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Rica, San José, Costa Rica, 2 Centro de Investigación en Matemática Pura y Aplicada - Escuela de
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Abstract

Dengue fever is a vector-borne disease affecting millions yearly, mostly in tropical and sub-

tropical countries. Driven mainly by social and environmental factors, dengue incidence and

geographical expansion have increased in recent decades. Therefore, understanding how

climate variables drive dengue outbreaks is challenging and a problem of interest for deci-

sion-makers that could aid in improving surveillance and resource allocation. Here, we

explore the effect of climate variables on relative dengue risk in 32 cantons of interest for

public health authorities in Costa Rica. Relative dengue risk is forecast using a Generalized

Additive Model for location, scale, and shape and a Random Forest approach. Models use a

training period from 2000 to 2020 and predicted climatic variables obtained with a vector

auto-regressive model. Results show reliable projections, and climate variables predictions

allow for a prospective instead of a retrospective study.

Author summary

Dengue fever is a vector-borne viral disease endemic to tropical and subtropical countries.

The virus is transmitted by female Aedes mosquitoes and affects approximately 100 mil-

lion people every year. Although most infections are mild or asymptomatic, some may

cause severe symptoms, leading to a higher risk of death. In the affected countries, the

challenges associated with preventing and controlling dengue outbreaks have highlighted

the need for novel tools. In this context, using statistical tools with climate and epidemio-

logical information makes it possible to provide timely information to public health offi-

cials about the risk of dengue outbreaks, allowing the optimization of resources and

preventive and non-reactive decision-making.
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Introduction

Dengue virus transmission represents a public health challenge for countries in tropical and

subtropical regions worldwide [1]. For the past decades, the increasing geographical spread of

the pathogen and its two main vectors, Aedes aegypti and Aedes albopictus [2], has led to the

development and implementation of multiple prevention and control measures [3]. However,

it is difficult to achieve timely, effective, and sustainable strategies due to the complex interac-

tions and constant variations in population mobility and socioeconomic, demographic, envi-

ronmental, and climate factors that modulate the spatial and temporal distribution of the

disease.

Researchers worldwide are increasingly working towards developing innovative, tailored,

and cost-effective tools that enhance the design of public health policies for vector-borne

diseases founded upon the rapid systematization and analysis of information, as well as an

increase in interdisciplinary collaboration [4]. In these efforts, statistical and machine learning

techniques are increasingly used for public health surveillance and epidemiological modeling

[5]. Through computational algorithms, this branch of artificial intelligence facilitates integrat-

ing scientific knowledge, processing large databases, learning from past documented reported

cases, and ultimately projecting transmission tendencies to identify and target the most vulner-

able at-risk areas. Dengue is a climate-sensitive disease where changes in temperature, humid-

ity, and precipitation affect the mosquito’s biology, behavior, and availability to reproduce,

develop, propagate the virus, and interact with the human host [6–8]. Using satellite imagery

and weather monitoring as input data in machine learning models and other statistical learn-

ing approaches has shown promising results [9, 10] that could effectively predict the relative

risk of dengue transmission.

Costa Rica is a country of 5,163,021 inhabitants [11], administratively divided into seven

provinces and 83 cantons, of which 32 cantons are of interest to health authorities due to the

high dengue incidence. The various micro-climates in Costa Rica provide ideal conditions for

the mosquito vector to thrive. They are making it necessary to customize dengue transmission

risk analysis to improve prevention and control measures implemented by health authorities.

In this article, we show the results of using two different statistical modeling approaches,

the Generalized Additive Model, for location, scale, and shape (GAMLSS) and Random Forest

(RF), to forecast the relative risk of dengue infections in 32 cantons of Costa Rica. The analysis

is a continuation of previous work in [12], where an initial approach using Generalized Addi-

tive Models (GAM) and RF allowed us to retrospectively predict the relative risk of dengue for

2017 in five diverse climate cantons, using as input the information of five weather stations

provided by the National Meteorological Institute [12].

Data description

Dengue cases

Data of clinically suspected and confirmed monthly cases of dengue fever in Costa Rica is col-

lected from all the local country’s administrative areas (cantons), covering the years 2000–

2021, and provided by the Ministry of Health [13]. To quantify the relative incidence of dengue

cases at the i-th canton compared with the incidence in the country at time t (monthly basis),

we use the relative risk (RR):

RRi;t ¼
Casesi;t

Populationi;t
CasesCR;t

PopulationCR;t

;

where Casesi,t (Populationi,t) and CasesCR,t (PopulationCR,t) are the number of observed
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dengue cases (population size) at canton i and country-level respectively, at time t. We use the

relative risk instead of the attack rate to compare the dengue incidence among cantons relative

to the incidence observed in the whole country.

The overall behavior of the relative risks, at three specific months in 2013 (first row), and

three specific years in July (second row) is shown in Fig 1.

Climate variables

1. Daily Precipitation estimates (Pi,t) were used to index land surface rainfall. Data were

obtained from the Climate Hazards Group InfraRed Precipitation with Station data

(CHIRPS); see [14]. Due to the high-resolution spatial nature of this dataset (5km by 5km),

we were able to compute monthly cumulative rainfall estimates for each canton by adding

the exact estimate over smaller administrative areas (distritos).

2. El Niño Southern Oscillation (ENSO, Si,t), also known as the SSTA index. Weekly data was

obtained from the Climate Prediction Center (CPC) of the United States National Oceano-

graphic and Atmospheric Administration (NOAA) (see [15]).

3. Normalized Difference Vegetation Index (NDVI, Ni,t), an index of the greenness of vegeta-

tion for a 16-day time resolution and 250m spatial resolution. It was obtained from the

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite and available through

the MODISTools R package (see [16]).

Fig 1. The Relative Risk (RR) over the 32 cantons in the study for different months and years of available data. We show three months for 2013

(top panels) and July for three different years (bottom panels). The map was created using R software (shapefile found here: https://hub.arcgis.com/

datasets/741bdd9fa2ca4d8fbf1c7fe945f8c916_0/explore). The license is public (https://hub.arcgis.com/datasets/geotec::distritos-de-costa-rica/about).

https://doi.org/10.1371/journal.pntd.0011047.g001
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4. Daytime Land Surface Temperature (LST, Li,t) in Kelvin degrees for an 8-day time resolu-

tion and 1km spatial resolution, obtained using the same resources as the NDVI covariate.

5. Tropical Northern Atlantic Index (TNA, TNi,t). Anomaly index of the sea-surface tempera-

ture over the eastern tropical North Atlantic Ocean (see [17]). This index is used because

previous work in the region, such as [18], suggested that the inclusion of SST information

from the Caribbean/Atlantic improves performance compared to forecasts produced with

only Pacific Ocean ENSO conditions.

The data that support the findings of this study are publicly available from github with the

identifier https://github.com/luisbarboza27/DengueCR_ST_Prediction

Methods

Fitting stage

To model the relationship between climate covariates and relative dengue risk in a canton, we

incorporate the historical delayed associations between those variables by applying a Distrib-

uted Lag Non-Linear Model (DLNM) framework [19, 20]. The DLMN consists of a bi-dimen-

sional space of functions that specifies an exposure-lag-response function f � w(x, l), which

depends on the predictor x along the time lags l in a combined way. This combination specifies

a non-linear and delayed association between climate covariate and dengue incidence. For

each covariate, we consider a maximum exposure of 18 months in its lag representation, based

on the cross-correlation and wavelet behavior among the series (see [21]) and a b-spline or

linear basis representation on the variable space. We use the R package dlnm [22] for all

calculations.

The model’s structure is as follows:

RRt � f ðRRt� 1;C1Pt;C2St;C3Nt;C4Lt;C5TNt;MtÞ ð1Þ

where f is a function depending on the method employed, the matrices Ci are defined in terms

of the DLNM representation, and Mt is a factor-type variable describing the monthly fixed

effect (the unit of Time t is in months). The first method that we use for f is the GAMLSS. It

represents a generalization of the GAM method used in [12]. It is a flexible class of statistical

framework where the location, scale, skewness, and kurtosis parameters from the response var-

iable distribution can be modeled as an additive function of covariates [23]. In this particular

case, the model is written as:

RRt �
ind Dðm; s; nÞ

g1ðmÞ ¼ b10 þ b11RRt� 1 þ b12C1Pt þ b13C2St þ b14C3Nt þ b15C4Lt þ b16C5TNt þ b17Mt

g2ðsÞ ¼ b20

g3ðnÞ ¼ b30

ð2Þ

The response variable is distributed as a three-parameter distribution D: the location (μ),

the scale (σ), a parameter related to the skewness of the distribution (ν), and link functions (gi
for i = 1, 2, 3).

Because the monthly relative risk of dengue is a non-negative skewed variable with a signifi-

cant frequency of zeros (16.2%), mixed distributions with a positive domain and positive prob-

ability at zero are appropriate for modeling purposes. The zero-adjusted gamma distribution

(ZAGA) and the zero-adjusted inverse Gaussian (ZAIG) are considered. The results for both

choices are similar. Therefore, we only show our results for the ZAGA distribution.
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The mixed continuous-discrete probability density defines the ZAGA density function:

fYðyÞ ¼
n if y ¼ 0

ð1 � nÞfWðyÞ if 0 < y <1

(

for 0� y<1, where W� GA(μ, σ) is a gamma distribution with 0< μ<1, 0< σ<1 and

0< ν< 1, i.e.

fWðyjm; sÞ ¼
1

ðs2mÞ
1=s2

y
1

s2
� 1e� y=ðs2mÞ

Gð1=s2Þ
;

for y> 0, μ> 0 and σ> 0. The advantage of this parametrization is that E(W) = μ and V(W) =

σ2μ2. For the GAMLSS specification, ZAGA(μ, σ, ν) defines the log link functions for μ and σ,

i.e., g1(μ) = log(μ) and g2(σ) = log(σ); and the logit link function for ν, i.e. g3(ν) = log[ν/(1 − ν)].

The second method uses an RF approach. This method is based on the construction of

bootstrapped ensemble of regression trees and combined such that the prediction variance can

be reduced (see [24] and [25]). One of the main advantages of this method is the reduced num-

ber of tuning parameters that eases its computational manipulation and stability [24].

The fitting process of the GAMLSS and RF models was performed with the R packages

gamlss [26], and ranger [27], respectively.

Prediction stage

Once Eq (1) is fitted over a certain calibration period using any of the two methodological

alternatives, we forecast the relative risk over a testing period using the past information of cli-

matic covariates and the relative risk itself. Provided that the response variable in (1) depends

on the current values of the climatic covariates, it is crucial to select an appropriate method to

obtain the climate predictions in the near future that can supply accurate inputs to our predic-

tive model under both methodologies. Since the climate covariates used in this study are highly

correlated, a suitable method to describe and predict their interaction is the vector auto-regres-

sive (VAR) model (see more details in [28]). For each canton, we include the trend and sea-

sonal factors to fit a VAR model and select the best lag order based on the BIC criterion over

the training period (which is the same period as the one used for the fitting (1)). Then, we

jointly forecast over the testing period the covariates. In Fig 2, we illustrate the observed cli-

mate covariates and their forecast values at Alajuela and Quepos. Together with the predicted

relative risks, these predictions provide forecasts of the dependent variable over the testing

period. Finally, to assess the prediction uncertainty, we apply a non-parametric bootstrap [29]

and construct prediction intervals using the corresponding forecasts for each bootstrap step

without considering the uncertainty due to the covariate prediction.

Model comparison

We use two different metrics to compare the predictive performance of each methodology for

each fixed location. The normalized Mean-Squared Error (NRMSE):

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mRR

Xm

t¼1

ðRRt � cRRtÞ
2

s

;

where m is the number of months in the testing period, RR is the mean relative risk over the

same period, and cRR is the estimated relative risk according to any of the two models. The nor-

malized Interval Score at α level (NISα) is the normalized version of the Interval Score (see [30]
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and [31]). While NRMSE compares the precision between point forecast and the observed rela-

tive risk, NISα is a metric that compares the upper and lower limits of a prediction interval

associated with (1 − α)% confidence against the observed relative risk. Therefore, we can com-

pare different locations regardless of the scale of their corresponding relative risk:

NISa ¼
1

mRR

Xm

t¼1

ðUt � LtÞ þ
2

1 � a
ðLt � RRtÞ � 1RRt<Lt þ

2

1 � a
ðRRt � UtÞ � 1RRt>Ut

� �

;

Fig 2. Observed climate covariates and forecast values at two specific cantons: Alajuela (left panels) and Quepos (right panels). Black line:

observed climate covariates, red line: forecast values, and red shaded areas: 95% confidence regions.

https://doi.org/10.1371/journal.pntd.0011047.g002
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where Ut and Lt are the upper and lower limits of the prediction interval, respectively. The lat-

ter metric is more complete than the former in evaluating the models’ predictive capacity

when the uncertainty is summarized through a predictive interval [31].

Results

We used the dengue and climate data described above to fit the model in (1) using both the

GAMLSS and RF methodologies. The training period includes monthly observations for the

32 cantons in the study from January 2000 to December 2020. This period was considered due

to available satellite data and epidemiological information. The DLNM basis was chosen to be

linear in the variable and lag space for the TNA index, LST, and NDVI, whereas a B-spline

basis is assumed for the variable space, which is linear for the lag space for precipitation and

ENSO. These choices allow an acceptable balance between the complexity of the models and

predictive precision over all the locations.

Once the transformed covariates in (1) are determined, we fitted both methodologies over

the 32 locations individually and adjusted a VAR model using the climate information for

each location over the training period to obtain predicted values of the covariates. We then

predicted the relative risk of dengue for the first three months of 2021. Fig 2 shows the fitted

values and predictions of the climate covariates for Alajuela and Quepos. We observed that fea-

tures like trend and seasonality of the multiple time series are well-captured for the testing

period for all the cantons.

Due to the auto-regressive nature of the model in (1), the predicted value of RRt as a covari-

ate was used in the prediction of RRt+1. Once the predicted relative risks over the first three

months of 2021 are computed, we compared the observed and predicted values with the

NRMSE and NIS.95 metrics and show the behavior of the best six cantons and worst three can-

tons according to the latter metric, regardless of the method employed. The comparison is

shown for the training period in Fig 3 and the testing period in Fig 4. Moreover, there is no sig-

nificant difference among the methods in the NIS95 metric: see S1 Fig. We show in S1 Table

which model is chosen for each location and their respective metrics, where in general, there is

Fig 3. Comparison over the fitting period. Upper six panels: best cantons according to NIS metric. Lower three panels: worst cantons according to

NIS metric. Black line: observed RR, red line: estimated RR and red shaded area: 95%-confidence predictive region.

https://doi.org/10.1371/journal.pntd.0011047.g003

PLOS NEGLECTED TROPICAL DISEASES Assessing dengue risk in CR by using climate variables and machine learning techniques

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011047 January 13, 2023 7 / 13

https://doi.org/10.1371/journal.pntd.0011047.g003
https://doi.org/10.1371/journal.pntd.0011047


not a model that is predominant over all the locations. Note that there can be differences in the

predictive capacity of the climatic covariates for each canton, particularly with the ones that

give larger values of the MSE and NIS metrics.

Together with the expected values of the relative risks in Fig 4, we computed predicted

uncertainties at 95%-level using a blocked non-parametric bootstrap [29] with 100 replicates

and a block size of six months, over the testing period only.

The fitting performs well in the training period, except for some extreme observations that

the model does not capture closely, for example, in Quepos and Montes de Oro. Moreover, the

monthly trend over the testing period is well captured in Orotina and Desamparados and par-

tially in Alajuela and San Jose, where for these last two cases, it is captured in two out of three

testing points. In the case of Osa, the trend is captured, and the metrics are relatively low. Still,

the excess uncertainty at the end of the testing period can be due to the observed behavior dur-

ing the training period, where this canton suffered localized outbreaks, and the most recent

data shows a marked decrease in the relative risk. The model has difficulties fitting both epi-

sodes. The uncertainty contains the trend information while it covers most of the observed val-

ues through the best-fit cantons.

We also evaluated the capacity of the model to predict high-risk cantons vs. low-risk ones.

Using the normalized Kendall distance, we computed the distance among rankings of

observed relative risks and expected relative risks obtained by the best individual models of

each canton. This exercise was computed with the three-time points of the testing period. In

summary, the Kendall distances are respectively 28%, 39%, and 42% for those time points,

showing that the ability to classify the model increases with the time horizon and assures that

less than half of the cantons are classified accordingly to the observed rankings. However, we

model and predict the relative risk for each canton separately, and we did not consider the spa-

tial correlation among the cantons.

Note that we obtained the above results by comparing two modeling alternatives based on

the study of [12], which is the first predictive statistical study of dengue data and climatic infor-

mation in because but we were not able to compare with other alternatives because the study

Fig 4. Forecast comparison over the testing period (2021). Upper six panels: best cantons according to NIS metric. Lower three panels: worst cantons

according to NIS metric. Black line: observed RR, red line: estimated RR and red shaded area: 95%-confidence predictive region.

https://doi.org/10.1371/journal.pntd.0011047.g004
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of Vásquez et al. [12], 2020 is the first one of its type (predictive study) using dengue data in

Costa Rica.

Discussion

In this work, we implemented two statistical models, GAMLSS and RF, to predict relative den-

gue risk in 32 different cantons of interest for public health authorities in Costa Rica, incorpo-

rating predictions of climate variables. This approach overcame some limitations of the

methodology implemented by Vasquez et al. [12], which is the first predictive study of its type

carried out in the country using dengue data. In this new approach, the GAMLSS flexibility

allowed capturing the dynamic of relative risks in cantons with low cases and positively

skewed. The DLNM framework incorporated the climatic effect using 18 prior months to train

the model instead of using a single most significant lag (according to the cross-correlation) of

the climatic variables. Furthermore, one of the achievements of predicting climatic variables

using a vector auto-regressive (VAR) model is the possibility of performing perspective instead

of a retrospective analysis while capturing general features like trend and seasonality on each

predicted multiple time series.

In Costa Rica, the dynamics of dengue change geographically and temporally, so it has been

necessary to carry out more localized studies to optimize health outcomes and address the spe-

cific local conditions that ultimately result in high-risk levels. By training the models with data

from 2000 to 2020, our results showed that GAMLSS and the RF models successfully predict

relative dengue risk in the testing period (first three months of 2021) in most of the cantons,

capturing the trend and seasonality of the multiple time series. Although the model showed

good performance in most of the cantons, the model’s predictive capacity had limitations in

some cantons, including Montes de Oro, Quepos, and Upala. This cantonal-level analysis

highlights the spatial heterogeneity of the effect of climate factors on dengue incidence, which

reveals that the effect of those variables on dengue transmission on a local scale might differ

from global expectations. The importance of climatic information regarding the incidence of

dengue fever has been well established [6–8]. However, a complex interaction of biological,

socioeconomic, and environmental factors also impacts dengue transmission [32], creating a

substantial spatiotemporal heterogeneity in dengue outbreak intensity. Future studies should

consider the incorporation of other no-climate variables such as socioeconomic and ecological

factors [33] to improve models’ predictive capacity in regions where climate variables are not

enough.

As climate change progresses, extreme weather events such as heatwaves and unusually

high rainfall are predicted to be more intense and frequent. A recent study [34] suggests that

extreme weather events, including heatwaves, extremely high rainfall, and extremely high rela-

tive humidity, may increase the risk of dengue outbreaks. However, more studies about the

associations between extreme weather events and outbreaks of vector-borne diseases are

needed to understand the correlation. S2, S3 and S4 Figs show a timeline of extreme events

registered in Costa Rica from 2011 to 2020, the time series of dengue cases in the 32 cantons

considered in this study (S2 Fig), dengue cases of cantons located in the Pacific (S4 Fig), and

dengue cases in cantons located in the Atlantic region (S3 Fig). The extreme events registered

in 2011, 2012, 2016, and 2017 coincide with high peaks of dengue cases, mainly in the Atlantic

cantons. A rigorous analysis is necessary to establish any correlation between those events and

dengue outbreaks. But considering extreme weather events may also help develop an effective

early warning system for dengue outbreaks, especially in global warming.

The development of reliable early warning systems for dengue epidemics would allow for

lowering the economic impact of the disease [35, 36] and better evaluation of the outcomes of
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prevention programs by the community. The cost of preventive measures has been reported to

be less than that of treating an outbreak [36]. Therefore, early prediction tools are valuable

because they allow for taking preventative measures and directing and optimizing resources,

particularly in countries like Costa Rica, where economic and human resources are limited. A

person with mild symptoms of dengue can be disabled on average for seven days [37], reduc-

ing the workforce and affecting the income of affected patients. The costs of the Costa Rican

Social Security Fund in care for users with dengue were estimated at $20.3 million for 2013,

including care for hospitalized patients, medical consultations, and disabilities. The Ministry

of Health estimatedat $6.5 million the investment in preventive campaigns and combat actions

in the same period [38]. The possibility to forecast an increase in risk can also be used to

develop more targeted community-based strategies. Even though community participation

has been part of vector control programs since their inception, it has been a challenge to

achieve adequate commitment from the population [39]. Therefore, early involvement of dif-

ferent sectors and sharing information on model results with selected communities can poten-

tially allow a more communicative and inclusive approach, generating a greater interest from

the community to implement the vector control strategies widely recommended by health offi-

cials throughout the country.

Early warning systems (EWS) for vector-borne diseases are incredibly complex due to

numerous factors originating from individuals, the environment, the vector, and the disease

itself. However, creating reliable forecasting models may lead to fast decision-making pro-

cesses that trigger disease intervention strategies to minimize the impact on a specific popula-

tion [40]. A finer study scale with local predictive outbreak risks is necessary because global

models may depict the general situation. But, they do not have the necessary detail to drive

control strategies at the country scale. Models should include local and historical data and con-

sider local processes that might work differently among regions. This study highlights the

potential of GAMLSS and RF for local dengue prediction using climate co-variables but also

reveals that these variables, though useful to estimate annual transmission risk, do not fully

describe the distribution of dengue occurrence at the country scale. Our model did not con-

sider other local factors such as population counts, income inequality, education, entomologi-

cal, medical surveillance, and control measures that may be significant for further explaining

the spatial distribution of cases.
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