rica (m) CR new report CA new report Reported depth range (Solís-Marin et al. 2013) References Tromikosoma hispidum X 2067-2149 1820-3375 SIO; USNM; A. Agassiz, 1904 Aspidodiadem atoida Aspidodiadematidae Aspidodiadema hawaiiense X 1003 X X n.d., ETP new report SIO Plesiodiadema? X 1807-2109 n.d. SIO Plesiodiadema horridum ϵ X 1650-2149 1625-3381 USNM, A. Agassiz, 1898; 1904 Pedinoida Pedinidae Caenopedina hawaiiensis X 758-2209 X X n.d., ETP new report SIO Caenopedina diomedeae X 759-966 X 723-850 SIO Salenioida Saleniidae Salenocidaris miliaris X 2149 1159-3376 A. Agassiz, 1898; 1904 Clypeasteroida Clypeasteridae Clypeaster euclastus X 1050 + 36-530 Cambronero et al .,2019 Asterostomatidae Phrissocystis aculeata X 1951 X X n.d., ETP new report USNM; A. Agassiz, 1898; 1904 Spatangoida Brissidae Brissopsis elongata X 302-329 3-270 USNM Loveniidae Araeolampas hastata ϵ X 1847 1785-3376 MCZ; A. Agassiz, 1898; 1904 Macropneustidae Argopatagus aculeata ϵ X 1951 1952 A. Agassiz, 1898 Aeropsidae Aeropsis fulva X 2149 1455-5200 A. Agassiz, 1898 TOTAL 112 13 1 58 46 835 In review 30 Table 2. Number of deep-sea echinoderms taxa at different taxonomic levels from Costa 836 Rican waters. 837 838 Class Orders Families Genus Confirmed species Morphospecies Pacific Caribbean Crinoidea 2 7 9 5 10 10 1 Asteroidea 5 8 21 14 24 23 1 Ophiuroidea 6 17 25 22 37 37 0 Holothuroidea 7 15 25 19 35 27 9 Echinoidea 8 13 13 15 18 16 2 Total 28 60 93 75 124 112 13 839 Class Orders Families Genus Species Morphospecies Caribbean Pacific Crinoidea 2 7 9 5 5 1 10 Asteroidea 5 8 21 14 10 1 23 Ophiuroidea 6 17 25 22 15 0 37 Holothuroidea 7 15 25 19 16 9 27 Echinoidea 8 13 13 15 3 2 16 Total 28 60 93 75 49 13 112 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 In review 31 869 870 871 872 873 Table 3. Biogeographic distribution of Costa Rican deep sea echinoderms species based on 874 the Ocean Biodiversity Information System (www.obis.org) and the World Register of 875 Marine Species (www.marinespecies.org), and according to the marine biogeographic realms 876 proposed by Costello et al (2017). Realms: 1) Inner Baltic Sea; 2) Black Sea; 3) NE Atlantic; 877 4) Norwegian Sea; 5) Mediterranean; 6) Artic; 7) North Pacific; 8) North American Boreal; 878 9) Mid-Tropical North Pacific Ocean; 10) South-east Pacific; 11) Tropical W Atlantic; 12) 879 Tropical E Pacific; 13) Tropical Indo-Pacific and Coastal Indian Ocean; 14) Red Sea; 15) 880 Tasman Sea and SW Pacific; 16) Tropical Australia and Coral Sea; 17) Mid South Tropical 881 Pacific; 18) Offshore and NW Atlantic; 19) Offshore Indian Ocean; 20) Offshore W Pacific; 882 21) Offshore S Atlantic; 22) Offshore mid-E Pacific; 23) Tropical E Atlantic; 24) Argentina; 883 25) Chile; 26) South Australia; 27) South Africa; 28) New Zealand; 29) North West Pacific; 884 30) Southern Ocean ; n.d.: no data. 885 886 Class Species Biogeographic distribution Crinoidea cf. Antedon sp. 4,3,5,9,11,13,15,16,17,18,19,20,21,23,28,30 Fariometra parvula 12 Bathycrinus mendeleevi 13 Bourgueticrinus sp. n.d. Neocomatella pulchella 11 Thalassometra agassizii 12 Psathyrometra fragilis? 13 Psathyrometra sp. 7,9,10,12,17,20,26,28 Calamocrinus diomedae 12,26 Calamocrinus sp. 12,26 Hyocrinus sp. 7,12,22 Asteroidea Henricia sp. worldwide Astropecten benthophilus 12 Leptychaster inermis 7,12 Persephonaster armiger 19 Tethyaster canaliculatus 12 Thrissacanthias penicillatus 7,12,20 Thrissacanthias sp. 7,12,20 Porcellanaster ceruleus 3,11,12,13,16,17,18,20,23,26,28 Eremicaster pacificus 7,12,13,17 Pseudarchaster spp. worldwide Cheiraster (Cheiraster) planus 11 Pectinaster agassizi 7,12 Benthopecten acanthonotus 7,12 In review http://www.obis.org/ http://www.marinespecies.org/ 32 Class Species Biogeographic distribution Benthopecten spinuliger 12 cf. Patiria 7,10,12,20,29 Bathyceramaster elegans 12 cf. Ceramaster sp. worldwide Evoplosoma claguei? 7,12 cf. Hippasteria cf. phrygiana 3,4,7,10,11,12,18,20,21,24,28,29,30 Nymphaster diomedeae 12 Pillsburiaster ernesti 12 Crossaster borealis? 7,12 Belyaevostella sp. 16 Caymanostella sp. 7,12,28,11,13,16,26 Ophiuroidea Astrodia plana 12 Asteroschema sp. 7,10,11,12,13,15,16,18,25,28 Asteroschema sublaeve 7,12 Ophiocreas sp. 11,13,15,16,17,21,26,27,28 Gorgonocephalus cf. chilensis 24,25,28,30 Gorgonocephalus diomedeae 12 Gorgonocephalus sp. 7,6,11,12,13,16,18,20,21,22,24,25,28,29 Ophiacantha quadrispina 12 Ophiacantha similis 12 Ophiacantha sp. wordlwide Ophiochondrus sp. 5,11,16,21,24,30 Ophiambix sp. 11,13,18,20,22,28 Ophiomitra sp. 3,11,12,13,16,18,20 Ophiotoma paucispina 12 Ophiotreta sp. 11,12,13,15,16,17,19,20,22,23,26,28,29 Ophiolycus sp.? 3,4,13,16,24,26,28,30,4,3 Ophioleuce gracilis n.d Ophiocten hastatum 3,7,11,12,18,20,21,26,28,30 Ophiura flagellata 7,12,13,16,20,26,27,28,30 Ophiura sp. worldwide Ophiura (Ophiura) nana 12 Amphiophiura abcisa 10,12 Amphiophiura paucisquama 12 Ophiuroglypha irrorata irrorata 3,7,10,11,12,16,18,19,20,22,26,27,28 Ophiuroglypha sp. worldwide Stegophiura sp. 3,4,7,8,12,13,16,17,18,20,25,26,28,29 Ophiomusa faceta? 13 Ophiomusa lymani 3,7,8,11,12,13,15,16,20,22,23,26,27,28 In review 33 Class Species Biogeographic distribution Ophiosphalma glabrum 7,10,12,13,15,16,22,28 Amphilepis patens 7,12,20 Amphiura koreae 20,29 Amphiura serpentina 7,12 Amphiura seminuda 10,12 Histampica duplicata 3,9,11,12,13,15,16,17,18,28 Ophiozonella alba 12 Ophiolepis sp. 3,9,11,12,13,15,16,17,21,23,27,28 Ophiolimna bairdi 3,7,12,11,16,18,20,26,28 Ophiomitra sp. 11,12,13,16,18,20 Holothuroidea Chiridota? worldwide Abyssocucumis abyssorum 3,7,12,18,25,26,28,30 Psolus aff. diomedeae 12 Ypsilothuria bitentaculata 3,5,7,10,12,13,16,18,20,21,25,26,28 Achlyonice sp. 3,12,20,21,26,28,30 cf.Peniagone sp. 3,7,10,12,16,18,19,20,22,23,26,28,30 Peniagone vitrea 7,12,22,26,28 Benthogone? sp. 3,13,16,18,21,27,28 Pannychia sp. 6,7,9,10,12,13,20,26,28,30 Pannychia moseleyi 6,7,9,10,12,13,20,26,28 Psychronaetes sp. 11,12,22 Pelagothuria natatrix 12 Benthodytes sanguinolenta 11,12 Mesothuria multipes 12 Zygothuria lactea 3,11,18 Molpadia granulata 12 Molpadia musculus 3,4,5,6,7,8,11,12,13,16,18,21,23,26,28,30 Deima validum pacificum n.d. Deima validum validum 3,11,12,13,18,22,23,26,27,28 Orphnurgus vitreus 9,12,13 Oneirophanta setigera 12,17,22,28 Bathyplotes natans 3,4,9,11,12,13,18,21,26,28 Bathyplotes sp. 3,4,7,9,10,12,13,16,17,18,20,21,24,25,26,28,30 Oloughlinius macdonaldi 12 Synallactes cf. chuni 20 Synallactes sp. 3,7,10,11,12,13,20,21,22,24,26,27,28 Benthothuria funebris 3,8,11,18 cf. Hadalothuria sp. 13,20 In review 34 Class Species Biogeographic distribution Hansenothuria sp. 11,12 Paroriza pallens 3,18,21,27 Paroriza sp. 3,5,11,13,18,21,22 Pseudostichopus mollis 7,10,12,13,25,26,28,30 Pseudostichopus peripatus 3,7,9,11,12,13,18,20,21,22,26,28,30 Pseudostichopus sp. 3,7,9,10,11,12,13,20,22,23,26,27,28,30 Echinoidea Centrocidaris doederleini 12 Histocidaris variabilis 9 Araeosoma leptaleum 7,12 Tromikosoma cf. tenue 7,13,15,20 Tromikosoma hispidum 10,12 Aspidodiadema hawaiiense 9 Plesiodiadema? 11,12,13,21,22,26,27 Plesiodiadema horridum 12 Caenopedina hawaiiensis 9,28 Caenopedina diomedeae 7,12 Salenocidaris miliaris 13 Clypeaster euclastus 11 Argopatagus aculeata 12 Brissopsis elongata 11 Araeolampas hastata 12 Argopatagus aculeata 12 Aeropsis fulva 7,10,12,20 887 888 889 In review 35 890 Figure 1. Sampling localities of deep-sea echinoderms recorded on museum collections 891 (Scripps Institution of Oceanography, National Museum of Natural History of Smithsonian 892 Institution, Museum of Comparative Zoology of Harvard University, Museo de Zoología 893 Universidad de Costa Rica) from the Costa Rican Economic Exclusive Zone. 894 In review 36 895 Figure 2. Bathymetric variation in deep sea echinoderm species richness by class. 896 897 In review 37 898 899 Figure 3. Number of echinoderms species registered by museum collection or literature for 900 Costa Rica deep waters. Scripps Oceanographic Institution (SIO); National Museum of 901 Natural History, Smithsonian Institution (NMNH); Museum of Comparative Zoology, 902 Harvard University (MCZ); Museo de Zoología, Universidad de Costa Rica (MZUCR). 903 904 905 906 907 908 In review 38 909 Figure 4. A Non-metric Multi-Dimensional Scaling based on a Bray-Curtis similarity matrix 910 of the presence/absence of the biogeographic affinities of Costa Rica deep sea echinoderms. 911 Vectors indicated the greatest contributions of the realms based on the SIMPER analysis. 912 Number is blue refer to the marine biogeographic realms proposed by Costello et al (2017) 913 in table 3. 914 915 916 917 918 In review 39 919 Figure 5. Costa Rican deep-sea echinoderms. A) Antedonidae sp.; B) Antedonidae sp.; C) 920 Ceramaster sp.; D) Asteroschema sp.; E) Ophiacantha sp. and the fish Lophiodes caulinaris 921 (Lophiidae); F) Synallactida sp.; G) Psychropotidae sp.; H) Peniagone sp.; I) Caenopedina 922 sp.; J) Aspidodiadema sp. Images were taken by the HOV Alvin and ROV SuBastian onboard 923 of the Costa Rica expeditions. 924 In review Figure 1.JPEG In review Figure 2.TIF In review Figure 3.TIF In review Figure 4.TIF In review Figure 5.JPEG In review