Concreto Estructural Comportamiento y Diseño Ing. Guillermo Santana, Ph.D. Miembro del Comité 318 del ACI Escuela de Ingeniería Civil Universidad de Costa Rica 2012 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA Capítulo de Costa Rica Texto preparado únicamente como respaldo para los cursos de Concreto Estructural impartidos en la Escuela de Ingeniería Civil de la Universidad de Costa Rica por el Prof. Guillermo Santana. Se utilizaron como base para la preparación de este documento el reglamento ACI 318S-11 : Reglamento para Concreto Estructural y Comentario, el texto Reinforced Concrete : Mechanics and Design 6Ed de los profesores J.K. Wight y James G. MacGregor y el Código Sismico de Costa Rica 2010. No se recomienda el uso de este texto para ninguna otra finalidad más que para la aquí establecida. Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 ii ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA INDICE 1. INTRODUCCIÓN.............................................. 1 1.1 Estructuras de Concreto Reforzado .................................................................................................. 1 1.2 Mecánica del Concreto Reforzado .................................................................................................... 1 1.3 Elementos de concreto reforzado ...................................................................................................... 2 1.4 Factores incidentes en la escogencia del concreto para una estructura ......................................... 3 2. PROCESO DE DISEÑO ................................... 11 2.1 Objetivos del Diseño ..........................................................................................................................11 2.2 Proceso de Diseño ..............................................................................................................................11 2.3 Estados Límite y el Diseño del Concreto Reforzado .......................................................................12 2.3.1 Estados Límite ..............................................................................................................................12 2.3.2 Diseño para Estados Límite ..........................................................................................................13 2.3.3 Relación Básica de Diseño ...........................................................................................................14 2.4 Seguridad Estructural .......................................................................................................................15 2.5 Cálculo probabilístico de los factores de seguridad ........................................................................16 2.6 Procedimientos de diseño especificados por la norma ACI ...........................................................18 2.6.1 Diseño por Resistencia .................................................................................................................18 2.6.2 Diseño por Esfuerzos de Trabajo ..................................................................................................18 2.6.3 Diseño Plástico .............................................................................................................................18 2.7 Factores y combinaciones de carga en el ACI 318S-08 ..................................................................20 2.7.1 Terminología y Notación ..............................................................................................................21 2.7.2 Factores de carga y combinaciones de carga en las secciones 9.2.1 a 9.2.5 de la norma ACI ......21 2.7.3 Factores de reducción de resistencia, ϕ, sección 9.3 norma ACI ..................................................25 2.8 Cargas y solicitaciones.......................................................................................................................26 2.8.1 Solicitaciones Directas e Indirectas ..............................................................................................26 2.8.2 Clasificación de cargas. ................................................................................................................26 2.8.3 Especificaciones de cargas ...........................................................................................................27 2.8.4 Cargas muertas .............................................................................................................................27 2.8.5 Cargas vivas debidas a uso y ocupación .......................................................................................29 2.8.6 Clasificación de edificaciones para cargas de viento, nieve y sismo ............................................31 2.8.7 Cargas de techo, Lr, y cargas de lluvia, R .....................................................................................31 2.8.8 Cargas de construcción .................................................................................................................31 2.8.9 Cargas de viento ...........................................................................................................................32 2.8.10 Cargas autoequilibrantes .............................................................................................................34 3. MATERIALES ............................................... 47 3.1 Concreto .............................................................................................................................................47 3.2 Resistencia del concreto ....................................................................................................................47 3.2.1 Mecanismo de agrietamiento y falla del concreto sometido a compresión ...................................47 3.2.2 Resistencia del Concreto a la Compresión ...................................................................................50 3.2.3 Resistencia del Concreto a la Tracción .........................................................................................52 3.2.4 Resistencia bajo cargas biaxiales y triaxiales ...............................................................................55 3.3 Propiedades mecánicas del concreto ................................................................................................57 3.3.1 Curva esfuerzo-deformación para concreto normal en compresión .............................................57 3.3.2 Curva de esfuerzo-deformación para concreto normal en tracción ..............................................60 3.4 Refuerzo .............................................................................................................................................60 3.4.1 Barras corrugadas laminadas en caliente ......................................................................................61 4. FLEXIÓN ...................................................... 83 4.1 Introducción .......................................................................................................................................83 Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 iii ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 4.1.1 Regiones B y Regiones D .............................................................................................................83 4.1.2 Análisis versus Diseño ..................................................................................................................83 4.1.3 Resistencia requerida y resistencia de diseño ...............................................................................84 4.1.4 Momentos positivos y momentos negativos .................................................................................84 4.1.5 Símbolos y abreviaciones .............................................................................................................84 4.2 Teoría de Flexión ...............................................................................................................................85 4.2.1 Teoría de flexión para concreto reforzado ....................................................................................85 4.3 Análisis de vigas de concreto reforzado ...........................................................................................88 4.3.1 Análisis de la capacidad a flexión de una viga de sección transversal general .............................88 4.3.2 Fallas controladas por Tracción y Compresión y Falla Balanceada .............................................89 4.3.3 Análisis de vigas rectangulares con refuerzo de tracción únicamente ..........................................91 4.4 Diseño de vigas rectangulares .........................................................................................................100 4.4.1 Factores generales que afectan el diseño de vigas rectangulares ................................................100 4.4.2 Diseño de Vigas Rectangulares con Refuerzo de Tracción ........................................................106 4.5 Vigas T ..............................................................................................................................................117 4.5.1 Introducción ................................................................................................................................117 4.5.2 Aplicaciones prácticas de vigas T ...............................................................................................117 4.5.3 Ancho efectivo del ala y refuerzo transversal .............................................................................117 4.5.4 Análisis de Vigas T.....................................................................................................................118 4.5.5 Diseño de vigas T .......................................................................................................................124 4.6 Vigas con acero de compresión .......................................................................................................127 4.6.1 Efecto del refuerzo de compresión sobre la resistencia y el comportamiento ............................127 4.6.2 Razones para usar refuerzo a compresión ...................................................................................127 4.6.3 Análisis de vigas con refuerzo de tracción y compresión ...........................................................128 4.6.5 Aros para refuerzo de compresión ..............................................................................................131 5. CORTANTE EN VIGAS ................................. 163 5.1 Introducción y teoría básica. ..........................................................................................................163 5.1.1 Esfuerzos en vigas elásticas no-agrietadas .................................................................................163 5.1.2 Esfuerzo cortante promedio entre grietas ...................................................................................165 5.1.3 Acción de viga y acción de arco .................................................................................................165 5.1.4 Refuerzo a cortante .....................................................................................................................166 5.2 Comportamiento de vigas durante la falla en cortante ................................................................166 5.2.1 Comportamiento de vigas sin refuerzo en el alma ......................................................................167 5.2.2 Regiones B y D ...........................................................................................................................168 5.2.3 Agrietamiento inclinado .............................................................................................................168 5.2.4 Fuerzas internas en una viga sin estribos ....................................................................................169 5.2.5 Factores que afectan la resistencia al cortante en vigas sin refuerzo en alma .............................170 5.2.6 Comportamiento de vigas con refuerzo en el alma .....................................................................171 5.3 Análisis y diseño de vigas de R/C ante cortante (ACI) .................................................................172 5.3.1 Estados límite de falla de cortante: Vigas sin refuerzo en el alma ..............................................172 5.3.2 Estados límite de falla de cortante: Vigas con refuerzo en el alma ............................................173 5.3.3 Refuerzo mínimo en el alma .......................................................................................................175 5.3.4 Factor de reducción de resistencia al cortante ............................................................................175 5.3.5 Ubicación del cortante máximo para el diseño de vigas .............................................................175 5.3.6 Cortante al centro de vigas cargadas uniformemente .................................................................176 5.4 Cortante en vigas y columnas sujetas a carga axial ......................................................................179 5.4.1 Tracción axial .............................................................................................................................180 5.4.2 Compresión axial ........................................................................................................................180 6. TORSIÓN .................................................... 199 6.1 Introducción .....................................................................................................................................199 6.1.1 Esfuerzos cortantes debidos a torsión en elementos no-agrietados ............................................199 6.1.2 Esfuerzos principales debidos a torsión ......................................................................................202 6.2 Comportamiento de elementos de concreto reforzado sujetos a torsión .....................................203 Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 iv ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 6.2.1 Torsión pura................................................................................................................................203 6.2.2 Cortante, Momento y Torsión combinados ................................................................................204 6.3 Métodos de diseño para torsión ......................................................................................................204 6.3.1 Método de diseño por flexión sesgada–ACI 1971 a 1989 ..........................................................204 6.4 Método de cercha espacial plástica/tubo de pared delgada .........................................................206 6.4.1 Límite inferior para la consideración de la torsión .....................................................................206 6.4.2 Area de estribos para torsión ......................................................................................................207 6.4.3 Area de refuerzo longitudinal .....................................................................................................208 6.4.4 Valor de θ ...................................................................................................................................211 6.4.5 Momento y torsión combinados .................................................................................................211 6.5 Diseño para flexión, cortante y torsión–ACI 318-08 .....................................................................212 6.5.1 Selección de sección transversal para torsión .............................................................................212 6.5.2 Ubicación de sección crítica para torsión ...................................................................................212 6.5.3 Definición de Acp y pcp .............................................................................................................212 6.5.4 Definición de Aoh .......................................................................................................................213 6.5.5 Refuerzo para la torsión: Cantidades y detalles ..........................................................................213 6.6 Aplicación del método de diseño para torsión–ACI 318-08 .........................................................216 6.6.1 Repaso de los pasos en el método de diseño ..............................................................................216 7. DESARROLLO, ANCLAJE Y EMPALME DEL REFUERZO DE ACERO .................................... 235 7.1 Introducción .....................................................................................................................................235 7.1.1 Esfuerzo promedio de adherencia en un viga .............................................................................235 7.1.2 Esfuerzos de adherencia en prisma cargado axialmente .............................................................236 7.1.3 Esfuerzo de adherencia real en un viga ......................................................................................236 7.1.4 Prueba de extracción para esfuerzos de adherencia ....................................................................237 7.2 Mecanismo de transferencia por adherencia ................................................................................237 7.3 Longitud de desarrollo ....................................................................................................................238 7.3.1 Longitud de desarrollo para tracción ..........................................................................................238 7.3.2 Longitudes de desarrollo para compresión .................................................................................240 7.3.3 Longitudes de desarrollo para barras aglomeradas .....................................................................240 7.4 Anclajes mediante ganchos .............................................................................................................241 7.4.1 Comportamiento de ganchos de anclaje .....................................................................................241 7.4.2 Diseño de ganchos de anclaje .....................................................................................................241 7.5 Diseño para anclajes ........................................................................................................................242 7.6 Corte de barras y longitud de desarrollo de barras en elementos a flexión ...............................247 7.6.1 Por qué se cortan las barras ........................................................................................................247 7.6.2 Ubicación de puntos de corte por flexión ...................................................................................248 7.6.3 Desarrollo de refuerzo (barras) en puntos de fuerza máxima en la barra ...................................250 7.6.4 Desarrollo de barras en regiones de momento positivo ..............................................................250 7.6.5 Efecto de discontinuidades en puntos de corte de barras ............................................................253 7.6.6 Requisitos para integridad estructural.........................................................................................254 7.7 Cálculo de puntos de corte de barras .............................................................................................254 7.7.1 Procedimiento general ................................................................................................................254 7.7.2 Cálculo gráfico de puntos de corte por flexión ...........................................................................262 7.8 Empalmes .........................................................................................................................................263 7.8.1 Traslapos de tracción ..................................................................................................................263 7.8.2 Traslapos de compresión ............................................................................................................264 7.8.3 Empalmes soldados, mecánicos y extremo-a-extremo ...............................................................264 8. CONDICIONES DE SERVICIO ...................... 287 8.1 Introducción .....................................................................................................................................287 8.2 Análisis elástico de secciones de viga .............................................................................................287 8.2.1 Cálculo de EI ..............................................................................................................................287 Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 v ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 8.2.2 Esfuerzos debidos a cargas de servicio en viga agrietada ...........................................................290 8.2.3 Sección transformada corregida por edad ...................................................................................291 8.3 Agrietamiento ..................................................................................................................................291 8.3.1 Tipos de Grietas ..........................................................................................................................291 8.3.2 Normativa para el Control de Agrietamiento .............................................................................293 8.3.3 Refuerzo en las caras laterales del alma .....................................................................................293 8.4 Deflexiones en Vigas de Concreto ..................................................................................................294 8.4.1 Comportamiento de carga-deflexión de una viga de concreto ....................................................294 8.4.2 Rigidez a la Flexión y Momento de Inercia ................................................................................294 8.4.3 Deflexiones instantáneas y adicionales ante carga sostenida ......................................................296 8.5 ACI 318-08 Artículo 8.3 Métodos de análisis ................................................................................303 9. COLUMNAS ................................................ 315 9.1 Introducción .....................................................................................................................................315 9.2 Columnas con aros y columnas helicoidales ..................................................................................315 9.2.1 Comportamiento de columnas con aros y columnas helicoidales ...............................................316 9.2.2 Capacidad de columnas cargadas axialmente. ............................................................................317 9.3 Diagramas de interacción ...............................................................................................................317 9.4 Diagramas de Interacción para Columnas de Concreto ..............................................................318 9.4.1 Solución mediante compatibilidad de deformaciones unitarias ..................................................318 9.4.2 Diagramas de interacción para columnas circulares ...................................................................327 9.4.3 Propiedades de los diagramas de interacción para columnas de concreto reforzado ..................328 9.4.4 Diagramas de interacción simplificados .....................................................................................329 9.5 Diseño de columnas cortas ..............................................................................................................330 9.5.1 Tipo de cálculos―Análisis y diseño ..........................................................................................330 9.5.2 Factores que inciden en la escogencia de columnas ...................................................................331 9.5.3 Empalmes de barra .....................................................................................................................333 9.5.4 Espaciamiento y requisitos constructivos de aros .......................................................................333 9.5.5 Ejemplos de diseño .....................................................................................................................334 10. LOSAS EN DOS DIRECCIONES: COMPORTAMIENTO, ANÁLISIS Y DISEÑO ...... 359 10.1 Introducción ...................................................................................................................................359 10.2 Antedecentes históricos de las losas en dos direcciones ..............................................................360 10.3 Comportamiento de losa cargada a falla en flexión ....................................................................361 10.4 Análisis de Momentos en losas en dos direcciones ......................................................................362 10.5 Distribución de momentos en losas ..............................................................................................365 10.5.1 Relación entre curvaturas y momentos en losas .......................................................................365 10.5.2 Momentos en losas apoyadas sobre muros o vigas rígidas. ......................................................366 10.5.3 Momentos en losas apoyadas sobre columnas aisladas. ...........................................................367 10.6 Diseño de losas ...............................................................................................................................368 10.6.1 Pasos en el diseño de losas .......................................................................................................369 10.6.2 Razón de rigidez entre viga y losa, αf ......................................................................................370 10.6.3 Espesor mínimo de losas en dos direcciones ............................................................................371 10.7 El método directo de diseño ..........................................................................................................373 10.7.1 Limitaciones en el uso del método directo de diseño ...............................................................373 10.7.2 Distribución interna de momentos en paneles – Losas sin vigas entre apoyos .........................374 10.7.3 Transferencia de Momentos a las Columnas ............................................................................383 10-8 Métodos de Pórticos Equivalentes ...............................................................................................384 10-9 Uso de Computadores para el Análisis de Pórticos Equivalentes .............................................384 10-10 Resistencia de Cortante en Losas en Dos Direcciones ..............................................................384 10-11 Transferencia de cortante y momento combinados en losas en dos direcciones ....................386 10.11.1 Conexiones losa-columna cargadas con cortante y momento ................................................386 10.11.2 Propiedades del perímetro de cortante ....................................................................................389 Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 vi ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 10.11.3 Patrones de carga para esfuerzo cortante máximo debido a transferencia de cortante y momento combinados ..........................................................................................................................392 10.11.4 Cálculo del momento alrededor del centroide del perímetro de cortante ...............................392 10.11.5 Consideración de transferencia de momento en ambas direcciones principales .....................393 10.11.6 Análisis alterno del máximo esfuerzo de cortante debido a transferencia de cortante y momento combinados en conexiones exteriores .................................................................................394 10.11.7 Refuerzo de cortante para conexiones losa-columna que transfieren cortante y momento ....394 10-12 Requisitos de Detalle y de Refuerzo ...........................................................................................399 10.12.1 Abacos ....................................................................................................................................399 10.12.2 Capiteles de Columnas ...........................................................................................................400 10.12.3 Descolgado para cortante ........................................................................................................401 10.12.4 Refuerzo .................................................................................................................................401 10-13 Diseño de Losas sin Vigas ...........................................................................................................404 10-14 Diseño de Losas con Vigas en Dos Direcciones .........................................................................404 10-15 Cargas de Construcción en Losas ..............................................................................................411 10-16 Deflexiones en Sistemas de Losas en Dos Direcciones ..............................................................412 10-17 Uso de Postensionamiento ..........................................................................................................412 11 LOSAS EN DOS DIRECCIONES: ANÁLISIS ELÁSTICO Y DE LÍNEA DE FLUENCIA ............. 461 12 DISEÑO SISMO RESISTENTE ..................... 475 12.1 Introducción ...................................................................................................................................475 12.1.1 Requisitos para diseño sísmico .................................................................................................475 12.2 Espectro de Respuesta Sísmico .....................................................................................................476 12.2.1 Espectros de Velocidad y de Desplazamiento ..........................................................................476 12.2.2 Factores que afectan los espectros de respuesta pico ................................................................476 12.2.3 Efecto de la rigidez del suelo de cimentación sobre el espectro de respuesta ..........................478 12.3 Requisitos para Diseño Sísmico ....................................................................................................478 12.3.1 Categorías de Diseño Sísmico ..................................................................................................478 12.3.2 Sistemas estructurales para resistencia de fuerzas laterales ......................................................479 12.3.3 Efecto de la configuración de la edificación .............................................................................480 12.4 Fuerzas Sísmicas en Estructuras ..................................................................................................482 12.4.1 Método de fuerza lateral equivalente para el cálculo de las fuerzas sísmicas ...........................482 12.4.2 Distribución de fuerzas laterales en la altura de la edificación .................................................484 12.5 Ductilidad en Elementos de Concreto Reforzado .......................................................................486 12.6 Disposiciones Generales del ACI para Diseño Sísmico...............................................................487 12.6.1 Aplicabilidad ............................................................................................................................487 12.6.2 Materiales .................................................................................................................................487 12.6.3 Factores de carga, combinaciones de carga y factores de reducción de resistencia ..................488 12.6.4 Factores de carga y de resistencia—Secciones 9.2 y 9.3 de la norma ACI ..............................488 12.6.5 Diseño por capacidad ................................................................................................................488 12.6.6 Diseño de Columna Fuerte – Viga Débil ..................................................................................489 12.7 Elementos en flexión en Pórticos Especiales ................................................................................490 12.7.1 Límites geométricos en secciones transversales de vigas .........................................................490 12.7.2 Clasificación de los momentos resistentes ................................................................................490 12.7.3 Refuerzo longitudinal (horizontal) ...........................................................................................491 12.7.4 Desarrollo y empalme de refuerzo de flexión ...........................................................................492 12.7.5 Refuerzo transversal .................................................................................................................492 12.8 Columnas en Pórticos Especiales .................................................................................................500 12.8.1 Capacidad requerida y refuerzo longitudinal ............................................................................500 12.8.2 Refuerzo transversal .................................................................................................................502 12.9 Juntas de Unión en Pórticos Especiales .......................................................................................504 12.10 Diafragmas Estructurales ...........................................................................................................506 Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 vii ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 12.11 Muros Estructurales ....................................................................................................................506 12.12 Elementos de Pórticos no Diseñados para Resistir Fuerzas Inducidas por Movimientos Sísmicos ..................................................................................................................................................506 12.13 Estructuras Prefabricadas Especiales ........................................................................................506 12.14 Cimentaciones ..............................................................................................................................507 REFERENCIAS ................................................ 525 APÉNDICES .................................................... 527 Programa del Curso ..............................................................................................................................527 Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 viii ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 1. INTRODUCCIÓN 1.1 Estructuras de Concreto Reforzado El concreto y el concreto reforzado son usados como materiales de construcción en todos los países. En muchos de ellos, y tal es el caso de Costa Rica, el concreto reforzado es el material estructural dominante en la construcción tecnificada. Esta naturaleza universal del concreto reforzado proviene de la amplia disponibilidad de las barras de refuerzo de acero y de los elementos constituyentes del concreto: arena, piedra y cemento; además de la relativa sencillez de las destrezas necesarias para su fabricación y su economía comparado con otras formas constructivas. El concreto y el concreto reforzado son usados en puentes, edificios de toda índole (ver figuras 1-1, 1-2 y 1-3), estructuras subterráneas, tanques de almacenamiento, torres de televisión, estructuras de exploración y producción petrolera, represas e incluso barcos. 1.2 Mecánica del Concreto Reforzado El concreto es muy resistente a la compresión pero muy débil a la tracción. Como resultado, la aplicación de cargas, los cambios de temperatura o la contracción restringidos pueden dar paso a esfuerzos de tracción en exceso de su resistencia, produciéndose grietas. En la viga de concreto simple mostrada en la figura 1-5b el momento alrededor del punto O debido a las cargas aplicadas es resistido por un par interno de tracción-compresión que produce tracción en el concreto. Tal viga falla abrupta y completamente una vez que se forma la primera grieta. En una viga de concreto reforzado (figura 1-5c), se colocan barras de acero dentro del concreto de tal forma que las fuerzas de tracción necesarias para lograr el equilibrio de momentos después del agrietamiento es provisto por las barras. De forma alternativa, se pueden colocar barras de refuerzo en un ducto cerca de la cara inferior de la viga, como se muestra en la figura 1-6, para luego estirarlas o preesforzarlas, de forma tal que reaccionen con el concreto de la viga. Esto pondría al refuerzo en tracción y al concreto en compresión. Esta compresión retrazaría el agrietamiento de la viga. A un elemento como el descrito se le denominaría una viga de concreto pre-esforzado. Al refuerzo de una viga como la descrita se le denomina tendón de pre-esforzamiento y consiste de acero de muy alta resistencia. La construcción de un elemento de concreto reforzado requiere de la utilización de una formaleta o encofrado con la forma del elemento a construir. La formaleta debe ser lo suficientemente fuerte como para soportar el peso y la presión hidrostática del concreto húmedo así como todas las cargas aplicadas a éste por los trabajadores, el equipo de construcción utilizado, y otras fuerzas a las que pueda estar sujeta la estructura de la cual forma parte el elemento en cuestión: viento, sismo, etc. El concreto debe ser colocado en Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 1 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA la formaleta durante el proceso de colado. Una vez que éste ha endurecido, se puede proceder a remover el encofrado. 1.3 Elementos de concreto reforzado Las estructuras de concreto reforzado están compuestas de una serie de elementos individuales que interactúan para soportar las cargas aplicadas a la misma. El segundo piso del edificio mostrado en la figura 1-7 está construido a base de losa y viguetas. Aquí una serie de nervaduras o viguetas paralelas soportan la carga proveniente de la losa. Las reacciones que soportan a las viguetas aplican a su vez cargas sobre las vigas, las cuales están apoyadas sobre las columnas. En este tipo de piso, la losa tiene dos funciones: (1) transfiere las cargas vivas y muertas hacia las viguetas, y (2) sirve como ala superior de las viguetas, las cuales se comportan como vigas T que transmiten las cargas a las vigas principales ubicadas formando ángulo recto con éstas. El primer piso del edificio de la figura 1-7 está formado de un arreglo de losa y vigas en dos direcciones perpendiculares. La losa se apoya directamente sobre las vigas, las cuales descansan sobre las columnas. Las cargas en las columnas son transmitidas a las fundaciones, las cuales distribuyen la carga sobre un área de suelo lo suficientemente grande como para evitar una sobrecarga del mismo. Algunos tipos de suelos podrían requerir el uso de fundaciones de pilotes u otros tipos de fundaciones profundas. En el perímetro del edificio, las cargas de piso son transferidas directamente a los muros (figura 1-7) o bien a columnas exteriores (figura 1- 8). Los muros y las columnas están a su vez apoyados en muros de sótano (figura 1-8) o muros de fundación (figura 1-7). Suponemos que las losas en la figura 1-7 transfieren las cargas en la dirección Norte-Sur hacia las viguetas (2º piso) o las vigas (1er piso), éstas a su vez transfieren las cargas en la dirección Este-Oeste a otras vigas, columnas o muros. A este comportamiento se le denomina como acción de losa en una dirección y es análogo al de un piso de madera en una casa, en la cual la estructura de entrepiso transmite las cargas a las viguetas ubicadas perpendicularmente a ella, y luego éstas a las vigas principales, etc. La posibilidad de encofrar y construir losas de concreto hace posible encontrar tipos de las losas o placas como las mostradas en la figura 1-8. En ellas, las cargas aplicadas al techo y al piso intermedio son transmitidas en dos direcciones hacia las columnas mediante acción de placa. A estas losas se les conoce como losas en dos direcciones. El primer piso de la figura 1-8 está construido con una losa plana que contiene áreas de mayor espesor denominadas ábacos y ubicadas en la intersección con las columnas. Adicionalmente, la parte superior de las columnas está ensanchada en forma de capiteles. Este engrosamiento provee una profundidad adicional para aumentar la resistencia al momento y al cortante adyacente a las columnas. Además contribuyen a disminuir las deflexiones de la losa. El techo del edificio mostrado en la figura 1-8 tiene un espesor uniforme siempre. A este tipo especial de losa plana se le denomina placa plana. Pisos a base de placas planas son Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 2 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA muy usados en construcción habitacional porque el envés de la losa es plano y puede ser usado de cielo raso del piso inferior. De igual importancia resulta el hecho de que la formaleta de una placa plana es generalmente más barata que la de losas planas con ábacos o para pisos con losas y vigas en una dirección. Un tipo de entrepiso muy usado en Costa Rica se basa en la utilización de viguetas pretensadas que son colocadas sobre vigas secundarias perpendiculares a éstas. A la vez, las vigas secundarias pueden descansar sobre vigas principales o muros. El espacio entre viguetas es rellenado con bloques de concreto de tipo cajón. Este espacio entre viguetas es luego nivelado con una loseta de muy pequeño espesor. La figura 1-4 presenta una vista parcial de un entrepiso de viguetas pretensadas antes del colado de la loseta. Los bloques de concreto terminan formando una serie de ductos internos en el entrepiso que permite la colocación de tuberías para conducción de los diferentes servicios en el edificio: agua, electricidad, etc. Adicionalmente, estos entrepisos resultan de un espesor mucho más grande que el de una losa plana. Usualmente de 200 a 300 mm, lo que les da una mayor rigidez y por lo tanto evita las deflexiones excesivas. Además por esta misma característica, termina teniendo una apariencia similar a las placas planas porque su envés resulta en una superficie plana muy atractiva para construcción habitacional y para locales comerciales pequeños. 1.4 Factores incidentes en la escogencia del concreto para una estructura La escogencia de si una estructura deberá ser construida de concreto, acero, mampostería, o madera depende de la disponibilidad de los materiales y de un número de decisiones de índole económico y social. Algunas de las consideraciones pueden resumirse de la siguiente manera: 1. Economía. Frecuentemente, la consideración más importante es el costo total de la estructura. Este es, desde luego, función de los costos de los materiales, de la mano de obra y del tiempo necesario para concluir la obra. Los entrepisos de concreto tienden a ser más delgados que los de sistemas en acero estructural porque las vigas principales, las secundarias y las viguetas todas caben dentro del mismo peralte, como se mostró en la figura 1-7, o bien los entrepisos son placas planas como se mostró en la figura 1-8. Esto termina produciendo una reducción en la altura total del edificio comparado con la misma construcción en acero. Este hecho conduce a menores cargas de viento porque habrá menos área expuesta y a ahorros en fachadas y en dispositivos mecánicos y eléctricos. Sin embargo, es frecuente que el costo total se vea más afectado por el tiempo total de construcción debido a que el contratista así como el dueño deben poner su dinero para realizar la construcción y no tendrán ganancia en su inversión hasta tanto la edificación no esté lista para ser ocupada. Como resultado, el ahorro financiero debido a una construcción rápida puede resultar mucho más ventajoso que cualquier ahorro en materiales y encofrados. Los materiales para edificaciones de concreto reforzado tienen Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 3 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA gran disponibilidad y pueden ser producidos conforme se vayan necesitando, en contraposición al acero estructural, el cual debe ser ordenado y pagado en forma parcial de antemano. Cualquier medida que el diseñador pueda implementar para estandarizar la geometría de los elementos y sus formaletas redundará en un ahorro global. Por ejemplo, los tamaños de las columnas pueden ser iguales para varios pisos con el objeto de ahorrar dinero en formaletas, aunque compensando la estandarización mediante cambios en la resistencia del concreto o en el porcentaje de refuerzo de acero utilizado que reflejen la variación sobre la resistencia requerida de las columnas. 2. Pertinencia del material ante su función arquitectónica y estructural. Un sistema estructural a base de concreto reforzado con frecuencia permite al diseñador combinar tanto las funciones estructurales como las arquitectónicas. El concreto tiene la ventaja de que es colocado en una condición plástica y se le da la forma deseada y la textura mediante formaletas y técnicas de acabados. Esto permite que elementos tales como placas planas y otros tipos de losas sirvan como elementos de carga mientras proveen a la vez el entrepiso acabado y las superficies de cielo raso. En forma similar, los muros de concreto reforzado pueden proveer superficies arquitectónicamente atractivas en adición a tener la habilidad de resistir cargas de gravedad, viento o fuerzas sísmicas. Finalmente, la escogencia del tamaño y la forma es definida por el diseñador y no es impuesta mediante la disponibilidad de elementos manufacturados. 3. Resistencia al fuego. La estructura en un edificio debe resistir los efectos del fuego y permanecer en pie mientras el edificio es evacuado y el fuego es extinguido. Un edificio de concreto tiene una resistencia al fuego de 1 a 3 horas sin necesidad de ningún tratamiento especial. Los edificios de acero estructural o de madera deben ser sometidos a revestimientos especiales para lograr un comportamiento similar al mencionado para el concreto. 4. Rigidez. Los ocupantes de un edificio pueden encontrar molestas las oscilaciones causadas por el viento o las vibraciones en los entrepisos encontradas en los edificios de acero. En el caso de los edificios de concreto reforzado, debido a su mayor masa y rigidez, las vibraciones mencionadas rara vez ocurren. 5. Bajo mantenimiento. Los elementos de concreto inherentemente requieren menor mantenimiento que los de acero o madera. Esto es particularmente cierto si se ha usado concreto denso, con inclusión de aire, en estructuras expuestas a efectos ambientales y si se ha tenido el cuidado de diseñar desagües que no interfieran con la estructura. 6. Disponibilidad de materiales. Arena, piedra, cemento y las instalaciones apropiadas para realizar la mezcla del concreto son elementos ampliamente disponibles. Adicionalmente, el acero de refuerzo es más fácilmente transportable a los sitios de construcción que el acero estructural. Como resultado, el concreto estructural es utilizado aun en localidades muy remotas. Por otro lado, hay un número de factores que pueden hacer que se escoja otro material diferente. Estos incluyen: Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 4 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 1. Baja resistencia a la tracción. Como se dijo anteriormente, la resistencia a la tracción del concreto es mucho más baja que su resistencia a la compresión (aproximadamente 1/10), y consecuentemente, el concreto está sujeto al agrietamiento. En casos de uso estructural, este problema es superado mediante el uso de acero de refuerzo el cual toma las fuerzas de tracción y a la vez limita los anchos de grietas a valores aceptables. Adicionalmente, deben tomarse las precauciones necesarias durante el diseño y la construcción para que las grietas que se presenten no causen sensación de inseguridad a los usuarios, ni que permitan la penetración del agua. 2. Encofrados y apuntalamiento. La construcción en concreto reforzado colado en sitio requiere de tres pasos que no son necesarios para las construcciones en acero o en madera. Estos son (a) la instalación de encofrados, (b) la remoción de los encofrados y (c) el apuntalamiento del nuevo concreto para soportar su peso hasta que éste alcance una resistencia adecuada. Cada uno de estos pasos requiere de mano de obra y materiales innecesarios para otros métodos constructivos. 3. Resistencia por unidad de peso o volumen relativamente baja. La resistencia a la compresión del concreto es de un 8 a un 15 % de la del acero, mientras que su densidad es aproximadamente un 30% de la del acero. Como resultado, una estructura de concreto requiere un mayor volumen y mayor peso que lo que requiere una estructura comparable de acero estructural. Por esta razón, usualmente se utiliza acero estructural para estructuras de luces muy grandes. 4. Cambios de volumen en el tiempo. Tanto el concreto como el acero estructural se ven sometidos a las mismas expansiones y contracciones térmicas. Como hay menos masa de acero sometida a estos cambios de temperatura, y además como el acero es un mejor conductor, el efecto térmico es más evidente sobre éste que sobre el concreto. Por otro lado, el concreto sufre contracciones por resecamiento que pueden causar deflexiones y agrietamiento. Más aun, las deflexiones tienden a crecer con el tiempo debido a la viscoelasticidad del concreto (flujo plástico ante cargas constantes). Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 5 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA Figura 1–1 Torre de enfriamiento con 200 m de alto y 153 m de diámetro basal y espesor que varía de 0.27 a 0.21 m apoyado sobre 48 columnas de 14.7 m de alto. Niederaussem, Alemania. (Tomado de SEI Vol 11, n 2, mayo 2001). Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 6 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA Figura 1–2 Ayuntamiento de Toronto, Canadá. Dos torres de 20 y 27 pisos de altura con un auditorio circular entre ellas. Estas estructuras y las terrazas, estanques y plaza que las rodean ilustran el grado al cual arquitectura e ingeniería estructural pueden combinarse para crear una escultura viviente.(Tomado de Neish Owen Rowland & Roy, Arquitectos Ingenieros, Toronto, Canadá) Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 7 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA Figura 1–3 Puente postensado de suspensión, con un claro central de 124 metros, sobre el Río Colorado, Ruta Nacional 1, Costa Rica (Diseño T.Y. Lin Internacional-Indeca Ltda.; supervisión MOPT-BEL Ingeniería; construcción Carrez Int. S.A.). Figura 1–4 Detalle de la instalación de un entrepiso de viguetas pretensadas en las vigas coladas en sitio (Cortesía de Holcim-Costa Rica). Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 8 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA Figura 1–5 Vigas de concreto simple y concreto reforzado. Figura 1–6 Viga de concreto pre-esforzado. Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 9 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA Figura 1–7 Elementos de un edificio de concreto reforzado. (Tomado de CRSI, 1971) Figura 1–8 Elementos de un edificio de concreto reforzado. (Tomado de CRSI, 1971) Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 10 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 2. PROCESO DE DISEÑO 2.1 Objetivos del Diseño El ingeniero estructural forma parte de un equipo cuyos miembros trabajan en conjunto para diseñar un edificio, un puente, o cualquier otro tipo de estructura. En el caso de un edificio, el arquitecto provee la concepción global y los ingenieros mecánicos, eléctricos y estructurales diseñan los sistemas correspondientes del edificio. La estructura debe satisfacer cuatro criterios principales: 1. Conveniencia. La disposición de espacios, luces, altura de cielos, accesos y flujo de tránsito deben complementar el uso buscado. La estructura debe calzar con su entorno. 2. Economía. El costo total no debe exceder el presupuesto del cliente. El trabajo en equipo ayuda a alcanzar esta meta. 3. Suficiencia estructural. Se trata de dos aspectos principales: (a) La estructura debe ser lo suficientemente fuerte para soportar todas las cargas anticipadas y (b) la estructura no debe deflectarse, ladearse, vibrar o agrietarse de ninguna manera que impida su funcionalidad. 4. Mantenibilidad. La estructura deberá ser diseñada de manera que requiera el menor y más simple mantenimiento posible. 2.2 Proceso de Diseño El proceso de diseño es un proceso de toma de decisión secuencial e iterativo. Las tres principales fases son: 1. Definición de las necesidades y prioridades del cliente. Todos los edificios y demás estructuras son construidas para llenar una necesidad. Es importante que el dueño o usuario se involucre en la determinación de los atributos del edificio propuesto. Esto incluye requisitos funcionales, de estética y de presupuesto. Este último incluye costo inicial, velocidad de construcción para ocupación temprana, mantenimiento mínimo y otros factores. 2. Conceptualización del proyecto. Se desarrollan una serie de soluciones posibles basadas en las necesidades y prioridades del cliente. Se elaboran presupuestos preliminares y se hace la escogencia final sustentada en la satisfacción de las necesidades en relación con el presupuesto disponible. Durante esta fase, se escoge el diseño conceptual y se lleva a cabo el diseño preliminar basado en la satisfacción de las demandas de momentos, cortantes y fuerzas axiales mediante la asignación de dimensiones preliminares a los elementos. Una vez hecho esto es posible obtener costos de cada una de las opciones consideradas. Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 11 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 3. Diseño de sistemas individuales. Una vez que el concepto estructural del proyecto está definido, se puede proceder al diseño final del sistema estructural. El diseño estructural involucra tres pasos principales. Basado en el diseño preliminar de la fase 2, se ejecuta un análisis estructural para determinar momentos, cortantes y fuerzas axiales en la estructura. Luego se dimensionan los elementos individuales para resistir esas fuerzas. El dimensionamiento, también denominado diseño de elementos, debe tomar en cuenta también la estética global, la constructibilidad del diseño, y la mantenibilidad de la estructura final. El paso final en el proceso de diseño consiste en la preparación de los planos constructivos y sus especificaciones. 2.3 Estados Límite y el Diseño del Concreto Reforzado 2.3.1 Estados Límite Se dice que una estructura o un elemento estructural alcanzan su estado límite cuando éste no es apto para satisfacer las demandas propuestas. Los estados límite para estructuras de concreto reforzado pueden ser divididos en tres grupos básicos: 1. Estados Límite Últimos. Involucran el colapso estructural de una parte o de toda la estructura. Tal estado límite deberá tener una probabilidad de ocurrencia muy baja por cuanto puede conducir a pérdida de vidas y a pérdidas financieras grandes. Los principales estados límite últimos son:  Pérdida de equilibrio de una parte o de toda la estructura como cuerpo rígido. Tal tipo de falla en general incluiría ladeo o deslizamiento de la estructura y ocurriría si las reacciones necesarias para satisfacer equilibrio no pudieran ser alcanzadas.  Ruptura de porciones críticas de la estructura, conducentes a colapso parcial o total. La mayoría de lo tratado en este curso se refiere a este estado límite: fallas por flexión, fallas por cortante, etc.  Colapso progresivo. En algunos casos una falla menor puede causar que elementos adyacentes sean sobrecargados y fallen, iniciando un proceso que no concluye sino hasta que la estructura entera haya colapsado. El colapso progresivo es evitado o disminuido mediante el correcto detallamiento estructural para lograr unir a la estructura proveyendo rutas alternas de carga en caso de fallas locales. Tales fallas pueden ocurrir durante la construcción por lo que el diseñador debe tener presente las cargas durante y debidas al proceso constructivo. Se dice que una estructura tiene integridad estructural general si es resistente al colapso progresivo.  Formación de un mecanismo plástico. Una estructura se transforma en un mecanismo cuando fluyen las barras de refuerzo formando rótulas plásticas en suficientes secciones como para tornar inestable a la estructura.  Inestabilidad por deformación de la estructura. Este tipo de falla involucra pandeo.  Fatiga. Ruptura de elementos como consecuencia de la repetición de ciclos de esfuerzos debidos a cargas de servicio puede causar colapso. Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 12 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 2. Estados Límite de Funcionalidad. Involucran trastorno del uso funcional de la estructura pero no el colapso como tal. Como hay menor riesgo de pérdida de vidas, generalmente se acepta una probabilidad de ocurrencia mayor que para los casos de estado límite último. Los principales estados límite de funcionalidad incluyen:  Deflexiones excesivas durante servicio normal. Deflexiones excesivas pueden causar mal funcionamiento de maquinaria, pueden resultar visualmente inaceptables, y pueden conducir a daño en elementos no estructurales o a cambios en la distribución de fuerzas. En el caso de techos muy flexibles, las deflexiones debidas al peso del agua pueden crecer de forma tal que la capacidad del techo sea excedida.  Espesor excesivo de grietas. Aun cuando el concreto reforzado debe agrietarse para que la barra de refuerzo entre en funcionamiento, es posible detallar el refuerzo para que los espesores de las grietas sean minimizados. Espesores excesivos de grietas conducen a infiltraciones, corrosión de la barra de refuerzo, y deterioro gradual del concreto.  Vibraciones indeseables. Vibraciones verticales en entrepisos y en puentes y vibraciones laterales y torsionales en edificios altos pueden resultar muy molestas para los usuarios. Este no es un problema usual en concreto reforzado. 3. Estados límite especiales. Esta clase de estados límite involucra daños o fallas debidas a condiciones o solicitaciones anormales e incluyen:  Daño o colapso a consecuencia de sismos extremos  Efectos estructurales debidos a fuego, explosiones o colisiones vehiculares  Efectos estructurales debidos a corrosión o deterioro  Inestabilidad física o química de largo plazo 2.3.2 Diseño para Estados Límite El diseño para estados límite es un proceso que involucra: 1. Identificación de todos los modos de falla posibles (i.e., identificación de los estados límite significativos). 2. Definición de los niveles de seguridad aceptables ante la ocurrencia de cada estado límite. Para estructuras normales, este paso es llevado a cabo por las autoridades a cargo de la elaboración de normas de diseño y construcción, quienes especifican combinaciones de cargas a utilizar y revisan los factores usados. Para estructuras inusuales el ingeniero a cargo del proyecto puede revisar si los niveles normales de seguridad son adecuados. 3. Diseño para los estados límite significativos. Para edificios, el diseño para estado límite se lleva a cabo dimensionando los elementos para resistir los estados límite último y luego efectuando una revisión del comportamiento ante estados límite de funcionalidad. Esta secuencia obedece a la necesidad de garantizar que los elementos estructurales en edificios resistan cargas sin poner en peligro a los usuarios. Sin embargo, a manera de ejemplo, para un tanque de Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 13 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA agua el estado límite de excesivo espesor de grietas tiene igual importancia que cualquiera de los estados límite últimos si la estructura debe permanecer sin fugas. En una estructura como ésta, el diseño puede empezar con la consideración del estado límite para espesor de grieta, seguido de una revisión de los estados límite mencionados. En el diseño de vigas de soporte para un monoriel elevado, las deflexiones de las mismas son extremadamente importantes, y el estado límite de deflexión podría entonces dominar el diseño. 2.3.3 Relación Básica de Diseño En la figura 2-1a se muestra una viga que sostiene su propio peso w, más unas cargas aplicadas P1, P2, y P3. Estas causan momentos flexores, distribuidos según se indica en la figura 2-1b. Los momentos flexores se obtienen directamente de las cargas aplicadas utilizando las leyes de la estática. Se define a los momentos flexores como un efecto de carga. Otros tipos de efectos de carga serán, las fuerzas de cortante, las fuerzas axiales, el torque, las deflexiones y las vibraciones. La figura 2-2a muestra la distribución de esfuerzos en la sección transversal de la viga. Los esfuerzos de compresión y de tracción pueden ser sustituidos por sus resultantes, C y T, como se muestra en la figura 2.2b. Al par resultante se le denomina momento resistente interno. Al momento resistente interno se le denomina momento resistente o capacidad de momento de la sección cuando se alcanza la falla de la sección transversal. El término resistencia también es utilizado para denotar la capacidad a cortante y fuerza axial. La viga mostrada en la figura 2-2 soportará las cargas impuestas de manera segura si para cada sección, la resistencia del elemento excede los efectos de las cargas: Resistencia Efecto de Carga≥ (2-1) Se utilizan factores de reducción de resistencia φ, menores que 1, y factores de carga α, mayores que 1, para permitir la posibilidad de que la resistencia real sea menor que la calculada y que los efectos de las cargas sean mayores que los calculados. De esta forma, la ecuación anterior se puede reescribir como: 1 1 2 2nR S Sφ α α≥ + + (2-2a) en donde Rn representa la resistencia nominal y los Si representan los efectos de las cargas. En términos de momentos flexores, se tendría M n D D L LM M Mφ α α≥ + + (2-2b) en donde Mn representa la resistencia nominal de momento. El término “nominal” implica que esta resistencia es un valor calculado con base en las resistencias específicas del concreto y del acero y en las dimensiones de los elementos según se indica en los planos. MD y ML son los momentos flexores debidos a la carga permanente (muerta) y a Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 14 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA la carga temporal (viva). El coeficiente φ es el factor de reducción de resistencia y los coeficientes α son los factores de mayoración de carga muerta y viva respectivamente. A éstos últimos se les denomina también factores de resistencia. Ecuaciones similares pueden ser planteadas para cortante y fuerza axial: V n D D L LV V Vφ α α≥ + + (2-2c) P n D D L LP P Pφ α α≥ + + (2-2d) La ecuación 2-1 es la relación básica de diseño por estados límite. Las ecuaciones 2-3 son expresiones particulares de la relación básica. Estas ecuaciones son iguales a las usadas por el ACI 318-08, excepto que en algunas ocasiones se usa denominar el lado derecho como Su, las fuerzas mayoradas o bien la resistencia requerida. 2.4 Seguridad Estructural Existen tres razones principales por las cuales es necesario usar algún tipo de factores de seguridad tales como los factores de carga y resistencia en el diseño estructural: 1. Variabilidad de la Resistencia. Las resistencias reales de vigas, columnas y otros elementos estructurales casi siempre diferirán de los valores calculados por el diseñador. Las razones principales para esto son: Variabilidad de las resistencias del concreto y del acero de refuerzo Diferencias entre las dimensiones finales y las dimensiones en planos Efecto de las suposiciones simplificatorias hechas durante el cálculo de la resistencia de cada elemento La figura 2-3 muestra un histograma de la razón entre la capacidad de momento obtenida mediante pruebas de laboratorio con respecto a la capacidad calculada por el diseñador. Aun cuando la resistencia media es de 1.05 veces la resistencia nominal en esta muestra, existe una alta posibilidad de que algunas de las vigas tengan una capacidad menor a la calculada. 2. Variabilidad en solicitaciones. Todas las cargas son variables, especialmente las cargas temporales (vivas) y las solicitaciones debidas a viento y a sismo. En la figura 2-4a se compara la carga viva en un conjunto de muestras tomadas en áreas de oficina de 15 m². Aun cuando el promedio es de 64 kg/m2, 1% de las cargas medidas exceden 215 kg/m2. Para este tipo de ocupación y área, los códigos de construcción recomiendan utilizar una carga viva de 250 kg/m2. Para áreas más grandes, el promedio de carga viva continúa siendo de 64 kg/m2 pero la variabilidad decrece, como se puede ver en la figura 2-4b. Una parte adicional que podría ser considerada como carga viva transitoria que representa cargas inusuales como almacenamiento temporal, reuniones grandes, etc. debe ser adicionada a la medición obtenida. Al final Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 15 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA de este capítulo se incluye la Tabla 2-1 que presenta los valores de carga viva de uso rutinario en Costa Rica. 3. Consecuencias de la falla. Una serie de factores subjetivos deben ser considerados en la determinación del nivel de seguridad aceptable para una clase específica de estructuras. Estas incluyen cosas como:  Posible pérdida de vidas humanas. Puede ser necesario tener un factor de seguridad mayor para un auditorio que para una bodega.  Costo social por tiempo perdido, lucro cesante o pérdidas indirectas debidas a la falla. Por ejemplo, la falla de un puente puede resultar en costos intangibles debidos a congestionamiento de tránsito y otros que pueden alcanzar valores similares al costo del daño.  Tipo de falla, aviso de la inminencia de la falla, existencia de rutas de carga alternas. Si la falla del elemento es precedida por deflexiones excesivas, como en el caso de la falla a flexión de una viga de concreto reforzado, las personas en peligro por la falla inminente tienen oportunidad de abandonar el recinto con suficiente antelación.  Costo de limpieza de escombros y reemplazo de la estructura y sus contenidos. 2.5 Cálculo probabilístico de los factores de seguridad En la figura 2-5 se muestra la distribución de una población de resistencias, R, de un grupo de estructuras similares. Esta es comparada con la distribución de los efectos de carga máximos, S, que se espera que ocurran en esas estructuras durante sus ciclos de vida, graficada en el eje vertical de la misma figura. Por consistencia, tanto las resistencias como los efectos de carga están expresados en términos de un parámetro tal como el momento flexor. La línea de 45º en esta figura corresponde a un efecto de carga igual a la resistencia. Las combinaciones de S y R que caigan por encima de esta línea corresponden a S R> y, por lo tanto, a falla. Así, el efecto de carga S1 actuando en una estructura con resistencia R1 causaría falla, mientras que un efecto de carga S2 actuando en una estructura con resistencia R2 representa una combinación segura. Para una distribución de efectos de carga dada, la probabilidad de falla puede ser reducida incrementando las resistencias. Esto correspondería a correr la distribución de resistencias hacia la derecha en la figura 2-5. La probabilidad de falla también puede reducirse disminuyendo la dispersión de las resistencias. El término Y R S= − se le denomina margen de seguridad. Por definición, la falla ocurrirá si Y es negativo, representado por la zona achurada de la figura 2-6. La probabilidad de falla, Pf, es la probabilidad de que una combinación particular de R y S de un valor negativo de Y. Esta probabilidad es igual al área achurada dividida entre el área total bajo la curva en la figura 2-6. Esto puede expresarse como [ ] probabilidad de 0fP Y= < (2-3) Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 16 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA La función Y tiene un valor medio Y y una desviación estándar Yσ . De la figura 2-6 se puede observar que 0 YY βσ= + , en donde YYβ σ= . La distribución se corre hacia la derecha mediante el incremento la resistencia, haciendo Y mayor, β también se hará mayor y el área achurada Pf decrecerá. Por lo tanto, Pf es función de β . Al factor β se le denomina índice de seguridad. Si Y es una distribución estadística estándar, y si Y y Yσ son conocidos, entonces la probabilidad de falla puede calcularse a partir de tablas estadísticas como una función del tipo de distribución y del valor de β . Consecuentemente, si Y es una distribución normal y β es 3.5, entonces 3.5 YY σ= , y, de las tablas para distribuciones normales, Pf es 1/909, o 41.1 10−× . Esto indica que a grosso modo 1 de cada 10,000 elementos estructurales diseñados sobre la base de que 3.5β = fallarán debido a carga excesiva o subresistencia en algún momento de su vida útil. Los valores apropiados de Pf (y por lo tanto de β ) se escogen tomando en cuenta las consecuencias de la falla. En la práctica de diseño actual, β se toma entre 3 y 3.5 para fallas dúctiles con consecuencias de falla normales y entre 3.5 y 4 para fallas repentinas o fallas que tengan serias consecuencias. Como las resistencias y las cargas varían de manera independiente, es aconsejable tener un factor, o una serie de factores, que tomen en cuenta la variabilidad en resistencias y una segunda serie de factores para considerar la variabilidad en los efectos de carga. A estos se les denomina como factores de reducción de resistencia (factores de resistencia), φ , y factores de mayoración de carga (factores de carga), α respectivamente. Las ecuaciones de diseño resultante son las ecuaciones (2-2a) a (2-2d). La derivación de las ecuaciones probabilísticas para calcular valores de φ y α son resumidas y aplicadas en varios trabajos publicados en el pasado (MacGregor, 1983). Los factores de resistencia y carga en las ediciones de 1971 a 1995 de la norma ACI estaban basados en un modelo estadístico que suponía que si había una oportunidad en 1000 de una “sobrecarga” y una oportunidad en 100 de una “subresistencia,” la oportunidad de que una “sobrecarga” y una “subresistencia” ocurrieran simultáneamente fuera 1 1000 1 100× o bien 51 10−× . Por lo tanto, los factores φ fueron deducidos originalmente para que una resistencia de nRφ excediera los efectos de carga en 99 de 100 ocasiones. Los factores φ para columnas fueron divididos entonces por 1.1, porque la falla de una columna tiene serias consecuencias. Los factores φ para columnas con estribos cerrados que fallen de manera frágil fueron divididos por 1.1 una segunda vez para reflejar las consecuencias del modo de falla. La derivación original se presenta como un resumen en el apéndice de (MacGregor, 1976). Aun cuando este modelo se simplifica ignorando el traslape en las distribuciones de R y de S en las figuras 2-5 y 2-6, da una estimación intuitiva de las magnitudes relativas de la subresistencia y de la sobrecarga. Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 17 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 2.6 Procedimientos de diseño especificados por la norma ACI 2.6.1 Diseño por Resistencia En la norma ACI 318S-08, el diseño está basado en resistencias requeridas calculadas a partir de combinaciones de cargas mayoradas y resistencias de diseño obtenidas como nRφ , en donde φ es el factor de resistencia, también denominado como factor de reducción de la resistencia, y nR es la resistencia nominal. A este proceso se le denomina diseño por resistencia. En la normativa para diseño de acero del AISC, a este mismo proceso de diseño se le conoce como LRFD (Diseño por Factores de Carga y Resistencia). Diseño por resistencia y LRFD son métodos de diseño basados en estados límite pero concediendo atención primaria a los estados límite últimos con verificación posterior de los estados límite de funcionalidad (del inglés serviceability). Se especifican claramente en los incisos 9.1.1 (resistencia) y 9.1.2 (funcionalidad: deflexiones y grietas) del ACI 318-08. 9.1.1—Las estructuras y los elementos estructurales deben ser diseñados para que tengan en cualquier sección una resistencia de diseño al menos igual a la resistencia requerida, calculada esta última para las cargas y fuerzas mayoradas en las condiciones establecidas en este reglamento. El término resistencia de diseño se refiere a nRφ , y el término resistencia requerida se refiere a los efectos de carga calculados con las cargas mayoradas, D LD Lα α+ + . 9.1.2—Los elementos estructurales también deben cumplir todos los demás requisitos de este reglamento para garantizar un comportamiento adecuado al nivel de carga de servicio. Esta cláusula se refiere primordialmente al control de deflexiones y a los anchos de grieta excesivos. 2.6.2 Diseño por Esfuerzos de Trabajo Antes de 2002, el Apéndice A de la norma ACI 318 permitía ambos el diseño de estructuras de concreto por resistencia o mediante diseño por esfuerzos de trabajo. Este apéndice fue eliminado en 2002. El comentario a la Sección 1.1 del ACI 318S-08 aun permite el uso de diseño por esfuerzos de trabajo, siempre que la autoridad local adopte una excepción a la norma ACI permitiendo su uso. El capítulo 8 sobre condiciones de servicio presenta algunos conceptos de diseño por esfuerzos de trabajo. Allí, el diseño se basa en cargas de trabajo, también denominadas cargas de servicio o cargas no mayoradas. En flexión, los esfuerzos máximos calculados calculados elásticamente no pueden exceder los esfuerzos permisibles o esfuerzos de trabajo de 0.4 a 0.5 veces la resistencia tanto del concreto como del acero. 2.6.3 Diseño Plástico Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 18 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA El diseño plástico, también denominado diseño límite (no confundir con diseño por estados límite) o diseño por capacidad, es un proceso de diseño que considera la redistribución de momentos conforme van fluyendo las secciones transversales en los elementos, formando rótulas plásticas conducentes a la generación de un mecanismo plástico. Estos conceptos son de considerable importancia para el diseño sismo-resistente, en donde la ductilidad estructural conduce a la reducción de las fuerzas a ser resistidas por la estructura. Teoremas de Plasticidad Varios aspectos del diseño de estructuras de concreto estáticamente indeterminadas se justifican en parte mediante el uso de la teoría de plasticidad. Estos incluyen el diseño por resistencia última de pórticos continuos y losas en dos direcciones para cargas y momentos calculados elásticamente y el uso de modelos de puntal y tensor para diseño de concreto. Antes de presentar los teoremas de plasticidad, se requieren varias definiciones: • Se dice que una distribución de fuerzas internas (momentos, fuerzas axiales y cortantes) o los correspondientes esfuerzos es estáticamente admisible si está en equilibrio con las cargas aplicadas y sus correspondientes reacciones. • Una distribución de resistencias de secciones transversales se denomina como segura si iguala o excede las fuerzas, los momentos o los esfuerzos estáticamente admisibles en cada sección transversal de la estructura. • Se dice que una estructura es un mecanismo de colapso si el número de rótulas plásticas supera en uno o más el número requerido para equilibrio estable. • Se denomina como cinemáticamente admisible a la distribución de cargas aplicadas, fuerzas y momentos que resulte en suficientes rótulas plásticas para producir un mecanismo de colapso. La teoría de plasticidad se expresa en términos de los siguientes teoremas: Teorema de cota inferior. Si una estructura se somete a una distribución estáticamente admisible de fuerzas internas y si las secciones transversales de los elementos son escogidas para brindar una distribución segura de resistencias para la estructura y solicitación dadas, la estructura no colapsará o estará justo al punto de colapso. La distribución de fuerzas internas y momentos resultante corresponde a una solicitación de falla que representa una cota inferior para la solicitación de colapso. A ésta se le llama de cota inferior porque la solicitación de falla calculada es menor o igual a la solicitación de colapso real. Teorema de cota superior. Una estructura colapsará si existe un conjunto de rótulas plásticas cinemáticamente admisible que resulte en un mecanismo plástico de colapso. Para cualquier mecanismo plástico de colapso cinemáticamente admisible, se puede calcular una solicitación de colapso igualando el trabajo interno al trabajo externo. La solicitación calculada por este método será mayor o igual que la solicitación real de colapso. Por lo tanto, la solicitación calculada es una cota superior para la solicitación de colapso. Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 19 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA Teorema de unicidad. Si el teorema de cota inferior envuelve las mismas fuerzas, rótulas y desplazamientos que la solución de cota superior, la solicitación de colapso resultante es la solicitación de colapso verdadera o única. Para que ocurran las soluciones de cota inferior y superior, la estructura debe tener suficiente ductilidad como para permitir que momentos y fuerzas del conjunto original sea redistribuido a aquellos correspondientes a los límites de la soluciones de plasticidad. El diseño del concreto reforzado se basa usualmente en análisis elásticos. Las secciones transversales se proporcionan para que tengan resistencias nominales reducidas, nMφ , nPφ y nVφ mayores o iguales que uM , uP y uV resultantes del análisis elástico. Como los momentos y las fuerzas elásticas son una distribución de fuerzas estáticamente admisibles y como el diagrama de momento resistente es escogido por el diseñador como una distribución segura, la resistencia de la estructura resultante es una cota inferior. En forma similar, los modelos de puntal-tensor presentados en el Apéndice A del ACI 318S-08 representan una cota inferior de la capacidad de estructuras de concreto si (a) el modelo de puntal-tensor de la estructura representa una distribución admisible de fuerzas, (b) las resistencias de los puntales, tensores y zonas nodales son escogidas para que sean seguras con respecto a las fuerzas calculadas en el modelo de puntal-tensor, y (c) los elementos y juntas de unión tienen suficiente ductilidad para permitir que las fuerzas internas, los momentos y los esfuerzos hagan la transición de fuerzas y momentos de puntal-tensor a la distribución final de fuerzas y momentos. Por lo tanto, si se provee ductilidad adecuada el modelo puntal-tensor dará una estimación denominada como segura, la cual es una estimación de cota inferior de la resistencia del modelo de puntal-tensor. Soluciones de plasticidad son usadas para desarrollar el método de línea de fluencia y el método de franjas para el análisis de losas. 2.7 Factores y combinaciones de carga en el ACI 318S-08 La norma ACI 318S-08 presenta factores de carga y combinaciones de carga en las secciones 9.2.1 a 9.2.5 provenientes del ASCE/SEI 7-05, Minimum Design Loads for Buildings and Other Structures, con algunas pequeñas modificaciones. Los factores de carga de la sección 9.2 deben usarse con los factores de reducción de resistencia de las secciones 9.3.1 a 9.3.5. Estos factores de carga y factores de reducción de resistencia fueron derivados por Ellingwood et al (Ellingwood, Galambos, MacGregor, & Cornell, 1980) para uso en el diseño de estructuras de acero, madera, mampostería y concreto y son utilizados por la norma LRFD del AISC para estructuras de acero. Para estructuras de concreto, factores de resistencia compatibles con los factores de carga fueron derivados por el Comité ACI 318 y por Nowak (Nowak & Szerszen, 2003). Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 20 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 2.7.1 Terminología y Notación La norma ACI usa el subíndice u para designar la resistencia requerida, la cual es un efecto de carga calculado a partir de las combinaciones de cargas mayoradas. La suma de las cargas mayoradas se denota U, por ejemplo en 1.2 1.6U D L= + (2-4) donde U y el subíndice u se usan para denotar la suma de las cargas mayoradas en términos de cargas propiamente o en términos de efectos de carga, uM , uV y uP . Las resistencias de los elementos calculadas usando las resistencias especificadas de los materiales, cf ′ y yf , y las dimensiones nominales, mostradas en los planos, se denominan resistencia nominal de momento, nM , resistencia nominal de cortante, nV y así sucesivamente. La resistencia nominal reducida o resistencia de diseño es la resistencia nominal multiplicada por el factor de reducción de resistencia, φ . De esta forma, la ecuación de diseño es: n uM Mφ ≥ (2-2b) n uV Vφ ≥ (2-2c) y así sucesivamente. 2.7.2 Factores de carga y combinaciones de carga en las secciones 9.2.1 a 9.2.5 de la norma ACI Combinaciones de carga. Las fallas estructurales ocurren usualmente debido a la combinación de varias cargas. En años recientes estas combinaciones han sido presentadas en lo que se denomina como formato de acción acompañante. Este es un intento de modelar las combinaciones de carga esperadas. Las combinaciones de carga en la Sección 9.2.1 del ACI 318S-08 representan ejemplos de combinaciones de carga de acción acompañante escogidas para representar combinaciones de carga realistas que puedan presentarse. En principio, cada una de estas combinaciones incluye uno o más cargas permanentes (D, F y T) con factores de carga de 1.2, más la carga variable principal o dominante (L, S, W u otras) con factores de carga de 1.6, más uno o más cargas variables de acción acompañante. Las cargas de acción acompañante se calculan multiplicando las cargas especificadas (L, S, W u otras) por factores de carga de acción acompañante de entre 0.2 y 1.0. Estos últimos factores fueron escogidos para proveer resultados para efectos de carga de acción acompañante que fueran probables durante una instancia en la cual la carga variable principal es magnificada. Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 21 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA En el diseño de elementos estructurales en edificios que no están sujetos a fuerzas sísmicas o de viento significativas las cargas mayoradas se calculan con alguna de las ecuaciones (2-5, ACI Ec. 9-1) o (2-6, ACI Ec. 9-2): ( )1.4U D F= + (2-5) donde D es la carga muerta especificada y F es la carga debido al peso y la presión de fluidos con densidades bien definidas y en tanques en los cuales la altura máxima del fluido está controlada. Para combinaciones que incluyan carga muerta; carga viva, L; y cargas de techo: ( ) ( ) ( )1.2 1.6 0.5 o o rU D F T L H L S R= + + + + + (2-6) en donde: D = Carga muerta F = Carga debida a fluidos con presiones bien definidas y alturas máximas H = Carga debida a empuje de suelo, empuje de agua subterránea, o empuje de materiales a granel L = Carga viva Lr = Carga viva en el techo R = Carga de lluvia en el techo S = Carga de nieve en el techo T = Efecto de carga producido por las acciones combinadas de temperatura, flujo plástico, retracción, asentamiento diferencial, cemento para compensación de retracción Cada uno de los sumandos en las ecuaciones (2-5) a (2-11) pueden ser expresados como cargas directas (tales como cargas distribuidas provenientes de peso propio o peso temporal) o efectos de carga (tales como momentos y cortantes causados por las cargas dadas). El diseño de una estructura de techo, o de las columnas y las cimentaciones que lo soportan en conjunto con uno o más pisos, tomaría la carga viva de techo igual a la mayor de las tres cargas (Lr, D o R), con las otras dos cargas de techo tomadas como cero. Si alguno de T, F o H es cero, el término correspondiente desaparece de la ecuación (2-6, ACI 9-2). Por lo tanto, para el caso común de un elemento que soporta carga muerta y viva únicamente, la ecuación ACI (9-2) se reduce a 1.2 1.6U D L= + (2-4) Si la carga del techo excede la carga viva de piso o si una columna soporta una carga total de techo que excede la carga viva total de piso soportada por la columna: ( ) ( )1.2 1.6 o o 1.0 o 0.8rU D L S R L W= + + (2-7) Las cargas de techo son solicitaciones variables principales en la ecuación (2-7, ACI 9-3) y son solicitaciones variables acompañantes en la ecuación (2-8, ACI 9-4 y 9-2). Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 22 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA ( )1.2 1.6 1.0 0.5 o o rU D W L L S R= + + + (2-8) La carga de viento es la solicitación variable principal en la ecuación (2-8, ACI 9-4) y es una solicitación variable acompañante en la ecuación (2-7, ACI 9-3). Cargas Sísmicas. Si las cargas sísmicas son significativas: 1.2 1.0 1.0 0.2U D E L S= + + + (2-9) donde el factor de carga 1.0 para carga sísmica corresponde a un sismo de nivel de resistencia el cual tiene un periodo de retorno mucho más largo y por lo tanto es mayor que el sismo de nivel de servicio. Si la norma utilizada en una jurisdicción específica está basada en el sismo de nivel de servicio, el factor de carga para E es 1.4 en vez de 1.0 (ver el Inciso 9.2.1(c) de ACI 318S-08). Cargas muertas que estabilizan volcamiento y corrimiento. Si los efectos de las cargas muertas estabilizan la estructura contra cargas de viento y de sismo, 0.9 1.6 1.6U D W H= + + (2-10) o 0.9 1.0 1.6U D E H= + + (2-11) Factor de carga para cargas vivas pequeñas. El Inciso 9.2.1(a) de ACI 318S-08 permite que el factor de carga de 1.0 para L en las ecuaciones (9-3), (9-4) y (9-5) puede ser reducido a 0.5 excepto para (a) garajes (b) áreas ocupadas como lugares de reunión pública, y (c) todas las áreas en donde la carga viva es mayor que 500 kg/m2. Direccionalidad de la carga de viento y de la presión lateral de suelo. Antes de 1998, ASCE 7 suponía que la dirección de la carga de viento mayor coincidía con la dirección del arreglo estructural más débil. Este procedimiento requería un factor de carga de viento de 1.3. En el ASCE/SEI 7-05, las ecuaciones usadas para calcular la presión debida a la velocidad del viento, q, se multiplican por un factor de direccionalidad, Kd, igual a 0.85 para edificios rectangulares y 0.9 o 0.95 para tanques y chimeneas circulares. Si la carga de viento calculada no incluye este factor, el factor de carga de 1.6 para viento en las Ecuaciones (9-4) y (9-6) del ACI 318S-08 puede ser reducido a 1.3. Para obtener los mismos valores para el viento de diseño como en versiones anteriores de la norma ACI, el factor de carga para viento debería ser ( )1.3 0.85 1.53= . Esto fue redondeado a 1.6. El factor de carga para H debe ser tomado como cero en las ecuaciones (9-6) y (9-7) si el efecto de H se contrapone a los efectos de W o E. Cuando la presión lateral de suelo provee resistencia a los efectos estructurales provenientes de otras fuerzas, entonces no se Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 23 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA incluye en el cálculo de H. En su lugar, los componentes de resistencia de la presión de suelo se incluyen en la resistencia de diseño. En el análisis de un pórtico para un edificio, frecuentemente es mejor analizar la estructura elásticamente tres veces─una para 1.0D, otra para 1.0L y una para 1.0W─y combinar los momentos, cortantes, etc., resultantes para cada elemento según las ecuaciones (2-4) a (2-11). (La excepción a esto son los análisis de casos en los cuales la superposición lineal no aplica, tal como en el caso de análisis de segundo-orden para pórticos. En estos casos el análisis debe hacerse al nivel de cargas mayoradas.) El procedimiento se ilustra en el Ejemplo 2-1. Ejemplo 2–1 Cálculo de efectos de carga mayorados La figura 2-8 muestra una viga y una columna pertenecientes a un pórtico de concreto. Las cargas por metro sobre la viga son, carga muerta wD = 2.36 Mg/m y carga viva wL = 1.12 Mg/m. Adicionalmente, la carga de viento se prepresenta mediante cargas concentradas en las juntas de unión. Los momentos en una de las vigas y las columnas encima y debajo de ella debidos a 1.0D, 1.0L y 1.0W se muestran en las figuras 2-8b, c y d. Calcule las resistencias requeridas usando las ecuaciones 2-4 a 2-11. Solución: Para el momento en la sección A, se deben considerar cuatro combinaciones de carga: ( )1.4U D F= + Como la viga no soporta un tanque conteniendo fluido, 0F = y 1.4 5.40 7.56 Mg-mU = × − = − ACI (9-1) ( ) ( ) ( )1.2 1.6 0.5 o o rU D F T L H L S R= + + + + + Para una viga interior típica, 0F = y 0H = . Suponiendo que no hay asentamiento diferencial entre las columnas interiores y las exteriores y suponiendo que no hay retracción restringida, las acciones autoequilibrantes, T, son cero. Como la viga en consideración no es una viga de techo, Lr, S y R son cero. (Notar que la carga axial en las columnas incluye fuerzas axiales de la carga del techo y de la carga viva de la losa.) La ecuación (9-2) se reduce a 1.2 1.6U D L= + 1.2 5.4 1.6 2.63 10.7 Mg-mU = × − + × − = − ACI (9-2) La ecuación (2-7) no gobierna porque no se trata de una viga de techo ACI (9-3) Para la ecuación (2-8): ACI (9-4) Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 24 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA ( )1.2 1.6 0.5 0.5 o o rU D W L L S R= + + + donde la sección 9.2.1(a) permite la reducción de 1.0 a 0.5L, 1.2 5.40 1.6 11.6 0.5 2.63 7.80 18.6 26.4 o 10.8 Mg-m U U U = × − ± × + × − = − ± = − Los valores positivos y negativos del momento debido a carga de viento se deben a la posibilidad de que los vientos soplen alternativamente contra los dos lados del edificio. Los momentos debidos a carga muerta pueden contrarestar una porción de los momentos de viento y carga viva Esto hace necesario considerar la ecuación (2-10): 0.9 1.6 1.6U D W H= + + 0.9 5.40 1.6 11.6 4.86 18.6 23.4 o 13.7 Mg-m U U U = × − ± × = − ± = − ACI (9-6) Respuesta: Las resistencias requerida, Mu, en la sección A son 13.7 Mg-m y -26.4 Mg-m.  2.7.3 Factores de reducción de resistencia, ϕ, sección 9.3 norma ACI La norma ACI permite el uso de uno de dos grupos de combinaciones de carga en diseño, y también de dos grupos de factores de reducción de resistencia. Uno de los grupos de factores de carga está dado en la sección 9.2.1, con los correspondientes factores de reducción de resistencia,φ , dados en la sección 9.3.1. En forma alternativa, se pueden usar los factores de carga de la sección C.9.2.1 y los correspondientes factores de reducción de resistencia en la sección C.9.3.1. En este curso solo se usarán los factores de carga y de reducción de resistencia dados en el capítulo 9 de la norma ACI. El factor de reducción de resistencia φ se define entonces de acuerdo a la Tabla 2-4. La figura 2-12 presenta la variación del factor de reducción de resistencia para elementos sujetos a flexión y carga axial. El gráfico presenta la variación del factor φ para acero de Grado 60 (4200 kg/cm2). En regiones de alta actividad sísmica, como ciertas zonas de Costa Rica, se recomienda usar factores de reducción para cortante aun más bajos. En el Inciso 9.3.4 del ACI 318S- 08, se puntualiza que en estructuras que resisten efectos sísmicos a base de los así denominados pórticos especiales resistentes a momento o muros estructurales especiales, los factores de reducción de resistencia de cortante φ deberán ser disminuidos hasta un valor de 0.60, según allí se explica. Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 25 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA 2.8 Cargas y solicitaciones 2.8.1 Solicitaciones Directas e Indirectas Una solicitación es cualquier acción que de origen a esfuerzos en una estructura. El término carga o solicitación directa se refiere a las fuerzas concentradas o distribuidas que resultan del peso propio de la estructura y sus contenidos, o a presiones debidas a viento, agua o suelo. Una solicitación indirecta o deformación impuesta es un movimiento o deformación que no proviene de cargas aplicadas, pero que causa esfuerzos en una estructura. Algunos ejemplos lo constituyen asentamientos diferenciales en los apoyos de vigas continuas y retracción del concreto si la viga tiene restricción al desplazamiento axial. Como los esfuerzos debidos a las deformaciones impuestas no resisten una carga aplicada, en general son del tipo autoequilibrante. Considere por ejemplo un prisma de concreto con una barra de refuerzo a lo largo de su eje. Conforme el concreto se retrae, su acortamiento es resistido por el refuerzo. El resultado es que se desarrollan una fuerza de compresión en el acero y una fuerza de tracción igual y opuesta en el concreto, como se muestra en la figura 2-8. Si el concreto se agrieta por la tracción, la fuerza de tracción en el concreto desaparece y, por equilibrio, la fuerza en el acero deberá desaparecer también. La sección 1.3.3 del ASCE/SEI 7 denomina a las deformaciones impuestas como fuerzas autodeformantes. 2.8.2 Clasificación de cargas. Las cargas pueden ser clasificadas según su variabilidad con respecto al tiempo y a la ubicación. Una carga permanente se mantiene aproximadamente constante una vez que la estructura está terminada. Cargas variables, tales como cargas por uso y por viento, cambian con el tiempo. Las cargas variables pueden ser cargas sostenidas de larga duración, tales como el peso de archivadores en una oficina, o cargas de corta duración tales como el peso de las personas en la misma oficina. Deformaciones por flujo plástico en estructuras de concreto son resultado de cargas permanentes y de la porción sostenida de las cargas variables. Una tercera categoría es la de cargas accidentales, que incluyen colisiones vehiculares y explosiones. Las cargas variables pueden ser fijas o libres en su ubicación. Así, la carga viva en un edificio de oficinas es libre, porque puede ocurrir en cualquier punto del área disponible. La carga de un tren en un puente no es fija longitudinalmente, pero es fija transversalmente debido a los rieles. Las cargas son frecuentemente clasificadas como cargas estáticas si no causan ninguna aceleración o vibración apreciable en los elementos o en la estructura y como cargas dinámicas si lo hacen. Las aceleraciones pequeñas son generalmente tomadas en cuenta incrementando la carga estática especificada para de esa manera considerar los incrementos en esfuerzo debidos al efecto dinámico. Las aceleraciones más grandes, tales como las que ocurren en puentes de carreteras, rieles de grúas viajeras o soportes de Ing. Guillermo Santana, Ph.D. Concreto Estructural 2012 26 ESCUELA DE INGENIERÍA CIVIL IC-801/PF-3921 UNIVERSIDAD DE COSTA RICA elevadores se consideran mediante la multiplicación del efecto de la carga viva por un factor de impacto. De forma alterna, se puede usar análisis dinámico. Tres niveles de carga viva o de carga de viento pueden ser de importancia. La carga usada en los cálculos que involucran estados límite últimos deberían representar la carga máxima en la estructura en su vida útil. Por lo tanto en donde sea posible las cargas viva, de nieve o de viento especificadas deberían representar el valor promedio de la carga máxima correspondiente para su vida útil. Una carga acompañante es la porción de la carga variable que está presente en una estructura cuando alguna otra carga variable está en su máximo. Durante la revisión de los estados límite de funcionalidad, puede resultar deseable usar una carga viva frecuente, la cual es una fracción de la carga máxima promedio durante la vida útil (generalmente, de un 50 a un 60 porciento); para estimar las defexiones debidas a carga sostenida, puede ser conveniente considerar una carga viva sostenida o cuasi-permanente, la cual