Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Kérwá Home
  • Investigación
  • Ciencias básicas
  • Matemática
  • View Item
  •   Kérwá Home
  • Investigación
  • Ciencias básicas
  • Matemática
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of a semi-augmented mixed finite element method for double-diffusive natural convection in porous media

artículo científico
Thumbnail
View/Open
M. Álvarez, E. Colmenares, and F.A. Sequeira. Analysis of a semi-augmented mixed finite element method for double-diffusive natural convection in porous media. Computers and Mathematics with Applications, vol. 114(2022), pp. 112– 131. (1.708Mb)
Date
2022-05-15
Author
Álvarez Guadamuz, Mario Andrés
Colmenares García, Eligio Antonio
Sequeira Chavarría, Filander A.
Metadata
Show full item record
Abstract
In this paper we study a stationary double-diffusive natural convection problem in porous media given by a Navier-Stokes/Brinkman type system, for describing the velocity and the pressure, coupled to a vector advection-diffusion equation relate to the heat and substance concentration, of a viscous fluid in a porous media with physical boundary conditions. The model problem is rewritten in terms of a first-order system, without the pressure, based on the introduction of the strain tensor and a nonlinear pseudo-stress tensor in the fluid equations. After a variational approach, the resulting weak model is then augmented using appropriate redundant penalization terms for the fluid equations along with a standard primal formulation for the heat and substance concentration. Then, it is rewritten as an equivalent fixed-point problem. Well-posedness results for both the continuous and the discrete schemes are stated, as well as the respective convergence result under certain regularity assumptions combined with the Lax-Milgram theorem, and the Banach and Brouwer fixed-point theorems. In particular, Raviart-Thomas elements of order k are used for approximating the pseudo-stress tensor, piecewise polynomials of degree ≤k and ≤k+1 are utilized for approximating the strain tensor and the velocity, respectively, and the heat and substance concentration are approximated by means of Lagrange finite elements of order ≤k+1. Optimal a priori error estimates are derived and confirmed through some numerical examples that illustrate the performance of the proposed semi-augmented mixed-primal scheme.
URI
https://hdl.handle.net/10669/87544
External link to the item
10.1016/j.camwa.2022.03.032
https://www.sciencedirect.com/science/article/abs/pii/S0898122122001225?via%3Dihub#!
Collections
  • Matemática [188]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Browse

All of KérwáCommunities & CollectionsTitlesAuthorsSubjectsProcedenceTypeThis CollectionTitlesAuthorsSubjectsProcedenceType

My Account

LoginRegister

Statistics

View Usage Statistics

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.