Show simple item record

dc.creatorAntei, Marco
dc.creatorEmsalem, Michel
dc.date.accessioned2021-11-24T20:07:34Z
dc.date.available2021-11-24T20:07:34Z
dc.date.issued2018
dc.identifier.citationhttps://www.cambridge.org/core/journals/nagoya-mathematical-journal/article/models-of-torsors-and-the-fundamental-group-scheme/6CCB905236E4D15B0EE6136E486914F9
dc.identifier.issn2152-6842
dc.identifier.urihttps://hdl.handle.net/10669/85333
dc.description.abstractGiven a relative faithfully at pointed scheme over the spectrum of a discrete valuation ring X !S, this paper is motivated by the study of the natural morphism from the fundamental group scheme of the generic ber X to the generic ber of the fundamental group scheme of X. Given a torsor T !X under an a ne group scheme G over the generic ber of X, we address the question of nding a model of this torsor over X, focusing in particular on the case where G is nite. We provide several answers to this question, showing for instance that, when X is integral and regular of relative dimension 1, such a model exists on some model X0 of X obtained by performing a nite number of N eron blowups along a closed subset of the special ber of X. Furthermore, we show that when G is etale, then we can nd a model of T !X under the action of some smooth group scheme. In the rst part of the paper, we show that the relative fundamental group scheme of X has an interpretation as the Tannaka Galois group of a Tannakian category constructed starting from the universal torsor.es_ES
dc.language.isoenges_ES
dc.sourceNagoya Mathematical Journal, vol.230, pp.18-34es_ES
dc.subjectTorsores_ES
dc.subjectFundamental group schemees_ES
dc.subjectModelses_ES
dc.titleModels of torsors and the fundamental group schemees_ES
dc.typeartículo científico
dc.identifier.doi10.1017/nmj.2016.67
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record