Show simple item record

dc.creatorAnaya Domínguez, Verónica
dc.creatorCaraballo, Rubén
dc.creatorGómez Vargas, Bryan Andrés
dc.creatorMora Herrera, David
dc.creatorRuiz Baier, Ricardo
dc.date.accessioned2022-04-20T17:00:12Z
dc.date.available2022-04-20T17:00:12Z
dc.date.issued2021
dc.identifier.citationhttps://link.springer.com/article/10.1007/s10092-021-00433-6es_ES
dc.identifier.issn0008-0624
dc.identifier.issn1126-5434
dc.identifier.urihttps://hdl.handle.net/10669/86465
dc.description.abstractWe propose and analyse an augmented mixed finite element method for the Oseen equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and homogeneous Dirichlet boundary condition for the velocity. The weak formulation includes least-squares terms arising from the constitutive equation and from the incompressibility condition, and we show that it satisfies the hypotheses of the Babuška-Brezzi theory. Repeating the arguments of the continuous analysis, the stability and solvability of the discrete problem are established. The method is suited for any Stokes inf-sup stable finite element pair for velocity and pressure, while for vorticity any generic discrete space (of arbitrary order) can be used. A priori and a posteriori error estimates are derived using two specific families of discrete subspaces. Finally, we provide a set of numerical tests illustrating the behaviour of the scheme, verifying the theoretical convergence rates, and showing the performance of the adaptive algorithm guided by residual a posteriori error estimationes_ES
dc.description.sponsorshipUniversidad del Bio-Bio/[2020127 IF/R]//Chilees_ES
dc.description.sponsorshipUniversidad del Bio-Bio/[194608 GI/C]//Chilees_ES
dc.description.sponsorshipFondo Nacional de Desarrollo Científico y Tecnológico/[1211265]/FONDECYT/Chilees_ES
dc.description.sponsorshipFondo Nacional de Desarrollo Científico y Tecnológico/[AFB170001]/FONDECYT/Chilees_ES
dc.description.sponsorshipFondo Nacional de Desarrollo Científico y Tecnológico/[S05802-3951284]/FONDECYT/Chilees_ES
dc.description.sponsorshipHPC-Europa3 Transnational Access programme/[HPC175QA9K]/HPC-Europa3/Españaes_ES
dc.description.sponsorshipMinistry of Science and Higher Education of the Russian Federation/[075-15-2020-926]//Rusiaes_ES
dc.language.isoenges_ES
dc.sourceCalcolo, vol.58(4), pp.1-25.es_ES
dc.subjectOseen equationses_ES
dc.subjectVelocity-vorticity-pressure formulationes_ES
dc.subjectMixed finite element methodses_ES
dc.subjectVariable viscosityes_ES
dc.subjectA priori and a posteriori error analysises_ES
dc.subjectAdaptive mesh refinementes_ES
dc.titleVelocity‑vorticity‑pressure formulation for the Oseen problem with variable viscosityes_ES
dc.typeartículo científicoes_ES
dc.identifier.doi10.1007/s10092-021-00433-6
dc.description.procedenceUCR::Sedes Regionales::Sede de Occidentees_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record