Show simple item record

dc.creatorKesler, Robert
dc.creatorLacey, Michael T.
dc.creatorMena Arias, Darío Alberto
dc.date.accessioned2021-11-12T17:06:54Z
dc.date.available2021-11-12T17:06:54Z
dc.date.issued2020
dc.identifier.citationhttps://msp.org/paa/2020/2-1/p04.xhtml
dc.identifier.issn2578-5885
dc.identifier.urihttps://hdl.handle.net/10669/85154
dc.description.abstractWe prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arc components. The efficiency arises as one only needs a single estimate on each element of the decomposition.es_ES
dc.language.isoenges_ES
dc.sourcePure and Applied Analysis, vol.2(1), pp.75-92es_ES
dc.subjectSparsees_ES
dc.subjectDiscretees_ES
dc.subjectSpherical averagees_ES
dc.titleSparse bounds for the discrete spherical maximal functionses_ES
dc.typeartículo científico
dc.identifier.doi10.2140/paa.2020.2.75
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)es_ES


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record