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Abstract: Major hurricanes are a critical hazard for North and Central America. The present study
investigated the trends of occurrence, affectation, and intensity of major hurricanes in the North
Atlantic and Northeast Pacific Oceans using GIS applications to the IBTrACS database. The study
period ranged from 1970 to 2021. Tropical cyclones were sampled using a grid composed of 3.5◦

hexagonal cells; in addition, trends were obtained to assess the effect of long-term variability from
natural phenomena and climate change. Critical factors influencing these trends at the oceanic scale
and for each hexagon were determined using multivariate and multiscale analysis by the application
of stepwise analysis and the related ANOVA. The integrated variables related to atmospheric and
oceanographic oscillations and patterns, i.e., spatial variables resampled with the same analysis unit
and climate indices. Our results indicated marked spatial areas with significant trends in occurrence
and intensity. Additionally, there was evidence of linear changes in the number of major hurricanes
and an increase in the maximum annual speed of +1.61 m s−1 in the North Atlantic basin and
+1.75 m·s−1 in the Northeast Pacific, reported for a 10-year period. In terms of occurrence, there were
increases of 19% and 5%, respectively, which may be related to ocean warming and natural variability
associated with oceanic and atmospheric circulation.
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1. Introduction

The cost of natural disasters has grown continuously worldwide [1,2]. Among these,
tropical cyclones have the greatest socio-economic impact in North and Central America
and in the Caribbean, with 53.9% of total damage costs (adjusted USD) recorded in the
EM-DAT database for the period 1980–2022 [1]. The impacts of these phenomena depend
on several factors: the location of economic activities, the total production and capital of
these activities, the number and intensity of tropical cyclones, population exposure and
vulnerability, and the geographic characteristics of the affected areas [3]. For example, from
1980 to 2019, NOAA issued annual estimates of the economic impacts of tropical cyclones
in the United States: in 2013, total damages were up to US$417.9bn; two years later (2015),
the total impact was about US$530bn; and in 2019, total damages amounted to US$945.9bn.
The destruction caused by hurricanes is evident, and on the rise, particularly with regard
to damages related to major hurricanes (MH) (categories 3–5 on the Saffir–Simpson scale,
i.e., sustained winds ≥ 50 m·s−1). Cost estimations for MH in the North Atlantic revealed
total losses amounting to US$2bn for Hurricane “Allen” in 1980, US$22.4bn for “Charley”
in 2004, US$70.2bn for “Sandy” in 2012, US$90bn for “Maria” in 2017, and US$125bn for
“Harvey” the same year [4]. Economic losses from hurricanes are much higher than even a
few decades ago due to a greater presence of infrastructure in coastal areas [5] and higher
exposure and vulnerability.
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The detection and attribution of the potential effects of anthropogenic climate change
on tropical cyclones are currently among the most controversial topics in science [6]. The
challenge for research regarding the effects of climate change on tropical cyclones lies in
determining whether an observed change in hurricane activity exceeds the variability ex-
pected from natural causes and linking significant changes with specific climate forcing [7].
Studies on this topic impute large increases in the incidence and intensity of hurricanes in
tropical areas, which are already detectable in records [8], and the relationship between
cyclones with rises in sea surface temperature (SST) in the formation regions [9,10] and
increases in human-induced greenhouse gases [7]. Indeed, Frame et al. [11] estimated that
US$21.3bn of the total damages caused by hurricane Harvey could be attributed to climate
change. There are two fundamental elements in assessing a hurricane that pose potentially
serious threats to humans: frequency of occurrence and intensity [12]. The first is defined
as the number of times that a catastrophic hurricane occurs per unit of time; the second is
a measure of the force with which the phenomenon occurs in a given location. Intensity
is measured using the Saffir–Simpson scale; it considers that an event is an MH when it
reaches a category of 3 or higher. MHs are characterized by sustained winds of 50 m·s−1 or
stronger, up to the maximum wind speed of 95.7 m·s−1 recorded for hurricane “Patricia”
in 2015.

Although the average annual number of storms and hurricanes may not have changed,
their intensity has increased over time [7,13]. Specifically, tropical cyclone activity in the
North Atlantic has intensified since 1970, as reported by the IPCC [14]. In addition, there
is a spatial pattern in the trends linked to the occurrences of tropical cyclones on a global
scale since 1980, highlighting increases in the North Atlantic and Central Pacific areas [15].

In the future, more intense hurricanes with higher wind speeds and precipitation are
likely to occur as a result of climate change [16]. This trend is because tropical cyclones are
factors of energy transfer [17] from warm seas to more temperate zones; thus, rising sea
surface temperatures (SSTs) lead to greater energy transfer. However, at the oceanic scale,
these trends can be subject to spatial variations, with patterns depending on the ocean;
variability in these trends is also experienced at the local level [15].

Increases in hurricane activity in the Atlantic Ocean in past decades are believed to
reflect mainly the recent increases in tropical Atlantic SST [18]. Changes in SST due to
human activities and natural climate variations have brought attention to the observed
trends of hurricane intensification [19]. Some studies [18,20] have attributed these in-
creases to changes in the natural SST cycle known as the Atlantic Multidecadal Oscillation
(AMO) [14,20]. Additionally, the AMO is related to the Sahel rainy season and faster thermo-
haline circulation, which contributes to MH activity [19]. Previous studies have shown that
more MHs impact the northern Gulf of Mexico when the AMO is positive [19,21,22]. Several
authors have investigated trends in each hurricane basins across the entire ocean [23–25].
However, we consider the basins to be too large; consequently, a basin-scale trend may
not be representative of the spatially heterogeneous ocean activity of tropical cyclones. To
address this issue, the present study carried out spatial analyses of the phenomena in more
detail by considering multiple spatial scales.

This paper analyzed the temporal and spatial evolution in the frequency of occurrence
and intensity of MHs in the Northeast Pacific (NEP) and North Atlantic (NA) basins at two
spatial scales, basin scale and regional scale, using a zonal sampling method. It studied the
spatiotemporal variability of the MH with spatial and multivariate analysis using the main
related climate indices as well as local physical variables.

2. Materials and Methods
2.1. Tropical Cyclone Data

The study area was determined based on the historical trajectories of major hurricanes,
which correspond to the NA and NEP basins, with specific coordinates ranging from
180◦ W to 7◦ E and 3◦ N to 75◦ N.
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The database with information about tropical cyclones (TC) in NA and NEP was
obtained from the International Best Track Archive for Climate Stewardship (IBTrACS)
project [26,27] provided by NCEI, NOAA. For each ocean, the databases contain the fol-
lowing data: cyclone name, year, month, day, time, sustained wind speed, and distance to
landfall. Measurements are reported every 6 h for WMO data and every 3 h for regional
agencies monitoring tropical cyclones; the geographic location has a spatial resolution of
0.1◦, and the maximum recorded sustained wind speed is given in knots as multiples of 5.
The available data provide information from the year 1851 to 2022 for NA and from 1949 to
2022 for NEP. Data may also include central atmospheric pressure for storms after 1980 and
a higher spatial resolution of 0.01◦. The databases used correspond to polyline shapefiles;
in this case, the sustained wind speed reported for each line corresponds to the value at the
final vertex.

The data period from 1970 to 2021 was selected for the present analysis because tropical
cyclones with no landfall or no ship encounter before the 1960s have a lower probability
of having been detected or measured properly. Consequently, storm frequency records
may contain non-physical positive trends since more storms have been detected during
the satellite era [28], mainly for the NEP basin [29]. For NA, the time series is more reliable
since the mid-1940s because of hurricane hunter airplanes [30,31]. The Television Infrared
Observation Satellite started monitoring in 1960, and, as a result, tropical cyclones have
been observed continuously ever since [32,33]. Additionally, the monitoring methodology
has been homogeneous in both oceans since 1970 [29].

Therefore, to avoid bias in trend calculation, we limited the study period; however,
bias may be observed associated with the absence of data and null probabilities in zones
with scarce hurricane occurrence reports.

2.2. Oceanographic and Atmospheric Data

As this was a multi-scale study, we used two sets of variables to contrast with HM
data: (a) spatially variable oceanographic and atmospheric data; and (b) climatic indices
that mark the main oceanographic and atmospheric oscillations.

The spatially variable data used in this study were Sea Surface Temperature (SST),
mean sea level pressure, relative humidity, and vertical wind shear. We obtained SST data
from the Extended Reconstructed Sea Surface Temperature (ERSST) v5 [34] provided by
NOAA. ERSSTv5 is a 2◦ grid of monthly SST from 1854 to 2021.

Atmospheric data were obtained from the NCEP-NCAR Reanalysis project that pro-
vides 80 different variables at 17 pressure level stacks on 2.5◦’ 2.5◦ grids. This time series
starts in 1948 [35]. From these data sets, we used the mean Sea Level Pressure (SLP) and
Relative Humidity at 700 hPa (RH); also, we calculated 200–850 hPa Vertical Wind Shear
(VWS) from u and v wind speed at both levels.

The climatic indices considered here were those that could influence cyclogenesis at a
regional level. In addition to the AMO and PDO, for which there is documented influence
on the occurrence of tropical cyclones [36], we explored the use of the following climatic
indices: North Atlantic Oscillation (NAO) [37], Pacific North American Index (PNA) [38],
Trans-Niño Index (TNI) [39], NIÑO-3.4 [39], and Tropical North Atlantic Index (TNA) [40].
Some of the indices used, like those related to the El Niño–Southern Oscillation (ENSO), do
not represent the atmospheric or oceanographic variations in the study zone. However, the
phenomena measured with these indices have a spatial influence [41] extending beyond
the zone where they originated and can provide critical information about MH variations
through atmosphere teleconnections.

Average yearly data were computed for each variable over the May–November season,
and, for climate indices, annual time series were standardized to mean 0 and standard
deviation 1.
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2.3. Sampling for Spatial Analysis

From the line shapefile of the IBTrACS databases, we selected polylines with sustained
wind speed ≥ 95 kt (48.87 m·s−1). The MH wind speed limit is 96 kt, and it is possible
to downscale it to every hour; however, intensification and decay cannot be interpolated
in the same way, particularly for landfilling hurricanes [42,43]. Consequently, since the
sustained wind speed reported for each line corresponds to the value at the final vertex, we
considered that the use of 95 kt results in lower bias than interpolation. This wind speed
corresponds to the lower threshold level for MH (category 3+). We discarded using the
lower threshold limit for very intense (4+) MHs of 58 m·s−1 [44] because it would lead
to counting fewer occurrences, which would lead to a less robust analysis with a lower
statistical confidence level.

Each MH was sampled using a grid of hexagonal cells—a shape considered suitable
for counting the number of tropical cyclone trajectories [45]—with a cell size of 3.5◦. The
hexagonal tessellation was created automatically for the extent of the area of interest
(0–180◦ W, 10–80◦ N) using the sf R-package [46] in R [47]. Subsequently, tracks and cell
grids were intersected.

The spatial relationship between atmospheric and oceanographic data and the hexag-
onal grid were explored by transforming the raster to points with the raster R-package [48].
The data were previously interpolated to a 1◦ spatial resolution; the resulting points were
finally intersected with the grid.

MH data were indexed according to the cells for the annual count of events (MH
occurrence) per sample unit; this count was performed using the dplyr package [49].
Average annual values of atmospheric and oceanographic variables were computed over
the May–November season.

2.4. Trend Analysis

Trends in the occurrence of MHs were calculated at two spatial scales. First, we applied
generalized linear model (GLM) regressions using the R language and the “Poisson” family
for the time series of annual tropical cyclone counts, as recommended by Elsner et al. [50],
and the “Gaussian” family for the time series of maximum annual wind speed. Conse-
quently, we converted the estimated GLM coefficient (slope) to a percent frequency per
10-year period or speed variation. This allows for comparing the trends observed in this
study with the results reported by other authors [7,51,52]. Second, we calculated trends in
the occurrence of MHs for each cell using the Mann–Kendall trend test using the Kendall
package [53] in R. This [54,55] is a non-parametric test based on the correlation between the
ranks of a time series and their temporal order; it requires no assumptions about the data
to be tested. Consequently, it has been used particularly for determining trends related to
tropical cyclones [56] or extreme weather [57].

To discard artificial trends, we calculated the 90% confidence interval with the NSM3
package [58] and evaluated the significance of trend-test coefficients by comparing their
relative p-value [59]. Only trends with confidence intervals that do not cross 0 and
with two-sided p-values < 0.1, indicating moderate evidence against the null hypothe-
sis, were retained.

The most suitable grid cell size was selected from a geostatistical analysis of the
results. First, we tessellated the study area with hexagons ranging from 0.5◦ to 6◦. For
every tessellation, we calculated Moran’s spatial autocorrelation index [60] using a squared
inverse distance matrix between hexagon centroids for the Mann–Kendall trend value
of every cell with a two-sided p-value < 0.1. The highest Moran’s index value (0.35),
evidencing the optimum sampling size unit, was obtained for 3.5◦.

2.5. Creation of the Maps

Maps were elaborated from the data of oceanographic and atmospheric variable and
MH events sampling with the hexagonal tessellation. The same original grid has been
used for every map. The extent represented in the maps is (20–180◦ W, 7–58◦ N), using a
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geographical projection with datum World Geodesic System 1984. All the non-null data
were represented on the maps but insignificant trends resulting from temporal analysis
were marked with white lines hatched.

2.6. Relation between MH and Physical Variables

Time series of MH occurrences as spatial values corresponding to the hexagonal grid
were contrasted with the values of the physical variables and climatic indices using a
stepwise logistic regression [61,62].

R-packages leaps [63] and mass [64] assisted the selection of the best model by the
Akaike information criterion (AIC) [65]; this method identifies the optimal model with the
most significant variables, removing those that are highly correlated with it or having a
low information input.

Stepwise analyses were performed with GLM regressions using the “Poisson” family
for the time series of tropical cyclone counts and the “Gaussian” family to explore the
spatial relationship between significant tau values and physical variables. Multivariate
analyses were completed by assessing the percentage of explained deviance (PED) for each
explanatory variable using an analysis of variance (ANOVA) with a Chi-squared test [66].

3. Results
3.1. Occurrence of MHs

We found a marked difference in the number of MHs between the NA and NEP basins
(139 and 239 events, respectively). Both areas showed a great spatial heterogeneity, but the
Pacific basin showed an area with a higher concentration of MH events (Figure 1).
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Figure 1. Occurrence of MHs in NEP and NA from 1970 to 2021 (hexagons are 3.5◦).

NA exhibited the greatest activity in the centre of the basin, on the Caribbean coasts, the
Gulf Coast, i.e., the Yucatán channel, and the United States coasts (Louisiana, Mississippi,
and Texas). On the other hand, in the NEP basin, the largest number of hurricanes was
concentrated a few kilometres from the continent (approximately 200 km off the coast of
Jalisco, Mexico) and decreased towards the coast.

To detect changes in spatial patterns, we calculated Moran’s index for the number of
MHs per cell for the first and second halves of the time series (up to 1995 and since 1996).
The results showed marked differences between the two oceans up to 1995, while from
1996 onwards there was greater similarity (Table 1). Therefore, for the first period, Moran’s
index values were 0.42 and 0.08 for NEP and NA, respectively, confirming the significant
difference previously postulated.
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Table 1. Spatial autocorrelation and number of cells (n).

Basin Period n Moran’s Index p-Value

NEP 1970–1995 77 0.4181 0
NEP 1996–2021 90 0.3137 0
NA 1970–1995 123 0.0761 0.0015
NA 1996–2021 151 0.2784 0

From 1996 to 2021, Moran’s index values changed; particularly, more similar values
were recorded since 1996 than in the previous period. Moran’s index values for the Pacific
and Atlantic basins were 0.31 and 0.28, respectively; Therefore, throughout the study period,
the Pacific basin was more spatially concentrated (Figure 2).
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The number of cells with records (n) was another index calculated in this study; these
values were obtained considering the same period and with the same grid cells. The number
of cells with MH events was larger for NA but increased in both basins. Changes in Moran’s
index values and in the number of cells with no MH events indicated an increase in the
area where MHs can strike in both oceans and, also, a relative spatial concentration of MHs
in NA, in contrast with NEP, where MHs are spread despite of having been particularly
clustered in the first period.

The number of annual MH events increased during the time series studied for NA
and NEP (Figure 3). For NA (Figure 3a), annual occurrences varied between 0 and 7 MHs,
with a median of two events per year. The GLM coefficient exhibited by the 1970–2021
time series (0.020) highlights an increasing occurrence of MHs (p < 0.01), i.e., +21.7% for a
10-year period.
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(p > 0.1).

For the NEP basin (Figure 3b), the annual occurrence ranged between 0 and 13 MHs,
with a median of 4.5 events per year, and also displays marked variations over the selected
period. The trend that emerges from the time series is also positive (0.004) (i.e., +4% for a
10-year period), but the p-value of 0.33 indicates low statistical significance.

3.2. Intensity Trend

Not only has the number of MHs increased over time, but the maximum annual speed
of MH events has also increased. This increment in MH speed in the NA basin is illustrated
in Figure 4a. According to the trend lines, the increase in the maximum annual speed can
also be observed over a 10-year interval. The NA basin shows an intensity trend value of
+1.61 m·s−1 per 10 years (p = 0.09), while the NEP basin (Figure 4b) shows greater intensity
increases amounting to +1.75 m·s−1 per 10 years (p < 0.01).
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3.3. Trends in Local Occurrences

The trends of annual MH occurrences in NA showed a positive average of 0.07 in
general and of 0.099 considering significant trends. On the other hand, the NEP also had
consistent and positive trends of 0.055 and 0104, respectively.

Both basins (Figure 5) exhibit considerable spatial heterogeneity, and negative values
(−0.25) are observed with absolute values close to the positive maxima (0.32). Particu-
larly, the Atlantic Ocean basin shows a positive trend in the central region, in the areas
surrounding the Bahamas and Puerto Rico, with positive values ranging from 0.1 to 0.32;
the maximum value corresponds to the central part of the Atlantic MH zone, 10◦ east of
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the Bahamas. Indeed, the Atlantic Ocean exhibits a zone in the central Caribbean with
high positive values that is more susceptible to hazards, particularly a large strip from
north Florida to the central Atlantic passing through the Bahamas. However, in the Gulf of
Mexico, trends are generally not significant, with either negative or low positive values.
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In contrast, for the NEP basin, there is a medium-high positive trend in the central area,
with values of up to 0.127, which decrease close to the Mexican coast; the exception is the
Oaxaca and Nayarit coast, where tau remains high, with values of 0.13 and 0.22, respectively.
Moreover, low negative and positive trends can be highlighted in areas surrounding the
southern Gulf of California (with values between −0.15 and 0.13).

3.4. Relationship between MH Occurrences and Physical Variables
3.4.1. Multivariate Temporal Analysis

Stepwise analyses highlighted the main variables that have a statistically significant
relationship with MH occurrences. At the basin scale, the GLM with the “Poisson” family
suggests that occurrences in NA have a significant negative relationship with NINO34
(estimated coefficient = −0.309) and TNI (−0.151) and a positive relationship with TNA
(0.346). The main factor is TNA (Table 2), with a PED of 24.3%, representative of the North
Atlantic Tropical SST, highly correlated with AMO and Atlantic zone SST (Tables S1 and S2).
Another important phenomenon is ENSO, with a PED of 18% for NINO34 plus TNI.
Indeed, there is a known influence of ENSO on hurricane occurrence in the Caribbean
zone [67]; moreover, this analysis confirmed that ENSO controls VWS in the zone [68–70].
In comparison, NEP MH occurrences are positively related with regional SST (estimated
coefficient = 0.414; PED = 32.9%) and TNI (0.265) and negatively with TNA (−0.224)
(p < 0.01 for the variable in the stepwise analysis). MH occurrence in the NEP is highly
dependent of southern Pacific oscillations as local SST and SLP are correlated with NIÑO34.
Although our results confirm the findings observed in previous studies, especially for
NA, we found that the results with TNA indices also show atmospheric teleconnections in
NEP, as does the NIÑO34 or TNI in NA. Besides confirming previous results, our study
demonstrated the robustness of the methodology used.
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Table 2. Results from multivariate temporal analysis of MH occurrences.

Basin Index Estimate p-Values PED

NA
NIÑO34 −0.309 0.005 11.0%

TNI −0.151 0.025 7.0%
TNA 0.346 >0.001 24.3%

NEP
TNI 0.265 0.059 3.4%
TNA −0.224 0.147 2.0%
SST 0.414 0.000 32.9%

3.4.2. Multivariate Spatial Analysis

The stepwise logistic regression results show a spatial correlation between the trends in
annual MH occurrences and mean SST for the hurricane season (estimated coefficient = 0.023;
PED = 24.8%) (Table 3). SST shows a positive trend in all study areas (Figure 6), particularly
in the coldest zones (40◦ N) (Figure S1), SST tau is retained in the stepwise regression but
rejected in the ANOVA analysis because of a high p-value that may be caused by the difference
between NEP and NA. This can explain the expansion in the area of MH occurrence between
the first period (to 1995) and the second period (since 1996). This is associated with the
relationship between MHs and SST trend (estimated coefficient = −0.14), which demonstrates
the expansion of the MH zone during the monitoring period (Figure 2), instead of the con-
centration of MHs in the areas that warm up at the fastest rate. This relationship should be
interpreted with caution because SST tau is retained in the stepwise analysis (p < 0.05) but is
rejected in the ANOVA with Chi-square test because of the high p-value that may have been
caused by the difference between NEP and NA.

Table 3. Relationship between trends in MH variability and physical variables.

Variable Estimated Coefficient p-Values PED

SLP tau −0.012 0.009 1.3%
SST mean 0.023 >0.001 24.8%

In addition, a slight spatial difference in SST was observed between the two basins
(Figure 6). NA obtained higher values, except for the central Caribbean area, which
showed moderate and low values (0.001–0.016). In the NEP, low values with positive
trends predominated. Grid cells with intermediate values were observed in the central
zone, which could also be related to the same significant cells in the occurrence trends.

SLP is a physical variable correlated with HM occurrences (Table 3). The increase
in MH occurrences negatively correlated with SLP is physically consistent. In this case,
both oceans showed a different distribution; neutral and negative values predominated
throughout the NA basin, except near the equator (Figure 7a). NEP showed more significant
hexagons, with positive trends near the coastal zone between Canada and Baja California,
but the main MH zone had non-significant values.
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Additionally, the trends in MH occurrence were related to VWS, a variable that was
correlated with SST (−0.37) and SLP (0.55). Spatially, this relationship is particularly
critical in areas near the southern Caribbean (15◦ N) with a high positive VWS. There,
hexagons with lower VWS and SLP values (Figures 6b and 7b) corresponded to grids with
significant positive trends in MH occurrence (Figure 5). Similar to the SST trend, VWS has
a high, significant, and positive spatial distribution in the coldest zone. However, these
trends change for the NEP basin hexagons located near the equator, which had negative
values. The data obtained for RH did not demonstrate a major role in the evolution of MH
occurrences; for NA, RH tau had an estimated coefficient of 0.04 with a p-value of 0.06 and a
PED value of 1.6%. Indeed, the trend in RH showed marked differences between the basins,
with a decrease in the Caribbean Sea and the tropical Atlantic and the opposite trend, i.e.,
an increase, in the main Pacific MH zone; however, very few trends were significant.
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4. Discussion

Although there may be a certain anthropogenic influence on MH occurrences, the
drivers of tropical cyclones in these two basins are mostly natural [71]. The increase in
MH occurrences is apparent at the oceanic scale and in some specific regions (Figure 5).
However, the number of cells with records is much lower for the first half of the time
series than for the second, indicating that many cells have had several recent occurrences.
Therefore, it is not statistically possible to support the positive trend due to the low p-value.
Indeed, MH occurrences seem mostly naturally driven, but the anthropogenic signal is
likely more apparent (higher intensity at cat 4–5 s) over the past 15 years. It is important to
consider that there is still a large uncertainty about it, so it is still an open topic for debate,
as mentioned in the 2021 IPCC Group 1 Report [14].

Trend coefficients for annual maximum wind speeds were also calculated for each
basin. A five-year period was used because it is useful for exploring trends in hurricane
data, which could be masked by most ocean-atmosphere oscillations [72].

The results of MH occurrences in NA are consistent with those reported by
Murakami et al. [15] and Amador et al. [41], i.e., an increasing trend in the occurrence
of tropical cyclones from 1980 to 2021. To note, although there are differences in the periods
and objects studied, the results are similar and indicate an increase in the overall trends. The
1970s corresponded to a cold phase of the Atlantic SST, which did not favour the formation
of TCs [19,73] and may have influenced the trends calculated in the study. However, the
p-values below 0.1 and the confidence intervals that do not intersect 0 eliminate the trends
responding only to this variability.



Climate 2023, 11, 15 12 of 17

In contrast, the observations from the NEP basin in the present study differ from those
obtained by Murakami et al. [15]. These authors reported a decreasing trend, while in the
present study, the results about the occurrence of MHs showed a positive trend with spatial
heterogeneity and lacking statistical significance, consistent with Amador et al. (2016).
This difference is mainly because the present analysis considered only MHs instead of all
hurricanes. This approach allows us to emphasise the issue of the increasing intensity of
tropical cyclones.

However, the time series is not sufficiently long to ensure that the trends observed
are not biased by the presence of undetected cycles. In addition, any inaccurate estimates
of the regional frequency of tropical cyclones with poor event detection and inaccurate
tropical cyclone tracks may bias the annual mean number of hurricanes and affect the
trend analysis [74]. This bias is minor and unlikely for MHs, particularly in these oceanic
areas that were the first to have satellite tracking; nonetheless, the interval elapsed between
IBTrACS records (3 h) may be too long for the accurate recording of the location of fast-
moving cyclones at mid-latitudes.

According to Knutson et al. [75], increases between 2% and 21% in the average max-
imum speed of tropical cyclones worldwide are projected for the 21st century as a con-
sequence of global warming. In NA, this study recorded a 4.5% increase in the average
maximum hurricane speed, while the Northwest Pacific basin showed a 6% increase. In ad-
dition, there will probably be an increased intensity of category 4 and 5 tropical hurricanes,
although it was estimated that this increase would be detectable until the second half of the
21st century, and it is unlikely that this growth will occur in the NA basin [75]. However,
from the time series studied, MH frequency increased from 4% (non-significant) to 21.7%
per decade. Regarding MH intensity, the NA basin showed that the average maximum
speed increased by 161 m·s−1 over 10 years, while the NEP basin showed an increase of
1.75 m·s−1 over the same period. These particular data differ from the results reported by
Knutson et al. [76], who reported a decrease in maximum wind speed in NEP between 1980
and 2010. This discrepancy demonstrates the high data variability and the need to consider
longer time series to obtain robust results from the analysis.

The possible change in the intensity of MHs is exemplified by Hurricane Patricia,
which hit the Pacific Ocean, reaching maximum winds of up to 95.7 m·s−1 in 2015 and
still considered the most dangerous hurricane in this basin [77,78]. In addition, our results
show similar changes in MH intensity in the two basins (Figure 4a,b).

As regards the trends in MHs, NA showed positive activity in the Mexican Caribbean,
the Yucatan Channel, and the eastern coast of the United States. These are consistent with
Elsner et al. [10], where a spatial assessment was carried out in 2005 for the same basin
supported by 2◦ hexagonal grids. These authors reported greater activity in the central NA
off the coast of the western Caribbean Sea, the eastern coast of the U.S., and towards the
Gulf of Mexico.

Although there are differences in the study period, the scale of the hexagonal grid, and
the categories of tropical cyclones, the dynamics observed in the present study match those
reported by Elsner et al. [10] for the Mexican Pacific. The information for NEP is scarce;
nonetheless, of the two basins, NEP is undoubtedly the one with the highest percentage of
significant p-values, which makes it consistent and acceptable.

The Pacific Ocean showed a marked positive trend concentrated in the central area,
whereas, in NA, weak positive and negative trends are more prevalent, with a clear spatial
heterogeneity. This finding shows that the increasing trends in MHs are more evident in
the western NEP area; for example, hurricanes Douglas, Genevieve, and Marie in 2020, all
category 4, followed a similar trajectory and were of high impact.

On the other hand, the NA basin is correlated with oceanographic oscillations and
physical variables like the TNA and ENSO, which may influence the occurrence of MHs.
This assertion is supported by the NOAA report in 2019 that the atmospheric conditions
that foster the AMO warm phase create the perfect storm and heighten hurricane activity
and storm strength in the Atlantic. Indeed, changes in SST are particularly critical for NA
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as it warms faster than the southern oceans [79]. When La Niña appears, it is frequently
associated with more active Atlantic hurricane seasons, and during El Niño, VWS increase
in the Caribbean–TNA zone [80]. This suppresses the trend for tropical cyclone develop-
ment in NA and decreases zonal wind shear in the eastern NEP, thus enhancing the trend
of tropical cyclone development in this region. This inverse relationship is partly explained
by the different effects of ENSO anomalies on tropospheric zonal wind shear in the NA
and eastern NEP basins [81].

In the NEP basin, SST, TNI, and TNA are correlated with MH occurrence in this ocean.
Ralph and Gough [82] concluded that SST plays a significant role in TC formation and
intensity in NEP, although other factors are involved.

As for the trends in SST, our results indicated that the higher temperature rise in
colder areas favours the homogenization of SST and, therefore, an increase in areas with
SST above 26.5 ◦C—the threshold for the onset of cyclogenesis [83,84]. This is consistent
with observations by Bang et al. [85], who reported increases between 0.7 ◦C and 1.5 ◦C
in colder areas from 1981 to 2010. In 2019, NOAA also issued a global climate report
detailing a mean 0.76 ◦C rise in SST in cold zones [86]. Scientists have established that
this rise in ocean temperature in NA and NEP is fuelling the occurrence, intensity, and
trajectory of TCs [87,88]. However, the zones with the greatest MH occurrence have low
and intermediate SST values, and this physical variable does not drive the local increase in
MH occurrences.

The trend in atmospheric VWS shows negative values near the equator and positive
trends in the main MH development region and the coldest zones. This finding is similar
to the report by Lau and Zhou [89], who detail negative trends along the equator while a
marked reduction in VWS, favourable for enhanced tropical cyclone activity, occurs over
the tropical Atlantic, particularly in the development region. However, this finding differs
from our results because the trend in MH occurrence observed in the present study exhibits
low values in that area. On the contrary, in the northeast Pacific, the VWS pattern shows
both positive and negative trends [89].

Finally, SLP has negative values in the NA basin and is not significantly related to
occurrence trends in NEP. These results agree with a previous study [85], which found
negative trends in the entire Atlantic basin (Gulf of Mexico, Caribbean Sea, and West-
ern Atlantic); therefore, SLP was generally below the average value, thereby enhancing
cyclone activity.

5. Conclusions

This study evaluated the spatial variation in the occurrence of MHs and their annual
trend in the NA and NEP basins during 1970–2021. From a multi-scale temporal analysis
of MHs in the NA and NEP oceans, we observed a clear increase in MH occurrence and
intensity. On a local scale, the NA basin shows changes in the number of cyclones per
year over the 50-year study period, with this fluctuation being greater than two MHs. A
19% increase in MH frequency was observed every ten years, while for the maximum
annual speed, an average increase of 1.61 m·s−1 was observed over ten years. A similar
scenario was found for NEP, i.e., an increase of approximately 5% in the occurrence of
MHs was observed along with an increase in speed of 1.75 m·s−1 every ten years. These
increases in occurrence and intensity are critical because these imply a higher risk for
coastal populations [90].

In terms of spatial variation and focusing on coastal areas, none of the two oceans has
recorded many MHs, and the trend values in these areas are lower than the respective mean
value for each basin. Murakami [15] used models and fingerprint detection/attribution
techniques to explore the causes of the spatial pattern of changes observed (regional
increases and decreases) in tropical storm frequency. The pattern of change in tropical
storm frequency simulated by these authors since 1980 is similar to the one observed
in the present study, suggesting a detectable influence of volcanic activity and external
forcings like anthropogenic greenhouse gases and aerosols. However, human activities
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may have already caused other changes in tropical cyclone frequency and intensity not yet
detectable due to the low magnitude of these changes compared to the estimated natural
variability [91].

The relationship between climate change and the increase in the occurrence and
intensity of tropical cyclones is evident, possibly due to changes in SST [92]. Our statistical
analysis showed that most of the interannual variability could be attributed to physical
variables in the NA basin, including VWS, AMO, and ENSO, particularly with La Niña
phases, all of which influence hurricane occurrence. In the NEP basin, SST, RHU, and TNI
are variables with a significant influence.
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