Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Repositorio Kérwá
  • Investigación
  • Ciencias básicas
  • Matemática
  • Ver ítem
  •   Repositorio Kérwá
  • Investigación
  • Ciencias básicas
  • Matemática
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of a vorticity–based fully–mixed formulation for 3D Brinkman–Darcy problem.

artículo científico
Thumbnail
Ver/
M. Álvarez, G.N. Gatica and R. Ruiz-Baier. Analysis of a vorticity–based fully–mixed formulation for 3D Brinkman–Darcy problem. Computer Methods in Applied Mechanics and Engineering, vol. 307, pp. 68-95, (2016). (2.053Mb)
Fecha
2016
Autor
Álvarez Guadamuz, Mario Andrés
Gatica Pérez, Gabriel Nibaldo
Ruiz Baier, Ricardo
Metadatos
Mostrar el registro completo del ítem
Resumen
We propose and analyze a fully-mixed finite element method to numerically approximate the flow patterns of a viscous fluid within a highly permeable medium (an array of low concentration fixed particles), described by Brinkman equations, and its interaction with non-viscous flow within classical porous media governed by Darcy’s law. The system is formulated in terms of velocity and pressure in the porous medium, together with vorticity, velocity and pressure of the viscous fluid. In addition, and for sake of the analysis, the tangential component of the vorticity is supposed to vanish on the whole boundary of the Brinkman domain, whereas null normal components of both velocities are assumed on the respective boundaries, except on the interface where suitable transmission conditions are considered. In this way, the derivation of the corresponding mixed variational formulation leads to a Lagrange multiplier enforcing the pressure continuity across the interface, whereas mass balance results from essential boundary conditions on each domain. As a consequence, a typical saddle-point operator equation is obtained, and hence the classical Babuˇska–Brezzi theory is applied to establish the well-posedness of the continuous and discrete schemes. In particular, we remark that the continuous and discrete inf–sup conditions of the main bilinear form are proved by using suitably chosen injective operators to get lower bounds of the corresponding suprema, which constitutes a previously known technique, recently denominated T -coercivity. In turn, and consistently with the above, the stability of the Galerkin scheme requires that the curl of the finite element subspace approximating the vorticity be contained in the space where the discrete velocity of the fluid lives, which yields Raviart–Thomas and Nédélec finite element subspaces as feasible choices. Then we show that the aforementioned constraint can be avoided by augmenting the mixed formulation with a residual arising from the Brinkman momentum equation. Finally, several We propose and analyze a fully-mixed finite element method to numerically approximate the flow patterns of a viscous fluid within a highly permeable medium (an array of low concentration fixed particles), described by Brinkman equations, and its interaction with non-viscous flow within classical porous media governed by Darcy’s law. The system is formulated in terms of velocity and pressure in the porous medium, together with vorticity, velocity and pressure of the viscous fluid. In addition, and for sake of the analysis, the tangential component of the vorticity is supposed to vanish on the whole boundary of the Brinkman domain, whereas null normal components of both velocities are assumed on the respective boundaries, except on the interface where suitable transmission conditions are considered. In this way, the derivation of the corresponding mixed variational formulation leads to a Lagrange multiplier enforcing the pressure continuity across the interface, whereas mass balance results from essential boundary conditions on each domain. As a consequence, a typical saddle-point operator equation is obtained, and hence the classical Babuˇska–Brezzi theory is applied to establish the well-posedness of the continuous and discrete schemes. In particular, we remark that the continuous and discrete inf–sup conditions of the main bilinear form are proved by using suitably chosen injective operators to get lower bounds of the corresponding suprema, which constitutes a previously known technique, recently denominated T -coercivity. In turn, and consistently with the above, the stability of the Galerkin scheme requires that the curl of the finite element subspace approximating the vorticity be contained in the space where the discrete velocity of the fluid lives, which yields Raviart–Thomas and Nédélec finite element subspaces as feasible choices. Then we show that the aforementioned constraint can be avoided by augmenting the mixed formulation with a residual arising from the Brinkman momentum equation. Finally, several numerical examples illustrating the satisfactory performance of the methods and confirming the theoretical rates of convergence are reported.
URI
https://hdl.handle.net/10669/87673
External link to the item
10.1016/j.cma.2016.04.017
https://www.sciencedirect.com/science/article/abs/pii/S0045782516302092?via%3Dihub
Colecciones
  • Matemática [191]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contacto | Sugerencias
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Listar

Todo KérwáComunidades & ColeccionesTítulosAutoresMateriasPor procedenciaPor tipoEsta colecciónTítulosAutoresMateriasPor procedenciaPor tipo

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contacto | Sugerencias
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.