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Abstract

We extend the isospectral deformations of Connes, Landi and Dubois-Violette to the case
of Riemannian spin manifolds carrying a proper action of the noncompact abelian group ℝ𝑙.
Under deformation by a torus action, a standard formula relates Dixmier traces of measurable
operators to integrals of functions on the manifold. We show that this relation persists for
actions of ℝ𝑙, under mild restrictions on the geometry of the manifold which guarantee the
Dixmier traceability of those operators.

1 Introduction
The primary example of a noncommutative differential geometry is the noncommutative torus
[9, 42]; its coordinate algebra may be reconstructed from the algebra of smooth functions on an
ordinary torus 𝕋 𝑙 by deforming the product compatibly with the rotation action of the torus, regarded
as a compact abelian group, on itself. The group 𝕋 𝑙 acts ergodically on the resulting deformed
algebra. Given a spin structure on 𝕋 𝑙 , there is a Dirac operator /𝐷 on the Hilbert space H of
square-integrable spinors, which is invariant under a lifted action of 𝕋 𝑙 ; the deformed algebra is also
represented on this Hilbert space, giving rise to a spectral triple [11] with the same Dirac operator:
one speaks of an isospectral deformation of the triple (𝐶∞(𝕋 𝑙),H, /𝐷).

This example was generalized by Connes and Landi [12] to the case of a 𝕋 𝑙-action, for 𝑙 ⩾ 2, on
a compact Riemannian spin manifold. It was further refined by Connes and Dubois-Violette [13]
to encompass the case where the spin manifold need not be compact but still carries a smooth
torus action. In all such cases, the Dirac operator interacts with the deformed algebra to provide a
isospectral deformation of the standard commutative spectral triple.

Isospectral deformations arising from noncompact group actions provide a more challenging
analytic framework. It was established by Rieffel [43] that Moyal deformations under actions
of ℝ𝑙 have good analytic properties, both at the level of 𝐶∗-algebras and in terms of the smooth
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subalgebras for the action. This deformation construction goes through when the symmetry group
is abelian, so that 𝕋 𝑙 and ℝ𝑙 are the cases of primary interest. However, the compatibility of Moyal
deformations with (invariant) Dirac operators on noncompact spin manifolds poses additional issues
for the construction of deformed spectral triples. These issues have been addressed and resolved
in the “flat” case of the affine space ℝ2𝑚 with translation action, whose deformations are Moyal
“planes”, in our [29] and in [28].

In this paper, we consider proper actions of a connected abelian group 𝕋 𝑘 × ℝ𝑙−𝑘 on a (not
necessarily compact) 𝑛-dimensional Riemannian spin manifold 𝑀 . This can be thought of as a
proper, hence free, action of ℝ𝑙−𝑘 on a 𝕋 𝑘 -twisted Connes–Landi spectral triple; we therefore
deal mainly with the subcase where 𝑘 = 0. The detailed geometry of the manifold (isoperimetry,
curvature bounds) plays a role in establishing the heat-kernel properties of 𝑀 and in determining
the interplay of the isospectrally deformed algebra with the Laplacian and the Dirac operator. From
Connes’ trace theorem [9] for the case of compact manifolds, one expects that operators such as
𝐿 𝑓 | /𝐷 |−𝑛 or 𝐿 𝑓Δ−𝑛/2, where 𝐿 𝑓 denotes the deformed product by a function 𝑓 ∈ 𝐶∞

𝑐 (𝑀), should
lie in the Dixmier trace-class, and their Dixmier traces should be proportional to the integral of 𝑓
with respect to the Riemannian volume form. We show that this hope is fulfilled in the noncompact
case, under suitable conditions on the geometry of 𝑀 . This general result was foreshadowed in the
flat case in [29] and is extended here to a more general setting.

In Section 2, we review the Moyal products on manifolds with anℝ𝑙-action, to fix the notation. In
Section 3, we show that the Hilbert–Schmidt norm of operators of the form 𝐿 𝑓 ℎ( /𝐷) is independent
of the deformation. In Section 4, after discussing how the required geometric properties yield
bounds on the heat kernel, we identify the Schatten classes L𝑝 to which several such operators
belong, and show that certain important cases they lie in the weak Schatten class L𝑛,∞, so that
𝐿 𝑓 (1 + /𝐷2)−𝑛/2 belongs to the Dixmier trace class L1,∞. The proof extends and simplifies the
argument of [29], based on Cwikel’s inequality [46].

In the final Sections 5 and 6, we compute the desired Dixmier traces, for both periodic and
aperiodic actions of ℝ𝑙 . In the aperiodic case, the geometry is straightforward but the analysis is not,
since Dixmier traces, unlike ordinary integrals, do not admit monotone or dominated convergence
theorems: the heuristic extension of the compact case put forward in [23, Thm. 4.2] is therefore
unsupported in general. We show, nevertheless, how to overcome this objection for algebras arising
from Moyal deformations.

2 Moyal products on manifolds
Definition 2.1. Let (𝑀, 𝑔) be an 𝑛-dimensional (not necessarily compact) Riemannian spin manifold
which is geodesically complete and without boundary. Let 𝐺 be a connected abelian Lie group of
rank 𝑙 (so that 𝐺 ≃ 𝕋 𝑘 × ℝ𝑙−𝑘 for some 𝑘 = 0, 1, . . . , 𝑙), with 𝑙 ⩾ 2. Assume that 𝑀 is endowed
with an isometric effective action of 𝐺, denoted 𝛼 : 𝐺 → Isom(𝑀, 𝑔), which is smooth (i.e., the
map 𝐺 × 𝑀 → 𝑀 : (𝑧, 𝑝) ↦→ 𝛼𝑧 (𝑝) is smooth) and proper. Thus 𝑀 is a proper 𝐺-manifold in the
sense of [39].

For brevity, we often write 𝑧 · 𝑝 := 𝛼𝑧 (𝑝). We also denote by 𝛼 the induced action by auto-
morphisms on 𝐶∞(𝑀), i.e., 𝛼𝑧 𝑓 (𝑝) := 𝑓 (𝛼−𝑧 (𝑝)) for 𝑝 ∈ 𝑀 . Let 𝑋1, . . . , 𝑋𝑙 be the infinitesimal
vector fields associated to the action, namely 𝑋 𝑗 ( 𝑓 ) := 𝜕

𝜕𝑧 𝑗
(𝛼𝑧 𝑓 )

��
𝑧=0, for 𝑓 ∈ 𝐶∞(𝑀).
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Let 𝑆 → 𝑀 be the spinor bundle and H := 𝐿2(𝑀, 𝑆) be the separable Hilbert space of its square
integrable sections. Each compactly supported smooth function 𝑓 ∈ 𝐶∞

𝑐 (𝑀) defines a bounded
operator 𝑀 𝑓 on H by pointwise multiplication, 𝑀 𝑓 (𝜓) := 𝑓 𝜓.

The isometric action 𝛼 lifts to 𝑆 modulo ±1, as is pointed out in [13]: for a suitable double
covering 𝑝 : 𝐺 → 𝐺, where 𝐺 is also isomorphic to 𝕋 𝑘 × ℝ𝑙−𝑘 , we can find a group of unitary
operators {𝑉𝑧 : 𝑧 ∈ 𝐺 } on H which covers the group of isometries { 𝛼𝑧 : 𝑧 ∈ 𝐺 } in the sense that

𝑉𝑧 ( 𝑓 𝜓) = (𝛼𝑧 𝑓 )𝑉𝑧𝜓, (2.1)

whenever 𝜓 ∈ H, 𝑓 ∈ 𝐶∞
𝑐 (𝑀), and 𝑝(𝑧) = 𝑧. In general, unless 𝑘 = 0, this spin lifting does not

split: if 𝑝(𝑧) = 𝑝(𝑧′) then𝑉𝑧 = ±𝑉𝑧′ but the sign cannot be taken globally to be +1. In what follows,
we shall ignore this nuance and shall suppose (in the notation) that the spin lifting does split, writing
𝑉𝑧 instead of 𝑉𝑧; thus (2.1) will be rewritten here as 𝑉𝑧 ( 𝑓 𝜓) = (𝛼𝑧 𝑓 )𝑉𝑧𝜓.

Definition 2.2. Let Θ ∈ 𝑀𝑙 (ℝ) be a fixed real skew-symmetric matrix. For 𝑓 , ℎ ∈ 𝐶∞
𝑐 (𝑀), the

usual pointwise product of 𝑓 and ℎ can be deformed by the group action 𝛼, as follows [43]:

𝑓 ★ ℎ := (2𝜋)−𝑙
∫
ℝ𝑙

∫
ℝ𝑙
𝑒−𝑖𝑦𝑧 𝛼 1

2Θ𝑦
( 𝑓 ) 𝛼−𝑧 (ℎ) 𝑑𝑙𝑦 𝑑𝑙𝑧. (2.2)

Thus, ★ is a bilinear product on 𝐶∞
𝑐 (𝑀) with values in 𝐶∞(𝑀); its associativity can be checked

directly.

Remark 2.3. We could have written ★Θ instead of ★, had we needed to emphasize the dependence
of the deformation on the parameter matrix Θ. When Θ = 0, the oscillatory integral (2.2) collapses
to the usual pointwise product of functions.

When Θ is not invertible, the product (2.2) reduces to a twisted product associated to the action
𝜎 := 𝛼

��
𝑉⊥ , where 𝑉 is the nullspace of Θ, as in [43, Prop. 2.7]. In what follows, we shall take Θ to

be a fixed invertible matrix. In particular, this implies that the rank 𝑙 is even.
Remark 2.4. Herein Θ is taken to be fixed, but this restriction is not forced: it has been shown by
one of us, together with Gracia-Bondı́a and Ruiz Ruiz [30], that Rieffel’s approach is compatible
with some variable noncommutativity matrices Θ(𝑥). Giving such a Θ determines a Poisson
structure ΠΘ on 𝑀; and one expects to find an associative star-product reproducing any given
ΠΘ, insofar as Kontsevich’s formality theorem [38] for perturbative deformations carries over to
the present context. Physics would demand that this Poisson tensor should be a dynamical field,
interacting with the gravity background. Among the papers that already invoke a variable Θ, we
may mention [1–3, 5, 21, 34, 36], although most of the treatments so far have been kinematical.

From now on, we shall treat separately 𝕋 𝑙-actions and effective ℝ𝑙-actions, and we respectively
talk about periodic and aperiodic deformations; we obtain similar results in both cases, albeit with
different techniques. We do not deal directly with mixed cases where the ℝ𝑙-action factors through
an effective action of 𝕋 𝑘×ℝ𝑙−𝑘 with 𝑘 = 1, . . . , 𝑙−1; since the action of the toral and vectorial factors
commute, one may reach the general case by composing a periodic and an aperiodic deformation.

In the aperiodic case, by the assumption of properness, the action is also free: proper actions
possess compact isotropy groups, but (ℝ𝑙 , +) has no nontrivial compact subgroups. Under a
proper, free action, the orbit space 𝑀/ℝ𝑙 is a (Hausdorff) smooth manifold, and the quotient map
𝜋 : 𝑀 → 𝑀/ℝ𝑙 defines an ℝ𝑙-principal bundle projection [22, Thm. 1.11.4]. Even though this
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bundle is trivializable (see section 6) and some of our results could thereby be extracted from [29,41],
we adopt here an intrinsic approach more compatible with eventual generalizations. In fact, the
crucial Dixmier trace computation, in Theorem 6.1 below, requires new techniques.

In the periodic case, the action is obviously not free in general; in [27], one of us has shown that
the set of singular points for the action (i.e., points with nontrivial isotropy group) may give rise to
a new type of UV/IR mixing phenomenon for isospectral deformations.

Note also that on noncompact manifolds, both periodic and aperiodic deformations may occur;
whereas when 𝑀 is compact, to be proper, the action 𝛼 must be periodic.

For torus actions, each 𝑓 ∈ 𝐶∞
𝑐 (𝑀) can be isotypically decomposed via Peter–Weyl decompo-

sition as a ∥.∥∞-norm convergent sequence (see [12, 13] for further details):

𝑓 =
∑︁
𝑟∈ℤ𝑙

𝑓𝑟 , (2.3)

where each homogeneous component 𝑓𝑟 satisfies 𝛼𝑧 ( 𝑓𝑟) = 𝑒−𝑖𝑧𝑟 𝑓𝑟 , for all 𝑧 ∈ 𝕋 𝑙 . In this case, the
twisted product reproduces the canonical commutation relations for the noncommutative 𝑙-torus,
since

𝑓 ★ ℎ =
∑︁
𝑟,𝑠∈ℤ𝑙

𝑒−
1
2 𝑖𝑟 ·Θ𝑠 𝑓𝑟 ℎ𝑠 .

This computation shows that in the periodic noncompact case, (𝐶∞
𝑐 (𝑀), ★) closes to an algebra:

while this product is nonlocal on the orbits of the action, the twisted product of two functions
𝑓 , ℎ ∈ 𝐶∞

𝑐 (𝑀) is again smooth and compactly supported because supp 𝑓𝑟 ⊂ 𝕋 𝑙 · (supp 𝑓 ) and thus
supp( 𝑓 ★ ℎ) ⊂ 𝕋 𝑙 · (supp 𝑓 ∩ supp ℎ).

This need not be the case for aperiodic deformations, whose orbits are noncompact. At this
level of generality, one can only prove, using Lemma 3.4 below, that 𝑓 ★ ℎ ∈ 𝐶∞(𝑀) ∩ 𝐿∞(𝑀, 𝜇𝑔).

3 Hilbertian analysis of deformed products
The Moyal product (2.2) is defined on functions, but the operator of left twisted multiplication
𝐿 𝑓 : ℎ ↦→ 𝑓 ★ℎ may be lifted to spinors by replacing 𝛼−𝑧ℎ by𝑉−𝑧𝜓 in the defining formula. We find
it convenient to work at both levels, on the “reduced” Hilbert space of functions H𝑟 := 𝐿2(𝑀, 𝜇𝑔)
and the “full” Hilbert space of square-integrable spinorsH = 𝐿2(𝑀, 𝑆). (Here 𝜇𝑔 is the Riemannian
volume form.) Somewhat abusively, we denote the left multiplication operators on both spaces by
the same symbol 𝐿 𝑓 , trusting that the context will make clear which is which.

3.1 Kernel properties of the ★ product

We begin by showing that, for 𝑓 ∈ 𝐶∞
𝑐 (𝑀), the operator of left twisted multiplication 𝐿 𝑓 is a bounded

kernel operator on H [or on H𝑟]. The same properties hold for the right twisted multiplication
operator 𝑅 𝑓 . We adopt the notation 𝑀 𝑓 for the (left or right) ordinary multiplication operator by 𝑓 ,
corresponding to the case Θ = 0.

Definition 3.1. For 𝑓 ∈ 𝐶∞
𝑐 (𝑀), the operator of left twisted multiplication 𝐿 𝑓 acting on H =

𝐿2(𝑀, 𝑆) is defined for 𝑝 ∈ 𝑀 by

𝐿 𝑓𝜓(𝑝) := (2𝜋)−𝑙
∫
ℝ𝑙

∫
ℝ𝑙
𝑒−𝑖𝑦𝑧 (𝛼 1

2Θ𝑦
𝑓 ) (𝑝)𝑉−𝑧𝜓(𝑝) 𝑑𝑙𝑦 𝑑𝑙𝑧. (3.1)
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(When the spin lifting of the action 𝛼 does not split, the right hand side must be replaced by

(2𝜋)−𝑙
∫
ℝ𝑙

∫
ℝ̃𝑙
𝑒−𝑖𝑦 𝑝(𝑧) (𝛼 1

2Θ𝑦
𝑓 ) (𝑝)𝑉−𝑧𝜓(𝑝) 𝑑𝑙𝑦 𝑑𝑙𝑧,

but we shall keep the version (3.1) to simplify the notation.)

Definition 3.2. For any 𝑝 ∈ 𝑀 , let 𝛿𝑔𝑝 ∈ D′(𝑀) be the distribution defined for 𝜙 ∈ 𝐶∞
𝑐 (𝑀) by

⟨𝛿𝑔𝑝, 𝜙⟩ =
∫
𝑀

𝛿
𝑔
𝑝 (𝑝′) 𝜙(𝑝′) 𝜇𝑔 (𝑝′) := 𝜙(𝑝).

The distribution 𝛿𝑔𝑝 is represented by (det 𝑔(𝑥))−1/2 𝛿(𝑥 − 𝑥′) in a local coordinate system, and the
product 𝛿𝑔𝑝 𝜇𝑔 can also be thought of as a de Rham 𝑛-current [44].

Proposition 3.3. Let 𝛼 be a smooth proper and isometric action of ℝ𝑙 . When 𝑓 ∈ 𝐶∞
𝑐 (𝑀), 𝐿 𝑓 is a

bounded kernel operator on H [or on H𝑟], with Schwartz kernel

𝐾𝐿 𝑓 (𝑝, 𝑝′) = (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝑦.𝑧 𝑓 ((−1

2Θ𝑦) · 𝑝) 𝛿
𝑔
𝑧·𝑝 (𝑝′) 𝑑𝑙𝑦 𝑑𝑙𝑧. (3.2)

Before giving a proof, we need the following Lemma.

Lemma 3.4. If 𝑓 ∈ 𝐶∞
𝑐 (𝑀) and the action 𝛼 of ℝ𝑙 is free, then for all 𝑘 ∈ ℕ,

sup
𝑝∈𝑀

∫
ℝ𝑙

|Δ𝑘𝛼 (𝛼𝑦 𝑓 ) (𝑝) | 𝑑𝑙𝑦 < ∞,

where Δ𝛼 := −∑𝑙
𝑗=1 𝑋

2
𝑗

is the Casimir operator.

Proof. For any fixed 𝑘 , the map 𝑓 (𝑝) :=
∫
ℝ𝑙

|Δ𝑘𝛼 (𝛼𝑦 𝑓 ) (𝑝) | 𝑑𝑙𝑦 is well defined since { 𝑦 ∈ ℝ𝑙 :
𝛼𝑦 (𝑝) ∈ supp 𝑓 } is compact for each 𝑝 ∈ 𝑀 [39, p. 41] because 𝑓 has compact support. This
gives rises to a finite 𝑦-integration and 𝑓 ∈ 𝐶∞(𝑀)𝐺 . Let 𝜋 : 𝑀 → 𝑀/ℝ𝑙 be the projection on the
orbit space. Then 𝑓 factors through 𝜋 to give a map 𝑓 defined by 𝑓 (𝜋(𝑝)) := 𝑓 (𝑝). This yields
the result since 𝑓 ∈ 𝐶∞

𝑐 (𝑀/ℝ𝑙), because if 𝑝 ∉ 𝛼ℝ𝑙 (supp 𝑓 ), so that 𝜋(𝑝) is not in the compact set
𝜋(supp 𝑓 ), then 𝑓 (𝜋(𝑝)) = 0. □

Proof of Proposition 3.3. For 𝜓 ∈ H, we can write, according to (3.1),

𝐿 𝑓𝜓(𝑝) = (2𝜋)−𝑙
∫
ℝ𝑙

∫
ℝ𝑙
𝑒−𝑖𝑦𝑧 𝛼 1

2Θ𝑦
( 𝑓 ) (𝑝)

∫
𝑀

𝛿
𝑔
𝑧·𝑝 (𝑝′) 𝜓(𝑝′) 𝜇𝑔 (𝑝′) 𝑑𝑙𝑦 𝑑𝑙𝑧.

The form of the kernel (3.2) is then obtained by interchange of integrals. In the aperiodic case, that
𝛼 is proper is equivalent (see [39, Defn. 5.1]) to the compactness of { 𝑦 ∈ ℝ𝑙 : 𝑦 · 𝐾 ∩ 𝐿 ≠ ∅ }
for any compact subsets 𝐾 and 𝐿 of 𝑀 . So for 𝐾 = 𝐿 = {𝑝}, for any 𝑝 ∈ 𝑀 , this implies that its
isotropy subgroup 𝐻𝑝 ⊂ ℝ𝑙 is compact. Hence 𝐻𝑝 = {0} for all 𝑝 ∈ 𝑀 since 𝛼 is free.
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Boundedness of 𝐿 𝑓 follows by a standard oscillatory-integral trick [26, 37, 43]:

𝐿 𝑓𝜓(𝑝) = (2𝜋)−𝑙
∫
ℝ𝑙

∫
ℝ𝑙
𝑒−𝑖𝑦𝑧 𝛼 1

2Θ𝑦
( 𝑓 )𝑉−𝑧𝜓(𝑝) 𝑑𝑙𝑦 𝑑𝑙𝑧

= (2𝜋)−𝑙
∫
ℝ𝑙
(1 + |𝑧 |2)−𝑟

∫
ℝ𝑙
(1 + |𝑧 |2)𝑟 𝑒−𝑖𝑦𝑧 𝛼 1

2Θ𝑦
( 𝑓 ) 𝑑𝑙𝑦 𝑉−𝑧𝜓(𝑝) 𝑑𝑙𝑧

= (2𝜋)−𝑙
∫
ℝ𝑙
(1 + |𝑧 |2)−𝑟

∫
ℝ𝑙
((1 + Δ𝑦)𝑟 𝑒−𝑖𝑦𝑧) 𝛼 1

2Θ𝑦
( 𝑓 ) 𝑑𝑙𝑦 𝑉−𝑧𝜓(𝑝) 𝑑𝑙𝑧

= (2𝜋)−𝑙
∫
ℝ𝑙
(1 + |𝑧 |2)−𝑟

∫
ℝ𝑙
𝑒−𝑖𝑦𝑧 ((1 + Δ𝛼)𝑟𝛼 1

2Θ𝑦
( 𝑓 )) 𝑑𝑙𝑦 𝑉−𝑧𝜓(𝑝) 𝑑𝑙𝑧,

where boundary terms vanish due to the compactness of supp 𝑓 . Hence,

∥𝐿 𝑓𝜓∥ ⩽ (2𝜋)−𝑙 ∥𝜓∥
(∫

ℝ𝑙
(1 + |𝑧 |2)−𝑟 𝑑𝑙𝑧

)
sup
𝑝∈𝑀

∫
ℝ𝑙

| (1 + Δ𝛼)𝑟𝛼 1
2Θ𝑦

( 𝑓 ) (𝑝) | 𝑑𝑙𝑦 (3.3)

is finite for 𝑟 > 𝑙/2, thanks to Lemma 3.4. □

Remark 3.5. In the periodic (compact or not) case, that 𝐿 𝑓 is bounded for 𝑓 ∈ 𝐶∞
𝑐 (𝑀) is a direct

consequence of the Peter–Weyl decomposition (2.3). Indeed, the relation

𝐿 𝑓𝑟 = 𝑀 𝑓𝑟𝑉− 1
2Θ𝑟

(3.4)

implies
∥𝐿 𝑓 ∥ ⩽

∑︁
𝑟∈ℤ𝑙

∥𝑀 𝑓𝑟𝑉− 1
2Θ𝑟

∥ ⩽
∑︁
𝑟∈ℤ𝑙

∥ 𝑓𝑟 ∥∞,

which is finite since the decomposition (2.3) is convergent in the sup norm.
Furthermore, the Schwartz kernel of 𝐿 𝑓 is

𝐾𝐿 𝑓 (𝑝, 𝑝′) =
∑︁
𝑟∈ℤ𝑙

𝑓𝑟 (𝑝) 𝛿𝑔1
2Θ𝑟 ·𝑝

(𝑝′).

Remark 3.6. From the estimates used in the proof of Proposition 3.3, it is clear that this result, as
well as all the statements of this section, holds for a wider class of smooth functions decreasing fast
enough at infinity. It is in particular the case for smooth functions which satisfy (with an obvious
abuse of notation)

∫
ℝ𝑙
𝛼𝑦 ( 𝑓 ) 𝑑𝑙𝑦 ∈ 𝐶∞

𝑐 (𝑀/ℝ𝑙) and
∫
ℝ𝑙

|𝑦𝛽 𝑋𝛾 𝛼𝑦 ( 𝑓 ) | 𝑑𝑙𝑦 < ∞, for all 𝛽, 𝛾 ∈ ℕ𝑙 ,
i.e., which are compactly supported once projected on the orbit space, and which are in the Schwartz
space of the orbits. However, for the sake of simplicity, we only consider in the sequel functions in
𝐶∞
𝑐 (𝑀), which of course have those properties.

3.2 Hilbert–Schmidt norm invariance

We are now concern by invariance properties for kernels of operators of type ℎ( /𝐷), where ℎ is
any bounded positive smooth function, and /𝐷 is the Dirac operator on 𝑆. Since we want /𝐷 to be
essentially selfadjoint with domain 𝐶∞

𝑐 (𝑀) (and we still denote by /𝐷 its selfadjoint closure), it is
sufficient, by a result of Wolf [49], to assume from now on that 𝑀 is geodesically complete.

6



Lemma 3.7. Let ℎ be a bounded positive smooth function onℝ. Then the kernel𝐾ℎ( /𝐷) is𝛼-invariant:
for all 𝑧 ∈ ℝ𝑙 , 𝑝, 𝑝′ ∈ 𝑀 ,

𝐾ℎ( /𝐷) (𝑧 · 𝑝, 𝑧 · 𝑝′) = 𝐾ℎ( /𝐷) (𝑝, 𝑝′),
except possibly on a nullset of 𝑀 × 𝑀 .

Proof. This is a direct consequence of the isometry property of 𝛼; indeed, the invariance of the
Levi-Civita connection for 𝑔 entails invariance of the spin connection under the lifted action on
spinors, so that 𝑉𝑧 /𝐷𝑉−𝑧 = /𝐷 for all 𝑧.

This implies that [𝑉𝑧, ℎ( /𝐷)] = 0 for all 𝑧 ∈ ℝ𝑙 . Thus, for 𝜓 ∈ H, the invariance of the
Riemannian volume form under the diffeomorphism 𝛼−𝑧 yields∫

𝑀

𝐾ℎ( /𝐷) (𝑧 · 𝑝, 𝑧 · 𝑝′) 𝜓(𝑝′) 𝜇𝑔 (𝑝′) =
∫
𝑀

𝐾ℎ( /𝐷) (𝑧 · 𝑝, 𝑝′) 𝜓((−𝑧) · 𝑝′) 𝜇𝑔 (𝑝′).

The right hand side equals (ℎ( /𝐷)𝑉𝑧𝜓) (𝑧 · 𝑝) = (𝑉−𝑧ℎ( /𝐷)𝑉𝑧𝜓) (𝑝) = (ℎ( /𝐷)𝜓) (𝑝).
Thus, 𝐾ℎ( /𝐷) (𝛼𝑧 (·), 𝛼𝑧 (·)) and 𝐾ℎ( /𝐷) represent the same operator on H. □

The main result of this section is the following equality, which shows that the Hilbert–Schmidt
norm of 𝐿 𝑓 ℎ( /𝐷) is independent of the deformation parameters in Θ.

Theorem 3.8. Let 𝑓 ∈ 𝐶∞
𝑐 (𝑀) and ℎ be a bounded positive function on ℝ such that 𝑀 𝑓 ℎ( /𝐷) is a

Hilbert–Schmidt operator. Then the operator 𝐿 𝑓 ℎ( /𝐷) is also Hilbert–Schmidt, with

∥𝐿 𝑓 ℎ( /𝐷)∥2 = ∥𝑀 𝑓 ℎ( /𝐷)∥2.

Proof. First, by Proposition 3.3, one can compute the kernel of 𝐿 𝑓 ℎ( /𝐷) in terms of 𝐾ℎ( /𝐷):

𝐾𝐿 𝑓 ℎ( /𝐷) (𝑝, 𝑝
′) =

∫
𝑀

𝐾𝐿 𝑓 (𝑝, 𝑞)𝐾ℎ( /𝐷) (𝑞, 𝑝′) 𝜇𝑔 (𝑞)

= (2𝜋)−𝑙
∫
𝑀

∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑓 ((−1

2Θ𝑦) · 𝑝) 𝛿
𝑔
𝑧·𝑝 (𝑞) 𝐾ℎ( /𝐷) (𝑞, 𝑝′) 𝑑𝑙𝑦 𝑑𝑙𝑧 𝜇𝑔 (𝑞)

= (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑓 ((−1

2Θ𝑦) · 𝑝) 𝐾ℎ( /𝐷) (𝑧 · 𝑝, 𝑝
′) 𝑑𝑙𝑦 𝑑𝑙𝑧. (3.5)

Therefore,

∥𝐿 𝑓 ℎ( /𝐷)∥2
2 =

∫
𝑀×𝑀

|𝐾𝐿 𝑓 ℎ( /𝐷) (𝑝, 𝑝
′) |2 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′)

= (2𝜋)−2𝑙
∫
𝑀×𝑀

∫
ℝ4𝑙
𝑒𝑖(𝑦1𝑧1−𝑦2𝑧2) 𝑓 ((−1

2Θ𝑦1) · 𝑝) 𝑓 ((−1
2Θ𝑦2) · 𝑝)

× 𝐾ℎ( /𝐷) (𝑧1 · 𝑝, 𝑝′) 𝐾ℎ( /𝐷) (𝑧2 · 𝑝, 𝑝′) 𝑑𝑙𝑦1 𝑑
𝑙𝑧1 𝑑

𝑙𝑦2 𝑑
𝑙𝑧2 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′)

= (2𝜋)−2𝑙
∫
𝑀×𝑀

∫
ℝ4𝑙
𝑒𝑖(𝑦1𝑧1−𝑦2𝑧2) 𝑓 ((−1

2Θ𝑦1 − 𝑧2) · 𝑝) 𝑓 ((−1
2Θ𝑦2 − 𝑧2) · 𝑝)

× 𝐾ℎ( /𝐷) ((𝑧1 − 𝑧2) · 𝑝, (𝑧1 − 𝑧2) · 𝑝′) 𝐾ℎ( /𝐷) (𝑝, (𝑧1 − 𝑧2) · 𝑝′)
× 𝑑𝑙𝑦1 𝑑

𝑙𝑧1 𝑑
𝑙𝑦2 𝑑

𝑙𝑧2 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′),
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where we used the invariance of 𝜇𝑔 under the isometries 𝑝 ↦→ (−𝑧2) · 𝑝 and 𝑝′ ↦→ (𝑧1 − 𝑧2) · 𝑝′.
Now by Lemma 3.7, using the translation 𝑧1 ↦→ 𝑧1 + 𝑧2, the last expression becomes

(2𝜋)−2𝑙
∫
𝑀×𝑀

∫
ℝ4𝑙
𝑒𝑖(𝑦1 (𝑧1+𝑧2)−𝑦2𝑧2) 𝑓 ((−1

2Θ𝑦1 − 𝑧2) · 𝑝) 𝑓 ((−1
2Θ𝑦2 − 𝑧2) · 𝑝)

× 𝐾ℎ( /𝐷) (𝑝, 𝑝′) 𝐾ℎ( /𝐷) (𝑝, 𝑧1 · 𝑝′) 𝑑𝑙𝑦1 𝑑
𝑙𝑧1 𝑑

𝑙𝑦2 𝑑
𝑙𝑧2 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′),

= (2𝜋)−2𝑙
∫
𝑀×𝑀

∫
ℝ4𝑙
𝑒𝑖((𝑦1−2Θ−1𝑧2) (𝑧1+𝑧2)−𝑦2𝑧2) 𝑓 ((−1

2Θ𝑦1) · 𝑝) 𝑓 ((−1
2Θ𝑦2) · 𝑝)

× 𝐾ℎ( /𝐷) (𝑝, 𝑝′) 𝐾ℎ( /𝐷) (𝑝, 𝑧1 · 𝑝′) 𝑑𝑙𝑦1 𝑑
𝑙𝑧1 𝑑

𝑙𝑦2 𝑑
𝑙𝑧2 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′),

on making the translations 𝑦1 ↦→ 𝑦1 − 2Θ−1𝑧2 and 𝑦2 ↦→ 𝑦2 − 2Θ−1𝑧2. This yields

(2𝜋)−𝑙
∫
𝑀×𝑀

∫
ℝ2𝑙
𝑒𝑖𝑦𝑧 𝑓 ((−1

2Θ𝑦) · 𝑝) 𝑓 ((−
1
2Θ𝑦 − 𝑧) · 𝑝)

× 𝐾ℎ( /𝐷) (𝑝, 𝑝′) 𝐾ℎ( /𝐷) (𝑝, 𝑧 · 𝑝′) 𝑑𝑙𝑦 𝑑𝑙𝑧 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′)

= (2𝜋)−𝑙
∫
𝑀×𝑀

∫
ℝ2𝑙
𝑒𝑖𝑦𝑧 𝑓 (𝑝) 𝑓 ((−𝑧) · 𝑝) 𝐾ℎ( /𝐷) (𝑝, 𝑝′) 𝐾ℎ( /𝐷) (𝑝, 𝑧 · 𝑝′)

× 𝑑𝑙𝑦 𝑑𝑙𝑧 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′)

=

∫
𝑀×𝑀

| 𝑓 (𝑝) |2 |𝐾ℎ( /𝐷) (𝑝, 𝑝′) |2 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′) = ∥𝑀 𝑓 ℎ( /𝐷)∥2
2.

The second equality uses the isometries 𝑝 ↦→ ( 1
2Θ𝑦) · 𝑝 and 𝑝′ ↦→ ( 1

2Θ𝑦) · 𝑝
′. □

Remark 3.9. Naturally, this result is still true in the restricted case of a scalar Laplacian, i.e., for
𝐿 𝑓 ℎ(Δ𝑟), with Δ𝑟 the scalar Laplacian acting on the reduced Hilbert space H𝑟 = 𝐿

2(𝑀, 𝜇𝑔).
We shall see in the next section sufficient conditions on ℎ implying that 𝑀 𝑓 ℎ( /𝐷) lies in the

Hilbert–Schmidt ideal.

Corollary 3.10. If 𝐿 𝑓 ℎ( /𝐷) and 𝑀 𝑓 ℎ( /𝐷) are trace-class operators, then their traces coincide:

Tr(𝐿 𝑓 ℎ( /𝐷)) = Tr(𝑀 𝑓 ℎ( /𝐷)).

Proof. The translation-invariance property of Lemma 3.7 and the expression (3.5) for the kernel of
𝐿 𝑓 ℎ( /𝐷) yield the equalities

Tr(𝐿 𝑓 ℎ( /𝐷)) =
∫
𝑀

𝐾𝐿 𝑓 ℎ( /𝐷) (𝑝, 𝑝) 𝜇𝑔 (𝑝)

= (2𝜋)−𝑙
∫
𝑀

∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑓 ((−1

2Θ𝑦) · 𝑝) 𝐾ℎ( /𝐷) (𝑧 · 𝑝, 𝑝) 𝑑
𝑙𝑦 𝑑𝑙𝑧 𝜇𝑔 (𝑝)

= (2𝜋)−𝑙
∫
𝑀

∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑓 (𝑝′) 𝐾ℎ( /𝐷) (𝑧 · 𝑝′, 𝑝′) 𝑑𝑙𝑦 𝑑𝑙𝑧 𝜇𝑔 (𝑝′)

=

∫
𝑀

𝑓 (𝑝′) 𝐾ℎ( /𝐷) (𝑝′, 𝑝′) 𝜇𝑔 (𝑝′) = Tr(𝑀 𝑓 ℎ( /𝐷)). □

The Riemannian volume form gives a natural trace for the twisted product.
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Lemma 3.11. For 𝑓 , ℎ ∈ 𝐶∞
𝑐 (𝑀), ∫

𝑀

( 𝑓 ★ ℎ) 𝜇𝑔 =
∫
𝑀

𝑓 ℎ 𝜇𝑔 .

Proof. It is enough to notice that, with 𝑝 ∈ 𝑀 ,∫
𝑀

𝑓 ★ ℎ(𝑝) 𝜇𝑔 (𝑝) = (2𝜋)−𝑙
∫
𝑀

∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑓 ((−1

2Θ𝑦) · 𝑝) ℎ(𝑧 · 𝑝) 𝑑
𝑙𝑦 𝑑𝑙𝑧 𝜇𝑔 (𝑝)

= (2𝜋)−𝑙
∫
𝑀

∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑓 ((−1

2Θ𝑦 − 𝑧) · 𝑝) ℎ(𝑝) 𝑑
𝑙𝑦 𝑑𝑙𝑧 𝜇𝑔 (𝑝)

= (2𝜋)−𝑙
∫
𝑀

∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑓 ((−𝑧) · 𝑝) ℎ(𝑝) 𝑑𝑙𝑦 𝑑𝑙𝑧 𝜇𝑔 (𝑝)

=

∫
𝑀

𝑓 (𝑝) ℎ(𝑝) 𝜇𝑔 (𝑝),

using the isometry 𝑝 ↦→ (−𝑧) · 𝑝 and the translation 𝑧 ↦→ 𝑧 − 1
2Θ𝑦. □

Remark 3.12. For formal deformations, Felder and Shoikhet [25] have shown that a divergenceless
Poisson bivector field yields a star-product which is tracial. The divergence of ΠΘ is a vector field,
given in local coordinates by

divΠΘ = (𝜕𝑗Θ𝑖 𝑗 + Γ𝑙𝑙𝑘Θ
𝑖𝑘 ) 𝜕𝑖;

where Γ𝑖
𝑗 𝑘

are the Christoffel symbols for the metric 𝑔. Thus, ΠΘ will be divergenceless if and only
if [33, Chap. 7]:

Θ𝑖 𝑗 𝜕𝑖 (log
√︁

det 𝑔) + 𝜕𝑙Θ𝑙 𝑗 = 0.
This implies that Θ must be of constant rank [24]. A result parallel to that of [25], in our context,
would suggest that variable noncommutativity matrices should prevail in non-flat backgrounds,
although one may admit a nonconstant, divergenceless Θ in a flat background (the case considered
in [30]) or a constant, divergenceless Θ in a non-flat background (as we do here).

In what follows, we shall take advantage of the possibility of viewing 𝐿 𝑓 , for 𝑓 ∈ 𝐶∞
𝑐 (𝑀), as

an integral of bounded operators:

𝐿 𝑓 = (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑉1

2Θ𝑦
𝑀 𝑓 𝑉− 1

2Θ𝑦−𝑧
𝑑𝑙𝑦 𝑑𝑙𝑧. (3.6)

This is not a Bochner integral (the integral of the norm of the integrand is not absolutely convergent),
but rather a B(H)-valued oscillatory integral, as shown in the proof of Proposition 3.3.

The invariance property of the Hilbert–Schmidt norm can be generalized as follows. One can
construct left and right twists for a wider class of bounded operators. For 𝐴 ∈ B(H) we formally
define its left and right twists by

𝐿𝐴 := (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑉1

2Θ𝑦
𝐴𝑉− 1

2Θ𝑦−𝑧
𝑑𝑙𝑦 𝑑𝑙𝑧 ,

𝑅𝐴 := (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑉−𝑧 𝐴𝑉𝑧+ 1

2Θ𝑦
𝑑𝑙𝑦 𝑑𝑙𝑧 .

These expressions are well defined, at least, for Hilbert–Schmidt operators thanks to the following
generalization of Theorem 3.8.
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Theorem 3.13. Let 𝐴 be a Hilbert–Schmidt operator. Then 𝐿𝐴 and 𝑅𝐴 are also Hilbert–Schmidt
operators and

∥𝐿𝐴∥2 = ∥𝑅𝐴∥2 = ∥𝐴∥2 .

Proof. We treat 𝐿𝐴 only. The kernel 𝐾𝐴 of 𝐴 lies in 𝐿2(𝑀 ×𝑀, 𝜇𝑔 × 𝜇𝑔), and we can express 𝐾𝐿𝐴
in terms of 𝐾𝐴:

𝐾𝐿𝐴 (𝑝, 𝑝′) = (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝑦.𝑧 𝐾𝐴 ( 1

2Θ𝑦 · 𝑝, 𝑧 · 𝑝
′) 𝑑𝑙𝑦 𝑑𝑙𝑧 .

Thus, routine computations yield that the map 𝐾𝐴 ↦→ 𝐾𝐿𝐴 is an isometry on 𝐿2(𝑀 × 𝑀, 𝜇𝑔 × 𝜇𝑔):

∥𝐿𝐴∥2 =

∫
𝑀×𝑀

|𝐾𝐿𝐴 (𝑝, 𝑝′) |2 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′) = ∥𝐴∥2 . □

4 Schatten-class estimates for twisted multiplication operators
In this section, we give Schatten-norm estimates for the operators 𝑀 𝑓 (1 + Δ𝑟)−𝑘 and 𝐿 𝑓 (1 + Δ𝑟)−𝑘
acting on the reduced Hilbert space H𝑟 = 𝐿

2(𝑀, 𝜇𝑔), where Δ𝑟 is the Laplacian (𝑑+𝑑∗)2 reduced to
0-forms (in our convention, the Laplacian is a positive operator). This will be done using heat kernel
estimates and the Laplace transform for (1 +Δ𝑟)−𝑘 , together with Proposition 3.3 and Theorem 3.8.
For convenience and when no ambiguity can occur, we shall omit the subscript 𝑟 for the reduced
Laplacian.

We use the notations L𝑝 (H), 𝑝 ⩾ 1, for the 𝑝-Schatten class of operators on the Hilbert space
H and L𝑛,∞(H) for the 𝑛+-summable operators on H.

4.1 Some heat-kernel estimates

We now need to make some more precise assumptions on the geometry of 𝑀 , which give some
(mild) controls on the asymptotics of the heat kernel.

Let 𝐾𝑡 (𝑝, 𝑝′) denote the heat kernel, associated to the operator 𝑒−𝑡Δ𝑟 , defined on 𝑀 × 𝑀 for
0 < 𝑡 < ∞. Recall that, in full generality, each 𝐾𝑡 (𝑝, 𝑝′) is a smooth strictly positive symmetric
function on 𝑀 × 𝑀 [16, Thm. 5.2.1].

▶ For the remainder of the article, we shall suppose that the manifold 𝑀 satisfies the following
hypothesis.

Condition 4.1. 𝑀 is a complete connected Riemannian spin manifold of dimension 𝑛 ⩾ 2 without
boundary such that

sup
𝑝∈𝑀

∫ ∞

0
𝑡𝑘 𝑒−𝑡 𝐾𝑡 (𝑝, 𝑝) 𝑑𝑡 < ∞ for all 𝑘 >

𝑛

2
− 1, (4.1)

and for some 𝑐 > 0,

sup
𝑝∈𝑀

∫ ∞

𝑚

𝑡−
1
2 𝑒−𝑡 𝐾𝑡 (𝑝, 𝑝) 𝑑𝑡 < 𝑐 𝑚−(𝑛−1)/2 for all 𝑚 ∈ (0, 1] . (4.2)
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These constraints imply a control of the heat kernel near 0 and ∞ which is sufficient for the
Dixmier trace computations. They are not too severe, as the next Lemma shows. Some such controls
are necessary because for any complete Riemannian manifold of finite volume 𝑉 (𝑀), in particular
for a compact manifold,

∫ ∞
1 𝐾𝑡 (𝑝, 𝑝) 𝑑𝑡 = ∞ holds since lim𝑡→∞ 𝐾𝑡 (𝑝, 𝑝′) = 𝑉 (𝑀)−1.

Let 𝐵(𝑝, 𝑟) := { 𝑝′ ∈ 𝑀 : 𝑑𝑔 (𝑝, 𝑝′) < 𝑟 } denote the geodesic ball centered at 𝑝 with radius 𝑟.
The isoperimetric constant I(𝑀) is given [7, p. 96] by

I(𝑀) := inf
Ω

𝐴(𝜕Ω)𝑛
𝑉 (Ω)𝑛−1 ,

where Ω ranges over all open submanifolds with compact closure in 𝑀 and with smooth boundary,
𝑉 (Ω) and 𝐴(𝜕Ω) are the Riemannian volume and area of Ω and 𝜕Ω respectively.

Lemma 4.2. Let 𝑀 be a complete Riemannian manifold satisfying one of the following:

(1) 𝑀 has Ricci curvature bounded from below, that is, Ric(𝑝) ⩾ (𝑛 − 1) 𝛽, for all 𝑝 ∈ 𝑀 and
some constant 𝛽. Moreover, sup𝑝∈𝑀 𝑉 (𝐵(𝑝, 𝑎))−1 < ∞ for some 𝑎 > 0.

(2) 𝑀 is noncompact with a positive injectivity radius, and there exists 𝑎 > 0 such that
sup𝑝∈𝑀 I(𝐵(𝑝, 𝑎))−1 < ∞. (This last property holds if 𝑀 has a positive isoperimetric
constant: I(𝑀) > 0.)

Then the inequalities (4.1) and (4.2) hold for 𝑀 .

Proof. Assume the first condition. In [17, Lemma 15] – see also [16] – we get the following
estimates. Given 𝜀 > 0, there exists a constant 𝑐𝜀 such that, for all 𝑡 > 0 and 𝑝 ∈ 𝑀 ,

0 ⩽ 𝐾𝑡 (𝑝, 𝑝) ⩽ 𝑐𝜀 (𝑛)𝑉 (𝐵(𝑝, 𝑡1/2))−1 𝑒(𝜀−𝐸)𝑡 ,

where 𝐸 := inf sp(Δ) ⩾ 0. Since, by [8, Prop. 4.1],

𝑉 (𝐵(𝑝, 𝑟)) ⩾ 𝑐 𝑟𝑛𝑉 (𝐵(𝑝, 1)) for 0 < 𝑟 < 1,

we get

𝐾𝑡 (𝑝, 𝑝) ⩽
{
𝐶2(𝜀) 𝑡−𝑛/2𝑉 (𝐵(𝑝, 1))−1 𝑒(𝜀−𝐸)𝑡 , 𝑡 ⩽ 1,

𝐶3(𝜀)𝑉 (𝐵(𝑝, 1))−1 𝑒(𝜀−𝐸)𝑡 , 𝑡 > 1.
(4.3)

Now suppose instead that the second condition holds. In [7, Thm. 8, p. 198], it is proved that the
heat kernel has an upper bound: for all 𝑝 ∈ 𝑀 and 𝑟 > 0 for which 𝐵(𝑝, 𝑟) lies in the image of the
exponential map exp𝑝, the following estimate holds:

𝐾𝑡 (𝑝, 𝑝) ⩽ 𝐶1(𝑛) (𝑡−𝑛/2 + 𝑟−(𝑛+2) 𝑡) I(𝐵(𝑝, 𝑟))−1. (4.4)

In Case (1), we assumed that sup𝑝∈𝑀 𝑉 (𝐵(𝑝, 𝑎))−1 < ∞ for some 𝑎 > 0. Similarly, the constraint
on the injectivity radius in Case (2) implies that for some 𝑟0, 𝐵(𝑝, 𝑟0) lies in the image of the
exponential maps exp𝑝 for all 𝑝 ∈ 𝑀 .

Thus the estimates (4.4) and (4.3) yield

𝐾𝑡 (𝑝, 𝑝) ⩽ 𝑐1 (𝑡−𝑛/2 + 𝑐2 𝑡) max(𝑒(𝜀0−𝐸)𝑡 , 1)

for some positive constants 𝑐1, 𝑐2, independent of 𝑝, for a fixed 𝜀 = 𝜀0 < 1.
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Let 𝑏 = max(𝜀0 − 𝐸 − 1,−1). Then 𝑏 < 0 and

sup
𝑝∈𝑀

∫ ∞

0
𝑡𝑘 𝑒−𝑡 𝐾𝑡 (𝑝, 𝑝) 𝑑𝑡 ⩽ 𝑐1

∫ ∞

0
𝑡𝑘−

𝑛
2 𝑒𝑏𝑡 𝑑𝑡 + 𝑐2

∫ ∞

0
𝑡𝑘+1 𝑒𝑏𝑡 𝑑𝑡

= 𝑐1 Γ(𝑘 − 𝑛
2 + 1) 𝑏−(𝑘− 𝑛2 +1) + 𝑐2 Γ(𝑘 + 2) 𝑏−(𝑘+2)

is finite and (4.1) holds.
Similarly, we get

sup
𝑝∈𝑀

∫ ∞

𝑚

𝑡−
1
2 𝑒−𝑡 𝐾𝑡 (𝑝, 𝑝) 𝑑𝑡 ⩽ 𝑐1 sup

𝑝∈𝑀

∫ ∞

𝑚

𝑡−(𝑛+1)/2 𝑑𝑡 + 𝑐2 sup
𝑝∈𝑀

∫ ∞

𝑚

𝑡 𝑒𝑏𝑡 𝑑𝑡

= 𝑐1
2

𝑛 − 1
𝑚−(𝑛−1)/2 + 𝑐2

1 − 𝑚𝑏
𝑏2 𝑒𝑚𝑏 .

Since (1 − 𝑚𝑏)𝑒𝑚𝑏 < 1 − 𝑚𝑏 < (1 − 𝑚𝑏) 𝑚−(𝑛−1)/2 for 0 < 𝑚 < 1, the inequality (4.2) also
holds. □

Remark 4.3. Since sup𝑝∈𝑀 𝐾𝑡 (𝑝, 𝑝) is decreasing in 𝑡, the condition (4.1) is satisfied if, for some
𝑐′ > 0,

sup
𝑝∈𝑀

𝐾𝑡 (𝑝, 𝑝) < 𝑐′ 𝑒𝑡 𝑡−𝑛/2 for all 0 < 𝑡 < 1.

It is known (see [15], for instance) that

∥𝑒−𝑡Δ∥1→∞ = sup
𝑝∈𝑀

𝐾𝑡 (𝑝, 𝑝).

Thus, changing Δ to 1 + Δ, the condition (4.1) is guaranteed by

∥𝑒−𝑡 (1+Δ) ∥1→∞ < 𝑐′ 𝑡−𝑛/2 for all 0 < 𝑡 < 1. (4.5)

This can be reformulated in many different ways, according to [14]. For 𝑛 > 2, (4.5) is equivalent
to the boundedness of the operator (1 + Δ)−1/2 : 𝐿2(𝑀, 𝜇) → 𝐿2𝑛/(𝑛−2) (𝑀, 𝜇), or of the operator
(1 + Δ)−𝛼/2 : 𝐿𝑝 (𝑀, 𝜇) → 𝐿𝑞 (𝑀, 𝜇), for 1 < 𝑝 < ∞, 𝛼𝑝 < 𝑛 and 1

𝑞
= 1

𝑝
− 𝛼

𝑛
. This can be used in

the next subsection.
According to [15, Prop. 1.2], this implies that sup𝑝∈𝑀 𝑉 (𝐵(𝑝, 1))−1 < ∞, for 𝑛 > 2.
Note that a strictly positive isoperimetric constant is a stronger condition than (4.1): see [15].

For instance, when 𝑀 = ℝ𝑛 with its Euclidean metric, 𝐾𝑡 (𝑝, 𝑝) = (4𝜋 𝑡)−𝑛/2 for all 𝑝 ∈ 𝑀 and
𝑡 > 0.
Remark 4.4. Recall that a bounded geometry on a connected manifold 𝑀 is a Riemannian metric
on 𝑀 whose injectivity radius is positive and satisfies |∇𝑘𝑅 | ⩽ 𝐶𝑘 , 𝑘 ∈ ℕ, i.e., every covariant
derivative of the Riemann curvature tensor is bounded: see [7,45,47]. Such a Riemannian manifold
is automatically complete and satisfies the Condition 4.1. In fact, any 𝑛-dimensional manifold with
positive injectivity radius and Ricci curvature uniformly bounded below obeys an upper bound:
sup𝑝∈𝑀 𝐾𝑡 (𝑝, 𝑝) ⩽ 𝐶max(𝑡−𝑛/2, 𝑡−1/2) for all 𝑡 > 0: see [35, Thm. 7.9]. Thus (4.1) and (4.2) are
valid.

Examples of manifolds with bounded geometry are given by Lie groups, homogeneous manifolds
with invariant metrics, covering manifolds of compact manifolds with the lifted Riemannian metric,
leaves of a foliation on a compact manifold with a metric induced by the Riemannian metric
on the compact manifold. In particular, all manifolds with a transitive group of isometries have
𝐶∞-bounded geometry.
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4.2 Schatten-class estimates

We start with a straightforward consequence of (4.1).

Lemma 4.5. Assume that 𝑀 satisfies Condition 4.1. Then (1 + Δ)−𝑘 is a bounded operator from
𝐿2(𝑀, 𝜇𝑔) to 𝐿∞(𝑀, 𝜇𝑔), for all 𝑘 > 𝑛/4.

Proof. Let 𝜙 ∈ 𝐿2(𝑀, 𝜇𝑔). Using the Cauchy–Schwarz inequality, positivity and symmetry of
𝐾(1+Δ)−𝑘 , positivity of 𝜇𝑔, the product rule for kernel operators and the Laplace transform (1+Δ)−2𝑘 =

Γ(2𝑘)−1
∫ ∞

0 𝑡2𝑘−1 𝑒−𝑡 (1+Δ) 𝑑𝑡, we get

∥(1 + Δ)−𝑘𝜙∥2
∞ = sup

𝑝∈𝑀

����∫
𝑀

𝐾(1+Δ)−𝑘 (𝑝, 𝑝′) 𝜙(𝑝′) 𝜇𝑔 (𝑝′)
����2

⩽ ∥𝜙∥2
2 sup
𝑝∈𝑀

∫
𝑀

|𝐾(1+Δ)−𝑘 (𝑝, 𝑝′) |2 𝜇𝑔 (𝑝′)

= ∥𝜙∥2
2 sup
𝑝∈𝑀

∫
𝑀

𝐾(1+Δ)−𝑘 (𝑝, 𝑝′) 𝐾(1+Δ)−𝑘 (𝑝′, 𝑝) 𝜇𝑔 (𝑝′)

= ∥𝜙∥2
2 sup
𝑝∈𝑀

𝐾(1+Δ)−2𝑘 (𝑝, 𝑝)

=
∥𝜙∥2

2
Γ(2𝑘) sup

𝑝∈𝑀

∫ ∞

0
𝑡2𝑘−1 𝑒−𝑡 𝐾𝑡 (𝑝, 𝑝) 𝑑𝑡.

By (4.1), the 𝑡-integral is finite when 𝑘 > 𝑛
4 , so ∥(1 + Δ)−𝑘𝜙∥∞ ⩽ 𝑐(𝑘) ∥𝜙∥2. □

We now give the principal result of this subsection. Condition 4.1 is assumed throughout.

Proposition 4.6. For 𝑓 ∈ 𝐿2(𝑀, 𝜇𝑔), the operator 𝑀 𝑓 (1 + Δ)−𝑘 is Hilbert–Schmidt for 𝑘 > 𝑛/4
and satisfies

∥𝑀 𝑓 (1 + Δ)−𝑘 ∥2 ⩽ 𝐶𝑘 (𝑛) ∥ 𝑓 ∥2.

Proof. That the operator 𝑀 𝑓 (1 + Δ)−𝑘 is Hilbert–Schmidt is a consequence of the factorization
principle of Grothendieck – see [18, Ex. 11.18], for instance – which is this context says that when
two operators 𝐵 : 𝐿2(𝑋, 𝜇) → 𝐿∞(𝑋, 𝜇) and 𝐴 : 𝐿∞(𝑋, 𝜇) → 𝐿2(𝑋, 𝜇) are both bounded, their
product 𝐴𝐵 is a Hilbert–Schmidt operator on 𝐿2(𝑋, 𝜇).

Since for 𝑓 ∈ 𝐿2(𝑀, 𝜇𝑔), 𝑀 𝑓 is bounded from 𝐿∞(𝑀, 𝜇𝑔) into 𝐿2(𝑀, 𝜇𝑔), Lemma 4.5 shows
that 𝑀 𝑓 (1 + Δ)−𝑘 is Hilbert–Schmidt for 𝑘 > 𝑛/4. For the Hilbert–Schmidt-norm estimate, we
again use (4.4), (4.3) and Laplace transform techniques:

∥𝑀 𝑓 (1 + Δ)−𝑘 ∥2
2 =

∫
𝑀×𝑀

| 𝑓 (𝑝) |2 |𝐾(1+Δ)−𝑘 (𝑝, 𝑝′) |2 𝜇𝑔 (𝑝) 𝜇𝑔 (𝑝′)

=

∫
𝑀

| 𝑓 (𝑝) |2 𝐾(1+Δ)−2𝑘 (𝑝, 𝑝) 𝜇𝑔 (𝑝)

=
1

Γ(2𝑘)

∫
𝑀

| 𝑓 (𝑝) |2 𝜇𝑔 (𝑝)
∫ ∞

0
𝑡2𝑘−1 𝑒−𝑡 𝐾𝑡 (𝑝, 𝑝) 𝑑𝑡

⩽ 𝐶𝑘 (𝑛)2 ∥ 𝑓 ∥2
2,

where we used again (4.1), the symmetry of 𝐾(1+Δ)−𝑘 and the product rule for kernels. □
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Remark 4.7. The result of the previous Proposition can be generalized at least for operators
𝑀 𝑓 ℎ(

√
Δ) where ℎ is a Laplace transform of some function which behaves as 𝑡𝑘−1 when 𝑡 ↓ 0, for

𝑘 > 𝑛/4, and has fast enough decrease at infinity.

Theorem 4.8. If 𝑓 ∈ 𝐿𝑝 (𝑀, 𝜇𝑔) with 2 ⩽ 𝑝 < ∞, then 𝑀 𝑓 (1 + Δ)−𝑘 ∈ L𝑝 (H𝑟) for 𝑘 > 𝑛/4.

Proof. The case 𝑝 = 2 is Proposition 4.6. For 𝑝 = ∞, we use

∥𝑀 𝑓 (1 + Δ)−𝑘 ∥ ⩽ ∥𝑀 𝑓 ∥ ∥(1 + Δ)−𝑘 ∥ ⩽ ∥ 𝑓 ∥∞.

We use complex interpolation for 2 < 𝑝 < ∞. Firstly, note that we can always assume 𝑓 to be
nonnegative, since

∥𝑀 𝑓 ∥ = ∥𝑀| 𝑓 | ∥, ∥𝑀 𝑓 (1 + Δ)−𝑘 ∥2 = ∥𝑀| 𝑓 | (1 + Δ)−𝑘 ∥2.

Then, for 𝑓 ⩾ 0 in 𝐿𝑝 (𝑀, 𝜇𝑔), we define the map

𝐹𝑝 : 𝑧 ↦→ 𝑀
𝑝𝑧

𝑓
(1 + Δ)−𝑘 𝑝𝑧,

for all 𝑧 in the strip 𝑆 := { 𝑧 ∈ ℂ : 0 ⩽ ℜ𝑧 ⩽ 1
2 }. For all 𝑦 ∈ ℝ, 𝐹𝑝 (𝑖𝑦) = 𝑀 𝑓 𝑖 𝑝𝑦 (1 + Δ)𝑖𝑘 𝑝𝑦 is

bounded with ∥𝐹𝑝 (𝑖𝑦)∥ ⩽ 1; and for 𝑧 = 1
2 + 𝑖𝑦, Proposition 4.6 shows that

∥𝐹𝑝 ( 1
2 + 𝑖𝑦)∥2 = ∥𝑀 𝑓 𝑝/2 (1 + Δ)−𝑘 𝑝/2∥2 ⩽ 𝐶𝑘 𝑝/2(𝑛) ∥ 𝑓 𝑝/2∥2 = 𝐶𝑘 𝑝/2(𝑛) ∥ 𝑓 ∥𝑝/2

𝑝 ,

which is finite because 𝑘 > 𝑛/2𝑝. Then, by interpolation [46] yields 𝐹𝑝 (𝑧) ∈ L1/ℜ𝑧 (H𝑟) for all
𝑧 ∈ 𝑆, and

∥𝐹𝑝 (𝑧)∥1/ℜ𝑧 ⩽ ∥𝐹𝑝 (0)∥1−2ℜ𝑧
∞ ∥𝐹𝑝 ( 1

2 )∥
2ℜ𝑧
2 ⩽ ∥𝑀 𝑓 𝑝/2 (1 + Δ)−𝑘 𝑝/2∥2ℜ𝑧

2

⩽ 𝐶𝑘 𝑝/2(𝑛)2ℜ𝑧 ∥ 𝑓 𝑝/2∥2ℜ𝑧
2 = 𝐶𝑘 𝑝/2(𝑛)2ℜ𝑧 ∥ 𝑓 ∥𝑝ℜ𝑧𝑝 .

So, for 𝑧 = 1/𝑝, we get

∥𝐹𝑝 (1/𝑝)∥𝑝 = ∥𝑀 𝑓 (1 + Δ)−𝑘 ∥𝑝 ⩽ 𝐶𝑘 𝑝/2(𝑛)2/𝑝 ∥ 𝑓 ∥𝑝,

and the result follows. □

Proposition 4.9. Let 2 ⩽ 𝑝 < ∞ and 𝑓 ∈ 𝐶∞
𝑐 (𝑀). Then, if 𝛼 is an isometric proper action of ℝ𝑙

on 𝑀 , 𝐿 𝑓 (1 + Δ)−𝑘 ∈ L𝑝 (H𝑟) for all 𝑘 > 𝑛/2𝑝.

Proof. The proof is essentially the same as the previous one, so we only sketch it. Theorems 3.8
and 4.6 imply that, for 𝑘 > 𝑛/4,

∥𝐿 𝑓 (1 + Δ)−𝑘 ∥2 = ∥𝑀 𝑓 (1 + Δ)−𝑘 ∥2 ⩽ 𝐶𝑘 (𝑛) ∥ 𝑓 ∥2.

Moreover, by (3.3),

∥𝐿 𝑓 (1 + Δ)−𝑘 ∥ ⩽ ∥𝐿 𝑓 ∥ ⩽ 𝐶𝑟 (𝑙) sup
𝑝∈𝑀

∫
ℝ𝑙

| (1 + Δ𝑦)𝑟𝛼 1
2Θ𝑦

𝑓 (𝑝) | 𝑑𝑙𝑦 =: 𝜔( 𝑓 ; 𝑟, 𝑙, 𝑛),

14



which is finite whenever 𝑟 > 𝑙/2. Defining 𝐺 𝑝 (𝑧) := 𝐿 𝑓 (1 + Δ)−𝑘 𝑝𝑧 for 𝑧 ∈ 𝑆 and 𝑘 > 𝑛/2𝑝, we
conclude that, for all 𝑦 ∈ ℝ,

∥𝐺 𝑝 (𝑖𝑦)∥ = ∥𝐿 𝑓 (1 + Δ)−𝑖𝑘 𝑝𝑦∥ ⩽ 𝜔( 𝑓 ; 𝑟, 𝑙, 𝑛),
and

∥𝐺 𝑝 ( 1
2 + 𝑖𝑦)∥2 = ∥𝐿 𝑓 (1 + Δ)−𝑘 𝑝/2∥ ⩽ 𝐶𝑘 𝑝/2(𝑛) ∥ 𝑓 ∥2.

Again, complex interpolation gives the result:

∥𝐿 𝑓 (1 + Δ)−𝑘 ∥𝑝 = ∥𝐺 𝑝 (𝑝−1)∥𝑝 ⩽ ∥𝐺 𝑝 (0)∥1−2/𝑝
∞ ∥𝐺 𝑝 (2−1)∥2/𝑝

2

⩽ 𝜔( 𝑓 ; 𝑟, 𝑙, 𝑛)1−2/𝑝 𝐶𝑘 𝑝/2(𝑛)2/𝑝 ∥ 𝑓 ∥2/𝑝
2 . □

Remark 4.10. Using again the Peter–Weyl decomposition (2.3), one can show that this interpolation
result holds also for periodic noncompact deformations.

We now show that the previous Proposition extends directly to the spinor bundle.

Condition 4.11. Assume from now on that 𝑀 satisfies Condition 4.1 and moreover has bounded
scalar curvature.

This condition is satisfied for bounded geometries as noticed in Remark 4.4.

Corollary 4.12. Let 2 ⩽ 𝑝 < ∞ and 𝑓 ∈ 𝐶∞
𝑐 (𝑀). If 𝛼 is an isometric proper action of ℝ𝑙 on 𝑀 ,

then 𝐿 𝑓 (1 + /𝐷2)−𝑘 and 𝐿 𝑓 (1 + | /𝐷 |)−2𝑘 are in L𝑝 (H) for all 𝑘 > 𝑛/2𝑝.

Proof. Since (1 + /𝐷2)𝑘 (1 + | /𝐷 |)−2𝑘 is bounded, it suffices to consider only 𝐿 𝑓 (1 + /𝐷2)−𝑘 . For this
operator, the result follows from a simple comparison argument using the Lichnerowicz formula

/𝐷2
= Δ + 1

4𝑅, (4.6)

where 𝑅 is the scalar curvature, bounded by hypothesis. Thus, the result follows from

(1 + /𝐷2)−1 = (1 + Δ)−1(1 − 1
4𝑅(1 + /𝐷2)−1). □

Before finishing this subsection, we show for later use that the following commutators have the
same summability properties as 𝐿 𝑓 (1 + /𝐷2)−𝑘 .

Lemma 4.13. If 𝑓 ∈ 𝐶∞
𝑐 (𝑀) and 2 ⩽ 𝑝 < ∞, then the operators

[ /𝐷, 𝐿 𝑓 ] (1 + /𝐷2)−𝑘 , [| /𝐷 |, 𝐿 𝑓 ] (1 + /𝐷2)−𝑘 , [(1 + /𝐷2) 1
2 , 𝐿 𝑓 ] (1 + /𝐷2)−𝑘 ,

[ /𝐷, 𝐿 𝑓 ] (1 + | /𝐷 |)−2𝑘 , [| /𝐷 |, 𝐿 𝑓 ] (1 + | /𝐷 |)−2𝑘 , [(1 + /𝐷2) 1
2 , 𝐿 𝑓 ] (1 + | /𝐷 |)−2𝑘

all lie in L𝑝 (H) whenever 𝑘 > 𝑛/2𝑝.

Proof. It is enough to prove this Lemma in the (1 + /𝐷2)−𝑘 case.
For [ /𝐷, 𝐿 𝑓 ] (1+ /𝐷2)−𝑘 , this is a direct consequence of the isometry property of the action: since

/𝐷 commutes with (the lift to the spinor bundle of) the action, we obtain

[ /𝐷, 𝐿 𝑓 ] = 𝐿 [ /𝐷,𝑀 𝑓 ] = 𝐿 /𝐷 𝑓 ,

Hence the proof of Proposition 4.9 applies with /𝐷 𝑓 instead of 𝑓 because /𝐷 𝑓 ∈ 𝐶∞
𝑐 (𝑀).
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For [| /𝐷 |, 𝐿 𝑓 ], we can reduce the proof to the previous case by using the following spectral
identity for a positive operator 𝐴:

𝐴 =
1
𝜋

∫ ∞

0

𝐴2

𝐴2 + 𝜆
𝑑𝜆
√
𝜆
. (4.7)

Thus, for any positive number 𝜌,

[| /𝐷 |, 𝐿 𝑓 ] = [| /𝐷 | + 𝜌, 𝐿 𝑓 ]

=
1
𝜋

∫ ∞

0

1
( | /𝐷 | + 𝜌)2 + 𝜆

[
( | /𝐷 | + 𝜌)2, 𝐿 𝑓

] 1
( | /𝐷 | + 𝜌)2 + 𝜆

√
𝜆 𝑑𝜆

=
1
𝜋

∫ ∞

0

1
( | /𝐷 | + 𝜌)2 + 𝜆

( /𝐷 [ /𝐷, 𝐿 𝑓 ] + [ /𝐷, 𝐿 𝑓 ] /𝐷 + 2𝜌 | /𝐷 |𝐿 𝑓 − 2𝜌𝐿 𝑓 | /𝐷 |
)

× 1
( | /𝐷 | + 𝜌)2 + 𝜆

√
𝜆 𝑑𝜆.

Let us consider the different terms: since [ /𝐷, 𝐿 𝑓 ] = 𝐿 /𝐷 𝑓 , they are all of the same order in /𝐷; we
treat in detail only the first term since the proof goes along the same lines for the others.

Commuting [ /𝐷, 𝐿 𝑓 ] with the factor (( | /𝐷 | + 𝜌)2 + 𝜆)−1 to its right, the first term of the last
display equals:

1
𝜋

∫ ∞

0

| /𝐷 | + 𝜌
(( | /𝐷 | + 𝜌)2 + 𝜆)2

√
𝜆 𝑑𝜆

/𝐷
| /𝐷 | + 𝜌

[ /𝐷, 𝐿 𝑓 ]

+ 1
𝜋

∫ ∞

0

1
(( | /𝐷 | + 𝜌)2 + 𝜆)2

/𝐷
[
( | /𝐷2 | + 𝜌)2, [ /𝐷, 𝐿 𝑓 ]

] 1
( | /𝐷 | + 𝜌)2 + 𝜆

√
𝜆 𝑑𝜆

=
1
2

/𝐷
| /𝐷 | + 𝜌

[ /𝐷, 𝐿 𝑓 ] +
1
𝜋

∫ ∞

0

1
(( | /𝐷 | + 𝜌)2 + 𝜆)2

/𝐷
(
/𝐷 [ /𝐷, [ /𝐷, 𝐿 𝑓 ]]

+ [ /𝐷, [ /𝐷, 𝐿 𝑓 ]] /𝐷 + 2𝜌 | /𝐷 | [ /𝐷, 𝐿 𝑓 ] − 2𝜌[ /𝐷, 𝐿 𝑓 ] | /𝐷 |
) 1
( | /𝐷 | + 𝜌)2 + 𝜆

√
𝜆 𝑑𝜆.

Since /𝐷 ( | /𝐷 | + 𝜌)−1 is bounded, Corollary 4.12 shows that
/𝐷

| /𝐷 | + 𝜌
[ /𝐷, 𝐿 𝑓 ] (1 + /𝐷2)−𝑘 ∈ L𝑝 (H) whenever 𝑘 > 𝑛/𝑝.

For the other four summands, for example for the first one, one gets (and similarly for the three
others): 



1

𝜋

∫ ∞

0

/𝐷2

(( | /𝐷 | + 𝜌)2 + 𝜆)2 [ /𝐷, [ /𝐷, 𝐿 𝑓 ]] (1 + | /𝐷 |)−𝑘 1
( | /𝐷 | + 𝜌)2 + 𝜆

√
𝜆 𝑑𝜆






𝑝

⩽


[ /𝐷, [ /𝐷, 𝐿 𝑓 ]] (1 + | /𝐷 |)−𝑘




𝑝

1
𝜋

∫ ∞

0





 /𝐷2

( | /𝐷 | + 𝜌)2 + 𝜆





 



 1
( | /𝐷 | + 𝜌)2 + 𝜆





2 √
𝜆 𝑑𝜆

⩽


[ /𝐷, [ /𝐷, 𝐿 𝑓 ]] (1 + | /𝐷 |)−𝑘




𝑝

1
𝜋

∫ ∞

0

√
𝜆

(𝜌2 + 𝜆)2 𝑑𝜆

=
1

2𝜌


𝐿 /𝐷2

𝑓
(1 + | /𝐷 |)−𝑘




𝑝

which is again finite, using the same Corollary.
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For [(1 + /𝐷2)1/2, 𝐿 𝑓 ], the proof goes along the same lines, using the spectral representation
(4.7) applied to the positive operator (1 + /𝐷2)1/2. □

4.3 Weak Schatten-class estimates

We prove now that, as expected, noncompact isospectral deformations of 𝑛-dimensional spin ma-
nifolds have spectral dimension 𝑛 in the sense of [29]. The following Proposition uses the estimate
(4.2) to get an improved version of the Cwikel inequality obtained in [29].
Proposition 4.14. Let 𝑓 ∈ 𝐶∞

𝑐 (𝑀). Then
𝐿 𝑓 (1 + Δ)−1/2 𝐿 𝑓 ∈ L𝑛,∞(H𝑟).

Proof. Choose a number 𝑚 with 0 < 𝑚 < 1. We define positive operators

𝐴𝑘 := 𝐿 𝑓
∫ 𝑚2𝑘

0
𝑡−1/2 𝑒−𝑡 (1+Δ) 𝑑𝑡 𝐿 𝑓 ,

𝐵𝑘 := 𝐿 𝑓
∫ 1

𝑚2𝑘
𝑡−1/2 𝑒−𝑡 (1+Δ) 𝑑𝑡 𝐿 𝑓 ,

𝐶 := 𝐿 𝑓
∫ ∞

1
𝑡−1/2 𝑒−𝑡 (1+Δ) 𝑑𝑡 𝐿 𝑓 ,

for each 𝑘 ∈ ℕ (the most suitable value of 𝑘 will be chosen later). Their sum is 𝐴𝑘 + 𝐵𝑘 + 𝐶 =

Γ( 1
2 ) 𝐿 𝑓 (1 + Δ)−1/2𝐿 𝑓 for each 𝑘 ∈ ℕ.
We note first that 𝐶 is in all Schatten classes L𝑝 (H𝑟) for 𝑝 ⩾ 1. Indeed, using Theorem 3.8 and

(4.2), we get

∥𝐶∥1 =





𝐿 𝑓 (∫ ∞

1
𝑡−1/2𝑒−𝑡 (1+Δ) 𝑑𝑡

)1/2



2

2
=





𝑀 𝑓

(∫ ∞

1
𝑡−1/2𝑒−𝑡 (1+Δ) 𝑑𝑡

)1/2



2

2

= Tr
(
𝑀| 𝑓 |2

∫ ∞

1
𝑡−1/2𝑒−𝑡 (1+Δ) 𝑑𝑡

)
=

∫
𝑀

| 𝑓 (𝑝) |2
∫ ∞

1
𝑡−1/2𝑒−𝑡 𝐾𝑡 (𝑝, 𝑝) 𝜇𝑔 (𝑝) 𝑑𝑡

⩽ 𝑐

∫
𝑀

| 𝑓 (𝑝) |2 𝜇𝑔 = 𝑐 ∥ 𝑓 ∥2
2.

Thus 𝐶 ∈ L𝑛 (H𝑟) ⊂ L𝑛,∞(H𝑟).
Moreover, we can bound 𝐴𝑘 in the uniform norm:

∥𝐴𝑘 ∥ ⩽ ∥𝐿 𝑓 ∥2
∫ 𝑚2𝑘

0
𝑡−1/2∥𝑒−𝑡 (1+Δ) ∥ 𝑑𝑡 ⩽ ∥𝐿 𝑓 ∥2

∫ 𝑚2𝑘

0
𝑡−1/2 𝑑𝑡 = 2 ∥𝐿 𝑓 ∥2 𝑚𝑘 .

By Theorem 3.8 as above and (4.2), we can also estimate 𝐵𝑘 in the trace norm:

∥𝐵𝑘 ∥1 =

∫ 1

𝑚2𝑘
𝑡−1/2𝑒−𝑡

∫
𝑀

| 𝑓 (𝑝) |2 𝐾𝑡 (𝑝, 𝑝) 𝜇𝑔 (𝑝) 𝑑𝑡

⩽ 𝑐

∫
𝑀

| 𝑓 (𝑝) |2 𝜇𝑔 (𝑝)
∫ 1

𝑚2𝑘
𝑡−(𝑛+1)/2 𝑑𝑡

= 𝑐 ∥ 𝑓 ∥2
2

2
𝑛 − 1

(𝑚−𝑘 (𝑛−1) − 1) ⩽ 𝑐′ ∥ 𝑓 ∥2
2 𝑚

−𝑘 (𝑛−1) , since 𝑚 < 1.
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By Fan’s inequality – see [4, III.6.5] or [46] – we can estimate the 𝑗-th singular value of
𝐷 := 𝐴𝑘 + 𝐵𝑘 :

𝜇 𝑗 (𝐷) = 𝜇 𝑗 (𝐴𝑘 + 𝐵𝑘 ) ⩽ 𝜇1(𝐴𝑘 ) + 𝜇 𝑗 (𝐵𝑘 )
⩽ ∥𝐴𝑘 ∥ + 𝑗−1∥𝐵𝑘 ∥1

⩽ 2 ∥𝐿 𝑓 ∥2 𝑚𝑘 + 𝑐′ ∥ 𝑓 ∥2
2 𝑗

−1 𝑚𝑘 (1−𝑛) .

Now, given 𝑗 and 𝑚 < 1, one can choose 𝑘 ∈ ℕ such that 𝑚𝑘 ⩽ 𝑗−1/𝑛 < 𝑚𝑘−1. Thus 𝑗−1 𝑚−𝑘 (𝑛−1) <
𝑚 (𝑘−1)𝑛 𝑚−𝑘 (𝑛−1) = 𝑚−𝑛 𝑚𝑘 and finally

𝜇 𝑗 (𝐷) ⩽ 𝑐( 𝑓 , 𝑛, 𝑚) 𝑗−1/𝑛,

which concludes the proof since 𝐿 𝑓 (1 + Δ)−1/2 𝐿 𝑓 = Γ( 1
2 )

−1(𝐶 + 𝐷). □

This result has an immediate corollary.

Corollary 4.15. Let 𝑓 , ℎ ∈ 𝐶∞
𝑐 (𝑀). Then 𝐿 𝑓 (1 + Δ)−1/2 𝐿ℎ ∈ L𝑛,∞(H𝑟).

Proof. Polarization: add up 𝐿 ( 𝑓 +(−𝑖)𝑘 ℎ̄) (1 + Δ)−1/2 𝐿 ( 𝑓 +𝑖𝑘ℎ) for 𝑘 = 0, 1, 2, 3. □

Again, this result lifts to the Hilbert space of square-integrable spinors.

Corollary 4.16. Both 𝐿 𝑓 (1 + /𝐷2)−1/2 𝐿ℎ and 𝐿 𝑓 (1 + | /𝐷 |)−1 𝐿ℎ lie in L𝑛,∞(H) whenever 𝑓 , ℎ ∈
𝐶∞
𝑐 (𝑀).

Proof. Decompose the second operator 𝐿 𝑓 (1 + | /𝐷 |)−1 𝐿ℎ as

𝐿 𝑓 (1 + /𝐷2)−1/2𝐿ℎ
(1 + /𝐷2)1/2

1 + | /𝐷 |
+ 𝐿 𝑓 (1 + /𝐷2)−1/2

[
(1 + /𝐷2)1/2

1 + | /𝐷 |
, 𝐿ℎ

]
= 𝐿 𝑓 (1 + /𝐷2)−1/2𝐿ℎ

(1 + /𝐷2)1/2

1 + | /𝐷 |
− 𝐿 𝑓 (1 + | /𝐷 |)−1 [| /𝐷 |, 𝐿ℎ] (1 + | /𝐷 |)−1

+ 𝐿 𝑓 (1 + /𝐷2)−1/2 [(1 + /𝐷2)1/2, 𝐿ℎ
]
(1 + | /𝐷 |)−1.

Since 𝐿 𝑓 (1 + | /𝐷 |)−1, [| /𝐷 |, 𝐿ℎ] (1 + | /𝐷 |)−1, 𝐿 𝑓 (1 + /𝐷2)−1/2 and [(1 + /𝐷2)1/2, 𝐿ℎ] (1 + | /𝐷 |)−1 all lie
in L2𝑛 (H) by Lemma 4.13, and since (1 + /𝐷2)1/2(1 + | /𝐷 |)−1 is bounded, it is enough to prove the
case of 𝐿 𝑓 (1 + /𝐷2)−1/2 𝐿ℎ.
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Using the spectral identity (4.7) and the Lichnerowicz formula once more, we find that

𝐿 𝑓 (1 + /𝐷2)−1/2 𝐿ℎ = 𝐿 𝑓
1
𝜋

∫ ∞

0

(1 + /𝐷2)−1

(1 + /𝐷2)−1 + 𝜆
𝑑𝜆
√
𝜆
𝐿ℎ

= 𝐿 𝑓
1
𝜋

∫ ∞

0

(1 + Δ)−1(1 − 1
4𝑅(1 + /𝐷2)−1)

(1 + Δ)−1(1 − 1
4𝑅(1 + /𝐷2)−1) + 𝜆

𝑑𝜆
√
𝜆
𝐿ℎ

= 𝐿 𝑓
1
𝜋

∫ ∞

0

(
(1 + Δ)−1

(1 + Δ)−1 + 𝜆
+ 1

4
(1 + Δ)−2

(1 + Δ)−1 + 𝜆
𝑅

(1 + /𝐷2)−1

(1 + /𝐷2)−1 + 𝜆

− 1
4
(1 + Δ)−1𝑅

(1 + /𝐷2)−1

(1 + /𝐷2)−1 + 𝜆

)
𝑑𝜆
√
𝜆
𝐿ℎ

= 𝐿 𝑓 (1 + Δ)−1/2 𝐿ℎ +
1

4𝜋
𝐿 𝑓

∫ ∞

0

(
(1 + Δ)−2

(1 + Δ)−1 + 𝜆
𝑅

(1 + /𝐷2)−1

(1 + /𝐷2)−1 + 𝜆

− (1 + Δ)−1𝑅
(1 + /𝐷2)−1

(1 + /𝐷2)−1 + 𝜆

)
𝑑𝜆
√
𝜆
𝐿ℎ.

The first term lies in L𝑛,∞(H) by Corollary 4.15 and the two others are in L𝑛 (H) since



𝐿 𝑓 ∫ ∞

0

(1 + Δ)−2

(1 + Δ)−1 + 𝜆
𝑅

(1 + /𝐷2)−1

(1 + /𝐷2)−1 + 𝜆
𝑑𝜆
√
𝜆
𝐿ℎ






𝑛

⩽ ∥𝐿 𝑓 (1 + Δ)−2∥𝑛∥𝑅∥∥(1 + /𝐷2)−1𝐿ℎ∥

×
∫ ∞

0





 1
(1 + Δ)−1 + 𝜆





 



 1
(1 + /𝐷2)−1 + 𝜆





 𝑑𝜆√
𝜆

⩽ ∥𝐿 𝑓 (1 + Δ)−2∥𝑛 ∥𝑅∥ ∥𝐿ℎ∥
∫ ∞

0

1
(1 + 𝜆)2

𝑑𝜆
√
𝜆
,

which is finite by Proposition 4.9. Also, by Proposition 4.9 and Corollary 4.12,



𝐿 𝑓 ∫ ∞

0
(1 + Δ)−1𝑅

(1 + /𝐷2)−1

(1 + /𝐷2)−1 + 𝜆
𝑑𝜆
√
𝜆
𝐿ℎ






𝑛

⩽ ∥𝑅∥ ∥𝐿 𝑓 (1 + Δ)−1∥2𝑛 ∥(1 + /𝐷2)−1 𝐿ℎ∥2𝑛

∫ ∞

0

1
1 + 𝜆

𝑑𝜆
√
𝜆

is finite. Since L𝑛 (H) ⊂ L𝑛,∞(H), the proof is complete. □

5 Dixmier trace computation: periodic case
In this section, we shall see that the Dixmier traces Tr𝜔 – see [11, 33] for the precise definition –
give rise to an invariant for the deformation, with exactly the same role as the ordinary trace for the
Hilbert–Schmidt norm as seen in Section 3. Before giving a proof of this claim, namely that

Tr𝜔 (𝐿 𝑓 (1 + /𝐷2)−𝑛/2) = Tr𝜔 (𝑀 𝑓 (1 + /𝐷2)−𝑛/2), for all 𝑓 ∈ 𝐶∞
𝑐 (𝑀), (5.1)
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(or at the scalar level, i.e., when 𝐿 𝑓 is acting on H𝑟 , with (1 +Δ)−𝑛/2 replaced by (1 + /𝐷2)−𝑛/2), we
give an heuristic argument to see why this result is plausible. To this end, we will take advantage of
the possibility of viewing 𝐿 𝑓 , for 𝑓 ∈ 𝐶∞

𝑐 (𝑀), as an integral of bounded operators given by (3.6).
Using this presentation for 𝐿 𝑓 , the trace property of the Dixmier trace and the commutativity of the
Dirac operator (or the Laplacian) with the unitaries 𝑉𝑧 (or 𝑉𝑧), the result would be straightforward
if we could swap the Dixmier trace with the Lebesgue integral:

Tr𝜔 ((𝐿 𝑓 (1 + /𝐷2)−𝑛/2)

= (2𝜋)−𝑙 Tr𝜔
(∫

ℝ2𝑙
𝑒−𝑖𝑦𝑧 𝑉1

2Θ𝑦
𝑀 𝑓 𝑉− 1

2Θ𝑦−𝑧
𝑑𝑙𝑦 𝑑𝑙𝑧 (1 + /𝐷2)−𝑛/2

)
= (2𝜋)−𝑙

∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 Tr𝜔 (𝑉1

2Θ𝑦
𝑀 𝑓 (1 + /𝐷2)−𝑛/2𝑉− 1

2Θ𝑦−𝑧
) 𝑑𝑙𝑦 𝑑𝑙𝑧

= (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝑦𝑧 Tr𝜔 (𝑀 𝑓 (1 + /𝐷2)−𝑛/2𝑉−𝑧) 𝑑𝑙𝑦 𝑑𝑙𝑧

= Tr𝜔
(
𝑀 𝑓 (1 + /𝐷2)−𝑛/2

∫
ℝ𝑙
𝛿0(𝑧)𝑉−𝑧 𝑑𝑙𝑧

)
= Tr𝜔

(
𝑀 𝑓 (1 + /𝐷2)−𝑛/2) .

However, this exchange of the Dixmier trace with the integral is not rigorous, since the integrals
are oscillatory and Dixmier traces do not in general obey dominated convergence.

For the ordinary trace, the situation is better since such an exchange can be justified by using
a family of strongly convergent regularizers. For example, one can use {𝑀𝑢𝑘 }, where {𝑢𝑘 }𝑘∈ℕ is
an approximate unit for 𝐶∞

𝑐 (𝑀), that is, an increasing family of nonnegative compactly supported
functions such that 𝑢𝑘 ↑ 1 pointwise on 𝑀 , so that s-lim𝑀𝑢𝑘 = 1. Then, the integrals in the product
𝑀𝑢𝑘𝐿 𝑓 (1+ /𝐷2)−𝑘𝐿 𝑓𝑀𝑢𝑘 (with 𝑘 > 𝑛/2) become Bochner integrals for the trace-norm, with uniform
bound on its trace-norm. Finally, by [19, Prop. 2], we obtain that the strong limit

s-lim𝑀𝑢𝑘𝐿 𝑓 (1 + /𝐷2)−𝑘𝐿 𝑓𝑀𝑢𝑘 = 𝐿 𝑓 (1 + /𝐷2)−𝑘𝐿 𝑓

is trace-class as well, with the same trace-norm bound as for the family 𝑀𝑢𝑘𝐿 𝑓 (1 + /𝐷2)−𝑘𝐿 𝑓𝑀𝑢𝑘 .
This gives another proof of Theorem 3.8.

Such an approach fails for the Dixmier trace, since these natural regularizers give rise to trace-
class operators in some cases. This is for instance the case for Moyal planes, since one can prove
that 𝐿 𝑓 (1 + /𝐷2)−𝑘 𝑀𝑢𝑘 is trace-class for all 𝑘 ⩾ 0 whenever 𝑓 , 𝑢𝑘 ∈ S(ℝ𝑙), so they have vanishing
Dixmier trace.

In the aperiodic case, we shall prove this condition indirectly, using a zeta-residue argument to
evaluate the left hand side of (5.1) as the same ordinary integral which is known to give the value of
the right hand side [41, Prop. 15]. Before that, we first establish the result in the easier periodic case,
for which no hard analysis is needed. The spectral subspace decomposition of 𝑓 ∈ 𝐶∞

𝑐 (𝑀) gives a
direct access to the Dixmier traceability of the operators 𝐿 𝑓 (1 + Δ)−𝑛/2 acting on H𝑟 = 𝐿

2(𝑀, 𝜇𝑔)
and 𝐿 𝑓 (1 + /𝐷2)−𝑛/2 acting on H = 𝐿2(𝑀, 𝑆), as well as to the value of their Dixmier traces.

Proposition 5.1. Let 𝛼 be an effective isometric smooth action of 𝕋 𝑙 on 𝑀 , with 𝑙 ⩾ 2, and let
𝑓 ∈ 𝐶∞

𝑐 (𝑀). Then the operator 𝐿 𝑓 (1 + Δ)−𝑛/2 is Dixmier traceable on H𝑟 , and the value of its
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Dixmier trace is independent of 𝜔:

Tr𝜔 (𝐿 𝑓 (1 + Δ)−𝑛/2) = 𝐶′(𝑛) 𝛿0,𝑟

∫
𝑀

𝑓𝑟 𝜇𝑔 = 𝐶
′(𝑛)

∫
𝑀

𝑓0 𝜇𝑔,

where 𝐶′(𝑛) := Ω𝑛/𝑛 (2𝜋)𝑛, Ω𝑛 is the volume of the unit sphere in ℝ𝑛, and 𝑓 =
∑
𝑟 𝑓𝑟 is the

decomposition (2.3) of 𝑓 in homogeneous components.

Proof. Each 𝑓𝑟 satisfies 𝛼𝑧 ( 𝑓𝑟) = 𝑒−𝑖𝑧𝑟 𝑓𝑟 for all 𝑧 ∈ 𝕋 𝑙 . Since [𝑀 𝑓𝑟 , 𝑉𝑧] = 𝑀 𝑓𝑟 (1− 𝑒−𝑖𝑧𝑟)𝑉𝑧, we see
that [𝑀 𝑓𝑟 , 𝑉− 1

2Θ𝑟
] = 0 by skew-symmetry of the deformation matrix.

By [41, Prop. 15], 𝑀 𝑓 (1 + Δ)−𝑛/2 lies in L1,∞(H𝑟), and moreover

∥𝑀 𝑓 (1 + Δ)−𝑛/2∥1,∞ ⩽ 𝐶1(𝑛) ∥ 𝑓 ∥∞.

This estimate is obtained by a (finite) partition of unity on the compact set (supp 𝑓 ) on applying
Weyl’s theorem. We thus obtain, using (3.4),

∥𝐿 𝑓 (1 + Δ)−𝑛/2∥1,∞ ⩽
∑︁
𝑟∈ℤ𝑙

∥𝑀 𝑓𝑟𝑉− 1
2Θ𝑟

(1 + Δ)−𝑛/2∥1,∞

⩽
∑︁
𝑟∈ℤ𝑙

∥𝑀 𝑓𝑟 (1 + Δ)−𝑛/2∥1,∞

⩽ 𝐶1(𝑛)
∑︁
𝑟∈ℤ𝑙

∥ 𝑓𝑟 ∥∞,

since each 𝑓𝑟 is compactly supported with support contained in 𝕋 𝑙 · (supp 𝑓 ). Those estimates give
the Dixmier traceability, since the spectral-subspace decomposition is ∥ · ∥∞-convergent.

To compute the Dixmier trace, it remains to remark that for all 𝑧 ∈ 𝕋 𝑙 ,

Tr𝜔 (𝐿 𝑓𝑟 (1 + Δ)−𝑛/2) = Tr𝜔 (𝑉𝑧 𝑀 𝑓𝑟 𝑉− 1
2Θ𝑟

(1 + Δ)−𝑛/2𝑉−𝑧)

= Tr𝜔 (𝑀𝛼𝑧 ( 𝑓𝑟 ) 𝑉− 1
2Θ𝑟

(1 + Δ)−𝑛/2)

= 𝑒−𝑖𝑧𝑟 Tr𝜔 (𝑀 𝑓𝑟 𝑉− 1
2Θ𝑟

(1 + Δ)−𝑛/2),

and therefore it must vanish unless 𝑟 = 0 because of (3.4). Thus,

Tr𝜔
(
𝐿 𝑓𝑟 (1 + Δ)−𝑛/2) = Tr𝜔

(
𝑀 𝑓0 (1 + Δ)−𝑛/2) 𝛿0,𝑟 = 𝐶

′(𝑛) 𝛿0,𝑟

∫
𝑀

𝑓0 𝜇𝑔 .

The last equality is obtained, as in [41, Prop. 15], by computation of the Wodzicki residue of the
operator 𝑀 𝑓 (1 + Δ)−𝑛/2. □

Corollary 5.2. Under the same hypothesis, the operator 𝐿 𝑓 (1+ /𝐷2)−𝑛/2 is Dixmier traceable on H

for 𝑓 ∈ 𝐶∞
𝑐 (𝑀); furthermore, the value of its Dixmier trace is independent of 𝜔:

Tr𝜔 (𝐿 𝑓 (1 + /𝐷2)−𝑛/2) = 𝐶 (𝑛) 𝛿0,𝑟

∫
𝑀

𝑓𝑟 𝜇𝑔 = 𝐶 (𝑛)
∫
𝑀

𝑓0 𝜇𝑔,

where 𝐶 (𝑛) := 2⌊𝑛/2⌋Ω𝑛/𝑛 (2𝜋)𝑛, with 2⌊𝑛/2⌋ being the rank of the spinor bundle.
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Proof. Using the Lichnerowicz formula /𝐷2
= Δ𝑆 + 1

4𝑅, the Dixmier traceability is obtained by
comparison:

(1 + /𝐷2)−1 = (1 + Δ𝑆)−1 (1 − 1
4𝑅 (1 + /𝐷2)−1) . (5.2)

For the computation of the Dixmier trace, one can apply previous arguments. We obtain the result,
using that, modulo the factor 2⌊𝑛/2⌋ , the principal symbols of (1 + /𝐷2)−𝑛/2 and (1 + Δ)−𝑛/2 are the
same as seen in (5.2). Thus, the operators 𝑀 𝑓𝑟 (1 + /𝐷2)−𝑛/2 and 𝑀 𝑓𝑟 (1 + Δ)−𝑛/2 have the same
Wodzicki residue, up to that constant factor. □

6 Dixmier trace computation: aperiodic case
This subsection is devoted to the proof of the following theorem.

Theorem 6.1. Let 𝑀 be a noncompact, connected, complete Riemannian spin manifold satisfying
Condition 4.1, with bounded scalar curvature. Suppose further that 𝑀 is endowed with a smooth
isometric and proper action of ℝ𝑙 . If 𝑓 ∈ 𝐶∞

𝑐 (𝑀), then 𝐿 𝑓 (1 + | /𝐷 |)−𝑛 lies in L1,∞(H) and is a
measurable operator; the common value of its Dixmier traces is

Tr𝜔
(
𝐿 𝑓 (1 + | /𝐷 |)−𝑛

)
= 𝐶 (𝑛)

∫
𝑀

𝑓 (𝑝) 𝜇𝑔 (𝑝),

where 𝐶 (𝑛) = 2⌊𝑛/2⌋ Ω𝑛/𝑛 (2𝜋)𝑛.

In the aperiodic case, the manifold 𝑀 is necessarily of the form 𝑉 × ℝ𝑙 , where the group ℝ𝑙

acts by translation on the second direct factor. Indeed, proper actions of the additive group ℝ𝑙 are
automatically free, because the only compact subgroup of ℝ𝑙 is the trivial subgroup {0}. Thus, the
projection on the orbit space 𝜋 : 𝑀 → 𝑉 := 𝑀/ℝ𝑙 defines a principal ℝ𝑙-bundle projection [22,
Thm. 1.11.4]. We remark that properness of the action was crucially used in Proposition 3.3 to
show that twisted multiplication operators are bounded. But a principal ℝ𝑙-bundle has a smooth
global section and so it is automatically trivializable: see [20, 16.14.5], for instance.

Thus we write𝑀 = 𝑉×ℝ𝑙 , where𝑉 is a smooth (not necessarily compact) manifold of dimension
𝑘 = 𝑛 − 𝑙, which carries a Riemannian metric induced from that of 𝑀 , and 𝜋 : 𝑀 → 𝑉 is just the
projection on the first factor. If {𝜙 𝑗 } 𝑗∈𝐽 is any locally finite partition of unity on 𝑉 consisting of
smooth compactly supported functions, then by setting 𝜓 𝑗 := 𝜙 𝑗 ◦ 𝜋, we obtain an 𝛼-invariant
partition of unity {𝜓 𝑗 } on 𝑀 . For any 𝑓 ∈ 𝐶∞

𝑐 (𝑀), the sum 𝑓 =
∑
𝑗 𝑓 𝜓 𝑗 is finite because supp 𝑓 is

compact; since each 𝜓 𝑗 is 𝛼-invariant, we directly obtain

𝐿 𝑓 =
∑︁
𝑗

𝐿 𝑓 𝜓 𝑗 =
∑︁
𝑗

𝐿 𝑓 𝑀𝜓 𝑗 .

Thus, when dealing with operators of the form 𝐿 𝑓 ℎ( /𝐷), we lose no generality by restricting to a
single coordinate chart of 𝑉 ; so we shall assume from now on that 𝑉 is an open ball in ℝ𝑘 .

We denote by 𝑥 := (𝑥1, . . . , 𝑥𝑘 ) ∈ 𝑉 and 𝑥 := (𝑥𝑘+1, . . . , 𝑥𝑛) ∈ ℝ𝑙 respectively the transverse
and longitudinal local coordinates on 𝑀 . It is immediate that the operator 𝐿 𝑓 is pseudodifferential,
with symbol

𝜎[𝐿 𝑓 ] (𝑥, 𝑥; 𝜉, 𝜉) = 𝑓 (𝑥, 𝑥 − 1
2Θ𝜉). (6.1)
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Indeed, for any vector 𝜓 ∈ H, Definition 3.1 shows that

𝐿 𝑓𝜓(𝑥, 𝑥) = ( 𝑓 ★ 𝜓) (𝑥, 𝑥) = (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝜉 𝑦̄𝛼 1

2Θ𝜉
( 𝑓 ) (𝑥, 𝑥)𝑉−𝑦̄𝜓(𝑥, 𝑥) 𝑑𝑙𝜉 𝑑𝑙 𝑦̄

= (2𝜋)−𝑙
∫
ℝ2𝑙
𝑒−𝑖𝜉 𝑦̄ 𝑓 (𝑥, 𝑥 − 1

2Θ𝜉) 𝜓(𝑥, 𝑥 + 𝑦̄) 𝑑
𝑙𝜉 𝑑𝑙 𝑦̄

= (2𝜋)−𝑛
∫
ℝ2𝑛

𝑒−𝑖𝜉 ( 𝑦̄−𝑥)𝑒−𝑖𝜉 ( 𝑦̂−𝑥) 𝑓 (𝑥, 𝑥 − 1
2Θ𝜉) 𝜓( 𝑦̂, 𝑦̄) 𝑑

𝑙𝜉 𝑑𝑙 𝑦̄ 𝑑𝑘𝜉 𝑑𝑘 𝑦̂.

Proposition 6.2. Under the hypotheses of Theorem 6.1, if 𝑓 ∈ 𝐶∞
𝑐 (𝑀) then 𝐿 𝑓 (1 + | /𝐷 |)−𝑛 lies in

L1,∞(H).

Proof. For fixed 𝑥, the function 𝑥 ↦→ 𝑓 (𝑥, 𝑥) lies in𝐶∞
𝑐 (ℝ𝑙), so it can be decomposed in the Wigner

eigentransition basis { 𝑓𝑚𝑛}, indexed by 𝑚, 𝑛 ∈ ℕ𝑙/2 (see [29, 32, 48] and recall that 𝑙 is even):

𝑓 (𝑥, 𝑥) =
∑︁
𝑚,𝑛

𝑐𝑚𝑛 (𝑥) 𝑓𝑚𝑛 (𝑥),

where the matrix coefficients 𝑐𝑚𝑛 lie in 𝐶∞
𝑐 (𝑉).

Given two functions 𝑓 (𝑥, 𝑥) = ∑
𝑐𝑚𝑛 (𝑥) 𝑓𝑚𝑛 (𝑥), ℎ(𝑥, 𝑥) =

∑
𝑑𝑚𝑛 (𝑥) 𝑓𝑚𝑛 (𝑥) of this form, their

twisted product may thus be expressed as a matrix product in the 𝑥 variables:

( 𝑓 ★ ℎ) (𝑥, 𝑥) =
∑︁
𝑚,𝑛,𝑘

𝑐𝑚𝑘 (𝑥) 𝑑𝑘𝑛 (𝑥) 𝑓𝑚𝑛 (𝑥). (6.2)

The operator 𝐿 𝑓 can then be viewed as an element of the algebra𝑀∞(𝐶∞(𝑉)) with rapidly decreasing
𝐶∞(𝑉)-valued matrix elements.

Thus, one can extend the strong factorization property [32] of the algebra (S(ℝ𝑙), ★) to this
context: for all 𝑓 ∈ 𝐶∞

𝑐 (𝑀), there exist ℎ, 𝑘 ∈ 𝐶∞(𝑀) which are Schwartz functions in the
𝑥 variables, such that

𝑓 (𝑥, 𝑥) = (ℎ ★ 𝑘) (𝑥, 𝑥). (6.3)

By iterated factorization, allowing to write 𝑓 as a product of 𝑛 such functions, and by taking
iterated commutators, exactly as in Corollary 4.12 and Lemma 4.13 of [29], we can express each
𝐿 𝑓 (1 + | /𝐷 |)−𝑛 as a product of 𝑛 terms of the form 𝐿ℎ (1 + | /𝐷 |)−1𝐿𝑘 , each lying in L𝑛,∞(H) by
Corollary 4.16, plus an extra term in L1(H). Finally, by the Hölder inequality for weak Schatten
classes, we conclude that 𝐿 𝑓 (1 + | /𝐷 |)−𝑛 ∈ L1,∞(H). □

We may also introduce a system of local units [40] for the twisted product by a straightforward
extension of a construction in [29].

Definition 6.3. The manifold 𝑉 may be expressed as a union of compact subsets 𝐶𝑖 with each
contained in the interior of𝐶𝑖+1; define 𝜒𝑖 := 1 on𝐶𝑖 and 𝜒𝑖 := 0 elsewhere. For each 𝐾 ∈ ℕ, define
a function 𝑒𝐾 on 𝑀 by

𝑒𝐾 (𝑥, 𝑥) :=
∑︁
|𝑛|⩽𝐾

𝜒𝐾 (𝑥) 𝑓𝑛𝑛 (𝑥),
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where |𝑛| = 𝑛1 + · · · + 𝑛𝑙/2. Then 𝑒𝐾 is real-valued and 𝑒𝐾 ★ 𝑒𝐾 = 𝑒𝐾 by using (6.2) to compute the
twisted product, and 𝐿𝑒𝐾 is defined as an orthogonal projector on H. Next, let 𝑓𝐾 := 𝑒𝐾 ★ 𝑓 ★ 𝑒𝐾 ,
or more explicitly,

𝑓𝐾 (𝑥, 𝑥) :=
∑︁

|𝑚 |,|𝑛|⩽𝐾
𝑐𝑚𝑛 (𝑥) 𝑓𝑚𝑛 (𝑥). (6.4)

By construction, 𝑒𝐾 ★ 𝑓𝐾 = 𝑓𝐾 ★ 𝑒𝐾 = 𝑓𝐾 .

The operator 𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 is Dixmier traceable: in Proposition 4.14 and subsequently,
one can replace 𝑓 by 𝑒𝐾 even though the latter is not in 𝐶∞

𝑐 (𝑀), since its square-integrability is
guaranteed at each step, and the factorization argument following (6.3) goes through because 𝑒𝐾 is
idempotent. The trace property of the Dixmier trace now yields

Tr𝜔
(
𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛

)
= Tr𝜔

(
𝐿 𝑓𝐾 𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

)
.

Since 𝐿 𝑓𝐾 is bounded, Theorem 5.6 of [6] shows that if the following limit exists:

lim
𝑠↓1

(𝑠 − 1) Tr
(
𝐿 𝑓𝐾 (𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )𝑠

)
,

then it will coincide with the value of any Dixmier trace of 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛.

Lemma 6.4. The trace norm

𝐿 𝑓𝐾 (𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )𝑠 − 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛𝑠




1 (6.5)

is a bounded function of 𝑠, for 1 ⩽ 𝑠 ⩽ 2.

Proof. Write 𝑠 =: 1+ 𝜀, with 0 < 𝜀 ⩽ 1. We use the following spectral representation, generalizing
(4.7), for fractional powers of a positive operator 𝐴:

𝐴𝜀 =
sin 𝜋𝜀
𝜋

∫ ∞

0
𝐴 (1 + 𝜆𝐴)−1 𝜆−𝜀 𝑑𝜆.

Since 𝐿𝑒𝐾 is an orthogonal projector and 𝐿 𝑓𝐾 𝐿𝑒𝐾 = 𝐿 𝑓𝐾 , we can write

𝐿 𝑓𝐾 (𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )𝑠 = 𝐿 𝑓𝐾 𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾
(
𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

)𝜀
= 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛

(
𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

)𝜀
.

Hence,

𝐿 𝑓𝐾 (𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )𝑠 − 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛𝑠

= 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛 sin 𝜋𝜀
𝜋

∫ ∞

0

(
𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾
− (1 + | /𝐷 |)−𝑛

1 + 𝜆(1 + | /𝐷 |)−𝑛

)
𝜆−𝜀 𝑑𝜆. (6.6)

The first fraction in parenthesis may be rewritten as(
(1 + | /𝐷 |)𝑛 + 𝜆𝑇𝐾

)−1
𝑇𝐾 , where 𝑇𝐾 := (1 + | /𝐷 |)𝑛𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 .
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Since 𝐿𝑒𝐾 is a projector, we get

𝑇𝐾 = 𝐿2
𝑒𝐾

+ [(1 + | /𝐷 |)𝑛, 𝐿𝑒𝐾 ] (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

= 𝐿𝑒𝐾 +
∑︁

0⩽𝑘<𝑟⩽𝑛

(
𝑛

𝑟

)
| /𝐷 |𝑘 [| /𝐷 |, 𝐿𝑒𝐾 ] | /𝐷 |𝑟−𝑘−1(1 + | /𝐷 |)−𝑛 𝐿𝑒𝐾

=: 𝐿𝑒𝐾 +
∑︁

0⩽𝑘<𝑟⩽𝑛
𝐴𝑟𝑘 . (6.7)

The crucial issue in showing the difference (6.6) to be 𝜀-uniformly trace-class is that, excepting the
first summand in (6.7) which is merely bounded, all the other summands 𝐴𝑟𝑘 are compact. More
precisely, using Proposition 4.9 (plus routine commutations), we can check that each 𝐴𝑟𝑘 ∈ L𝑝 (H)
for all 𝑝 > 𝑛.

Following the procedure of Rennie [41, Thm. 12], we reduce the difference of fractions in (6.6)
as follows:

𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾
1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

− (1 + | /𝐷 |)−𝑛
1 + 𝜆(1 + | /𝐷 |)−𝑛

= ((1 + | /𝐷 |)𝑛 + 𝜆𝑇𝐾)−1 𝑇𝐾 − ((1 + | /𝐷 |)𝑛 + 𝜆)−1

=
(
((1 + | /𝐷 |)𝑛 + 𝜆𝑇𝐾)−1 − ((1 + | /𝐷 |)𝑛 + 𝜆)−1) 𝑇𝐾 +

(
(1 + | /𝐷 |)𝑛 + 𝜆

)−1 (𝑇𝐾 − 1)
= ((1 + | /𝐷 |)𝑛 + 𝜆)−1(𝜆 − 𝜆𝑇𝐾) ((1 + | /𝐷 |)𝑛 + 𝜆𝑇𝐾)−1 𝑇𝐾 +

(
(1 + | /𝐷 |)𝑛 + 𝜆

)−1 (𝑇𝐾 − 1)
= ((1 + | /𝐷 |)𝑛 + 𝜆)−1 (𝑇𝐾 − 1)

(
1 − ((1 + | /𝐷 |)𝑛 + 𝜆𝑇𝐾)−1 𝜆𝑇𝐾

)
= ((1 + | /𝐷 |)𝑛 + 𝜆)−1 (𝑇𝐾 − 1)

(
1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

)−1
.

Thus, we obtain

𝐿 𝑓𝐾 (𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )𝑠 − 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛𝑠

= 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛 sin 𝜋𝜀
𝜋

∫ ∞

0

1
(1 + | /𝐷 |)𝑛 + 𝜆

(𝑇𝐾 − 1) 1
1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

𝜆−𝜀 𝑑𝜆

= 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛 sin 𝜋𝜀
𝜋

∫ ∞

0

1
(1 + | /𝐷 |)𝑛 + 𝜆

𝐿𝑒𝐾 (𝑇𝐾 − 1) 1
1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾

𝜆−𝜀 𝑑𝜆

+ 𝐿 𝑓𝐾
sin 𝜋𝜀
𝜋

∫ ∞

0

[
𝐿𝑒𝐾 ,

(1 + | /𝐷 |)−𝑛
(1 + | /𝐷 |)𝑛 + 𝜆

]
(𝑇𝐾 − 1) 1

1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾
𝜆−𝜀 𝑑𝜆.

We now show that the second term on the right-hand side is uniformly bounded in trace norm.
We write[

𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛 ((1 + | /𝐷 |)𝑛 + 𝜆)−1]
= [𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛] ((1 + | /𝐷 |)𝑛 + 𝜆)−1 + (1 + | /𝐷 |)−𝑛 [𝐿𝑒𝐾 , ((1 + | /𝐷 |)𝑛 + 𝜆)−1],
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and the first of these summands yields the trace-norm estimate:



𝐿 𝑓𝐾 [𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛] sin 𝜋𝜀
𝜋

∫ ∞

0

1
(1 + | /𝐷 |)𝑛 + 𝜆

𝐿𝑒𝐾 (𝑇𝐾 − 1) 𝜆−𝜀

1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾
𝑑𝜆






1

⩽


𝐿 𝑓𝐾 [𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛]




1

sin 𝜋𝜀
𝜋

∫ ∞

0
∥((1 + | /𝐷 |)𝑛 + 𝜆)−1∥ ∥𝐿𝑒𝐾 (𝑇𝐾 − 1)∥

×


(1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )−1

𝜆−𝜀 𝑑𝜆

⩽ ∥𝐿𝑒𝐾 (𝑇𝐾 − 1)∥


𝐿 𝑓𝐾 [𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛]




1

sin 𝜋𝜀
𝜋

∫ ∞

0

𝜆−𝜀

1 + 𝜆 𝑑𝜆

= ∥𝐿𝑒𝐾 (𝑇𝐾 − 1)∥


𝐿 𝑓𝐾 [𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛]




1 =: 𝐶1.

This constant 𝐶1 is finite (and independent of 𝜀) since

𝐿 𝑓𝐾 [𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛] = 𝐿 𝑓𝐾
∑︁

0⩽𝑘<𝑟⩽𝑛

(
𝑛

𝑟

)
| /𝐷 |𝑘

(1 + | /𝐷 |)𝑛
[| /𝐷 |, 𝐿𝑒𝐾 ]

| /𝐷 |𝑟−𝑘−1

(1 + | /𝐷 |)𝑛
, (6.8)

and each term of the sum lies in L1(H), using Proposition 4.9 and the Hölder inequality. Analo-
gously, one can show that the trace-norm of

𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛 sin 𝜋𝜀
𝜋

∫ ∞

0
[𝐿𝑒𝐾 , ((1 + | /𝐷 |)𝑛 + 𝜆)−1] 𝐿𝑒𝐾 (𝑇𝐾 − 1) 𝜆−𝜀

1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾
𝑑𝜆

is bounded by the constant 𝐶2 := ∥𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛∥ ∥ [𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛] ∥1, independent of 𝜀.
Using the expansion (6.7) of 𝑇𝐾 , we finally obtain

𝐿 𝑓𝐾 (𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )𝑠 − 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛𝑠




1

⩽ 𝐶1 + 𝐶2 +
∑︁

0⩽𝑘<𝑟⩽𝑛





𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛 sin 𝜋𝜀
𝜋

×
∫ ∞

0

1
(1 + | /𝐷 |)𝑛 + 𝜆

𝐿𝑒𝐾 𝐴𝑟𝑘
𝜆−𝜀

1 + 𝜆𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾
𝑑𝜆






1

⩽ 𝐶1 + 𝐶2 +
∑︁

0⩽𝑘<𝑟⩽𝑛



𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛



𝑝/(𝑝−1) ∥𝐿𝑒𝐾 𝐴𝑟𝑘 ∥𝑝

sin 𝜋𝜀
𝜋

∫ ∞

0

𝜆−𝜀

1 + 𝜆 𝑑𝜆

= 𝐶1 + 𝐶2 +
∑︁

0⩽𝑘<𝑟⩽𝑛



𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛



𝑝/(𝑝−1) ∥𝐿𝑒𝐾 𝐴𝑟𝑘 ∥𝑝

which is finite for 𝑝 > 𝑛. □

Proof of Theorem 6.1. For 1 < 𝑠 ⩽ 2, the operator 𝐿 𝑓𝐾 (1+ | /𝐷 |)−𝑛𝑠 appearing in (6.5) is trace-class,
since it equals the product of 𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛 ∈ L1,∞(H) by 𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛(𝑠−1) ∈ L𝑝 (H) for
𝑝 > 1/(𝑠 − 1), plus a commutator of trace class. The difference of traces

Tr
(
𝐿 𝑓𝐾 (𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )𝑠

)
− Tr

(
𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛𝑠

)
is therefore a bounded function of 𝑠, for 1 ⩽ 𝑠 ⩽ 2. Thus,

lim
𝑠↓1

(𝑠 − 1) Tr
(
𝐿 𝑓𝐾 (𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛𝐿𝑒𝐾 )𝑠

)
= lim

𝑠↓1
(𝑠 − 1) Tr

(
𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛𝑠

)
. (6.9)
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Moreover,

lim
𝑠↓1

(𝑠 − 1) Tr
(
𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛𝑠

)
= lim

𝑠↓1
(𝑠 − 1) Tr

(
𝐿 𝑓𝐾 (1 + /𝐷2)−𝑛𝑠/2) . (6.10)

Indeed, for 1 ⩽ 𝑠 ⩽ 2, the following operator inequalities hold:

0 ⩽ (1 + /𝐷2)−𝑛𝑠/2 − (1 + | /𝐷 |)−𝑛𝑠 = (1 + | /𝐷 |)−𝑛𝑠
((

1 + 2| /𝐷 |
1 + /𝐷2

)𝑛𝑠/2
− 1

)
⩽ (1 + | /𝐷 |)−𝑛

((
1 + 2| /𝐷 |

1 + /𝐷2

)𝑛
− 1

)
= (1 + | /𝐷 |)−𝑛

𝑛∑︁
𝑘=1

(
𝑛

𝑘

) (
2| /𝐷 |

1 + /𝐷2

) 𝑘
,

and thus ��Tr
(
𝐿 𝑓𝐾

(
(1 + /𝐷2)−𝑛𝑠/2 − (1 + | /𝐷 |)−𝑛𝑠

) ) ��
=
��Tr

(
𝐿 𝑓𝐾 𝐿𝑒𝐾

(
(1 + /𝐷2)−𝑛𝑠/2 − (1 + | /𝐷 |)−𝑛𝑠

)
𝐿𝑒𝐾

) ��
⩽ ∥𝐿 𝑓𝐾 ∥ Tr

(
𝐿𝑒𝐾

(
(1 + /𝐷2)−𝑛𝑠/2 − (1 + | /𝐷 |)−𝑛𝑠

)
𝐿𝑒𝐾

)
⩽ ∥𝐿 𝑓𝐾 ∥

𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
Tr
(
𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛

( 2| /𝐷 |
1 + /𝐷2

) 𝑘
𝐿𝑒𝐾

)
⩽ ∥𝐿 𝑓𝐾 ∥

𝑛∑︁
𝑘=1

(
𝑛

𝑘

)

𝐿𝑒𝐾 (1 + | /𝐷 |)−𝑛



𝑝/(𝑝−1)





( 2| /𝐷 |
1 + /𝐷2

) 𝑘
𝐿𝑒𝐾






𝑝

which is finite for 𝑝 > 𝑛.
Note that 𝑀 𝑓𝐾 (1 + /𝐷2)−𝑛𝑠/2 is also trace-class for 𝑠 > 1, on account of the form (6.4) of 𝑓𝐾 on

𝑀 = 𝑉 ×ℝ𝑙 . Corollary 3.10 now implies that

Tr
(
𝐿 𝑓𝐾 (1 + /𝐷2)−𝑛𝑠/2) = Tr

(
𝑀 𝑓𝐾 (1 + /𝐷2)−𝑛𝑠/2) .

The evaluation of the right hand side of (6.9) is therefore given by

lim
𝑠↓1

(𝑠 − 1) Tr
(
𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛𝑠

)
= lim

𝑠↓1
(𝑠 − 1) Tr

(
𝑀 𝑓𝐾 (1 + /𝐷2)−𝑛𝑠/2) . (6.11)

The right hand side may be rewritten as

lim
𝑠↓1

(𝑠 − 1)
Γ( 𝑛𝑠2 )

∫
𝑀

𝑓𝐾 (𝑝)
∫ ∞

0
𝑡𝑛𝑠/2−1 𝑒−𝑡 𝐾

𝑒−𝑡 /𝐷
2 (𝑝, 𝑝) 𝑑𝑡 𝜇𝑔 (𝑝).

Now /𝐷2 is a second-order differential operator of Laplace type by the Lichnerowicz formula [31],
and thus 𝐾

𝑒−𝑡 /𝐷
2 (𝑝, 𝑝) = 2⌊𝑛/2⌋ (4𝜋𝑡)−𝑛/2 + 𝑂 (𝑡−𝑛/2+1) when 𝑡 → 0; the 𝑡-integral from 𝜀 to ∞, for

any 𝜀 < 1, gives no contribution thanks to the factor 𝑒−𝑡 . (See, for instance, [31, Lemma 4.1.4],
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noting that this estimate for on-diagonal values of the heat kernel does not depend on compactness
of the manifold.) Therefore,

lim
𝑠↓1

(𝑠 − 1) Tr
(
𝑀 𝑓𝐾 (1 + /𝐷2)−𝑛𝑠/2)

= lim
𝑠↓1

(𝑠 − 1) 2⌊𝑛/2⌋

(4𝜋)𝑛/2Γ( 𝑛2 )

∫ ∞

0
𝑡𝑛(𝑠−1)/2−1 𝑒−𝑡 𝑑𝑡

∫
𝑀

𝑓𝐾 (𝑝) 𝜇𝑔 (𝑝)

= 𝐶 (𝑛)
∫
𝑀

𝑓𝐾 (𝑝) 𝜇𝑔 (𝑝).

The proportionality factor 𝐶 (𝑛) = 2⌊𝑛/2⌋/(4𝜋)𝑛/2 Γ( 𝑛2 + 1) is the same as that of Corollary 5.2.
It remains to remove the truncation induced by the projectors 𝐿𝑒𝐾 . Notice first that

Tr𝜔
(
(𝐿 𝑓 − 𝐿 𝑓𝐾 ) (1 + | /𝐷 |)−𝑛

)
= Tr𝜔

(
(1 − 𝐿𝑒𝐾 )𝐿 𝑓 (1 + | /𝐷 |)−𝑛

)
,

since 𝐿 𝑓 [𝐿𝑒𝐾 , (1 + | /𝐷 |)−𝑛] is trace-class, as is seen on replacing 𝑓𝐾 by 𝑓 in (6.8), and since 𝐿𝑒𝐾 is
idempotent. Then, using the factorization property 𝑓 = ℎ ★ 𝑘 once more, we obtain��Tr𝜔

(
(𝐿 𝑓 − 𝐿 𝑓𝐾 ) (1 + | /𝐷 |)−𝑛

) �� ⩽ ∥𝐿ℎ − 𝐿𝑒𝐾★ℎ∥
��Tr𝜔

(
𝐿𝑘 (1 + | /𝐷 |)−𝑛

) ��, (6.12)

and the right hand side vanishes as 𝐾 → ∞, thanks to the estimate (3.3) for the norm of a twisted
multiplication operator. On rewriting (6.11) as

Tr𝜔
(
𝐿 𝑓𝐾 (1 + | /𝐷 |)−𝑛

)
= 𝐶 (𝑛)

∫
𝑀

𝑓𝐾 (𝑝) 𝜇𝑔 (𝑝),

the left hand side converges to Tr𝜔 (𝐿 𝑓 (1 + | /𝐷 |)−𝑛) as 𝐾 → ∞. On the right hand side, the rapid
decrease of the coefficients 𝑐𝑚𝑛 (𝑥) in (6.4) ensures that 𝑓𝐾 → 𝑓 in 𝐿1(𝑀, 𝜇𝑔). Taking the limit as
𝐾 → ∞ on both sides of (6.12) therefore yields the desired Dixmier trace evaluation:

Tr𝜔
(
𝐿 𝑓 (1 + | /𝐷 |)−𝑛

)
= 𝐶 (𝑛)

∫
𝑀

𝑓 (𝑝) 𝜇𝑔 (𝑝). □
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