dc.creator Hernández Alvarado, Alberto José dc.date.accessioned 2021-11-04T21:09:53Z dc.date.available 2021-11-04T21:09:53Z dc.date.issued 2020 dc.identifier.citation https://arxiv.org/abs/2005.00860 dc.identifier.uri https://hdl.handle.net/10669/85068 dc.description.abstract In this paper we explore minimum odd and minimum even depth sub- algebra pairs in the context of double cross products of finite dimensional Hopf algebras. We start by defining factorization algebras and outline how subring depth in this context relates with the module depth of the regular left module representation of the given subalgebra. Next we study minimum odd depth for double cross product Hopf subalgebras and determine their value in terms of their related module depth, we conclude that minimum odd depth of Drinfel’d double Hopf subalgebras is 3. Finaly we produce a necessary and sufficient condition for depth 2 in double cross product Hopf subalgebra extensions. This sufficient condition is then used to prove results regarding minimum depth 2 in Drinfel’d double Hopf subalgebras, particu- larly in the case of finite Group Hopf algebras. Lastly we provide formulas for the centralizer of a normal Hopf subalgebra in a double cross product scenario. es_ES dc.language.iso eng es_ES dc.source Arxiv es_ES dc.subject Subring depth es_ES dc.subject Hopf subalgebras es_ES dc.subject Double cross product Hopf algebras es_ES dc.subject Drinfel'd double es_ES dc.title Minimum depth of double cross product extensions es_ES dc.type preprint dc.description.procedence UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA) es_ES dc.description.procedence UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática es_ES
﻿