Show simple item record

dc.creatorHernández Alvarado, Alberto José
dc.date.accessioned2021-11-04T21:09:53Z
dc.date.available2021-11-04T21:09:53Z
dc.date.issued2020
dc.identifier.citationhttps://arxiv.org/abs/2005.00860
dc.identifier.urihttps://hdl.handle.net/10669/85068
dc.description.abstractIn this paper we explore minimum odd and minimum even depth sub- algebra pairs in the context of double cross products of finite dimensional Hopf algebras. We start by defining factorization algebras and outline how subring depth in this context relates with the module depth of the regular left module representation of the given subalgebra. Next we study minimum odd depth for double cross product Hopf subalgebras and determine their value in terms of their related module depth, we conclude that minimum odd depth of Drinfel’d double Hopf subalgebras is 3. Finaly we produce a necessary and sufficient condition for depth 2 in double cross product Hopf subalgebra extensions. This sufficient condition is then used to prove results regarding minimum depth 2 in Drinfel’d double Hopf subalgebras, particu- larly in the case of finite Group Hopf algebras. Lastly we provide formulas for the centralizer of a normal Hopf subalgebra in a double cross product scenario.es_ES
dc.language.isoenges_ES
dc.sourceArxives_ES
dc.subjectSubring depthes_ES
dc.subjectHopf subalgebrases_ES
dc.subjectDouble cross product Hopf algebrases_ES
dc.subjectDrinfel'd doublees_ES
dc.titleMinimum depth of double cross product extensionses_ES
dc.typepreprint
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record