UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO Restaurando el arrecife: estrategias para el crecimiento de corales en viveros in situ en Bahía Culebra, Pacífico Norte de Costa Rica Tesis sometida a la consideración de la Comisión del Programa de Estudios de Posgrado en Biología para optar al grado y título de Maestría Académica en Biología SÒNIA FABREGAT MALÉ Ciudad Universitaria Rodrigo Facio, Costa Rica 2022 ii DEDICATORIA A la platja del Pas iii AGRADECIMIENTOS En primer lugar, quiero agradecer a mi tutor Juan José Alvarado su asesoramiento y constante apoyo. Gracias por brindarme su experiencia y darme las oportunidades de crecer como científica. A mi comité de tesis, la Dra. Paola Rodríguez Troncoso y el Dr. Jeffrey Sibaja, por su retroalimentación y enriquecer mi trabajo con su conocimiento. Asimismo, agradezco al Dr. Carlos E. Jiménez y la Dra. Celeste Sánchez Noguera su revisión y aportes en el primer capítulo de mi tesis. Asimismo, doy las gracias a la Dra. Guaria Cardenes y al personal de la Escuela de Geología de la Universidad de Costa Rica por su colaboración en el corte de las colonias de coral en sus instalaciones. Este proyecto no habría sido posible sin la ayuda y el apoyo el equipo científico del Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), tanto de estudiantes como investigadores que nos acompañaron en las salidas a campo mes a mes: Adriana Arce, Fabio Quesada, Ben Chomitz, Dra. Cindy Fernández, Juan Carlos Azofeifa, Dra. Celeste Sánchez Noguera, Sergio Madrigal, Andrea Bogantes, Camila Valverde, Maricruz Calvo y Randy Domínguez. Agradezco, sobre todo, a mis dos compañeros de gira más longevos, Sebastián Mena y Gabriela López, por todas las horas de trabajo compartidas y la complicidad que generamos bajo el agua. Gracias a Eddy Gómez y Juan Guillermo Sagot por los análisis de mis muestras, a Davis Morera, Eleazar Ruiz y el resto del equipo del CIMAR. Estoy tremendamente orgullosa de haber formado parte del centro y haber tenido el privilegio de trabajar con gente con tanto talento, pasión y dedicación. Agradezco el apoyo de Península Papagayo y de su increíble personal, desde Mónica Gutiérrez, Elsiana Luna, Miguel Sánchez a todo el staff del Dive Bar y Marina Papagayo. Especialmente, quiero darle las gracias a Carlos Marenco, por su constante atención y ayuda en campo. Gracias también a las compañías de buceo Almaco y BA Divers, junto con sus capitanes Michi, Alonso, Lenín y Harry, quienes nos llevaron tantas veces a los sitios de restauración durante las giras. Agradezco el apoyo de la Agencia Alemana para la Cooperación Internacional (GIZ) en el desarrollo del proyecto de restauración en Bahía Culebra. Gracias al equipo de Raising Coral Costa Rica por la ayuda técnica inicial y el establecimiento de los primeros tres viveros del proyecto, allá en 2019. Agradezco también a Lisa Combillet su ayuda en el procesamiento y medición inicial de imágenes que son ahora parte de los resultados de esta tesis. iv A mis amigos de Catalunya, por su continua amistad pese a habernos podido ver tan poco cuando decidí quedarme del otro lado del Atlántico, y por haberme mantenido conectada con el lugar del que vengo. Gracias, sin ningún orden particular, Clara, Mariona, Alfred, Oriol, Arnau, Mel, Júlia y Ariadna. Quiero agradecer a Chepe el estar siempre presente, alentarme y ser una fuente de apoyo tanto en los buenos como en los malos momentos, prácticamente desde que llegué al país. Gracias por su amistad, oportunos consejos y hacerme creer en mí un poco más. Espero poder volver a compartir giras con usted en algún momento – sin despertarlo a las cinco de la mañana, lo prometo. Finalmente, quiero mostrar mi especial agradecimiento hacia las siguientes personas: a la familia Madrigal-Mora, por ser mi segunda familia en este país y hacerme sentir una más de ustedes. Gracias por cuidarme y ayudarme siempre que lo he necesitado. Siempre van a tener las puertas de mi casa abiertas, esté donde esté. Los quiero muchísimo. A mis dos mejores amigos durante mis cuatro años en Costa Rica, Sergio Madrigal y Ben Chomitz. Gracias por las giras llenas de risas, la complicidad, las noches y caminadas por San José, por escuchar y apoyarme en todo momento – sé que no siempre es fácil – y las conversaciones llenas de crisis existenciales. Muy probablemente no habría llegado hasta aquí sin su constante apoyo y amistad. Y a vos, Checho, por no desaparecer. Gracias a Xandri, por ser illa i recer, por haber aparecido en mi vida cuando menos lo esperaba, por estar siempre en este tramo final, entender, apoyarme y darme la energía necesaria para terminar finalmente esta carrera de fondo. A mi pequeña familia entera, pero especialmente a mis papás y a mi hermano, por su amor, consejos, oportunidades brindadas y apoyo incondicional en todo lo que hago, sobre todo desde que decidí irme a Costa Rica. Gràcies per fer-me obrir els ulls, cada estiu, a tot el que hi ha sota l’aigua i descobrir-me un nou món. Gràcies per fer-me qui sóc. Us estimo. vi ÍNDICE DEDICATORIA ........................................................................................................... ii AGRADECIMIENTOS ............................................................................................... iii ÍNDICE ....................................................................................................................... vi ÍNDICE DE FIGURAS .............................................................................................. viii ÍNDICE DE TABLAS ................................................................................................. xi RESUMEN ................................................................................................................. xii Chapter 1. A story of disturbance and loss: historical coral reef degradation in Bahía Culebra, North Pacific of Costa Rica ............................................................................. 1 Abstract .................................................................................................................... 1 1. Introduction ........................................................................................................... 1 2. Methods ................................................................................................................ 4 2.1. Study area....................................................................................................... 5 3. Results and discussion ........................................................................................... 6 3.1. The “pre-disturbed” period (1970-2000) ......................................................... 6 3.2. The early degradation period (2000-2010) .................................................... 10 3.3. The degraded period (2010–present) ............................................................. 14 4. Is recovery possible for coral reefs in Bahía Culebra? .......................................... 20 5. References........................................................................................................... 22 Chapter 2. Testing the feasibility of coral nurseries in an upwelling area in the North Pacific of Costa Rica ................................................................................................... 39 Abstract .................................................................................................................. 39 1. Introduction ......................................................................................................... 40 2. Materials and methods ......................................................................................... 42 2.1. Study area..................................................................................................... 42 2.2. Experimental design ..................................................................................... 43 2.3. Data collection.............................................................................................. 47 2.4. Data analysis ................................................................................................ 47 3. Results ................................................................................................................ 48 3.1. Coral fragment survival ................................................................................ 48 3.2. Coral fragment growth .................................................................................. 51 3.3. Nursery and fragment costs .......................................................................... 58 vii 4. Discussion ........................................................................................................... 59 5. References........................................................................................................... 66 Chapter 3. Nursery-reared coral outplanting success in an upwelling-influenced area in Costa Rica................................................................................................................... 79 Abstract .................................................................................................................. 79 1. Introduction ......................................................................................................... 80 2. Material & Methods ............................................................................................ 82 2.1. Study area..................................................................................................... 82 2.2. Experimental design ..................................................................................... 83 2.3. Data analysis ................................................................................................ 85 3. Results ................................................................................................................ 85 3.1 Outplant survival ........................................................................................... 85 3.2. Outplant growth............................................................................................ 87 4. Discussion ........................................................................................................... 91 5. References........................................................................................................... 95 viii ÍNDICE DE FIGURAS Fig. 1.1. Location of coral reefs in Bahía Culebra (North Pacific of Costa Rica) in 1995- 1996. ............................................................................................................................. 5 Fig. 1.2. Proliferation and expansion of the macroalgae Caulerpa sertularioides in Bahía Culebra (2001-2014) based on patch size and abundance categories in Fernández 2007. ................................................................................................................................... 13 Fig. 1.3. Mean (±SE) substrate cover (%) in Bahía Culebra from 2013 to 2021 (North Pacific, Costa Rica) in the four reefs surveyed in Jiménez (1998) and Sánchez-Noguera et al. (2018b) (Güiri-Güiri, Punta Esmeralda, Islas Palmitas and Playa Blanca). CCA: Crustose calcareous algae. ........................................................................................... 16 Fig. 1.4. Populations of the sea urchin Diadema mexicanum in Bahía Culebra coral reefs over time. (a) Density of D. mexicanum (ind. m-2) from April 2013 to August 2015; (b) Mean (±SE) density of D. mexicanum (ind. m-2) in four surveyed coral reefs in Bahía Culebra, from 2014 to 2019......................................................................................... 18 Fig. 2.1. Location of nursery site (★) and donor colonies sites (●) in Bahía Culebra, North Pacific of Costa Rica. .................................................................................................. 43 Fig. 2.4. Survivorship curves (%) of (A) Pocillopora spp. fragments according to nursery type (A-frames [n = 112 ●], rope line [n = 150 ●], and coral tree [n = 72 ●]); and (B) microfragments of massive Pavona clavus (n = 37 ●), Pavona gigantea (n = 148 ●), and Porites lobata (n = 66 ●) in the nursery site in Playa Jícaro, Bahía Culebra, North Pacific of Costa Rica, during nursery stage. ............................................................................ 49 Fig. 2.5. Survivorship curves (%) of Pocillopora spp. fragments according to donor colony site in each type of nursery (A = coral tree, B = rope line, C = A-frame), during nursery stage in Playa Jícaro, Bahía Culebra, North Pacific of Costa Rica. Final survivorship at the end of nursery stage is shown next to each donor site. ................... 50 Fig. 2.6. Presence (% of fragments affected) of bleaching or paleness (bars), and partial tissue loss (lines) in microfragments of massive species (Pavona clavus ■, Pavona gigantea ■, and Porites lobata ■) during nursery stage (September 2019-August 2020) in Playa Jícaro, Bahía Culebra, North Pacific of Costa Rica. No data is available for March 2020 due to the COVID-19 pandemic national lockdown. ........................................... 51 ix Fig. 2.7. Mean growth rate (cm yr-1) of Pocillopora spp. fragments from shared donor sites (Jícaro and Matapalo) between nurseries. * = p < 0.05......................................... 53 Fig. 2.8. Change of massive species microfragment area (cm2) from the start to the end of nursery stage (September 2019-August 2020), in the nursery site in Playa Jícaro, Bahía Culebra, North Pacific of Costa Rica. .......................................................................... 54 Fig. 2.9. Mean (±SD) monthly seawater temperature (ºC) in Playa Jícaro restoration site (Bahía Culebra, North Pacific of Costa Rica) during nursery periods for coral fragments in coral trees and rope line nurseries (A) and A-frames (B). Shaded areas represent upwelling period (December to April). ........................................................................ 55 Fig. 2.10. Monthly mean nutrient concentration (µM) in nursery site in Playa Jícaro, Bahía Culebra (Costa Rica), from December 2019 to August 2021. No data is available between March and May 2020 due to the COVID-19 pandemic national lockdown……56 Fig. 2.11. Mean (±SD) monthly photosynthetic active radiation (PAR) (µM s-1 m-2) in Playa Jícaro restoration site (Bahía Culebra, North Pacific of Costa Rica) during nursery period.......................................................................................................................... 57 Fig. 2.12. Mean linear growth rate (cm yr-1) of stained Pocillopora spp. fragments growing in the nursery and on the reef in Bahía Culebra, North Pacific of Costa Rica. 58 Fig. 3.1. Location of Güiri-Güiri outplanting site (■), Jícaro nursery site (★), and donor colonies sites (●) in Bahía Culebra, North Pacific of Costa Rica. ................................ 83 Fig. 3.2. Outplanting technique for nursery-reared Pocillopora spp. colonies (A) and for massive species (Porites lobata, Pavona gigantea and Pavona clavus) fragments (B) in Güiri-Güiri reef, Bahía Culebra, North Pacific of Costa Rica. ..................................... 84 Fig. 3.3. Survivorship curves (%) for the massive coral fragments (Pavona clavus n = 8 [⸺], Pavona gigantea n = 18 [⸺], and Porites lobata n = 5 [⸺]) in the outplanting site in Bahía Culebra, North Pacific of Costa Rica, through monitoring period (September 2020-September 2021). ............................................................................................... 86 Fig. 3.4. Percentage (%) of outplanted fragments of massive species (Pavona clavus [■], Pavona gigantea [■], and Porites lobata [■]) exhibiting partial tissue loss through monitoring period (September 2020 to September 2021), in Güiri-Güiri reef, Bahía Culebra, North Pacific of Costa Rica. .......................................................................... 87 x Fig. 3.5. Increase of Pocillopora spp. colony area (cm2) from September 2020 to September 2021 (A), and growth of the same Pocillopora spp. outplant at the start of monitoring period (left), after six months (middle), and after one year (right) (B), in the outplanting site in Güiri-Güiri, Bahía Culebra, North Pacific of Costa Rica. ................ 88 Fig. 3.6 Changes in area (cm2) of outplanted fragments of massive fragments (Pavona clavus [⸺], Pavona gigantea [⸺], and Porites lobata [⸺]) over monitoring period (September 2020-September 2021) in Güiri-Güiri reef, Bahía Culebra, Costa Rica. .... 89 Fig. 3.7. Differences of mean monthly growth rate (cm2 mo-1) of Pocillopora spp. outplants between different sites of origin of donor colonies at Güiri-Güiri restoration site, Bahía Culebra, Costa Rica. .................................................................................. 91 Fig. 3.S1. Seawater temperature (ºC) recorded in outplanting site in Güiri-Güiri reef, Bahía Culebra, North Pacific of Costa Rica, according to season of upwelling (■) or non- upwelling (■). ...……………………………………………………………………….107 Fig. 3.S2. Surface seawater salinity recorded in outplanting site in Güiri-Güiri reef, Bahía Culebra, North Pacific of Costa Rica, according to season of non-upwelling (wet season, ■) or upwelling (dry season, ■). ……………………………………………………….108 Fig. 3.S3. Nutrient concentration (µM) of ammonium (NH4 +, ■), nitrates (NO3 -, ■), nitrites (NO2 -, ■), phosphates (PO4 3-, ■), and silicates (SiO4, ■) in outplanting site in Güiri- Güiri, Bahía Culebra, Costa Rica. ……………………………………………………..109 xi ÍNDICE DE TABLAS Table 2.1. Number of donor colonies and total number of fragments from each donor site for each nursery and species cultivated in the nursery site in Playa Jícaro, Bahía Culebra, North Pacific of Costa Rica. ........................................................................................ 46 Table 2.2. Initial and final sizes (mean length ± SD), and mean growth rate (± SD) of Pocillopora spp. fragments cultivated in the different in situ coral nurseries in Playa Jícaro (Bahía Culebra, North Pacific of Costa Rica). Growth rate was calculated from fragments that survived throughout the whole monitoring period. * p < 0.005. ............ 52 Table 2.3. Initial and final sizes (mean area ± SD), and mean growth rate (± SD) of microfragments of massive species cultivated in in situ coral nurseries in Playa Jícaro (Bahía Culebra, North Pacific of Costa Rica). Growth rate was calculated from fragments that survived throughout the whole monitoring period. * = p < 0.05. ........................... 54 Table 2.4. Nutrient concentration (µM) in nursery site in Playa Jícaro, Bahía Culebra (Costa Rica), from October 2019 to August 2021. ND = not detectable by method. ..... 57 Table 3.1. Initial and final sizes (mean area and diameter ± SD), and mean growth rate (± SD) of outplanted species to Güiri-Güiri restoration site (Bahía Culebra, North Pacific of Costa Rica). ............................................................................................................ 89 Table 3.2. Nutrient concentration (µM) in outplanting site Güiri-Güiri, Bahía Culebra (Costa Rica), from September 2020 to September 2021. ND = not detectable by method. * = p < 0.05. ................................................................................................................ 90 xii RESUMEN Los arrecifes de coral son ecosistemas de una elevadísima diversidad biológica, que brindan a millones de personas una gran variedad de servicios ecosistémicos. Sin embargo, en las últimas décadas, han sufrido una degradación alarmante debido al incremento de las temperaturas, la acidificación oceánica, la sobrepesca y el desarrollo costero no planificado, poniendo en riesgo su estructura y funcionamiento ecológicos. Esta pérdida sin precedentes ha favorecido el desarrollo de medidas de conservación activas, como la restauración ecológica, con el objetivo de revertir esta tendencia y recuperar las funciones y servicios de estos ecosistemas. En los últimos años, el número de iniciativas de restauración coralina en el Pacífico Tropical Oriental (PTO) ha incrementado drásticamente. Sin embargo, la experiencia es todavía limitada y pocos proyectos usan la jardinería de coral. Este método, basado en la reproducción asexual por fragmentación de los corales, comprende una fase inicial de cultivo en vivero hasta que los fragmentos alcanzan cierto tamaño y son trasplantados a un arrecife a intervenir. El género Pocillopora es el más utilizado en proyectos en el PTO, debido a su rápido crecimiento y contribución a la complejidad estructural por su morfología ramificada, mientras que el uso especies masivas, de crecimiento lento, es aún escaso. Las particulares condiciones oceanográficas del PTO, con fenómenos periódicos de El Niño-Oscilación Sur (ENOS), áreas de afloramiento estacional, baja saturación de aragonita y amplias fluctuaciones de salinidad y nutrientes, crean la necesidad de adaptar las técnicas de restauración a las características de la región. En Costa Rica, los esfuerzos de restauración anteriores se han centrado en el Pacífico Sur. La menor precipitación y el afloramiento estacional en el Pacífico Norte marcan claras diferencias en las condiciones ambientales entre las regiones. Esto queda reflejado en una composición de especies de coral formadoras de arrecife y dinámicas arrecifales distintas. Además, las presiones antropogénicas que históricamente han afectado –y siguen afectando– los ecosistemas coralinos de ambas regiones son diferentes, la del norte mucho más influenciada por el desarrollo costero, sobrepesca e impactos derivados. Como consecuencia, estos factores deberán considerarse para adecuar los esfuerzos de restauración de cada una de las zonas. Hace apenas dos décadas, Bahía Culebra, en el Pacífico Norte de Costa Rica, albergaba algunos de los arrecifes de coral más extensos del Pacífico del país. Sin embargo, la situación sufrió un drástico cambio a inicios de los 2000s, debido a múltiples xiii perturbaciones que ocurrieron en un corto periodo de tiempo y tuvieron efectos en cascada sobre las comunidades asociadas. Como resultado, los arrecifes se degradaron severamente y muchos de ellos colapsaron y desaparecieron por completo, dejando atrás cementerios de esqueletos y arena. Los ecosistemas coralinos de Bahía Culebra siguen siendo de importancia socioeconómica para las comunidades costeras aledañas. Aunque, en la última década, varias de las perturbaciones que causaron la degradación cesaron, debido a su estado actual, la recuperación natural es poco probable. Por ende, su trayectoria a futuro va a depender de las acciones de manejo y conservación que permitan su preservación a largo plazo. En este contexto, en 2019 se inició un proyecto de restauración basado en la jardinería de coral. Entender qué perturbaciones han afectado históricamente el sitio a restaurar y cómo ha respondido el ecosistema es un paso previo clave para el desarrollo de un plan de restauración. Dicha información es especialmente relevante considerando los futuros cambios pronosticados en las condiciones ambientales. En el Capítulo 1, se analizó y sintetizó la evidencia sobre arrecifes y ecosistemas coralinos y su entorno en Bahía Culebra, con el objetivo de (i) identificar las causas y consecuencias de su deterioro y (ii) proponer medidas de gestión para promover la recuperación ecosistémica. Para ello, se realizó una búsqueda de publicaciones y literatura gris, además de incluir datos no publicados del Laboratorio de Ecología y Conservación de Ecosistemas Arrecifales del Centro de Investigación en Ciencias del Mar y Limnología de la Universidad de Costa Rica. Los Capítulos 2 y 3 se centran en la evaluación del primer proyecto de restauración en Bahía Culebra. El Capítulo 2 está enfocado en la fase de cultivo en viveros in situ de fragmentos de coral, con los objetivos de (i) monitorear la salud y supervivencia de los fragmentos de Pocillopora spp., Pavona gigantea (Verrill 1869), Pavona clavus (Dana 1846) y Porites lobata (Dana 1846); (ii) cuantificar su tasa de crecimiento en los viveros y en el arrecife; y (iii) determinar el efecto del tipo de vivero y las variables ambientales en el crecimiento y la supervivencia. Para este propósito, se obtuvieron fragmentos de Pocillopora spp. (n = 334), P. gigantea (n = 148), P. clavus (n = 37) y P. lobata (n = 66) a partir de colonias donantes de distintos sitios en la bahía. Los fragmentos de Pocillopora spp. se colocaron en tres tipos de vivero diferentes: árbol de coral (n = 72), tendedero (n = 150) y marco en A (n = 112), mientras que los microfragmentos de las especies masivas, solo en el árbol. Durante un año, se tomaron fotografías de cada fragmento mensualmente, xiv que se analizaron con ImageJ para medir el largo, ancho (cm) y área (cm2) y establecer su supervivencia. Adicionalmente, se hizo una tinción con rojo de alizarina a fragmentos en los viveros y en el arrecife, se dejaron crecer durante 12 meses, y se colectaron y cortaron para medir el crecimiento desde la línea de tinción. Por otro lado, el Capítulo 3 está enfocado en la evaluación del programa piloto de trasplante de colonias cultivadas en vivero a un arrecife degradado, para (i) monitorear su salud y supervivencia, (ii) cuantificar sus tasas de crecimiento y (iii) determinar si el sitio donante de los fragmentos y la presencia de afloramiento influyen sobre el crecimiento. Para ello, se trasplantaron 30 colonias de Pocillopora spp. (de seis sitios donantes) y 31 fragmentos de especies masivas (P. gigantea [n = 18], P. clavus [n = 8], and P. lobata [n = 5]) al arrecife de Güiri-Güiri. Mensualmente durante un año, se determinó su supervivencia y estado de salud. El crecimiento se midió mediante fotocuadrantes alrededor de las colonias, y se obtuvo el área (cm2), el porcentaje de cobertura del fotocuadrante (%) y el diámetro (cm) con PhotoQuad. Se cuantificó la densidad del erizo de mar Diadema mexicanum (A. Agassiz 1863) mediante censos visuales, por su papel como bioerosionador y herbívoro de competidores de coral (macroalgas y turf). Para caracterizar los sitios de cultivo y trasplante, se colocaron sensores in situ de temperatura y radiación fotosintéticamente activa. Además, se colectaron muestras de agua mensualmente para determinar la salinidad y concentración de nutrientes (nitratos, nitritos, amonios, fosfatos y silicatos). En el Capítulo 1, se dividió la historia reciente de los arrecifes de Bahía Culebra en tres periodos, según la intensidad de perturbaciones antropogénicas. En el 1r periodo (1970-2000), los arrecifes albergaban la riqueza de especies de coral más alta de la costa pacífica del país, formados principalmente por los géneros Pocillopora y Pavona. Pese a la poca incidencia de presiones antrópicas, destacaban la extracción de especies ornamentales y fenómenos ENOS, que generaron blanqueamiento y mortalidades masivas de coral. En el 2º periodo (2000-2010), el acelerado desarrollo costero y eutrofización de las aguas ocasionaron eventos recurrentes e intensos de floraciones algales nocivas que causaron una gran mortalidad coralina. A su vez, la invasión de la macroalga Caulerpa sertularioides (M. Howe 1905) y subsecuente explosión poblacional del erizo bioerosionador D. mexicanum marcan el inicio del cambio de fase hacia arrecifes dominados por macroalgas. En el último periodo (2010-presente), destaca la pérdida de cobertura de coral (<4%) y de complejidad estructural, así como una reducción en la xv diversidad y abundancia de ictiofauna y cambios en la composición de criptofauna. Para impulsar la recuperación de los arrecifes de la bahía, se proponen el planeamiento espacial marino, la mitigación y monitoreo de factores estresantes y la restauración ecológica. En el Capítulo 2, el crecimiento de Pocillopora spp. en los viveros fue un 107% mayor que en el arrecife, lo que podría indicar que los viveros favorecen el crecimiento. La supervivencia final fue de 49.4% para Pocillopora spp. y de 54.1% en P. clavus, 31.8% en P. gigantea y 12.1% en P. lobata. La supervivencia sufrió una drástica disminución posteriormente al cese temporal del mantenimiento debido al confinamiento nacional por la pandemia de COVID-19. El crecimiento de Pocillopora spp. fue mayor en los viveros flotantes que en los marcos en A. Los microfragmentos de las especies masivas crecieron más lentamente y se vieron afectados por dos episodios de pérdida de pigmentación, causando una mortalidad y pérdida de tejido masivas. Estos episodios no afectaron a Pocillopora spp., lo que podría indicar una mayor tolerancia a anomalías térmicas, contrariamente a lo que se creía previamente. En el Capítulo 3, la supervivencia final de los trasplantes fue del 100% para Pocillopora spp., pero menor para las especies masivas (71.4% en P. clavus, 47.5% en P. gigantea y 20% en P. lobata). En estas últimas, se observó pérdida de tejido y marcas de depredación. Los trasplantes de Pocillopora spp. incrementaron su tamaño inicial un 333.1%, a 9.98 ± 1.69 cm año-1, influenciado por el sitio donante del fragmento original, pero no por la presencia de afloramiento. Los fragmentos trasplantados de especies masivas crecieron más lentamente, entre 1.35 y 0.61 cm año-1. Los resultados indican un proceso de aclimatación a las condiciones locales de afloramiento. Asimismo, demuestran que la jardinería de coral es una técnica viable para el crecimiento de Pocillopora spp., pero requiere modificaciones para las especies de crecimiento masivo. El sitio de trasplante también permitió un buen desempeño de las colonias de Pocillopora spp., pero demostró no ser apto para los microfragmentos, demasiado pequeños y vulnerables ante la interacción con otras especies arrecifales. Por ende, se recomienda trasplantar fragmentos de mayor tamaño (>25 cm2), lo que disminuiría su susceptibilidad a perturbaciones. Considerando las diferentes respuestas entre especies frente a perturbaciones, es crucial no centrar los esfuerzos únicamente en Pocillopora, sino desarrollar un enfoque multi-especie, para así maximizar el éxito de la restauración a largo plazo. Esta información es útil para guiar futuros esfuerzos de restauración en zonas del PTO y de afloramiento estacional. 1 Chapter 1. A story of disturbance and loss: historical coral reef degradation in Bahía Culebra, North Pacific of Costa Rica Abstract Climate change and other multiple stressors have globally caused the collapse of many coral reefs. Understanding how coral reefs have responded to previous disturbances is key to identify possible trajectories in the face of future more frequent and intense disturbances. In this chapter, we review the ecological history of coral reefs in Bahía Culebra, a historically important area for coral reef development in the North Pacific of Costa Rica, which has suffered extreme deterioration in the last decades. We assessed historical traits of coral reefs using both historical and recent data, divided as follows: (i) the “pre-disturbed” period (1970-2000), (ii) the early degradation period (2000-2010), and the degraded period (2010-present day). Forty years ago, Bahía Culebra harbored the highest coral species richness in the Costa Rican Pacific, with high live coral cover (>40%). Signs of early degradation were observed after El Niño events and unprecedented coastal development that caused anthropic eutrophication, which led to coral death and a shift to macroalgae-dominated reefs. In the last decade, a steep decline in live coral cover (1-4%), the loss of many reefs, and a decrease in reef fish diversity and abundance were recorded. In order to promote the recovery of coral reefs in the bay, we propose management actions such as marine spatial planning, mitigation and monitoring of stressors, and ecological restoration. The latter could help turn the tide by increasing live coral cover, eventually leading to ecosystem functionality recovery, with spill-over effects on reef-associated communities, including local coastal communities. Nonetheless, such actions need governmental and local support; thus, raising awareness through environmental education and citizen science programs is key for the long-needed conservation of coral reefs in Bahía Culebra. Keywords: coral cover, Eastern Tropical Pacific, ecosystem recovery, historical ecology, resilience, phase shift. 1. Introduction Worldwide, live coral cover is declining and coral reef ecosystems are collapsing at unprecedented rates due to several stressors acting in tandem (Hughes et al. 2017, Knowlton et al. 2021, Dixon et al. 2022). These disturbances (e.g., ocean warming, acidification, overfishing, unplanned coastal development) can jeopardize the structure 2 and ecological functioning of coral reefs (Graham et al. 2011), by compromising coral growth and survival, reef composition, and functional diversity (Hughes et al. 2017, Dietzel et al. 2020, McWilliam et al. 2020). In some cases, several acute and/or chronic stressors occurring at once or in short periods can act as reinforcing feedback mechanisms which can impede the ability of corals to cope with these disturbances, and thus prevent ecosystem recovery or force it to remain below a certain coral-cover threshold (Hughes et al. 2010, Zaneveld et al. 2016, de Bakker et al. 2016, Bozec et al. 2021). A new stable benthic assemblage, such as those dominated by turf, cyanobacteria, and fleshy macroalgae, may establish and cause a phase shift, modifying ecosystem functionality (Bruno et al. 2009, Dudgeon et al. 2010, Fung et al. 2011, Lesser 2021). As highly dynamic ecosystems, reefs have the ability to bounce back and recover (Rohr et al. 2018, Romero-Torres et al. 2020). However, as these disturbance events become more frequent and intense, they can compromise reef recovery time and thus, their resilience (Hughes et al. 2017, Pratchett et al. 2020, Dixon et al. 2022). In the long term, coral reef degradation and ecological phase shifts to algal- dominated states modify the whole coral reef ecosystem, from benthic groups to top predators (Norström et al. 2009, Arias-Godínez et al. 2019, 2021). Algal-dominated states generally may reduce habitat heterogeneity and structural complexity (Pratchett et al. 2014), which will also affect reef-associated species (Stella et al. 2011, Chong-Seng et al. 2012, Ainsworth & Mumby 2015, Salas-Moya et al. 2021), which depend on corals for feeding, nursery and shelter (Pratchett et al. 2014). Hence, these alternative stable states can lead to the local extinction of some species, weaken fisheries productivity (Ainsworth & Mumby 2015) and undermine critical ecosystem functions and services (Norström et al. 2009, Cheal et al. 2013, Pratchett et al. 2014). Multiple ecosystem trajectories can lead to coral reef recovery if disturbances are managed or cease entirely, although returning to their original states might not be possible (Lamy et al. 2016, Hughes et al. 2018, Romero-Torres et al. 2020). Nonetheless, predicting such trajectories is highly complex due to the numerous factors (e.g., disturbance intensity and frequency, ecosystem connectivity and ecological characteristics) that can influence reef resilience and determine trajectories of recovery (Hughes & Tanner 2000, Done et al. 2010, Graham et al. 2011, McClanahan et al. 2014). In the Eastern Tropical Pacific (ETP), coral reefs have shown particular resilience in response to historical disturbances, and coral loss events have not translated into 3 lasting, region-wide decline, but to long-term cycles of loss and recovery (Romero-Torres et al. 2020). In this region, coral reefs are small, discontinuous, and dominated by few coral species (Glynn et al. 2017). They are influenced by a low aragonite saturation, fluctuations in nutrient and salinity levels (Rixen et al. 2012, Sánchez-Noguera et al. 2018a), and are periodically impacted by El Niño-Southern Oscillation (ENSO), considered their primary threat and main driver of reduction in coral cover (Manzello et al. 2008, Zapata et al. 2010, Romero-Torres et al. 2020). However, some regions have in fact shown coral reef recovery after ENSO events in Colombia (Zapata 2017), Panama (Glynn et al. 2014), Galápagos Islands (Glynn et al. 2015), Mexico (Martínez-Castillo et al. 2022) and Costa Rica (Guzmán & Cortés 2007), which recovered to pre-disturbance coral cover levels. The observed resilience of reefs in the ETP is promoted by (i) the fast- growth strategy of the dominant coral species, (ii) presence of thermotolerant symbionts, (iii) heterogeneous incidence of non-optimal conditions such as high irradiance and high- temperature stresses across the ETP, and (iv) the possible existence of ecological memory, by which the trajectory of frequently stressed coral reef ecosystems is shaped by previous conditions (Romero-Torres et al. 2020). Within the Pacific of Costa Rica, the recovery of coral reefs has been disparate. While coral reefs in areas such as Isla del Coco (an oceanic island) or Isla del Caño (a continental island in the South Pacific of the country) have shown recovery after disturbance events, reefs in mainland areas, like Bahía Culebra (North Pacific coast), have not (Alvarado et al. 2012, Sánchez-Noguera et al. 2018b). These differences could be attributed to the degree and isolation from anthropogenic impacts, and protection status (Cortés et al. 2010, Alvarado et al. 2019). Whilst the first two areas are protected and relatively isolated from anthropogenic disturbances, Bahía Culebra has no level of protection and is located in an extensive coastal development area (Sánchez-Noguera et al. 2018b). Merely two decades ago, coral reefs in Bahía Culebra were among the most extensive in the North Pacific of Costa Rica, had high live coral cover (44% on average) and diversity of reef fish species and ecological roles (Jiménez 2001a, Arias-Godínez et al. 2019, 2021). However, due to ENSO events (e.g., 1997-1998), harmful algal blooms (HABs), macroalgal invasion mainly by Caulerpa sertularioides (M. Howe 1905), and other disturbances occurring in a short period of time in the early 2000s, coral reefs in the bay severely deteriorated, and many eventually collapsed, with effects on reef-associated communities (Morales-Ramírez et al. 2001, Fernández 2007, Jiménez 2007a, Vargas- 4 Montero et al. 2008, Fernández-García et al. 2012, Sánchez-Noguera et al. 2018b, Arias- Godínez et al. 2019, 2021). Even though in the last decade (2010s) some stressors have ceased (J.J. Alvarado pers. comm.), the future trajectory of these ecosystems is still uncertain and will depend on management actions that support natural recovery (Alvarado et al. 2018). The response of coral ecosystems to previous environmental disturbances is especially relevant considering the predicted future changes in environmental conditions. Identifying and understanding coral reef decline drivers and their ability to recover from past disturbance through historical data is essential for conservation and management measures, such as coral restoration (Knowlton & Jackson 2008, Cheal et al. 2010, Kittinger et al. 2011, Bruno et al. 2014, Godfray & May 2014). This is especially pertinent in areas rapidly affected by coastal development (Cortés 2012), like Bahía Culebra. Here, we analyze the available evidence on coral reefs, coral ecosystems and their environment in Bahía Culebra, and synthesize current knowledge as a tool to (1) identify the causes of coral reef decline over time and the recorded ecological consequences of such demise and (2) propose management actions for ecosystem recovery. 2. Methods To determine drivers and historical coral reef development in Bahía Culebra, we identified published and grey literature data focusing on coral reef ecology in the area. Additionally, we included unpublished data from the Laboratorio de Ecología y Conservación de Ecosistemas Arrecifales from Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica. Literature search was conducted via Web of Science, Google Scholar and SCOPUS, using the following keywords: “coral”, “reefs”, and “Bahía Culebra”, “Golfo de Papagayo”, “fish”, “bioerosion” and “algae”. We compiled and chronologically arranged information on the state of coral reefs and their drivers of degradation in Bahía Culebra, and divided their recent history into three periods, according to the level of intensity of anthropogenic disturbance and degradation state of the reef: (i) the “pre-disturbed” period (1970-2000s, when low anthropogenic pressure was recorded); (ii) the early degradation period (2000-2010, when anthropogenic stressors intensified); and (iii) the degraded and most recent period (2010s, when reef framework collapsed). For each period, we collected information on benthic cover, natural and anthropic disturbances on coral reefs, and their impacts on reef-associated communities. 5 2.1. Study area Bahía Culebra (10°37’N, 85°39’W) is a semi-enclosed bay in the Gulf of Papagayo, North Pacific of Costa Rica (Fig. 1.1). For the purpose of this review, we consider Bahía Culebra as the section of the coast from Islas Palmitas in the north to Punta Cacique (Playa La Penca) in the south, including the inner part of the bay, based on previously published studies from the same region. The bay extends for more than 20 km2, and reaches its maximum depth at about 42 m (Rodríguez-Sáenz & Rodríguez-Fonseca 2004). The area is influenced by one of the three seasonal upwelling systems occurring in the ETP (Tehuantepec, Papagayo and Panama), which affects the region from December to April, lowering water temperature up to 10 ºC from the annual mean (27 ± 0.1 ºC) (Jiménez 2001b, Jiménez et al. 2010). Fig. 1.1. Location of coral reefs in Bahía Culebra (North Pacific of Costa Rica) in 1995- 1996. 6 3. Results and discussion 3.1. The “pre-disturbed” period (1970-2000) 3.1.1. Coral & benthic composition Historical data show that reef development in Bahía Culebra occurred ≈350 years ago (Glynn et al. 1983). Nonetheless, it is hypothesized that mass coral mortality was caused by the Little Ice Age (1675-1800 A.D.), which led to a decrease in seawater temperature, and intensified and extended the duration of the seasonal upwelling in the Gulf of Papagayo (Glynn et al. 1983). A few anecdotic reports exist on coral reefs in Bahía Culebra between the 1930s and the 1940s (Beebe 1942, Fraser 1943). In the late 1970s, the coral framework was covered by algae, with small and highly dispersed colonies (Glynn et al. 1983). It is not until the 1980s when national scientists from the Universidad de Costa Rica reported the area as important for coral reef development, with the highest richness on coral species in the Costa Rican Pacific and the presence of rare species, such as Leptoseris papyracea (Dana 1846), Cycloseris curvata (Hoeksema 1989), and Pocillopora meandrina (Dana 1846) (Cortés & Murillo 1985, Cortés 2012). However, intense non-controlled extraction of adult coral colonies in the early 1980s, especially for aquarism, led what once were abundant species in the bay to become rare (Cortés & Murillo 1985). The extraction continued well into the 1990s, with more groups such as black corals and octocorals being targeted (C.E. Jiménez pers. comm.) Later, the area was affected by the particularly intense El Niño event in 1982-83, which caused mass coral mortality across the ETP (Glynn 1984). Barren and dead coral platforms were observed, as well as dead coral colonies of several species of Pocillopora –which were the most affected– covered by algae (Cortés et al. 1984, Jiménez pers. comm.). Other coral species, such as Porites lobata (Dana 1846), Pavona clavus (Dana 1846) and L. papyracea were also affected (Jiménez 1998). Even though coral mortality in Bahía Culebra after the 1982-83 El Niño was enormous, it went largely understudied and only qualitative data exists (Jiménez 2002). It was not until the 1990s when coral reefs in Bahía Culebra were mapped for the first time (Jiménez 1998, 2001, 2007a,b, Cortés & Jiménez 2003). The results showed a total of nine coral reefs in the bay (Fig. 1.1) (Jiménez 2001a), with a mean live coral cover of 44.0 ± 3.3% (reaching up to 90%), and an area that ranged from 0.8 to 2.3 hectares (Cortés & Jiménez 2003, Jiménez et al. 2010), which is similar to other pre-disturbed fringing Pocillopora reefs in the ETP (Glynn et al. 2014, Arias-Godínez et al. 2019). Even 7 though 20 coral species were reported during that time (Jiménez 1997, 2001), most sites were considered as monospecific, as they were dominated by pocilloporid corals (mainly Pocillopora elegans Dana 1846), forming flat carpets that extended in between rocky reefs and sandy bottoms, and contributed to 42% of all live coral cover (Jiménez 1998, 2001). In the deeper parts of the reef (>13 m depth), P. clavus was the most abundant species (13.0 ± 3.6% cover), followed by Pavona gigantea (Verrill 1869), Psammocora spp. and L. papyracea (Jiménez 2001a, Cortés & Jiménez 2003). Back then, Bahía Culebra was also home to unique coral formations not commonly found in other areas of the ETP. The largest P. clavus reef in the ETP was found in Güiri-Güiri, with colonies up to 10 m in diameter (Cortés & Jiménez 2003). On the other side of the bay, in Punta Esmeralda (Fig. 1.1), there used to be the only reef in the ETP built by L. papyracea, which extended over an area of 2,500 m2 (Jiménez 1997, Cortés & Guzmán 1998), and the site also held the only live population of C. curvata known in Costa Rica (Jiménez 1998). Additionally, Bahía Culebra harbored a relatively large (0.3 ha) coral patch built mainly by Psammocora profundacella (Gardiner 1898) and Psammocora stellata (Verrill 1866) in Playa La Penca (Fig. 1.1), with a live coral cover of 42.8 ± 20.8% (Jiménez 1998). Psammocora-dominated environments are rare throughout the ETP, and only four used to exist in Costa Rica (Jiménez 1998, Bezy et al. 2006). Despite the fact that they do not provide high habitat heterogeneity and structural complexity (Bezy et al. 2006), they shelter high biodiversity of invertebrates such as polychaetes, amphipods, decapods, crustaceans, and mollusks, which attracts a broad range of predator fauna (Glynn 1974). While the moderate 1991-92 El Niño event had no notable effect on corals in Bahía Culebra (Jiménez & Cortés 2001), the intense 1997-98 event did cause thermal anomalies of +0.2 to 3.9 ºC, which led to mass coral bleaching that mostly affected Pavona varians (Verrill 1864), P. lobata, and Tubastraea coccinea (Lesson 1830) (Jiménez et al. 2001). Coral mortality was recorded in eight different species, such as Pocillopora spp. colonies (>60% of all beached and dead colonies), and a loss of >90% of L. papyracea. Despite the magnitude of the event, overall mortality was lower (7.2%) than in other areas of the ETP (Guzmán & Cortés 2001, Jiménez et al. 2001, Cortés & Jiménez 2003, Alvarado et al. 2012), most likely due to the combined effects of upwelling and high cloud cover, which off-set the effects of high temperatures (Jiménez 2002, Palmer et al. 2022). The natural recovery of Bahía Culebra’s coral reefs was possible 8 most likely because of the absence of chronic anthropogenic stressors, the rapid growth rates of corals in the bay, which are higher than in other localities of the ETP (Jiménez & Cortés 2003), and low densities (0.2 ± 0.02 ind. m-2) of the bioeroder sea urchin Diadema mexicanum (A. Agassiz 1863), which translated to high bioaccretion rates (18 kg CaCO3 m-2) and low bioerosion (Jiménez 1998, Alvarado et al. 2012). Despite densities of D. mexicanum being low during this period (Jiménez 2001a), telltale signs of past population explosions were observed. During visits to Bahía Culebra in the late 1980s and early 1990s, remains of highly bioeroded coral colonies were reported in several sites, with undoubted signs of sea urchin effects. Such bioerosion mostly affected colonies of massive species, with little to no effect on the Pocillopora reefs (Jiménez unpublished data). 3.1.2. Reef fish communities During this period, a total of 78 reef fish species from 32 different families were found in Bahía Culebra (Dominici-Arosemena et al. 2005, Arias-Godínez et al. 2019), which is similar to the species richness estimated for other coral reefs in the ETP region (Cortés et al. 2017). Regarding trophic composition, invertebrate feeders and planktivores were the most abundant groups, followed by mesopredators, some of which were commercially important (Dominici-Arosemena et al. 2005, Arias-Godínez et al. 2021). Several predatory species were recorded during this period, such as the scalloped hammerhead shark (Sphyrna lewini Griffith & Smith 1834) and the whitetip reef shark (Triaenodon obesus Rüppell 1837) (Arias-Godínez et al. 2019). Most reef fish species in Bahía Culebra showed a positive correlation with live coral cover (Dominici 1999), and higher diversity occurred in shallow Pocillopora reefs (Dominici-Arosemena et al. 2005). These habitats contributed to high structural complexity and presence of microhabitats, which provide multiple food sources, shelter and protection from predators for many reef species (Depczynski & Bellwood 2004, Komyakova et al. 2013, Russ et al. 2020). 3.1.3. Anthropic disturbances Bahía Culebra’s terrestrial and marine ecosystems have been exposed to both natural – such as ENSO events – and anthropogenic stressors over time (Sánchez-Noguera 2012a). The strong interest in the bay’s marine resources at the end of the 20th century led to conflict between the different users with contrasting interests to represent (Jiménez 1997, 1998, 2001, Dominici 1999, Sánchez-Noguera 2012b, Sánchez-Noguera et al. 2018b). 9 The lack of a management plan to protect marine ecosystems from anthropic activities brought localized degradation of some coral reefs and some of their associated ecological communities, such as species used in ornamental trade (Jiménez 1998, 2001) and artisanal fishing (Gutiérrez 1994, Jiménez 1997, Dominici-Arosemena et al. 2005, Sánchez- Noguera et al. 2018b). The coral species most affected by ornamental trade were Pocillopora grandis (Dana 1846), P. meandrina, and T. coccinea, as well as certain anemone species, mollusks, algae, and colorful invertebrates (Jiménez 1997, 2001, Cortés & Jiménez 2003). Around 35-45 ornamental reef fish were also extracted for aquarium trade, but extraction was particularly intense for Thalassoma lucasanum (Gill 1862), Pomachantus zonipectus (Gill 1862), Holacanthus passer (Valenciennes 1846), and Diodon holocanthus (Linnaeus 1758) (Dominici 1999, Fournier 2004). Dominici (1999) reported declines in catch between 1999 and 2000, and selective extraction of juveniles and male terminal phases of these species. Moreover, patches of coral reefs up to 25 m2 were destroyed in order to extract reef fish and shrimps for aquarium trade (Jiménez 1997). Bahía Culebra’s coral reefs also suffered mechanical impacts, as it was already a snorkeling and diving hotspot in the 1990s (Jiménez 1997), stirring up sediments, breaking coral colonies or turning them over (Jiménez 1998, Cortés & Jiménez 2003). Finally, being the only large bay in the area, protected from wave action and relatively deep, Bahía Culebra had been a focal point for coastal development in the North Pacific of Costa Rica for many decades (Jiménez 1998, Sánchez-Noguera 2012b). The intensive development began in the 1990s, when the largest tourist complex in Central America was built (Jiménez 1998), with no consideration on the potential negative effects on coral areas. For instance, urbanization caused the burial of a 100 m2 patch of a P. gigantea reef in Güiri-Güiri, causing 84% coral mortality (Jiménez 2001a). The following year, a P. clavus reef was also affected by sediment input caused by the erosion of an unpaved road, resulting in high sediment suspension and lower coral growth rates (Jiménez 1998, 2001a). Mortality of L. papyracea was observed after land movements in Playa Panamá (Jiménez 1998). In addition, sea currents carried sediments, sewage, and fuel leftover from the construction, and discharges of the new tourist development to coral reef patches, even relatively distant ones (Jiménez 1998). This negative effect can be intensified due to the strong trade winds during upwelling season (Jiménez 2001a,b) and 10 the semi-enclosed morphology of the bay, which promotes particle dispersion (García- Céspedes et al. 2004). 3.2. The early degradation period (2000-2010) 3.2.1. Anthropic disturbances The picture for coral reefs in Bahía Culebra undoubtedly started changing in the early 2000s, when coral degradation was not localized but was observed throughout the area. The unprecedented coastal development and an increase in the number of visitors (Jiménez 2001a, Sánchez-Noguera 2012b, Cortés & Reyes-Bonilla 2017) caused anthropic eutrophication and modified water quality (Fernández 2007, Fernández-García et al. 2012, Alvarado et al. 2018, Beita-Jiménez et al. 2019). In addition, the synergistic effect of El Niño events (1997, 2003, 2007, 2009) triggered a series of reinforcing feedback mechanisms that acted in synergy and prevented coral reef ecosystems from recovering. The short time between disturbance events (proliferation of HABs, increase in algae cover, the propagation of the invasive macroalgae C. sertularioides, and a subsequent increase in the sea urchin D. mexicanum density), promoted a general decline in live coral cover, undermining the health of the whole ecosystem (Jiménez 2007, Alvarado et al. 2012, 2016, Fernández-García et al. 2012, Sánchez-Noguera 2012a). Even though during the early 2000s (2003-2006) some sites (e.g., Cacique, Islas Palmitas, Pelonas, Playa La Penca) experienced a most impressive pulse of reef expansion and growth (Jiménez unpublished data), they were nonetheless eventually affected by this generalized degradation. At the beginning of this period (2000-2002), Bahía Culebra still had clear waters and low presence of heavy metals and total fecal coliforms, which were 3 µg/g in lead and <4 MPN/100 mL, respectively (Acuña-González et al. 2004, García-Céspedes et al. 2004, García et al. 2006, Vargas et al. 2015, Vargas-Zamora et al. 2018). Moreover, petroleum hydrocarbons were absent in the bay’s waters (Acuña-González et al. 2004), and sedimentation and suspended matter (4.12 mg/L) was also low (Vargas-Zamora et al. 2018). The minimal runoff discharges and wastes into the bay could explain these low concentrations (Vargas-Zamora et al. 2018). Despite this, intense HABs (also known as red tides) occurred and major disturbances occurred, but no specific data were recorded. 11 3.2.2. Harmful algal blooms When coastal development first escalated, many tourist facilities lacked waste water treatment plants (Jiménez 1998, Cortés & Jiménez 2003, Fernández-García et al. 2012). With changes in land use, nutrient wash-off during rainy season, and seasonal upwelling, nutrients in the bay’s waters and nearby areas increased (Fernández 2007, Sánchez- Noguera 2012a, Stuhldreier et al. 2015a, Alvarado et al. 2018). In consequence, HABs increased in frequency, magnitude and duration along the North Pacific coast of Costa Rica, especially between 2006 and 2009 (Jiménez 2001a, 2007a,b, Morales-Ramírez et al. 2001, Vargas-Montero et al. 2008, Cortés & Reyes-Bonilla 2017, Sánchez-Noguera et al. 2018b). These episodes can induce coral stress, bleaching, and mortality, as well as in fish and other marine taxa (Jiménez 2007a,b, Sánchez-Noguera et al. 2018b), through different mechanisms, such as the reduction of light penetration, direct toxicity, and the decrease in oxygen availability (Guzmán et al. 1990, Bauman et al. 2010). During the continuous episodes of HABs in 2007 in Bahía Culebra, which affected over 100 km of coastline, coral habitats in the bay experienced a most devastating decline in coral cover (Jiménez 2007b). 3.2.3. Coral & benthic composition Once corals died, their skeletons became available space for the recruitment of fleshy and filamentous macroalgae and turf. Both groups thrive in high-nutrient environments, particularly with phosphates and nitrates, which promote and accelerate their growth (Fabricius 2005, Lapointe et al. 2005, De’ath & Fabricius 2010, Fernández-García et al. 2012, Adam et al. 2021). This resulted in their highest cover in the early 2000s (Alvarado et al. 2012, Fernández-García et al. 2012), at the expense of reef-building corals, outcompeted then by algae, which limit –and, in some cases, inhibit– coral larval settlement (McCook et al. 2001, Kuffner et al. 2006, Roth et al. 2018). Hence, rates of coral recruitment are inversely correlated to algal abundance and cover (Kuffner & Paul 2004), which, in the long term, can impede coral reef recovery after disturbance events (Adam et al. 2021). Furthermore, the synergistic effect of fishing pressure caused a decline in the density of herbivores in Bahía Culebra (Dominici-Arosemena et al. 2005, Villalobos-Rojas et al. 2014), therefore reducing top-down control on macroalgae and turf. Thus, previously coral-dominated reefs became dominated by turf and macroalgae, and coral cover decreased from 38.5% in 2006 to 2.5% in 2009 (Sánchez-Noguera 2012a, Alvarado et al. 2012). 12 Another stressor which promoted the decline on live coral cover in the area was the spread of the green invasive macroalgae C. sertularioides (Fernández-García et al. 2012), a well-known species for its invasive-like growth in coastal waters (Meinesz 1999, Lapointe et al. 2005). Even though this macroalgae has historically been found in Bahía Culebra, its densities had always remained low until 2001, when its proliferation began (Fernández 2007). The first rise was recorded in areas where many boats anchored (i.e., Playas del Coco and Ocotal) and close to coastal development like hotels and human communities (Fernández 2007). From there, it began to spread along the bay (Fig. 1.2), particularly where the substrate consisted of Pocillopora spp. fragments, which provide a suitable surface for the attachment of C. sertularioides stolons and rhizoids (Fernández- García et al. 2012). In 2001, several hectares of very dense mats were reported, smothering coral colonies >50 cm in height (Jiménez unpublished data). The maximum peak of C. sertularioides cover was recorded in 2005, when it reached 40% during wet season and 70.7% during the dry upwelling season, with a growth rate of 1.1 cm day-1 (Fernández 2007, Fernández-García et al. 2012), coinciding with the increase in nutrients that occurs in upwelling events (Rixen et al. 2012, Stuhldreier et al. 2015b,c). Additionally, its high asexual reproduction rate through fragmentation and low herbivory rates, partly due to the presence of toxins in its fronds (Doty & Aguilar-Santos 1966, Davis et al. 2005), favored the dispersal and settlement of this macroalgae on the coral areas of the bay (Fernández & Cortés 2005, Fernández 2007). 13 Fig. 1.2. Proliferation and expansion of the macroalgae Caulerpa sertularioides in Bahía Culebra (2001-2014) based on patch size and abundance categories in Fernández 2007. This accelerated spreading caused a 40.5% reduction in the growth rate of P. elegans (Fernández 2007), as C. sertularioides can affect coral growth through different mechanisms: (i) constant abrasion of fronds against coral tissue, which damages it and makes coral polyps retract, thus allocating more energy for tissue repair, and limiting access to energy and metabolites, crucial for non-essential and highly costly physiological processes such as growth (River & Edmunds 2001), (ii) overgrowing of live coral tissue, and (iii) sediment trapping, which decreases available light (Sato 1985, Fabricius 2005). Under these stressful conditions, coral colonies may be partially damaged and eventually die, resulting in a reduction of live coral cover. For instance, the Psammocora-dominated coral reef in Playa Penca lost a 95% of its live coral cover and was reduced to small patches (1-3 m2) found among dead corals and thick beds of C. sertularioides (Bezy et al. 2006). In 2006, the Psammocora reef had completely 14 disappeared (J.J. Alvarado pers. comm.). Thus, where once were coral-dominated environments, a new benthic assemblage established, forming Caulerpa prairies (Alvarado et al. 2018). Such a rapid spreading of a macroalgae, causing abrupt declines in coral cover, was at the time unheard of in the ETP (Bezy et al. 2006). 3.2.4. Diadema mexicanum bioerosion The increase of turf and macroalgae cover resulted in a population explosion of the sea urchin D. mexicanum, due to the additional availability of food sources and strong fishing pressure in the area, which caused a reduction of sea urchin predators (Alvarado et al. 2012, Villalobos-Rojas et al. 2014, Sánchez-Noguera et al. 2018b). The densities of this herbivore bioeroder began to increase in 2009 (over 900% increase since 2006) (Alvarado et al. 2012), not only due to anthropogenic factors but to the 2009-2010 ENSO event, as reported for other areas of the ETP (Eakin 1996, 2001, Alvarado et al. 2012, Glynn & Manzello 2015). The role of sea urchins in coral reef ecology and their carbonate budgets can change in accordance with their density. When sea urchins graze on algae growing on dead coral substrate, they reduce macroalgae and turf cover and facilitate the growth of crustose coralline algae, which promote coral larval recruitment, hence favoring ecosystem recovery (Alvarado et al. 2012, Glynn & Manzello 2015). However, when found in moderate and high densities, they can cause significant erosion of reef framework (from 0.07 to 0.75 kg CaCO3 m -2 yr-1 in Bahía Culebra) (Alvarado et al. 2012, Glynn & Manzello 2015). When their density surpasses 1.5 ind m-2, such as in the case of Bahía Culebra during this period, carbonate balance becomes negative and active bioerosion of reef framework takes place. In consequence, calcareous structures weakened, and reef structural complexity eventually diminished (Alvarado et al. 2012, 2016). 3.3. The degraded period (2010–present) After almost a decade of being affected by several types of disturbances, ecological consequences of coral reef deterioration in Bahía Culebra started being notorious. Effects were seen not only in terms of changes in benthic cover and drastic reductions of live coral cover, but also in the loss of coral reef framework and structural complexity, which in turn affected the different coral-associated communities. 15 3.3.1. Coral & benthic composition The most direct effects of coral reef deterioration in Bahía Culebra were a reduction in live coral cover and the number of coral species. Several rare coral species suffered local extinction (e.g., L. papyracea, C. curvata, P. meandrina), while dominant species in the 1990s were the ones that remained present in the bay’s coral reefs (Sánchez-Noguera 2012a, Sánchez-Noguera et al. 2018b). Additionally, drastic reductions in live coral cover in many coral reefs were reported after the disturbance period: in 2010-2011, live coral cover was between 1-4% (Sánchez-Noguera 2012a), and during 2014-2016, it remained 1.3 ± 2.4% (Arias-Godínez et al. 2019). Most recent reevaluations reveal that live coral cover is currently 1.1 ± 0.7% (Alvarado et al. unpublished data) (Fig. 1.3). While in 2010-2011 the dominant substrate cover was dead coral, which exceeded 85% of total cover in some cases (Sánchez-Noguera 2012a), it was later (2014-2016) replaced by macroalgae, turf and sand (Arias-Godínez et al. 2019). During this period, turf reached 46.1 ± 15.6% of substrate cover in the bay, similar to values reported for reefs in the ETP (Fong et al. 2017), and macroalgae cover (mainly C. sertularioides) was 14.0 ± 7.2% (Alvarado et al. unpublished data). Even though there was an increase in herbivore abundance (Alvarado et al. 2012, Arias-Godínez et al. 2021), the high growth and dispersal rates of C. sertularioides ensured that it remained abundant in many coral reefs in Bahía Culebra and prevailed over coral cover (Arias-Godínez et al. 2019). Thus, the previously reported shifts from coral to macroalgae-dominated ecosystems intensified and took place in most coral reefs in the bay. For instance, the existing Pocillopora spp. reef in Playa Blanca was replaced by extensive mats of C. sertularioides (<60%) (Arias- Godínez 2017). However, C. sertularioides cover has been declining during the last years (2021: 0.8 ± 0.3%), especially after hurricane Otto (2016) and tropical storm Nate (2017) hit the Pacific coast of Costa Rica (J.J. Alvarado pers. comm.) (Fig. 1.3). 16 Fig. 1.3. Mean (±SE) substrate cover (%) in Bahía Culebra from 2013 to 2021 (North Pacific, Costa Rica) in the four reefs surveyed in Jiménez (1998) and Sánchez-Noguera et al. (2018b) (Güiri-Güiri, Punta Esmeralda, Islas Palmitas and Playa Blanca). CCA: Crustose calcareous algae. Moreover, while cyanobacteria were absent in the 1990s, they appeared as a new category of substrate cover during reef evaluations in 2010-2011, although their cover was <1% (Sánchez-Noguera 2012a). While cyanobacteria are a natural component of coral reefs (Charpy et al. 2012), they can form dense and extensive mats in deteriorated reefs. Their presence inhibits coral larval settlement and recruitment, and they can act as pathogens for scleractinian corals, and produce secondary metabolites to deter grazing (Kuffner & Paul 2004, Kuffner et al. 2006, Charpy et al. 2012, Brocke et al. 2015). Hence, when found in high densities, they are considered indicators of nutrient enrichment and declining reef health (Albert et al. 2005, Charpy et al. 2012, Paerl & Paul 2012). Coral mortality in the 2000s also caused a shift on composition and diversity of Pocillopora-associated fauna (i.e., cryptofauna), from obligate symbiotic species to boring opportunistic and facultative species (Salas-Moya et al. 2021). An increase in the abundance of bivalves of the genus Lithophaga (Leiosolenus) can contribute to a rise in internal bioerosion of coral colonies and carbonate substrate, particularly during upwelling season (Wizemann et al. 2018, Salas-Moya et al. 2021), thus weakening the little remaining reef framework. Shifts in cryptofauna communities can be promoted by changes in food resources and chemical cues once coral colonies die (Lecchini et al. 2014, Wee et al. 2019). Furthermore, obligate symbiotic species found in live coral colonies in 17 the early 2000s, such as Trapezia sp. and Alpheus sp., are known for their territorial behavior, which could have prevented the settlement and recruitment of other coral- associated organisms (Tóth & Duffy 2005, Wee et al. 2019), and thus explain the increase of cryptofauna species observed after coral death and reef degradation in Bahía Culebra (Salas-Moya et al. 2021). In the long term, however, species richness will abruptly drop after the high erosion of carbonate structures (Enochs & Manzello 2012a,b). Additionally, such a shift in cryptofauna composition could compromise reef recovery, since they are a key component for host colony health, and the maintenance and recovery of reef framework (Stella et al. 2011, Salas-Moya et al. 2021). 3.3.2. Diadema mexicanum bioerosion After the population explosion in 2009, D. mexicanum densities kept increasing for some years (Fig. 1.4), which produced a subsequent increase in bioerosion rates, from 0.75 CaCO3 m-2 yr-1 in 2009 to 6.95 kg CaCO3 m -2 yr-1 in 2013 (Alvarado et al. 2012, Alvarado et al. unpublished data). Such bioerosion rates exceeded the bioaccretion capacity of coral reefs in Bahía Culebra (<0.01 kg CaCO3 m -2 yr-1), which resulted in a debilitated structure and collapse of the reef (Eakin 2001, Sánchez-Noguera 2012a, Arias- Godínez et al. 2019). For instance, in Playa Blanca, where the highest sea urchin densities (4.12 ± 0.83 ind. m-2) occurred during 2010-2011 surveys (Sánchez-Noguera 2012a, Sánchez-Noguera et al. 2018b), carbonate structure was entirely destroyed, and no reef framework exists nowadays (pers. obs.). The same occurred in other sites, where nearly vertical 1.8 m high coral scarps were grazed away, and reef framework crumbled (C.E. Jiménez pers. comm.). Instead, substrate is now covered in coral rubble and sandy bottoms (Sánchez-Noguera 2012a, Arias-Godínez et al. 2019). When no more carbonate substrate was available to erode, D. mexicanum populations started to decline (Fig. 1.4a), and with them their bioerosive impact, especially in sites where densities were highest, like Playa Blanca (Sánchez-Noguera et al. 2018b, Alvarado et al. unpublished data), potentially allowing for coral recovery (Eakin 2001, Guzmán & Cortés 2007). This follows what has been established in other studies for coral reefs in the ETP (Eakin 1996, 2001). Nevertheless, densities of D. mexicanum are still high in the bay, particularly in reefs where carbonate framework remains, such as Güiri-Güiri, where during 2010-2011, its densities were 0.03 ± 0.01 ind. m-2 (Sánchez-Noguera et al. 2018b), and have increased to 18.1 ± 1.16 ind. m-2 ten years later (Chapter 3), which represents over a 60,000% increase (Fig. 1.4b). 18 Fig. 1.4. Populations of the sea urchin Diadema mexicanum in Bahía Culebra coral reefs over time. (a) Density of D. mexicanum (ind. m-2) from April 2013 to August 2015; (b) Mean (±SE) density of D. mexicanum (ind. m-2) in four surveyed coral reefs in Bahía Culebra, from 2014 to 2019. 3.3.3. Reef fish communities The loss of structural complexity caused by intense sea urchin bioerosion and loss of live coral cover had an effect on reef fish communities in Bahía Culebra (Arias-Godínez et al. 2019, 2021). During 2014-2016 surveys, 56 reef fish species from 24 families were detected, which represents a significant reduction from species richness in the 1990s (78 species from 32 families), and 49% of species sighted in the 1990s were not present in 19 the latter degraded period (Arias-Godínez et al. 2021). Habitat composition and structural complexity are important drivers of reef fish abundance and diversity (Ferrari et al. 2017, Eisele et al. 2021). Habitats with high live coral cover tend to hold a larger diversity and abundance of reef fish, since they provide shelter and different resources, and thus promote species coexistence and key ecological interactions (Gratwicke & Speight 2005, Coker et al. 2012). The severe degradation and phase shift to macroalgal-dominated states suffered by coral reefs in Bahía Culebra implied a reduction of microhabitats and food sources for reef fish (Arias-Godínez et al. 2019), particularly after the invasion of a sole macroalgae species, which could explain the observed reduction in both species diversity and abundance (Arias-Godínez et al. 2019). Coral-dependent species were particularly affected, such as the butterflyfish Chaetodon humeralis (Günther 1860) (Arias-Godínez et al. 2019). These are one of the first groups affected by loss of live coral cover, as they depend on it for feeding and settlement (Graham et al. 2009, Pratchett et al. 2015). Hence, their reduction can be considered an indicator of early coral reef degradation (Pratchett et al. 2006, Flower et al. 2017). Trophic structure of reef fish assemblages from this degraded period suffered a shift from those back in the 1990s (1995-1996). Even though planktivore fish remained as the dominant group, other trophic groups were greatly affected by coral reef degradation, such as coral-dependent omnivore and mesopredator species, which were more abundant on pre-disturbed coral reefs (Arias-Godínez et al. 2021). In fact, over half of the mesopredatory species (57%) detected in the 1990s were not sighted in the 2014- 2016 surveys (Arias-Godínez et al. 2021), including whitetip reef shark T. obesus and scalloped hammerhead shark S. lewini (Arias-Godínez et al. 2019). Their decrease in abundance could be seen as an indicator of strong fishing pressure in the area, since this group is primarily targeted by local fisheries (Villalobos-Rojas et al. 2014, Beita-Jiménez et al. 2019), and potentially declining reef health (Aburto‐Oropeza et al. 2015). Declines in mesopredators and top predators could have had cascading effects on the whole ecosystem (Heithaus et al. 2008, Roff et al. 2016, Sandin et al. 2022), by prey-release mechanisms that led to predominance of lower trophic level consumers (macroalgae- feeders, herbivores-detritivores and invertivores) in the now algae-dominated environments in Bahía Culebra (Arias-Godínez et al. 2021). 20 4. Is recovery possible for coral reefs in Bahía Culebra? Historical insights of ecosystem changes can shed light on factors influencing ecosystem resilience and causing phase shifts among ecological states (Fong et al. 2006). How an ecosystem responded to previous environmental disturbances is particularly relevant considering future global change, in the face of which coral reefs are extremely vulnerable (Knowlton & Jackson 2008, Kittinger et al. 2011, Hughes et al. 2017, Hoegh-Guldberg et al. 2018). Thus, understanding how changing environmental conditions and anthropic disturbances shaped current coral reefs is key in order to implement informed management actions (Bruno et al. 2014, zu Ermgassen et al. 2015). Bahía Culebra is one of the most intensively studied regions in the Pacific coast of Costa Rica (Cortés 2012). Its marine environments, particularly coral reefs, have always received considerable attention for their ecologic and economic resources (Fernández 2007, Sánchez-Noguera 2012a). However, even though the first studies focusing on coral ecosystems occurred previously to intensive coastal development (Cortés & Murillo 1985), human settlement in the bay, and thus disturbances to marine ecosystems, happened centuries before (Sánchez-Noguera 2012b). Hence, even if such studies cannot be considered as historical baselines of pristine coral environments, they were nevertheless carried out before the major and intensive marine degradation that took place in the 2000s. The extreme and rapid degradation observed in Bahía Culebra, with shifts from coral to macroalgal-dominated states (Sánchez-Noguera et al. 2018b, Arias-Godínez et al. 2019), was most likely caused by numerous disturbances acting synergistically and thus diminishing reef resilience (Jiménez 2007a, Sánchez-Noguera et al. 2018b). The combined action of increased nutrients in the water column, HABs, invasion by the macroalgae C. sertularioides, and increased bioerosion triggered a series of reinforcing feedbacks that led to the collapse of coral reefs in less than 15 years (Jiménez 2001a, 2007a, Fernández & Cortés 2005, Fernández 2007, Alvarado et al. 2012, 2016, Sánchez- Noguera 2012a, Graham et al. 2013). This makes it difficult to identify the main drivers of degradation, and which factors have maintained the observed phase shifts and prevented natural ecological recovery. The change in dominance to fleshy macroalgal- states has led to stable regime shifts in other regions (Mumby 2009, Graham et al. 2015, Johns et al. 2018), which made recovery of coral cover to pre-disturbed states impossible. 21 But is the recovery of coral reefs in Bahía Culebra possible or should we lose all hope? Existing evidence points that, after major disturbances, coral recovery can occur in relatively short periods when stressors cease or are managed (Guzmán & Cortés 2001, Emslie et al. 2008, Graham et al. 2011, Gilmour et al. 2013). However, ecosystem recovery is much less likely if live coral cover is <5% and reef framework has collapsed (Graham et al. 2011). This is the exact case of Bahía Culebra’s coral reefs, where coral recruitment, and hence recovery, is limited by different factors. First, macroalgae and turf cover is still high in the bay, inhibiting coral larval settlement (Kuffner et al. 2006, Roth et al. 2018). The loss of carbonate framework due to intense bioerosion further contributes to the limitation of available substrate for coral larvae to recruit (Alvarado et al. 2012, Graham & Nash 2012). Moreover, sexual reproduction rates of the main reef-building coral species of the ETP are lower than in other regions, which directly impacts natural recovery capacity after disturbances (Guzmán & Cortés 2001, Bezy 2009). Successful coral recruitment is essential for ecosystem recovery, and its inhibition or limitation by such factors could prevent reversion from phase shifts (Hughes & Tanner 2000, Kuffner & Paul 2004). It has also been observed that reef recovery tends to be slowest in the ETP, due to its geographic isolation from other oceanographic regions (through the 5,000-8,000 km Central Pacific Barrier) and low functional diversity of corals and reef fish (Graham et al. 2011). Compared to other regions, ETP’s coral reefs are formed by few coral species (Cortés 1997, Veron 2014), which translates to low functional redundancy (de Bakker et al. 2016). Where we can go from here partly depends on management actions taken in order to enhance coral populations in Bahía Culebra and increase their chances of natural recovery. In Costa Rica, most coral reefs and important areas of coral development can be found within protected areas, except for Bahía Culebra (Cortés & Jiménez 2003). This is particularly relevant considering the many reef resources used by different stakeholders in the bay (Jiménez 1997, 1998, 2001, Dominici 1999, Sánchez-Noguera et al. 2012a), which can lead to conflict between users (Sánchez-Noguera et al. 2018b). The bay has no current management plan of its resources, and marine spatial planning is urgently needed in order to regulate marine activities that could potentially clash with coral reef conservation (Naranjo-Arriola 2021). Continuing with existing monitoring programs for stressors such as nutrient concentration, benthic cover of C. sertularioides and turf, and sea urchin populations, requires special attention, since they can serve as early warnings 22 of deterioration (Cooper et al. 2009, Gil et al. 2016, Flower et al. 2017). Nonetheless, while monitoring local stressors in the bay is relevant, upstream and larger-scale stressors that may have caused local coral deterioration require special attention. Integrated management actions like improving the region’s wastewater management and coastal land use are key to decrease HABs’ recurrence and intensity (Palmer et al. 2022). However, the current situation in the bay calls for the implementation of ecological restoration efforts so as to maintain remaining diversity and increase live coral cover back to a threshold where ecosystem functionality is enhanced and effects can be seen on reef- associated communities. Coral reef restoration also allows us to maintain existing genetic diversity and coral populations while climate change and other local and regional anthropic stressors are managed or mitigated (Baums et al. 2019). The recovery of coral reefs, and thus restoration, can potentially provide a wide range of economic benefits due to its impact on ecosystem services, such as fisheries, coastal protection, tourism, and enhanced recreation opportunities (De Groot et al. 2013). Coupled with strong academic research and public enforcement, environmental education and citizen science programs could also increase public awareness and support of coral conservation efforts, long- needed for coral reefs in Bahía Culebra (Dickinson et al. 2012, Hesley et al. 2017). This review sets a guide for coral restoration activities by providing a baseline and describing how coral reefs in Bahía Culebra have responded to past disturbances, and how these have shaped the structure and function of present-day coral reefs. 5. References Aburto‐Oropeza O., Ezcurra E., Moxley J., Sánchez‐Rodríguez A., Mascareñas‐Osorio I., Sánchez‐Ortiz C., Erisman B., Ricketts T. (2015) A framework to assess the health of rocky reefs linking geomorphology, community assemblage, and fish biomass. Ecological Indicators 52: 353-361. Acuña-González J.A., Vargas-Zamora J.A., Gómez-Ramírez E., García-Céspedes J. (2004) Hidrocarburos de petróleo, disueltos y dispersos, en cuatro ambientes costeros de Costa Rica. Revista de Biología Tropical 52(Suppl. 2): 43-50. Adam T.C., Burkepile D.E., Holbrook S.J., Carpenter R.C., Claudet J., Loiseau C., Thiault L., Brooks A.J., Washburn L., Schmitt R.J. (2021) Landscape-scale patterns of nutrient enrichment in a coral reef ecosystem: implications for coral to algae phase shifts. Ecological Applications 31(1): e2227. 23 Ainsworth C.H., Mumby P.J. (2015) Coral-algal phase shifts alter fish communities and reduce fisheries production. Global Change Biology 21(1): 165-172. Albert S., O’Neil J.M., Udy J.W., Ahern K.S., O’Sullivan C.M., Dennison W.C. (2005) Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors. Marine Pollution Bulletin 51(1-4): 428-437. Alvarado J.J., Cortés J., Reyes-Bonilla, H. (2012) Reconstruction of Diadema mexicanum bioerosion impact on three Costa Rican Pacific coral reefs. Revista de Biología Tropical 60(Suppl. 2): 121-132. Alvarado J.J., Cortés J., Guzmám H., Reyes-Bonilla H. (2016) Density, size, and biomass of Diadema mexicanum (Echinoidea) in Eastern Tropical Pacific coral reefs. Aquatic Biology 24: 151-161. Alvarado J.J., Beita-Jiménez A., Mena S., Fernández-García C., Cortés J., Sánchez- Noguera C., Jiménez C., Gumzán-Mora A.G. (2018) Cuando la conservación no puede seguir el ritmo del desarrollo: Estado de salud de los ecosistemas coralinos del Pacífico Norte de Costa Rica. Revista de Biología Tropical 66(Suppl. 1): 280-308. Alvarado J.J., Sánchez-Noguera C., Arias-Godínez G., Araya T., Fernández-García C., Guzmán A.G. (2019) Impact of El Niño 2015-2016 on the coral reefs of the Pacific of Costa Rica: the potential role of marine protection. Revista de Biología Tropical 68(Suppl. 1): 271-282. Arias-Godínez G. (2017) Comparación espacio-temporal de la estructura comunitaria de peces arrecifales en Bahía Culebra, Guanacaste, Costa Rica: 1995-1996 y 2014-2016. MSc Thesis, University of Costa Rica, San José, Costa Rica. Arias-Godínez G., Jiménez C., Gamboa C., Cortés J., Espinoza M., Alvarado J.J. (2019) Spatial and temporal changes in reef fish assemblages on disturbed coral reefs, north Pacific coast of Costa Rica. Marine Ecology 40(1): e12532. Arias-Godínez G., Jiménez C., Gamboa C., Cortés J., Espinoza M., Beita-Jiménez A., Alvarado J.J. (2021) The effect of coral reef degradation on the trophic structure of reef fishes from Bahía Culebra, North Pacific coast of Costa Rica. Journal of Coastal Conservation 25: 8. Baums I.B., Baker A.C., Davies S.W., Grottoli A.G., Kenkel C.D., Kitchen S.A., Kuffner I.B., LaJeunesse T.C., Matz M.V., Miller M.W., Parkinson J.E., Shantz A.A. (2019) 24 Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecological Applications 29(8): e01978. Bauman A.G., Burt J.A., Feary D.A., Marquis E., Usseglio P. (2010) Tropical harmful algal blooms: An emerging threat to coral reef communities? Marine Pollution Bulletin 60(11): 2117-2122. Bezy M.B. (2009). Reproducción sexual y reclutamiento del coral masivo Pavona clavus en Bahía Culebra, Golfo de Papagayo, Costa Rica. MSc Thesis, Universidad de Costa Rica, San José, Costa Rica. Bezy M.B., Jiménez C., Cortés J., Segura A., León A., Alvarado J.J., Gillén C., Mejía E. (2006) Contrasting Psammocora-dominated coral communities in Costa Rica, tropical eastern Pacific. Proceedings of the 10th International Coral Reef Symposium, Okinawa: 376-381. Beebe, W. (1942) Book of Bays. Barcourt, Brace & Company, New York, New York, United States of America. Beita-Jiménez A., Alvarado J.J., Mena S., Guzmán-Mora A.G. (2019) Benefits of protection on reef fish assemblages in a human impacted region in Costa Rica. Ocean and Coastal Management 169: 165-170. Bozec Y.M., Hock K., Mason R.A.B., Baird M.E., Castro-Sanguino C., Condie S.A., Puotinen M., Thompson A., Mumby P.J. (2021) Ecology Monographs 92(1): e01494. Brocke H.J., Polerecky L., de Beer D., Weber M., Claudet J., Nugues MM. (2015) Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs. PLoS ONE 10(5): e0125445. Bruno J.F., Sweatman H., Precht W.F., Selig E.R., Schutte V.G.W. (2009) Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90(6): 1478-1484. Bruno J.F., Precht W.F., Vroom P.S., Aronson R.B. (2014) Coral reef baselines: How much macroalgae is natural? Marine Pollution Bulletin 80(1-2): 24-29. Charpy L., Casareto B.E., Langlade M.J., Suzuki Y. (2012) Cyanobacteria in coral reef ecosystems: A review. Journal of Marine Sciences 2012: 259571. 25 Cheal A.J., MacNeil M.A., Cripps E., Emslie M.J., Jonker M., Schaffelke B., Sweatman H. (2010) Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29: 1005-1015. Cheal A.J., Emslie M., MacNeil M.A., Miller I., Sweatman H. (2013) Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecological Applications 23(1): 174-188. Chong-Seng K.M., Mannering T.D., Pratchett M.S., Bellwood D.R., Graham N.A.J. (2012) The influence of coral reef benthic condition on associated fish assemblages. PLoS ONE 7(8): e42167. Coker D.J., Graham N.A.J., Pratchett M.S. (2012) Interactive effects of live coral and structural complexity on the recruitment of reef fishes. Coral Reefs 31: 919-927. Cooper T.F., Gilmour J.P., Fabricius K.E. (2009) Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral Reefs 28: 589-606. Cortés J. (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16(Suppl.): 36-46 Cortés J. (2012) Historia de la investigación marino-costera en Bahía Culebra, Pacífico Norte, Guanacaste, Costa Rica. Revista de Biología Tropical 60(Suppl. 2): 19-37. Cortés J., Murillo M.M. (1985) Comunidades coralinas y arrecifes del Pacífico de Costa Rica. Revista de Biología Tropical 33(2): 197-202. Cortés J., Guzmán H. (1998) Organismos de los arrecifes coralinos de Costa Rica: descripción, distribución geográfica e historia natural de los corales zooxantelados (Anthozoa: Scleractinia) del Pacífico. Revista de Biología Tropical 46(1): 55-92. Cortés J., Jiménez C. (2003) Corals and coral reefs of the Pacific of Costa Rica: history, research and status. In J. Cortés (Ed.), Latin American Coral Reefs (pp. 361-367). Amsterdam, Netherlands: Elsevier Science. Cortés J., Reyes-Bonilla H. (2017) Human influences on Eastern Tropical Pacific coral communities and coral reefs. In P.W. Glynn, D. Manzello, I. Enochs (Eds.) Coral Reefs of the Eastern Tropical Pacific (pp. 549–563). Coral Reefs of the World, Vol 8. Dordrecht, Netherlands: Springer+Business Media. 26 Cortés J., Murillo M.M., Guzmán H.M., Acuña J. (1984) Pérdida de zooxantelas y muerte de corales y otros organismos arrecifales en el Atlántico y Pacífico de Costa Rica. Revista Biología Tropical 32: 227-231. Cortés J., Jiménez C.E., Fonseca A., Alvarado J.J. (2010) Status and conservation of coral reefs in Costa Rica. Revista de Biología Tropical 58(Suppl. 1): 33-50. Cortés J., Sibaja‐Cordero J., Hernández J., Alvarado J.J., Breedy O., Cruz‐Barraza J.A., Esquivel-Garrote O., Fernández-García C., Hermosillo A., Kaiser K.L., Medina- Rosas P., Morales-Ramírez Á., Pachecho C., Pérez-Matus A., Reyes-Bonilla H., Riosmena-Rodríguez R., Sánchez-Noguera C., Wieters E.A., Zapata, F.A. (2017) Marine biodiversity of the Eastern Tropical Pacific coral reefs. In P. W. Glynn, D. Manzello & I. Enochs (Eds.), Coral reefs of the Eastern Pacific: Persistence and loss in a dynamic environment (pp. 203-250). Dordrecht, Netherlands: Springer Science+Business Media. Davis A.R., Benkendorff K., Ward D.W. (2005) Responses of common SE Australian herbivores to three suspected invasive Caulerpa spp. Marine Biology 146: 859-868. De’ath G., Fabricius K. (2010) Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecological Applications 20(3): 840-50. de Bakker D.M., Meesters E.H., Bak R.P.M., Nieuwland G., van Duyl F.C. (2016) Long- term shifts in coral communities on shallow to deep reef slopes of Curaçao and Bonaire: Are there any winners? Frontiers in Marine Science 3: 247. De Groot R., Blignaut J., van der Ploeg S., Aronson J., Elmqvist T., Farley J. (2013) Benefits of investing in ecosystem restoration. Conservation Biology 27(6): 1286- 1293. Depczynski M., Bellwood D.R. (2004) Microhabitat utilisation patterns in cryptobenthic coral reef fish communities. Marine Biology 145: 455-463. Dickinson J.L., Shirk J., Bonter D., Bonney R., Crain R.L., Martin J., Phillips T., Purcell K. (2012) The current state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment 10(6): 291-297. Dietzel A., Bode M., Connolly S.R., Hughes T.P. (2020) Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef. Proceedings of the Royal Society B 287: 20201432. 27 Dixon A.M., Forster P.M., Heron S.F., Stoner A.M.K., Beger M. (2022) Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Climate 1(2): e0000004. Dominici A. (1999) Estructura poblacional de los peces de arrecife del Golfo de Papagayo, Guanacaste, Costa Rica, con énfasis en las especies de mayor importancia comercial como ornamentales. MSc Thesis, Universidad de Costa Rica, San José, Costa Rica. Dominici‐Arosemena A., Brugnoli‐Oliveira E., Cortés J., Molina‐Ureña H., Quesada‐ Alpizar M. (2005) Community structure of Eastern Pacific reef fishes (Gulf of Papagayo, Costa Rica). Tecnociencia 7: 19-41. Done T.J., DeVantier L.M., Turak E., Fisk D.A., Wakeford M., van Woesik R. (2010) Coral growth on three reefs: development of recovery benchmarks using a space for time approach. Coral Reefs 29: 815-833. Doty M.S., Aguilar-Santos G. (1966) Caulerpicin, a toxic constituent of Caulerpa. Nature 211: 990. Dudgeon S.R., Aronson R.B., Bruno J.F., Precht W.F. (2010) Phase shifts and stable states on coral reefs. Marine Ecology Progress Series 413: 201-216. Eakin C.M. (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982-1983 El Niño at Uva Island, in the eastern Pacific. Coral Reefs 15: 109-119. Eakin C.M. (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bulletin of Marine Science 69(1): 171-186. Eisele M.H., Madrigal-Mora S.M., Espinoza M. (2021) Drivers of reef fish assemblages in an upwelling region from the Eastern Tropical Pacific. Journal of Fish Biology 98(4): 1074-1090. Emslie M.J., Cheal A.J., Sweatman H., Delean S. (2008) Recovery from disturbance of coral and reef fish communities on the Great Barrier Reef, Australia. Marine Ecology Progress Series 371: 177-190. Enochs I.C., Manzello D.P. (2012a) Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31: 653-661. 28 Enochs I.C., Manzello D.P. (2012b) Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 2012: 94-104. Fabricius K.E. (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin 50: 125-46. Fernández C. (2007) Propagación del alga Caulerpa sertularioides (Chlorophyta) en Bahía Culebra, Golfo de Papagayo, Pacífico norte de Costa Rica. MSc Thesis, University of Costa Rica, San José, Costa Rica. Fernández C., Cortés J. (2005) Caulerpa sertularioides, a green alga spreading aggressively over coral reef communities in Culebra Bay, North Pacific of Costa Rica. Coral Reefs 24(Suppl. 1): 10. Fernández-García C., Cortés J., Alvarado J.J., Nívia-Ruiz J. (2012) Physical factors contributing to the benthic dominance of the algae Caulerpa sertularioides (Caulerpaceae, Clorophyta) in the upwelling Bahía Culebra, North Pacific of Costa Rica. Revista de Biología Tropical 60: 93-107. Ferrari R., Malcolm H.A., Byrne M., Friedman A., Williams S.B., Schultz A., Jordan A.R., Figueira W.F. (2017) Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41(7): 1077-1091. Flower J., Ortiz J.C., Chollett I., Abdullah S., Castro‐Sanguino C., Hock K., Lam V., Mumby P.J. (2017) Interpreting coral reef monitoring data: A guide for improved management decisions. Ecological Indicators 72: 848-869. Fong P., Smith T.B., Wartian M.J. (2006) Epiphytic cyanobacteria maintain shifts to macroalgal dominance on coral reefs following ENSO disturbance. Ecology 87(5): 1162-1168. Fong P., Smith TB., Muthukrishnan R. (2017) Algal dynamics: Alternate stable states of reefs in the Eastern Tropical Pacific. In P. W. Glynn, D. Manzello & I. Enochs (Eds.), Coral reefs of the Eastern Pacific: Persistence and loss in a dynamic environment (pp. 339–367). Dordrecht, the Netherlands: Springer Science+Business Media. Fournier M.L. (2004) La Zona Marino-Costera. Décimo Informe Estado de la Nación. San José, Programa Estado de la Nación y Biosfera Consultores S.A./IRET-UNA. 29 Fraser C.M. (1943) General account of the scientific work of the Velero III in the eastern Pacific, 1931-1941, Part II: Geographic and biological associations. Allan Hancock Pacific Expeditions 1: 49-258. Fung T., Seymour R.M., Johnson C.R. (2011) Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology 92(4): 967-982. García V., Acuña-González J., Vargas-Zamora J.A., García-Céspedes J. (2006) Calidad bacteriológica y desechos sólidos en cinco ambientes costeros de Costa Rica. Revista de Biología Tropical 54(Suppl. 1): 35-48. García-Céspedes J., Acuña-González J.A., Vargas-Zamora J.A. (2004) Metales traza en sedimentos de cuatro ambientes costeros de Costa Rica. Revista de Biología Tropical 52(Suppl. 2): 51-60. Gil M.A., Goldenberg S.U., Ly Thai Bach A., Mills S.C., Claudet J. (2016) Interactive effects of three pervasive marine stressors in a post-disturbance coral reef. Coral Reefs 35: 1281-1293. Gilmour J.P., Smith L.D., Heyward A.J., Bairdand A.H., Pratchett M.S. (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340(6128): 69- 71. Glynn P.W. (1974) Rolling stones among the Scleractinia: Mobile coraliths in the Gulf of Panama. Proceedings of the 2nd International Coral Reef Symposium, Great Barrier Reef 1: 183-198, Glynn P.W. (1984) Widespread coral mortality and the 1982-83 El Niño warming event. Environmental Conservation 11(2): 133-146. Glynn P.W., Druffel E., Dunbar R. (1983) A dead Central American coral reef tract: possible link with the Little Ice Age. Journal of Marine Research 41: 605-637. Glynn P.W., Manzello D.P. (2015) Bioerosion and Coral Reef Growth: A Dynamic Balance. In: C. Birkeland (Ed.), Coral Reefs in the Anthropocene. Dordrecht, the Netherlands: Springer.Glynn P.W., Druffel E.M., Dunbar R.B. (1983) A dead Central American coral reef tract: Possible link with the Little Ice Age. Journal of Marine Research 41: 605-637. 30 Glynn P.W., Enochs I.C., Afflerbach J.A., Brandtneris V.W., Serafy J.E. (2014) Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Marine Ecology Progress Series 495: 233-247. Glynn P.W., Riegl B., Purkis S., Kerr J.M., Smith T.B. (2015) Coral reef recovery in the Galápagos Islands: the northernmost islands (Darwin and Wenman). Coral Reefs 34: 421-436. Glynn P.W., Alvarado J.J., Banks S., Cortés J., Feingold J.S., Jiménez C., Maragos J.E., Martínez P., Maté J.L., Moanga D.A., Navarrete S., Reyes-Bonilla H., Riegl B., Rivera F., Vargas-Ángel B., Wieters E.A., Zapata F.A. (2017) Eastern Pacific coral reef provinces, coral community structure and composition: an overview. In P.W. Glynn, D. Manzello & I. Enochs (Eds.), Coral reefs of the Eastern Pacific: Persistence and loss in a dynamic environment (pp. 107-176). Dordrecht, the Netherlands: Springer Science+Business Media. Godfray H.C.J., May R.M. (2014) Open questions: are the dynamics of ecological communities predictable? BMC Biology 12: 12-14. Graham N.A.J, Nash K.L. (2012) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32: 315-326. Graham N.A.J., Wilson S.K., Pratchett M.S., Polunin N.V.C., Spalding M.D. (2009) Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodiversity and Conservation 18: 3325-3336. Graham N.A.J., Nash K.L., Ko