dc.creator | Cariñena Marzo, José F. | |
dc.creator | Clemente Gallardo, Jesús | |
dc.creator | Follana, Eduardo | |
dc.creator | Gracia Bondía, José M. | |
dc.creator | Rivero, Alejandro | |
dc.creator | Várilly Boyle, Joseph C. | |
dc.date.accessioned | 2022-12-01T15:57:19Z | |
dc.date.available | 2022-12-01T15:57:19Z | |
dc.date.issued | 1999-12 | |
dc.identifier.citation | https://www-sciencedirect-com/science/article/pii/S039304409800028X | es_ES |
dc.identifier.issn | 0393-0440 | |
dc.identifier.uri | https://hdl.handle.net/10669/87831 | |
dc.description.abstract | We address one of the open problems in quantization theory recently listed by Rieffel. By developing in detail Connes' tangent groupoid principle and using previous work by Landsman, we show how to construct a strict flabby quantization, which is moreover an asymptotic morphism and satisfies the reality and traciality constraints, on any oriented Riemannian manifold. That construction generalizes the standard Moyal rule. The paper can be considered as an introduction to quantization theory from Connes' point of view. | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | CC0 1.0 Universal | * |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Journal of Geometry and Physics, vol.32(2), pp.79-96 | es_ES |
dc.subject | geometría no conmutativa | es_ES |
dc.subject | grupoide tangente | es_ES |
dc.subject | cuantización de Moyal | es_ES |
dc.subject | MATEMÁTICAS | es_ES |
dc.title | Connes' tangent groupoid and strict quantization | es_ES |
dc.type | artículo científico | es_ES |
dc.identifier.doi | 10.1016/S0393-0440(98)00028-X | |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Física | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |