Educación física y recreación
URI permanente para esta colección
Examinar
Examinando Educación física y recreación por Tipo "conjunto de datos"
Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
Ítem Base de datos para Evaluation of Conventional and New Maximum Heart Rate Prediction Models for Individuals(2022-08) Aragón Vargas, Luis Fernando; Schork, Anthony M.; Edington, DeeEsta base de datos corresponde al estudio "Evaluation of Conventional and New Maximum Heart Rate Prediction Models for Individuals". Se depuró para que sirva de conjunto de datos para hacer cálculos de regresión simple y múltiple como ejercicio de estadística. La metodología para la recolección de datos se describe en el estudio original, disponible en https://hdl.handle.net/10669/8948Ítem Base de datos para Medición del gasto energético real por usar un producto comercial para ejercitarse en el hogar(2021-04-30) Montoya Arroyo, Johnny Alberto; Ramírez Cambronero, Jimena; Aragón Vargas, Luis FernandoBase de datos para Medición del gasto energético real por usar un producto comercial para ejercitarse en el hogarÍtem Base de datos para Percepción de la sed durante el ejercicio y en la rehidratación ad libitum post ejercicio en calor húmedo y seco(2020) Capitán Jiménez, Catalina; Aragón Vargas, Luis FernandoBase de datos que acompaña una publicación previa. Capitán-Jiménez, C. y Aragón-Vargas, L.F. (2018). Percepción de la sed durante el ejercicio y en la rehidratación ad libitum postejercicio en calor húmedo y seco. Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 16(2), 1-18. Este estudio experimental fue diseñado para evaluar durante el ejercicio y la rehidratación ad libitum postejercicio si las percepciones subjetivas de sed y calor, así como la ingesta voluntaria de agua, son distintas en dos condiciones ambientales diferentes, pero equivalentes en cuanto al índice de estrés térmico. Métodos: 14 participantes se ejercitaron en dos ocasiones en un cuarto de clima controlado (WBGT≈28.5°C): una vez para el calor seco (SECO, TBS=33.8°C, HR=53%) y una para el calor húmedo (HUM, TBS=32.1°C y HR=67 %), sin ingesta de fluidos, hasta alcanzar una deshidratación equivalente al 4 % MC. Las percepciones de sed, calor, llenura y cólico se midieron cada 30 min durante el ejercicio. Posteriormente, ingirieron agua ad libitum durante 90 minutos. También se midió la ingesta voluntaria de agua. Resultados: Durante el ejercicio, la percepción de sed fue la misma para ambas condiciones (SECO 64.44±23.38, HUM 67.32±20.41mm; p=0.409), pero aumentó con el tiempo (p=0.0001). Lo mismo ocurrió con la percepción de calor: no hubo diferencia entre las condiciones (SECO 6.34±0.50, HUM 6.40±0.37ua; p=0.423), pero aumentó a través del tiempo (p=0.001). Al final de la rehidratación, la percepción de calor fue mayor para el calor seco (5.3 ± 0.2ua) que para el calor húmedo (4.7 ± 0.2ua, p=0.006). La sed al final del ejercicio (85.8 ± 19.4mm) no mostró correlación significativa con la deshidratación real (3.82 ± 0.18% MC, r=-0.14, p=0.48) ni con el consumo voluntario de agua (1843 ± 587 ml, r=-0.04, p=0.85). No hubo correlación entre la pérdida de sudor real (2766 ± 700 ml) y la ingesta voluntaria de agua (r=0.16, p=0.42). La asociación entre el balance neto de fluidos y la percepción de la sed fue de R2a= 0.70 (p=0.001). Conclusiones: la percepción de sed y calor fue la misma cuando se realizó ejercicio en dos condiciones ambientales diferentes con el mismo nivel de estrés térmico. La escala de percepción de la sed fue capaz de detectar la deshidratación progresiva consistentemente: cuanto mayor fue la deshidratación en el tiempo, mayor fue la sed. Sin embargo, los resultados de este estudio no apoyan la teoría de que la ingesta voluntaria de agua es adecuada para reponer las pérdidas de sudor después del ejercicio.Ítem Data base: the acute effect of strength training on running speed performance: a meta-analysis(2023-05) Barquero Jiménez, José Francisco; Salazar Rojas, Wálter; Jiménez Díaz, JudithBackground: Acute and chronic resistance training increases sprint performance. The long-term positive effect of resistance training on sprint performance is well known; however, there is no consensus regarding the acute effect. Therefore, this meta-analysis aimed to determine the acute effect of resistance training on running sprint performance and to identify potential moderator variables. Methods: This meta-analysis followed the PRISMA statement for reporting systematic reviews and meta-analysis. The literature search was performed on the electronic databases: PubMed, Web of Science, and EBSCOHost (including Sport Discus with Full Text, Academic Search Ultimate, and MEDLINE with Full Text). Fifteen studies met the eligibility criteria. Meta-regression analysis was computed on selected moderator variables. Results: The pooled effect size for resistance training was statistically significant, small, and positive on enhancing speed performance (ES= 0.124; CI95%= 0.02 to 0.227; n= 117; I2= 56.5; Q= 266.64; p< 0.01), while in the control condition, non-significant, and trivial effect size were observed (ES= -0.053; CI95%= -0.180 to 0.074; n= 40; I2= 0; Q= 33.49; p= 0.72). Sprint performance was influenced by the moderator variables of intensity (p= 0.028; R2= 6.41%), volume (p< 0.001; R2= 21.17%), training load (p= 0.002; R2= 14.35%), repetitions per set (p= 0.008; R2= 6.28%), and time from warm-up to pre-test (p≤ 0.001; R2= 34.93%). Conclusions: Acute resistance training increases sprint performance. The effect is augmented when the resistance training includes a moderate intensity, high training volume, high repetitions per set, and shorter times from the warm-up to the pre-test.Ítem Database for Awareness of water losses does not impact thirst during exercise in the heat: a double-blind study(2021-06) Capitán Jiménez, Catalina; Aragón Vargas, Luis FernandoRaw data for the manuscript Awareness of water losses does not impact thirst during exercise in the heat: a double-blind studyÍtem Database for Refining music tempo for an ergogenic effect on stationary cycling exercise(2020) Aburto Corona, Jorge Alberto; Aragón Vargas, Luis FernandoDatabase to accompany a previous publication. Aburto Corona, J., & Aragón Vargas, L.F. (2017). REFINING MUSIC TEMPO FOR AN ERGOGENIC EFFECT ON STATIONARY CYCLING EXERCISE. Pensar En Movimiento: Revista De Ciencias Del Ejercicio Y La Salud, 15(2), e28390. https://doi.org/10.15517/pensarmov.v15i2.28390 The effect of music on exercise performance has been studied from many perspectives, but the results have not been as clear as expected, probably because of a lack of appropriate controls. The purpose of this study was to measure stationary cycling performance in a warm environment under carefully controlled conditions, modifying only the presence of music and its tempo. Ten physically active students, 24.5±3.6 years (mean±SD) selected their favorite exercise music and performed a maximum cycling test. During subsequent visits to the laboratory, they pedaled at their preferred speed against a constant resistance (70% of maximum) in an environmentally controlled chamber (28.6±0.5 °C db and 65±3% rh) for 30 min, on three different days, without music (NM), medium tempo music (MT-120 bpm) or fast tempo music (FT-140 bpm), in random order. Perceived exertion (PE), heart rate (HR) and total work performed (W) were recorded. There was no significant difference among conditions for PE (4.47±1.52; 4.22±1.5; 3.83±2.06 a.u. for NM, MT and FT, respectively, p=.162) or HR (142.4±24.53; 142.6±24.37; 142.9±18.36 bpm for NM, MT and FT, respectively, p=.994), but W was different (43.4±19.02; 46.1±20.34; 47.1±20.97, kJ for NM, MT and FT, respectively, p=.009); post-hoc analysis showed that the W difference was only between FT and NM. Using individually selected preferred music in a carefully controlled environment, participants improved their spontaneous cycling performance only when the music had a fast tempo of 140 bpm.Ítem Database for Thirst response to post-exercise fluid replacement needs and controlled drinking(2020) Capitán Jiménez, Catalina; Aragón Vargas, Luis FernandoDataset to accompany a previous publication. Capitán-Jiménez, C. & Aragón-Vargas, L.F. (2016). Thirst Response to Post-Exercise Fluid Replacement Needs and Controlled Drinking. Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 14(2), 1-16. Perceived thirst (TP) was evaluated as a dependent variable: can it distinguish among several levels of acute dehydration, is it reliable, and how does it respond to the ingestion of a fixed water volume post exercise? In a repeated-measures design, eight physically active students (24.5±3.6 years, mean±SD), reported to the laboratory on four non-consecutive days. They remained at rest or exercised at 32±3°C db and 65±6% rh to a randomly assigned dehydration equivalent to 1, 2, and 3% of body mass (BM). Following exercise, participants ingested a fixed water volume of 1.20% BM in 30 minutes; urine output, TP and plasma volume changes were assessed every 30 minutes over 3 hours. Post-exercise TP was not different before and after showering (p = 0.860), but it was significantly different among conditions (TP = 2.50 ± 0.45, 4.44 ± 0.72, 6.38 ± 0.82, and 8.63 ± 0.18 for 0, 1, 2, and 3% BM, p = 0.001). TP was associated with net fluid balance (rpart = -0.62, p < 0.0001) but, soon after drinking, TP was the same regardless of dehydration (p > 0.05). Thirst perception is valid and reliable in the absence of drinking but it responds inappropriately to water intake.Ítem Dataset for experiment 1 of A novel validation approach shows new, solid reasons why vertical jump height should not be used to predict leg power(2023-08-16) Aragón Vargas, Luis Fernando; González Lutz, María IsabelJump height continues to be widely used to predict power in humans. Individual progress is often monitored on the basis of estimated power, but prediction equations are based on group data. The objective of the study was to show that vertical jump performance (VJP) and mechanical power are poorly associated, particularly within individuals. Two experiments are presented. First, 52 physically active male college students performed five maximal vertical jumps each. Second, three young male participants performed 50 maximal jumps each. Participants rested for 1 minute between jumps. VJP was calculated from kinematic data as peak body center of mass (BCOM) minus standing BCOM; peak power (PEAKPWR) was calculated from the vertical ground reaction force registered by a force plate, and average power (MEANPWR) during propulsion from the change in potential energy of BCOM. Regression analyses were performed using standardized VJP scores as the predictor variable and standardized power scores as the resulting variables, expecting an identity function of y = x (intercept = 0, slope = 1) and R2 = 1. In experiment 1, the model for zPEAKPWR R2 = 0.9707 (p < 0.0001) but slope (0.3452) ≠ 1 (p < 0.0001). The model for zMEANPWR R2 = 0.9239 (p < 0.0001); nevertheless, slope (0.4257) ≠ 1 (p < 0.0001). In experiment 2, all individual models for zPEAKPWR and zMEANPWR resulted in poor associations (R2 ≤ 0.21) and slopes ≠ 1 (p≤0.001). In conclusion, regression analysis for individuals, and even for groups, confirms that VJP is a poor predictor of mechanical power. This is dataset #1 used for these calculations.Ítem Dataset for experiment 2 of A novel validation approach shows new, solid reasons why vertical jump height should not be used to predict leg power(2023-08-16) Aragón Vargas, Luis Fernando; González Lutz, María IsabelJump height continues to be widely used to predict power in humans. Individual progress is often monitored on the basis of estimated power, but prediction equations are based on group data. The objective of the study was to show that vertical jump performance (VJP) and mechanical power are poorly associated, particularly within individuals. Two experiments are presented. First, 52 physically active male college students performed five maximal vertical jumps each. Second, three young male participants performed 50 maximal jumps each. Participants rested for 1 minute between jumps. VJP was calculated from kinematic data as peak body center of mass (BCOM) minus standing BCOM; peak power (PEAKPWR) was calculated from the vertical ground reaction force registered by a force plate, and average power (MEANPWR) during propulsion from the change in potential energy of BCOM. Regression analyses were performed using standardized VJP scores as the predictor variable and standardized power scores as the resulting variables, expecting an identity function of y = x (intercept = 0, slope = 1) and R2 = 1. In experiment 1, the model for zPEAKPWR R2 = 0.9707 (p < 0.0001) but slope (0.3452) ≠ 1 (p < 0.0001). The model for zMEANPWR R2 = 0.9239 (p < 0.0001); nevertheless, slope (0.4257) ≠ 1 (p < 0.0001). In experiment 2, all individual models for zPEAKPWR and zMEANPWR resulted in poor associations (R2 ≤ 0.21) and slopes ≠ 1 (p≤0.001). In conclusion, regression analysis for individuals, and even for groups, confirms that VJP is a poor predictor of mechanical power. This is DATASET #2 used for the analysis.