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Abstract

We explicitly the infinite-dimensional metaplectic representation and show how its use
simplifies and rigorizes several questions in bosonic Quantum Field Theory. The representation
permutes Gaussian elements in the boson Fock space, and is necessarily projective. We compute
its cocycle at the group level, and obtain Schwinger terms and anomalies from different versions
of the cocycle; for instance, the Virasoro anomalous terms are obtained in this manner. We show
how the choice of a complex structure on the space of solutions of a wave equation is related to
the covariant Feynman propagator methods. We then show how the metaplectic representation
allows one to compute exactly the 𝑆-matrix for bosons in an external field from the classical
scattering operator.

1 Introduction
The main purpose of this paper is to give a detailed, rigorous account of the metaplectic representa-
tion of the infinite-dimensional symplectic group and its applications in Quantum Field Theory. A
companion paper [1] does the same for the pin representation of the infinite-dimensional orthogonal
group. It has been known for a long time that linear field theory (e.g., for bosons or fermions in
an external field) can be mathematically described entirely by the above mentioned representation
theory. For the boson case at least, this was recognized as far back as the work of I. E. Segal in the
sixties. However, it seems to us that the advantages of explicitly working with the metaplectic or pin
representations, when available, have not been adequately recognized in the physics literature. This
makes textbooks treatments of scattering theory, such as that of Reed and Simon [2] for bosons,
appear more complicated than the subject really warrants.

We contend that the construction of the algebras of field operators is straightforward in the
group-theoretical context. It accordingly makes sense to clear up the rubble at this level before
trying to tackle specific problems. The emphasis of these articles is on the explicit calculation of the
representations. Once this has been achieved, the parameters of the representation are reinterpreted
in physical terms and the answer to pertinent physical questions becomes surprisingly simple.
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Existence of the metaplectic and the infinite-dimensional pin representations is proved in the
basic papers of Shale [3] and Shale and Stinespring [4], respectively. However, explicit presentations
have been rather late in coming. Our approach tends to unify the treatment of ordinary quantum-
mechanical systems of bosons and fermions and systems with infinitely many degrees of freedom.
But there are significant differences between the finite and the infinite-dimensional cases, related to
the existence of a nonsplit extension by the circle group of the (restricted) symplectic and orthogonal
groups. The corresponding metaplectic cocycle was first exhibited, to the best of our knowledge,
by G. Segal [5]. We wish to point out that the pin representation is the cornerstone of the book
Loop Groups [6] by A. Pressley and G. Segal; but it is not computed there in all generality. The
only paper purporting to do something equivalent is the masterly survey by Araki [7]. Our methods
are rather different, even so.

There are several things in the present review that we think are new: we extend the “real-variable”
treatment of Gaussian integrals by Robinson and Rawnsley [8] to the infinite dimensional case; the
treatment of the derived metaplectic representation in infinite dimensions, in relation to quantization;
the derivation of the anomaly in Section 7 from the nonequivariance of the adjoint action, in
particular formula (7.8); the derivation of the 𝑆-matrix from the representation. The connoisseur
will find here and there little “technological” improvements. But the article has a pedagogical bent.
We hope to revive the conceptually appealing and uncomplicated, but mathematically rigorous,
approach to quantum fields by I. E. Segal [9], fusing it with methods patented by G. Segal. We trust
that our paper may provide a bridge easy to cross for physicists and mathematicians familiar with
Classical Mechanics and Lie group representations, wishing to get acquainted on their own terms
with the basics of Quantum Field Theory.

In Section 2 the basic algebraic facts concerning infinite-dimensional symplectic vector spaces,
complex structures and polarizations are laid out. We introduce here an important computational
tool, which is a parametrization of the symplectic group [8] that deserves to be better known. The
subgroup of symplectic transformations whose antilinear part is Hilbert–Schmidt is introduced and
its action on the infinite-dimensional analogue of the Cartan–Siegel disk is discussed.

In Section 3, the Fock–Bargmann–Segal construction of Fock space is performed; we develop
the important Gaussian integrals in infinite-dimensional spaces. From this a simple proof of Shale’s
theorem is given. Section 4 treats general Weyl systems, their derived systems (boson fields) and
the Wick theorem for bosons.

Section 5 is the heart of the paper. We compute the metaplectic representation in the Fock–
Bargmann–Segal space, with its cocycle. In Section 6 the metaplectic procedure is examined from
the general standpoint of quantization. Here we obtain the derived metaplectic representation,
and we show how this formalism, applied in the finite-dimensional case, reproduces the stan-
dard coherent-state approach to ordinary Quantum Mechanics, together with Berezin’s “covariant
quantization” scheme.

Section 7 deals with Schwinger terms and anomalies in linear field theories. A complete
treatment is given and the relation with Quillen’s and Connes’ cyclic cohomology is discussed.

Section 8 treats the Virasoro group and Lie algebra within the framework of bosonic field
quantization. The Hilbert transform of functions on the circle provides the appropriate complex
structure on the tangent space of the loop group. The results of Section 7 are then employed to
derive the anomaly in the Virasoro group and algebra from the metaplectic cocycle.

In Section 9, the quantization of the space of solutions of a Klein–Gordon equation is performed,
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using the metaplectic representation. We show how one relates, for free fields in a given class of
spacetimes, the approach based on complex structures and the Fock–Segal–Bargmann spaces to the
covariant methods based on the Feynman propagator.

In Section 10, we compute exactly the 𝑆-matrix for bosons in an external field, in the standard
Fock-space language. We point out the relation between the metaplectic cocycle and the phase of
the vacuum persistence amplitude. In Section 11, we show how the formalism may be adapted
for charged fields; charge conservation follows from the vanishing of the corresponding Schwinger
term. In both cases, the group representations yield the respective 𝑆-matrices as quantizations of
the classical scattering operator.

An Appendix deals with the question of the appropriate choice of complex structures suitable for
quantization; a fortiori it is concerned with classical Hamiltonian systems in infinite-dimensional
spaces.

Although we are not concerned with them here, it must be said that there exist noteworthy
applications of the theory developed in this paper to problems in filtering theory, digital signal
processing and optics [10].

Throughout the paper, units are taken so that 𝑐 = 1 and ℏ = 1.

2 Symplectic vector spaces
The classical manifold underlying the boson fields is just a symplectic vector space, i.e., a real
vector space 𝑉 with a symplectic form 𝑠 (i.e., a nondegenerate antisymmetric bilinear form) on 𝑉 .
If 𝑉 is finite-dimensional, its dimension must be even, but we shall mainly be concerned with the
infinite-dimensional case. The primary examples of symplectic vector spaces are spaces of solutions
of dynamical equations, such as the Klein–Gordon equation.

2.1 Complex structures

In order to quantize, a real symplectic space is not enough; we need a complex (Hilbert) space. We
must then choose a complex structure 𝐽, i.e., a real-linear operator on 𝑉 which satisfies

𝐽2 = −1, (2.1)

and moreover:

𝑠(𝐽𝑢, 𝐽𝑣) = 𝑠(𝑢, 𝑣), for 𝑢, 𝑣 ∈ 𝑉, (2.2a)
𝑠(𝑣, 𝐽𝑣) > 0, for 0 ≠ 𝑣 ∈ 𝑉. (2.2b)

The condition (2.2a) is that the complex structure be also symplectic; if so, we shall say that 𝐽
is compatible with the given symplectic form 𝑠. The positivity condition (2.2b) is equivalent to
demanding that the symmetric bilinear form

𝑑 (𝑢, 𝑣) ≡ 𝑑𝐽 (𝑢, 𝑣) := 𝑠(𝑢, 𝐽𝑣)

be positive definite on 𝑉 . This allows to regard 𝑉 as a complex vector space under the rule

(𝛼 + 𝑖𝛽)𝑣 := 𝛼𝑣 + 𝛽𝐽𝑣 for 𝛼, 𝛽 real, (2.3)
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and in that case the hermitian form

⟨𝑢 | 𝑣⟩ := 𝑠(𝑢, 𝐽𝑣) + 𝑖𝑠(𝑢, 𝑣) = 𝑑 (𝑢, 𝑣) + 𝑖𝑑 (𝐽𝑢, 𝑣) (2.4)

is a positive definite scalar product on 𝑉 .
Complex structures satisfying (2.2b) need not always exist. A sufficient condition is that 𝑉 be

a real Hilbert space under some given positive definite symmetric form 𝑑0, with respect to which 𝑠
is continuous (on such a 𝑉 , 𝑠 need only be nondegenerate in the weak sense, i.e., 𝑠(𝑢, 𝑣) = 0 for all
𝑣 ∈ 𝑉 if and only if 𝑢 = 0). This is proved in the Appendix. Now 𝑠 appears as the imaginary part of
a scalar product (2.4). The Hilbert space structure determined by (2.4) is complete if and only if 𝑠
is nondegenerate in the strong sense, i.e., the bounded real-linear operator 𝐵 on (𝑉, 𝑑0) determined
by 𝑑0(𝐵𝑢, 𝑣) = 𝑠(𝑢, 𝑣) is bijective.

One should regard positive compatible complex structures on (𝑉, 𝑠) as a device for the dense
embedding of the real symplectic space 𝑉 into a complex Hilbert space H, such that ℑ⟨· | ·⟩H,
restricted to 𝑉 , equals 𝑠; then ℜ⟨· | ·⟩H gives 𝑑𝐽 . It has recently been shown by Kay and Wald [11]
that, given 𝑑0 (a positive definite symmetric form on 𝑉) such that

|𝑠(𝑢, 𝑣) |2 ⩽ 𝑑0(𝑢, 𝑢)𝑑0(𝑣, 𝑣), (2.5)

a suitable Hilbert space exists, and𝑉 may be densely embedded in it provided the inequality (2.5) is
sharp. Moreover, any two such embeddings are unitarily equivalent. We shall show in later sections
how such embeddings may be constructed in practice.

We say 𝑉 is hilbertizable when a suitable 𝐽 can be found, and we shall assume this to be the
case. It is known that hilbertizability is a minimum condition for the existence of a free boson field
on 𝑉 [12]. To simplify the discussion, then, we shall henceforth assume that 𝑉 is complete for the
scalar product (2.4), and is thus the underlying real space of a complex Hilbert space.

The real part 𝑑 of the scalar product (whose imaginary part is 𝑠) is not unique, since it depends
on 𝐽. However, as shown below, the induced metric topology on 𝑉 does not depend on the chosen
complex structure. We shall denote this Hilbert space by 𝑉 also, or by (𝑉, 𝑠, 𝐽) whenever precision
demands it. We shall further assume that (𝑉, 𝑠, 𝐽) is separable.

Note, in particular, that ⟨𝑢 | 𝐽𝑣⟩ = 𝑖⟨𝑢 | 𝑣⟩ but ⟨𝐽𝑢 | 𝑣⟩ = −𝑖⟨𝑢 | 𝑣⟩.
▶ We write 𝐴 ∈ Endℝ(𝑉) if 𝐴 is a real-linear endomorphism on 𝑉 . 𝐴𝑡 will denote its transpose
with respect to 𝑑, i.e., 𝑑 (𝑢, 𝐴𝑡𝑣) := 𝑑 (𝐴𝑢, 𝑣). We let GLℝ(𝑉) denote the group of invertible
endomorphisms, and write Sp(𝑉, 𝑠), or simply Sp(𝑉), for the symplectic group

Sp(𝑉) := { 𝑔 ∈ GLℝ(𝑉) : 𝑠(𝑔𝑢, 𝑔𝑣) = 𝑠(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 }.

Any 𝐴 ∈ Endℝ(𝑉) which commutes with 𝐽 is also complex-linear on 𝑉 regarded as a complex
space via (2.3); we shall simply say that 𝐴 is linear. If 𝐵 is a real-linear operator on 𝑉 such that
𝐵𝐽 = −𝐽𝐵, we shall call 𝐵 antilinear.

In terms of the scalar product (2.4), the hermitian conjugate of a real-linear operator coincides
with its transpose, since 𝑠(𝑢, 𝐴𝑡𝑣) = 𝑠(𝐴𝑢, 𝑣) and hence ⟨𝑢 | 𝐴𝑡𝑣⟩ = ⟨𝐴𝑢 | 𝑣⟩ if 𝐴 is linear; whereas
𝑠(𝑢, 𝐵𝑡𝑣) = −𝑠(𝐵𝑢, 𝑣) = 𝑠(𝑣, 𝐵𝑢) and hence ⟨𝑢 | 𝐵𝑡𝑣⟩ = ⟨𝑣 | 𝐵𝑢⟩ if 𝐵 is antilinear. We shall also
write 𝐴−𝑡 := (𝐴−1)𝑡 = (𝐴𝑡)−1 for 𝐴 ∈ Endℝ(𝑉).
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2.2 The algebra of symplectic transformations

An invertible real-linear operator 𝑔 is symplectic iff 𝐽𝑔 = 𝑔−𝑡𝐽 iff 𝑔−𝑡 = −𝐽𝑔𝐽, since 𝑔 ∈ Sp(𝑉) iff
𝑑 (𝐽𝑔𝑢, 𝑤) = 𝑑 (𝐽𝑢, 𝑔−1𝑤) for all 𝑢, 𝑣 ∈ 𝑉 . Thus also 𝑔 ∈ Sp(𝑉) iff 𝑔−𝑡 ∈ Sp(𝑉) iff 𝑔𝑡 ∈ Sp(𝑉).

We may decompose any real-linear operator 𝑔 on 𝑉 into linear and antilinear parts by

𝑝𝑔 := 1
2 (𝑔 − 𝐽𝑔𝐽), 𝑞𝑔 := 1

2 (𝑔 + 𝐽𝑔𝐽). (2.6)

Note that 𝑔 ∈ Sp if and only if 𝑝𝑔 = 1
2 (𝑔 + 𝑔−𝑡), 𝑞𝑔 = 1

2 (𝑔 − 𝑔−𝑡). We shall write simply 𝑝, 𝑞

whenever a fixed 𝑔 is understood. If 𝑔 ∈ Sp, then 𝑝 is invertible, since

𝑝𝑡 𝑝 = 1
4 (𝑔

𝑡 + 𝑔−1) (𝑔 + 𝑔−𝑡) = 1
4 (𝑔

𝑡𝑔 + 𝑔−1𝑔−𝑡 + 2) ⩾ 1
2

and similarly 𝑝𝑝𝑡 ⩾ 1
2 (we shall soon see that in fact 𝑝𝑡 𝑝 ⩾ 1, 𝑝𝑝𝑡 ⩾ 1).

We define 𝑇𝑔 := 𝑞𝑔𝑝−1
𝑔 for 𝑔 ∈ Sp(𝑉). It will be convenient to abbreviate 𝑇𝑔 := 𝑇𝑔−1 . We can

parametrize 𝑔 ∈ Sp(𝑉) by the pair (𝑝, 𝑞), or alternatively by the pair (𝑝, 𝑇). We summarize the
algebraic properties of these parameters as follows.

Proposition 2.1. If 𝑔 ∈ Sp(𝑉), then 𝑔 may be expressed in a unique manner as 𝑔 = (1 + 𝑇)𝑝,
where 𝑇 is antilinear and symmetric, and 1 − 𝑇2 is positive definite; 𝑝 is linear and satisfies
𝑝𝑡 (1 − 𝑇2)𝑝 = 1. Conversely, given a pair (𝑝, 𝑇) of real-linear operators on 𝑉 satisfying these
conditions, the operator 𝑔 := (1 + 𝑇)𝑝 belongs to Sp(𝑉). Moreover, for 𝑔 ∈ Sp(𝑉) these relations
hold:

𝑝𝑔−1 = 𝑝𝑡𝑔; 𝑇𝑔 := 𝑇𝑔−1 = −𝑝−1
𝑔 𝑇𝑔𝑝𝑔 .

Proof. If 𝑔 ∈ Sp, 𝑝𝑔 is invertible and 𝑔 = (1 +𝑇𝑔)𝑝𝑔 follows from the definitions of 𝑇𝑔 and 𝑝𝑔. It is
immediate that 𝑝𝑔−1 = 1

2 (𝑔
−1 − 𝐽𝑔−1𝐽) = 1

2 (−𝐽𝑔
𝑡𝐽 + 𝑔𝑡) = 𝑝𝑡𝑔. The antilinear part of the equation

1 = 𝑔𝑔−1 = (1 + 𝑇𝑔)𝑝𝑔 (1 + 𝑇𝑔)𝑝𝑡𝑔 then yields 0 = 𝑇𝑔𝑝𝑔 + 𝑝𝑔𝑇𝑔, giving 𝑇𝑔 = −𝑝−1
𝑔 𝑇𝑔𝑝𝑔.

Now we get 𝑔 = 𝑝𝑔 +𝑇𝑔𝑝𝑔 = 𝑝𝑔 (1−𝑇𝑔); replacing 𝑔 by 𝑔−1 gives 𝑔−1 = 𝑝𝑡𝑔 (1−𝑇𝑔), from which
we conclude that 𝑝𝑡𝑔 (1 − 𝑇2

𝑔 )𝑝𝑔 = 𝑔−1𝑔 = 1.
It is clear that 𝑝𝑔 is linear and 𝑇𝑔 is antilinear, and 1 − 𝑇2

𝑔 = (𝑝−1
𝑔 )𝑡 𝑝−1

𝑔 is positive definite. To
see that 𝑇𝑔 is symmetric, we must show that 𝑠(𝑢, 𝑇𝑔𝑣) + 𝑠(𝑇𝑔𝑢, 𝑣) = 0 for all 𝑢, 𝑣 ∈ 𝑉 . This follows
from

𝑠(𝑢, (1 − 𝑇𝑔)𝑣) = 𝑠(𝑢, 𝑝−𝑡𝑔 𝑔−1𝑣) = 𝑠(𝑝−1
𝑔 𝑢, 𝑔

−1𝑣)
= 𝑠(𝑔𝑝−1

𝑔 𝑢, 𝑣) = 𝑠((1 + 𝑇𝑔)𝑢, 𝑣).

We remark that, since 𝑇𝑔 is antilinear, its symmetry may alternatively be expressed as

𝑑 (𝑢, 𝑇𝑔𝑣) = 𝑑 (𝑇𝑔𝑢, 𝑣), or ⟨𝑢 | 𝑇𝑔𝑣⟩ = ⟨𝑣 | 𝑇𝑔𝑢⟩.

The uniqueness of the decomposition 𝑔 = (1 +𝑇𝑔)𝑝𝑔 is clear, for 𝑝𝑔 must be the linear part of 𝑔
and 𝑇𝑔𝑝𝑔 the antilinear part.

Conversely, given (𝑝, 𝑇) satisfying the stated conditions, write 𝑔 := (1 + 𝑇)𝑝. Then 𝑔 is
invertible, and

𝑔−𝑡 = (𝑔−1)𝑡 = (𝑝𝑡 (1 − 𝑇))𝑡 = (1 − 𝑇)𝑝 = −𝐽 (1 + 𝑇)𝐽 (−𝐽𝑝𝐽) = −𝐽𝑔𝐽,

so 𝑔 ∈ Sp(𝑉). □
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The corresponding algebraic properties of the pairs (𝑝𝑔, 𝑞𝑔) are obtained by noting that 𝑞𝑔−1 =
1
2 (𝑔

−1+𝐽𝑔−1𝐽) = −1
2 (𝐽𝑔

𝑡𝐽+𝑔𝑡) = −𝑞𝑡𝑔. Taking linear and antilinear parts of the equalities 𝑔𝑔−1 = 1,
𝑔−1𝑔 = 1, we find that

𝑝𝑔𝑝
𝑡
𝑔 − 𝑞𝑔𝑞𝑡𝑔 = 𝑝𝑡𝑔𝑝𝑔 − 𝑞𝑡𝑔𝑞𝑔 = 1, 𝑝𝑔𝑞

𝑡
𝑔 = 𝑞𝑔𝑝

𝑡
𝑔, 𝑝𝑡𝑔𝑞𝑔 = 𝑞

𝑡
𝑔𝑝𝑔 . (2.7)

Suppose 𝑔, ℎ ∈ Sp(𝑉); then (1 + 𝑇𝑔ℎ)𝑝𝑔ℎ = (1 + 𝑇𝑔)𝑝𝑔 (1 + 𝑇ℎ)𝑝ℎ and the uniqueness of the
decomposition leads to

𝑝𝑔ℎ := 𝑝𝑔 (1 − 𝑇𝑔𝑇ℎ)𝑝ℎ, (2.8a)
𝑇𝑔ℎ := 𝑝𝑔 (𝑇ℎ − 𝑇𝑔) (1 − 𝑇𝑔𝑇ℎ)−1𝑝−1

𝑔 (2.8b)
= (𝑝𝑔𝑇ℎ + 𝑞𝑔) (𝑞𝑔𝑇ℎ + 𝑝𝑔)−1. (2.8c)

Another expression for 𝑇𝑔ℎ is also quite useful. From the identity 𝑝𝑡𝑔 (1 − 𝑇2
𝑔 )𝑝𝑔 = 1 we obtain

𝑝𝑔 (1 − 𝑇2
𝑔 )𝑝𝑡𝑔 = 1 on substituting 𝑔−1 for 𝑔; thus 𝑝𝑔 = 𝑝−𝑡𝑔 + 𝑝𝑔𝑇2

𝑔 . This yields 𝑝𝑔 (𝑇ℎ − 𝑇𝑔) =

𝑝−𝑡𝑔 𝑇ℎ − 𝑝𝑔𝑇𝑔 (1 − 𝑇𝑔𝑇ℎ); then, using (2.8b) and 𝑇𝑔 = −𝑝𝑔𝑇𝑔𝑝−1
𝑔 , we arrive at

𝑇𝑔ℎ = 𝑇𝑔 + 𝑝−𝑡𝑔 𝑇ℎ (1 − 𝑇𝑔𝑇ℎ)−1𝑝−1
𝑔 . (2.9)

▶ We now define D(𝑉) := { 𝑋 ∈ Endℝ𝑉 : 𝑋𝐽 = −𝐽𝑋, 𝑋 𝑡 = 𝑋, 1 − 𝑋2 > 0 }, which we may call
the open Cartan–Siegel disk of 𝑉 . We have shown that if 𝑔 ∈ Sp, then 𝑇𝑔 ∈ D(𝑉). Conversely, if
𝑇 ∈ D(𝑉), we may take 𝑝 := (1 − 𝑇2)−1/2 and thereby ℎ𝑇 := (1 + 𝑇) (1 − 𝑇2)−1/2 ∈ Sp(𝑉) whose
𝑇-part is the given 𝑇 ∈ D(𝑉). In view of (2.8c), we see that Sp(𝑉) acts transitively on D(𝑉) by
fractional linear transformations.

The isotropy subgroup of 0 ∈ D(𝑉) under this action consists of those 𝑔 ∈ Sp(𝑉) for which
𝑇𝑔 = 0, i.e., the complex-linear subgroup U𝐽 (𝑉) := { 𝑔 ∈ Sp(𝑉) : 𝑔𝐽 = 𝐽𝑔 }. Since 𝑔 ∈ U𝐽 (𝑉) iff
𝑔 = 𝑝𝑔 iff 𝑔𝑡𝑔 = 1, we see that U𝐽 (𝑉) = Sp(𝑉) ∩ O(𝑉, 𝑑) is the unitary group for the Hilbert space
(𝑉, 𝑠, 𝐽).

The set Σ(𝑉) of positive compatible complex structures on 𝑉 , i.e., those real-linear operators
𝐽′ satisfying (2.1) and (2.2b), also forms a homogeneous space for the group Sp(𝑉). Indeed, any
compatible complex structure belongs to the Lie algebra

sp(𝑉) = { 𝑋 ∈ Endℝ(𝑉) : 𝑠(·, 𝑋 ·) + 𝑠(𝑋 ·, ·) = 0 }

of Sp(𝑉). The adjoint action 𝐽′ ↦→ 𝑔𝐽′𝑔−1 clearly preserves Σ(𝑉), and we shall shortly establish
that Sp(𝑉) acts transitively on Σ(𝑉).

2.3 Polarizations

We now consider the complexification 𝑉ℂ := 𝑉 ⊗ℝ ℂ = 𝑉 ⊕ 𝑖𝑉 . We shall identify real-linear
operators 𝐴 ∈ Endℝ𝑉 with their natural amplifications to complex-linear operators on 𝑉ℂ by
the rule 𝐴(𝑢 + 𝑖𝑣) := 𝐴𝑢 + 𝑖𝐴𝑣. The complex Hilbert space 𝑉ℂ carries a natural conjugation
(𝑢 + 𝑖𝑣)∗ := 𝑢 − 𝑖𝑣.

A complex subspace 𝑊 ⩽ 𝑉ℂ is isotropic with respect to (the complex amplification of) 𝑠 if
𝑠(𝑧, 𝑤) = 0 for all 𝑧, 𝑤 ∈ 𝑊 . A polarization for 𝑠 is a maximal isotropic subspace. A polarization
𝑊 is complex if𝑊 ∩𝑊∗ = {0}. Notice that a complex polarization satisfies𝑊 ∩𝑉 = 𝑊 ∩ 𝑖𝑉 = {0}.
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If 𝑊 is a complex polarization, we can write any 𝑤 ∈ 𝑊 as 𝑤 = 𝑢 − 𝑖𝑣 for unique elements
𝑢, 𝑣 ∈ 𝑉 . The maps 𝑤 ↦→ 𝑢, 𝑤 ↦→ 𝑣 are real-linear and one-to-one; they have continuous inverses
since the scalar product (2.4) extends to 𝑉ℂ so that ⟨𝑤 | 𝑤⟩ = ⟨𝑢 | 𝑢⟩ + ⟨𝑣 | 𝑣⟩. The composite map
𝑢 ↦→ 𝑤 ↦→ 𝑣 is thus an invertible real-linear operator 𝐽𝑊 on 𝑉 . We can thus write

𝑊 = { 𝑤 = 𝑢 − 𝑖𝐽𝑊𝑢 : 𝑢 ∈ 𝑉 }. (2.10)

Since 𝑊 is a polarization, from ℜ 𝑠(𝑤1, 𝑤2) = 0 we get 𝑠(𝐽𝑊𝑢1, 𝐽𝑊𝑢2) = 𝑠(𝑢1, 𝑢2), so 𝐽𝑊 is
symplectic. Also, ℑ 𝑠(𝑤1, 𝑤2) = 0 implies 𝑠(𝐽𝑊𝑢1, 𝑢2) = −𝑠(𝑢1, 𝐽𝑊𝑢2), so 𝐽2

𝑊
= −1.

The complex polarization 𝑊 is called positive if 𝑠(𝑢, 𝐽𝑊𝑢) > 0 for nonzero 𝑢. Alternatively,
we may notice that 𝑠(𝑢, 𝐽𝑊𝑢) = 𝑖

2 𝑠(𝑤
∗, 𝑤), so that 𝑊 is a positive polarization if and only if the

sesquilinear form 𝑟 on𝑉ℂ given by 𝑟 (𝑤1, 𝑤2) := 2𝑖𝑠(𝑤∗
1, 𝑤2) is positive definite on the subspace𝑊 .

(It is then negative definite on the complementary subspace 𝑊∗.) Notice that a symplectic space
with a positive polarization carries a reflection operator satisfying an Osterwalder–Schrader type
positivity condition [13]; in this case the reflection is conjugation followed by multiplication by 𝑖.

Let𝑊0 denote the polarization { 𝑢− 𝑖𝐽𝑢 : 𝑢 ∈ 𝑉 } for the initially chosen 𝐽. Let 𝑃+ := 1
2 (1− 𝑖𝐽),

𝑃− := 1
2 (1 + 𝑖𝐽) denote the projectors on 𝑉ℂ with ranges𝑊0,𝑊∗

0 respectively. Then if 𝑢, 𝑣 ∈ 𝑉 , we
note that 𝑟 (𝑃+𝑢, 𝑃+𝑣) = ⟨𝑢 | 𝑣⟩. Thus (𝑊0, 𝑟) is a complex Hilbert space and 𝑣 ↦→ 𝑃+𝑣 is a unitary
map from (𝑉, 𝑠, 𝐽) to𝑊0. Analogous projectors may be defined for any positive polarization.

Given the positive polarization𝑊0, we can define a (positive definite) scalar product on 𝑉ℂ by

⟨⟨𝑤1 | 𝑤2⟩⟩ := 2𝑠(𝑤∗
1, 𝐽𝑤2). (2.11)

Notice that 𝐽 acts as multiplication by 𝑖 on𝑊0 and by (−𝑖) on𝑊∗
0 , so that 𝑃+, 𝑃− are the orthogonal

projectors on𝑊0 and𝑊∗
0 with respect to this Hilbert space structure on 𝑉ℂ; and there holds

⟨⟨𝑃+𝑢 | 𝑃+𝑣⟩⟩ = ⟨𝑢 | 𝑣⟩, ⟨⟨𝑃−𝑢 | 𝑃−𝑣⟩⟩ = ⟨𝑣 | 𝑢⟩ (2.12)

for 𝑢, 𝑣 ∈ 𝑉 . Conversely, if 𝐽′ is a complex structure satisfying (2.2b), then𝑊 := { 𝑢− 𝑖𝐽′𝑢 : 𝑢 ∈ 𝑉 }
is a positive polarization.

We can decompose 𝑤 ∈ 𝑊 uniquely as 𝑤 = 𝑧1 + 𝑧∗2 with 𝑧1, 𝑧2 ∈ 𝑊0. Now 𝑊 ∩𝑊∗
0 = {0},

since 𝑟 (·, ·) is positive definite on 𝑊 and negative definite on 𝑊∗
0 . Thus 𝑤 ↦→ 𝑧1 is a one-to-one

complex-linear map which has a continuous inverse since ⟨⟨𝑤 | 𝑤⟩⟩ = ⟨⟨𝑧1 | 𝑧1⟩⟩ + ⟨⟨𝑧∗2 | 𝑧∗2⟩⟩. Let
𝑇𝑊 denote the composite mapping

𝑢1 ↦→ 𝑢1 − 𝑖𝐽𝑢1 = 𝑧1 ↦→ 𝑤 ↦→ 𝑧∗2 = 𝑢2 + 𝑖𝐽𝑢2 ↦→ 𝑢2, (2.13)

which is a real-linear operator on 𝑉 . Since the map 𝑧1 ↦→ 𝑤 ↦→ 𝑧∗2 is complex-linear, so that
𝐽𝑢1 + 𝑖𝑢1 = 𝑖𝑧1 maps to 𝑖𝑧∗2 = −𝐽𝑢2 + 𝑖𝑢2, we find that 𝑇𝑊𝐽 = −𝐽𝑇𝑊 . Moreover, 𝑇𝑊 is symmetric;
indeed, if 𝑢1, 𝑢

′
1 ∈ 𝑉 , then

0 = 𝑖
2ℑ 𝑠(𝑤, 𝑤

′) = 𝑖
2ℑ (𝑠(𝑧1, 𝑧

′
2
∗) − 𝑠(𝑧′1, 𝑧

∗
2)) = 𝑑 (𝑢1, 𝑇𝑊𝑢

′
1) − 𝑑 (𝑇𝑊𝑢1, 𝑢

′
1). (2.14)

We may also observe that

𝑤 = 𝑧1 + 𝑧∗2 = (1 + 𝑇𝑊 )𝑢1 − 𝑖𝐽 (1 − 𝑇𝑊 )𝑢1

= (1 + 𝑇𝑊 ) (𝑢1 − 𝑖𝐽𝑢1) = (1 + 𝑇𝑊 )𝑧1, (2.15)

so (1 + 𝑇𝑊 ) is invertible, and 𝐽 and 𝐽𝑊 are related by a Cayley transformation:

𝐽𝑊 = 𝐽 (1 − 𝑇𝑊 ) (1 + 𝑇𝑊 )−1. (2.16)

7



Furthermore, the calculation

⟨𝑣 | (1 − 𝑇2
𝑊 )𝑣⟩ = 𝑑 (𝑣 + 𝑇𝑊𝑣, 𝑣 − 𝑇𝑊𝑣) = 𝑠((1 + 𝑇𝑊 )𝑣, 𝐽 (1 − 𝑇𝑊 )𝑣)

= 𝑠((1 + 𝑇𝑊 )𝑣, 𝐽𝑊 (1 + 𝑇𝑊 )𝑣) > 0,

shows that 1 − 𝑇2
𝑊

is positive definite.
We summarize this discussion with the following result.

Proposition 2.2. The correspondences 𝑊 ↔ 𝐽𝑊 ↔ 𝑇𝑊 are bijections between the set of pos-
itive polarizations for 𝑠, the set Σ(𝑉) of positive compatible complex structures on 𝑉 , and the
Cartan–Siegel disk D(𝑉). The symplectic group Sp(𝑉) acts transitively on these spaces, and these
correspondences are equivariant for the group actions.

Proof. The map 𝑊 ↦→ 𝑇𝑊 is inverted by 𝑇 ↦→ (1 + 𝑇)𝑊0, in view of (2.16). If 𝑔 ∈ Sp(𝑉), then
𝑝𝑔𝑊0 = 𝑊0 since 𝑝𝑔 commutes with (1− 𝑖𝐽), so (1+𝑇𝑔)𝑊0 = (1+𝑇𝑔)𝑝𝑔𝑊0 = 𝑔𝑊0: left translation
by (the complex amplifications of) elements of Sp(𝑉) permute the positive polarizations. Also,

𝐽 (1 − 𝑇𝑔) (1 + 𝑇𝑔)−1 = (1 + 𝑇𝑔)𝐽 (1 + 𝑇𝑔)−1 = (1 + 𝑇𝑔)𝑝𝑔𝐽𝑝−1
𝑔 (1 + 𝑇𝑔)−1 = 𝑔𝐽𝑔−1,

so the actions 𝑊 ↦→ 𝑔𝑊 , 𝐽𝑊 ↦→ 𝑔𝐽𝑊𝑔
−1 and 𝑇𝑊 ↦→ 𝑝𝑔 (𝑇𝑊 − 𝑇𝑔) (1 − 𝑇𝑔𝑇𝑊 )−1𝑝−1

𝑔 are equivariant
under the given correspondences.

If 𝐽′ is any positive compatible complex structure, take𝑊′ := (1− 𝑖𝐽′)𝑉 , 𝑇 := 𝑇𝑊 ′ ∈ D(𝑉); then
ℎ′ := (1 + 𝑇) (1 − 𝑇2)−1/2 ∈ Sp(𝑉) satisfies ℎ′2 = (1 + 𝑇) (1 − 𝑇)−1 = −𝐽′𝐽. Since 𝑇 is symmetric
(with respect to 𝑑) and 1 − 𝑇2 > 0, we find that (1 + 𝑇) and ℎ′ are positive definite real-linear
operators on (𝑉, 𝑑), so (−𝐽′𝐽) is also positive definite and ℎ′ is its positive square root. [We might
also consider ℎ′ as a real-linear operator on (𝑉, 𝑑′), where 𝑑′(𝑢, 𝑣) := 𝑠(𝑢, 𝐽′𝑣); by (2.16), the roles
of 𝐽′ and 𝐽 may be reversed with 𝑇 replaced by (−𝑇). Since (−𝑇) is symmetric with respect to 𝑑′
and 1 − 𝑇2 > 0 on (𝑉, 𝑑′), ℎ′ is also positive definite on (𝑉, 𝑑′).]

By (2.16), we see that ℎ′𝐽ℎ′−1 = 𝐽ℎ′−2 = 𝐽 (1 − 𝑇) (1 + 𝑇)−1 = 𝐽′. We have shown that Sp(𝑉)
acts transitively on Σ(𝑉), with

(−𝐽′𝐽)1/2𝐽 (−𝐽𝐽′)1/2 = 𝐽′. (2.17)

It is now clear why the topologies on 𝑉 induced by different 𝑑𝐽 are equivalent. We have also shown
that 𝐽′ ↦→ (−𝐽′𝐽)1/2 is a global section of the principal fibre bundle Sp(𝑉) → Σ(𝑉). Moreover, the
inverse of the correspondence D(𝑉) → Σ(𝑉) : 𝑇 ↦→ 𝐽 (1 − 𝑇) (1 + 𝑇)−1 is given by inverting the
Cayley transformation (2.16):

𝐽′ ↦→ 𝑇 = (𝐽 − 𝐽′) (𝐽 + 𝐽′)−1. □ (2.18)

2.4 The restricted symplectic group

The restricted symplectic group consists of those symplectic transformations whose 𝑇-part is a
Hilbert–Schmidt operator, on the real Hilbert space (𝑉, 𝑑). Letting HS ≡ HS(𝑉) denote the class
of Hilbert–Schmidt operators, we take note that

𝑇𝑔 ∈ HS ⇐⇒ 𝑞𝑔 ∈ HS ⇐⇒ [𝐽, 𝑔] ∈ HS ⇐⇒ 𝐽 − 𝑔𝐽𝑔−1 ∈ HS.

8



Thus we define

Sp′(𝑉) := { 𝑔 ∈ Sp(𝑉) : 𝑇𝑔 ∈ HS(𝑉) },
Σ′(𝑉) := { 𝐽′ ∈ Σ(𝑉) : [𝐽, 𝐽′] ∈ HS(𝑉) },
D′(𝑉) := D(𝑉) ∩ HS(𝑉).

Then Sp′(𝑉) is a subgroup of Sp(𝑉), and Σ′(𝑉), D′(𝑉) are respectively the orbits of 𝐽 ∈ Σ(𝑉) and
0 ∈ 𝑇 (𝑉) under the action of Sp′(𝑉). The isotropy subgroup U𝐽 (𝑉) is contained in Sp′(𝑉).

The homogeneous spaces Σ′(𝑉) and D′(𝑉) are Kähler manifolds based on the Hilbert space
of antilinear Hilbert–Schmidt operators on 𝑉 [14]. Note that the global sections 𝐽′ ↦→ (−𝐽′𝐽)1/2,
𝑇 ↦→ (1 + 𝑇) (1 − 𝑇2)−1/2 have values in Sp′(𝑉).

The set of all positive polarizations may be identified with Σ(𝑉) or D(𝑉) under the corre-
spondences of Proposition 2.2. Now Σ(𝑉) is partitioned into equivalence classes, where 𝐽1 and
𝐽2 are equivalent if and only if 𝐽1 − 𝐽2 is Hilbert–Schmidt. Likewise, two polarizations 𝑊1 and
𝑊2 are equivalent if and only if 𝑊2 = 𝑔𝑊1 for some 𝑔 ∈ Sp′(𝑉). We may then call “restricted
polarizations” those 𝑊 for which 𝐽𝑊 − 𝐽 or 𝑇𝑊 is Hilbert–Schmidt: these form the orbit under
Sp′(𝑉) of the reference polarization𝑊0.

Since the action of Sp′(𝑉) on D′(𝑉) is transitive, we obtain a useful formula for this action by
replacing 𝑇ℎ by a general 𝑆 ∈ D′(𝑉) in (2.9). Let us write 𝑔 · 𝑆 for the image of 𝑆 under 𝑔 ∈ Sp′(𝑉).
Then we can rewrite (2.9) as

𝑔 · 𝑆 = 𝑇𝑔 + 𝑝−𝑡𝑔 𝑆(1 − 𝑇𝑔𝑆)−1𝑝−1
𝑔 . (2.19)

▶ If (and only if) 𝑔 ∈ Sp′(𝑉), then 𝑝𝑔𝑝
𝑡
𝑔 = (1 − 𝑇2

𝑔 )−1 has a determinant, since the operator
𝑝𝑔𝑝

𝑡
𝑔−1 = 𝑇2

𝑔 (1−𝑇2
𝑔 )−1 is trace-class; and det(1−𝑇2

𝑔 ) = det(𝑝𝑔𝑝𝑡𝑔)−1 = det(𝑝𝑡𝑔𝑝𝑔)−1 = det(1−𝑇2
𝑔 ).

For the theory of infinite determinants, including the justification of such expected properties as
det(𝐴𝐵) = det(𝐵𝐴), we refer to [7, Appendix A].

The determinants we need to compute in the present context are complex determinants. When-
ever𝑇 ∈ D′(𝑉), 1−𝑇2 is a linear trace-class positive operator on the complex Hilbert space (𝑉, 𝑠, 𝐽),
whose determinant is

detℂ(1 − 𝑇2) =
∞∏
𝑘=1

(1 − _2
𝑘 ),

where the _2
𝑘

are the eigenvalues of 𝑇2. (The subscript ℂ emphasizes the nature of the complex
determinant; we shall usually omit it if no ambiguity is likely.) The determinant of (1 − 𝑇2) as
a real-linear operator on 𝑉 is the square of this complex determinant. Indeed, we can find an
orthonormal basis {𝑒1, 𝑒2, . . . } for (𝑉, 𝑠, 𝐽) so that 𝑇2𝑒𝑘 = _

2
𝑘
𝑒𝑘 for each 𝑘; and moreover, since 𝑇

is antilinear and symmetric, we can select the vectors 𝑒𝑘 so that

𝑇𝑒𝑘 = _𝑘𝐽𝑒𝑘 , 𝑇𝐽𝑒𝑘 = _𝑘𝑒𝑘 . (2.20)

The eigenvalues of 𝑇 are {±_𝑘 }, since 𝑇 (𝑒𝑘 ± 𝐽𝑒𝑘 ) = ±_𝑘 (𝑒𝑘 ± 𝐽𝑒𝑘 ).
An alternative formulation in terms of the polarization 𝑊0 is often useful. The complex

amplification of (1 − 𝑇2) on 𝑉ℂ is a trace-class operator, and its eigenvectors 1
2 (𝑒𝑘 − 𝑖𝐽𝑒𝑘 ) ∈ 𝑊0,

1
2 (𝑒𝑘 + 𝑖𝐽𝑒𝑘 ) ∈ 𝑊

∗
0 span a dense subspace of 𝑉ℂ. One sees at a glance that

detℂ(1 − 𝑇2) =
∞∏
𝑘=1

(1 − _2
𝑘 ) = det(𝑃+(1 − 𝑇2)𝑃+).
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▶ Let Π′(𝑉) denote the set of 𝐴 ∈ GL(𝑉) such that 𝐴 is linear, 𝐴+ 𝐴𝑡 is positive definite, and 1− 𝐴
is trace-class. For example, 1 − 𝑇2 ∈ Π′(𝑉) whenever 𝑇 ∈ D′(𝑉). Moreover, if 𝑆, 𝑇 ∈ D′(𝑉), then
1 − 𝑆𝑇 ∈ Π′(𝑉).

The trace norm ∥𝐴1 − 𝐴2∥tr defines a metric on Π′(𝑉). Now Π′(𝑉) is contractible, since
(1 − 𝑡)1 + 𝑡𝐴 ∈ Π′(𝑉) if 𝐴 ∈ Π′(𝑉) and 0 ⩽ 𝑡 ⩽ 1, and 𝐴 ↦→ det 𝐴 is continuous on Π′(𝑉); so
if 𝑚 is a nonzero integer (positive or negative), we can define a unique continuous function det1/𝑚
on Π′(𝑉) which satisfies

(det1/𝑚 𝐴)𝑚 = detℂ 𝐴, det1/𝑚 1 = 1.

In particular, det1/𝑚 𝐴 > 0 if 𝐴 is positive definite. For 𝑇 ∈ D′(𝑉), it follows that

det1/𝑚 (1 − 𝑇2) =
∞∏
𝑘=1

(1 − _2
𝑘 )

1/𝑚 .

For complex determinants, the following identity is generally valid [7]:

det(exp 𝑁) = exp(Tr 𝑁)

for trace-class operators 𝑁 . The trace in this formula is a complex trace. We therefore define, for
𝐴 ∈ Endℝ(𝑉),

Trℂ [𝐴] := Tr[𝑃+𝐴𝑃+], (2.21)

where the trace on the right is that of the complex Hilbert space 𝑊0. Now Trℂ [𝐴] = 0 if 𝐴 is
antilinear, since 𝑃+𝐴 = 𝐴𝑃− on𝑉ℂ, but Trℂ need not vanish on commutators of antilinear operators;
it does, of course, vanish on commutators of linear operators.

With these notations, then, derivatives of determinants obey the rule [7]:

𝑑

𝑑𝑡
detℂ 𝐴(𝑡) = detℂ 𝐴(𝑡) Trℂ

(
𝐴(𝑡)−1 𝑑

𝑑𝑡
𝐴(𝑡)

)
, (2.22)

whenever 𝑡 ↦→ 𝐴(𝑡) ∈ Π′(𝑉) is a differentiable map.

3 The Fock space of antiholomorphic functions
3.1 The Segal–Bargmann construction of Fock space

The Fock space which carries the representations of the canonical commutation relations can be
constructed directly by applying creation operators to a vacuum state, or abstractly as a space
of analytic functions [15] on the underlying symplectic linear manifold 𝑉 . The equivalence of
these constructions for systems with finitely many degrees of freedom is guaranteed by the Stone–
von Neumann theorem. In a field-theoretic context a more detailed treatment is necessary.

It has been shown by I. E. Segal [16] that the presentation via “functions on 𝑉” extends without
essential change to the infinite-dimensional case. An equivalent presentation of Fock space is as
the completion of the symmetric algebra on a positive polarization of (𝑉, 𝑠); see G. Segal [5], for
instance. We prefer to work directly with the real manifold 𝑉 , to keep the classical picture more
clearly in view and to define the symplectic action without altering the base space. In this Section,
we establish the connection between the “symmetric algebra” and “function space” viewpoints.
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Fix a positive compatible complex structure 𝐽 on 𝑉 ; throughout this section we shall regard 𝑉
as a complex Hilbert space via (2.3), with scalar product (2.4).

The symmetric algebra 𝑆(𝑉) of 𝑉 is defined as 𝑆(𝑉) :=
⊕∞

𝑛=0𝑉
∨𝑛, where 𝑉∨𝑛 is the complex

vector space algebraically generated by the symmetric products

𝑣1 ∨ 𝑣2 ∨ · · · ∨ 𝑣𝑛 :=
1
𝑛!

∑︁
𝜎∈𝑆𝑛

𝑣𝜎(1) ⊗ 𝑣𝜎(2) ⊗ · · · ⊗ 𝑣𝜎(𝑛) ,

with 𝑉∨0 = ℂ by convention. The scalar product on 𝑉 extends to a scalar product on 𝑆(𝑉) by
declaring

⟨𝑢1 ∨ · · · ∨ 𝑢𝑚 | 𝑣1 ∨ · · · ∨ 𝑣𝑛⟩ := 𝛿𝑚𝑛 per(⟨𝑢𝑘 | 𝑣𝑙⟩) ≡ 𝛿𝑚𝑛
∑︁
𝜎∈𝑆𝑛

𝑛∏
𝑗=1

⟨𝑢 𝑗 | 𝑣𝜎( 𝑗)⟩. (3.1)

If {𝑒𝑛} is an orthonormal basis for the complex Hilbert space (𝑉, 𝑠, 𝐽), an orthonormal family in
𝑆(𝑉) is given by the elements Y𝛼 := (𝛼!)−1/2𝑒∨𝛼1

1 ∨· · ·∨ 𝑒∨𝛼𝑟𝑟 , where 𝛼 is a sequence of nonnegative
integers with finitely many nonzero entries, and 𝛼! = 𝛼1!𝛼2! . . . 𝛼𝑟! is a multifactorial. (The Y𝛼
have norm 1 since the permanent of a square matrix of 1’s with 𝛼𝑘 rows is 𝛼𝑘 !.) This family is an
orthonormal basis for the Hilbert-space completion of 𝑆(𝑉), which is the symmetric Fock space.

The antilinear function 𝑢 ↦→ 1√
2
⟨𝑢 | 𝑣⟩ on 𝑉 will be denoted simply by 𝑣. An antiholomorphic

homogeneous polynomial of degree 𝑛 on 𝑉 is a function on 𝑉 of the form 𝐿 (𝑢, 𝑢, . . . , 𝑢), where 𝐿
is a continuous function which is antilinear in each of its 𝑛 arguments. A typical example is the
function

𝑢 ↦→ 2−𝑛/2⟨𝑢 | 𝑣1⟩ ⟨𝑢 | 𝑣2⟩ · · · ⟨𝑢 | 𝑣𝑛⟩ =
1
𝑛!
⟨(𝑢/

√
2)∨𝑛 | 𝑣1 ∨ · · · ∨ 𝑣𝑛⟩, (3.2)

which we identify with 𝑣1 ∨ · · · ∨ 𝑣𝑛 ∈ 𝑉∨𝑛. By these identifications, we regard 𝑆(𝑉) as the space
of antiholomorphic polynomials on 𝑉 .
Remark. The scalar factor 1/

√
2 could well be suppressed, but would reappear in a more awkward

fashion in other formulas; its inclusion at this stage is tantamount to regarding elements of 𝑆(𝑉) as
“functions of 𝑢/

√
2”.

If𝑉 is finite-dimensional with orthonormal basis {𝑒1, . . . , 𝑒𝑁 }, the polynomials Y𝛼 are orthonor-
mal with respect to the Gaussian integral:∫

𝑉

Y∗𝛼 (𝑢)Y𝛽 (𝑢) 𝑒−
1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢 :=

𝑁∏
𝑘=1

1
2𝜋

∫
2−(𝛼𝑘+𝛽𝑘)/2 𝑢

𝛼𝑘
𝑘
𝑢∗
𝑘
𝛽𝑘√︁

𝛼𝑘 ! 𝛽𝑘 !
𝑒−

1
2 |𝑢𝑘 |

2
𝑑ℜ𝑢𝑘 𝑑ℑ𝑢𝑘

=

{
1 if 𝛽 = 𝛼,

0 otherwise.

We normalize the Lebesgue measure 𝑑𝑢 by a factor of (2𝜋)−𝑁 so that the integral of 1 equals 1. Let
the vectors 𝑣1, . . . , 𝑣𝑛 span the complex subspace 𝑉 ′ of 𝑉 ; we may suppose that 𝑉 ′ has orthonormal
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basis {𝑒1, . . . , 𝑒𝑀} with 𝑀 ⩽ 𝑁 . Then the Gaussian integral of the polynomial 𝑣1 ∨ · · · ∨ 𝑣𝑛 is

2−𝑛/2
∫
𝑉

𝑛∏
𝑗=1

⟨𝑢 | 𝑣 𝑗 ⟩ 𝑒−
1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢 = 2−𝑛/2

∫
𝑉

𝑛∏
𝑗=1

𝑀∑︁
𝑘 𝑗=1

⟨𝑢 | 𝑒𝑘 𝑗 ⟩⟨𝑒𝑘 𝑗 | 𝑣 𝑗 ⟩ 𝑒−
1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢

= 2−𝑛/2
∫
𝑉 ′

𝑛∏
𝑗=1

⟨𝑢 | 𝑣 𝑗 ⟩ 𝑒−
1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢. (3.3)

Thus the integral depends only on the linear span of {𝑣1, . . . , 𝑣𝑛}.
If 𝐹 :=

∑
𝛼 𝑐𝛼Y𝛼 is a finite sum of basic polynomials on 𝑉 , then

∥𝐹∥2 :=
∫
𝑉

|𝐹 (𝑢) |2 𝑒− 1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢 =

∑︁
𝛼

|𝑐𝛼 |2.

By the Schwarz inequality,

|𝐹 (𝑢) |2 =
∑︁
𝛼,𝛽

𝑐∗𝛼𝑐𝛽

𝑁∏
𝑗 ,𝑘=1

(𝑢 𝑗/
√

2)𝛼 𝑗√︁
𝛼 𝑗 !

(𝑢𝑘/
√

2)𝛽𝑘∗√︁
𝛽𝑘 !

⩽
∑︁
𝛼

|𝑐𝛼 |2
𝑁∏
𝑘=1

𝑒
1
2 |𝑢𝑘 |

2
= ∥𝐹∥2 𝑒

1
2 ⟨𝑢 |𝑢⟩ .

Now take 𝑉 to be infinite-dimensional. Then 𝑉 does not support a Gaussian measure, but we
may nevertheless extend the integral as follows. We say a function 𝐹 on 𝑉 is antiholomorphic
if its restriction to any finite-dimensional subspace of 𝑉 is antiholomorphic. (In particular, any
homogeneous polynomial of the form 𝑣1 ∨ · · · ∨ 𝑣𝑛 is an antiholomorphic function.) For such a
function 𝐹, write

∥𝐹∥2 := sup
𝑌

∫
𝑌

|𝐹 (𝑢) |2 𝑒− 1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢, (3.4)

where 𝑌 ranges over finite-dimensional complex subspaces of 𝑉 . The Segal–Bargmann space
B(𝑉) is the space of antiholomorphic functions 𝐹 for which ∥𝐹∥ is finite. Now, on any finite-
dimensional 𝑌 , the estimate

|𝐹 (𝑢) |2 ⩽ ∥𝐹∥2 𝑒
1
2 ⟨𝑢 |𝑢⟩ (3.5)

holds for 𝑢 ∈ 𝑌 ; on account of the definition (3.4), this estimate holds for all 𝑢 ∈ 𝑉 .
For 𝐹 = 𝑣1 ∨ · · · ∨ 𝑣𝑛, the supremum is attained on any finite-dimensional 𝑌 which contains

{𝑣1, . . . , 𝑣𝑛}, in view of (3.3), and coincides with the norm determined by (3.1). The completion
of 𝑆(𝑉) in this norm coincides with B(𝑉). Indeed, in view of (3.5), a Cauchy sequence of anti-
holomorphic polynomials converges uniformly on finite-dimensional compact sets, so its pointwise
limit is an antiholomorphic function on 𝑉 . On the other hand, if 𝐹 is an antiholomorphic function
for which ∥𝐹∥ is finite, then 𝐹 can be approximated by polynomials on the subspace 𝑌𝑁 with
orthonormal basis {𝑒1, . . . , 𝑒𝑁 }. Thus we can write 𝐹 (𝑢) = ∑

𝛼 𝑐𝛼Y𝛼 (𝑢) for 𝑢 in any 𝑌𝑁 , with∑︁
𝛼

|𝑐𝛼 |2 = sup
𝑁

∫
𝑌𝑁

|𝐹 (𝑢) |2 𝑒− 1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢 = ∥𝐹∥2, (3.6)

so that 𝐹 lies in the completion of 𝑆(𝑉). On account of (3.6), we shall use the notation∫
|𝐹 (𝑢) |2 𝑒− 1

2 ⟨𝑢 |𝑢⟩ 𝑑𝑢 := ∥𝐹∥2

to denote the right hand side of (3.4). Then B(𝑉) consists of those entire antiholomorphic functions
on 𝑉 for which this “integral” is finite.
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3.2 Operator kernels on the Segal–Bargmann space

If 𝑣 ∈ 𝑉 , write 𝐸𝑣 (𝑢) := 𝑒 1
2 ⟨𝑢 |𝑣⟩. Then 𝐸𝑣 is antiholomorphic on 𝑉 and

∥𝐸𝑣 ∥2 = sup
𝑁

∫
𝑌𝑁

𝑒
1
2 (⟨𝑢 |𝑣⟩+⟨𝑣 |𝑢⟩−⟨𝑢 |𝑢⟩) 𝑑𝑢 = sup

𝑁

exp( 1
2 ⟨𝑃𝑁𝑣 | 𝑃𝑁𝑣⟩) = 𝑒

1
2 ⟨𝑣 |𝑣⟩,

where 𝑃𝑁 denotes the orthogonal projector on 𝑉 with range 𝑌𝑁 . Hence 𝐸𝑣 ∈ B(𝑉). An analogous
computation shows that

⟨𝐸𝑣 | 𝐸𝑤⟩ = 𝑒
1
2 ⟨𝑣 |𝑤⟩ .

Now (𝑑𝑛/𝑑𝑡𝑛)𝐸𝑡𝑣 (𝑢) = 2−𝑛⟨𝑢 | 𝑣⟩𝑛𝐸𝑡𝑣 (𝑢), so that 𝑣∨𝑛 = 2𝑛/2(𝑑𝑛/𝑑𝑡𝑛)
��
𝑡=0𝐸𝑡𝑣 lies in the closed linear

span of the 𝐸𝑣. The combinatorial formula

𝑣1 ∨ 𝑣2 ∨ · · · ∨ 𝑣𝑛 =
1
𝑛!

𝑛∑︁
𝑟=1

(−1)𝑛−𝑟
∑︁

1⩽𝑘1<···<𝑘𝑟⩽𝑛
(𝑣𝑘1 + · · · + 𝑣𝑘𝑟 )∨𝑛

then shows that this closed linear span contains all of 𝑆(𝑉). In other words, the set { 𝐸𝑣 : 𝑣 ∈ 𝑉 }
spans a dense subspace of B(𝑉). Indeed, a dense subspace of B(𝑉) is spanned by { 𝐸𝑣 : 𝑣 ∈ 𝑉 ′ }
whenever 𝑉 ′ is a dense subspace of 𝑉 , since the closure of this subspace of B(𝑉) contains all 𝑉∨𝑛.

We may think of 𝐸𝑣 as the symmetric exponential exp∨(𝑣/
√

2), by which is meant the power
series

∑∞
𝑛=0(2−𝑛/2𝑣∨𝑛)/𝑛!. Indeed, this series does converge to the function 𝐸𝑣 both in norm, as is

easily checked, and uniformly on finite-dimensional compact subsets of 𝑉 .
The functions 𝐸𝑣 are “principal vectors” for B(𝑉), since

⟨𝐸𝑣 | Y𝛼⟩ = lim
𝑁

∫
𝑌𝑁

𝑒
1
2 ⟨𝑣 |𝑢⟩Y𝛼 (𝑢) 𝑒−

1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢

= lim
𝑁

𝑁∏
𝑘=1

2−𝛼𝑘/2

2𝜋
√
𝛼𝑘 !

∫
𝑒

1
2 𝑣

∗
𝑘
𝑢𝑘𝑢∗𝑘

𝛼𝑘𝑒−
1
2 |𝑢𝑘 |

2
𝑑ℜ𝑢𝑘 𝑑ℑ𝑢𝑘

= lim
𝑁

𝑁∏
𝑘=1

𝑣∗
𝑘
𝛼𝑘

2𝛼𝑘/2√𝛼𝑘 !
= Y𝛼 (𝑣),

and so ⟨𝐸𝑣 | 𝐹⟩ = 𝐹 (𝑣) for any 𝐹 ∈ B(𝑉). Hence 𝐸𝑣 (𝑢) = exp( 1
2 ⟨𝑢 | 𝑣⟩) is a reproducing kernel

for B(𝑉).
The existence of a reproducing kernel implies that an operator 𝐴 on B(𝑉) has a kernel

𝐾𝐴 (𝑢, 𝑣) := ⟨𝐸𝑢 | 𝐴𝐸𝑣⟩ = 𝐴𝐸𝑣 (𝑢), (3.7)

which is antiholomorphic in 𝑢 and holomorphic in 𝑣, provided that the principal vectors 𝐸𝑣 lie in
the domains of 𝐴 and its hermitian conjugate 𝐴†. In particular, any bounded operator has a kernel.
Thus

𝐴𝐹 (𝑢) =
∫

𝐾𝐴 (𝑢, 𝑣)𝐹 (𝑣) 𝑒−
1
2 ⟨𝑣 |𝑣⟩ 𝑑𝑣 := lim

𝑌

∫
𝑌

𝐾𝐴 (𝑢, 𝑣)𝐹 (𝑣) 𝑒−
1
2 ⟨𝑣 |𝑣⟩ 𝑑𝑣,

where 𝑌 ranges over finite-dimensional complex subspaces of 𝑉 .
It often happens that an unbounded operator 𝐴 on B(𝑉) will contain 𝐸𝑣 ∈ Dom 𝐴 and also

𝐸𝑤 ∈ Dom 𝐴†, for 𝑣, 𝑤 ranging over dense subspaces of 𝑉 , in which case the kernel 𝐾𝐴 is densely
defined; we may then compute kernel compositions and adjoints with due regard to these domains.

We write Ω := 𝐸0 (the constant function 1 on 𝑉). Then ⟨Ω | 𝐴Ω⟩ = 𝐾𝐴 (0, 0) for any operator
𝐴 on B(𝑉) whose domain contains Ω.
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3.3 A Gaussian integral

In the sequel we shall need to evaluate Gaussian integrals over the Segal–Bargmann space. If
𝑇 ∈ D′(𝑉), we define the (unnormalized) Gaussian 𝑓𝑇 ∈ B(𝑉) by

𝑓𝑇 (𝑢) := exp( 1
4 ⟨𝑢 | 𝑇𝑢⟩). (3.8)

As before, we can choose the orthonormal basis {𝑒𝑘 } for 𝑉 so that 𝑇𝑒𝑘 = _𝑘𝐽𝑒𝑘 , 𝑇𝐽𝑒𝑘 = _𝑘𝑒𝑘
where {±_𝑘 } is the square-summable sequence of eigenvalues of 𝑇 . Thereby, we get

⟨𝑢 | 𝑇𝑢⟩ + ⟨𝑇𝑢 | 𝑢⟩ =
∞∑︁
𝑘=1

⟨𝑢 | 𝑒𝑘⟩⟨𝑒𝑘 | 𝑇𝑢⟩ + ⟨𝑇𝑢 | 𝑒𝑘⟩⟨𝑒𝑘 | 𝑢⟩

=

∞∑︁
𝑘=1

⟨𝑢 | 𝑒𝑘⟩⟨𝑢 | 𝑇𝑒𝑘⟩ + ⟨𝑇𝑒𝑘 | 𝑢⟩⟨𝑒𝑘 | 𝑢⟩

=

∞∑︁
𝑘=1

𝑖_𝑘𝑢
∗2
𝑘 − 𝑖_𝑘𝑢2

𝑘 .

Hence the norm of the Gaussian 𝑓𝑇 is given by

∥ 𝑓𝑇 ∥2 =

∫
exp 1

4
{
⟨𝑢 | 𝑇𝑢⟩ + ⟨𝑇𝑢 | 𝑢⟩

}
𝑒−

1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢

= lim
𝑁

∫
𝑌𝑁

exp 1
4
{
⟨𝑢 | 𝑇𝑢⟩ + ⟨𝑇𝑢 | 𝑢⟩

}
𝑒−

1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢

=

∞∏
𝑘=1

1
2𝜋

∫
exp 1

4 {𝑖_𝑘 (𝑢
∗2
𝑘 − 𝑢2

𝑘 )} 𝑒
− 1

2 |𝑢𝑘 |
2
𝑑ℜ𝑢𝑘 𝑑ℑ𝑢𝑘

=

∞∏
𝑘=1

(1 − _2
𝑘 )

−1/2 = det−1/2(1 − 𝑇2). (3.9)

Although the formula (3.8) defines an antiholomorphic function for any antilinear and symmetric
𝑇 ∈ Endℝ(𝑉), this function lies in B(𝑉) if and only if 𝑇 is both contractive (i.e., 1 − 𝑇2 is
positive definite) and Hilbert–Schmidt. This is the essence of Shale’s theorem [3] on the unitary
implementability of the boson-field scattering operator. Indeed, when the out vacuum is given by a
state vector in the Fock space, this vector turns out to be just a normalized Gaussian, i.e., a multiple
of (3.8) for some 𝑇 ∈ D′(𝑉).
▶ Suppose 𝑇 ∈ D′(𝑉) and 𝑣, 𝑤 ∈ 𝑉 ; we must evaluate the integral∫

exp 1
4
{
⟨𝑢 | 𝑇𝑢⟩ + ⟨𝑇𝑢 | 𝑢⟩ + 2⟨𝑢 | 𝑣⟩ + 2⟨𝑤 | 𝑢⟩

}
𝑒−

1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢. (3.10)
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Again using the basis of eigenvectors for 𝑇2, this integral becomes

∞∏
𝑘=1

1
2𝜋

∫
exp 1

4 {𝑖_𝑘 (𝑢
∗2
𝑘 − 𝑢2

𝑘 ) + 2⟨𝑒𝑘 | 𝑣⟩𝑢∗𝑘 + 2⟨𝑤 | 𝑒𝑘⟩𝑢𝑘 } 𝑒−
1
2 |𝑢𝑘 |

2
𝑑ℜ𝑢𝑘 𝑑ℑ𝑢𝑘

=

∞∏
𝑘=1

(1 − _2
𝑘 )

−1/2 exp
( 1

4 (1 − _2
𝑘 )

−1{𝑖_𝑘 ⟨𝑤 | 𝑒𝑘⟩2 + 2⟨𝑤 | 𝑒𝑘⟩⟨𝑒𝑘 | 𝑣⟩ − 𝑖_𝑘 ⟨𝑒𝑘 | 𝑣⟩2}
)

=

∞∏
𝑘=1

(1 − _2
𝑘 )

−1/2 exp 1
4 {⟨𝑤 | 𝑒𝑘⟩⟨𝑒𝑘 | 𝑇 (1 − 𝑇2)−1𝑤⟩ + 2⟨𝑤 | 𝑒𝑘⟩⟨𝑒𝑘 | (1 − 𝑇2)−1𝑣⟩

+ ⟨𝑇 (1 − 𝑇2)−1𝑣 | 𝑒𝑘⟩⟨𝑒𝑘 | 𝑣⟩}

= det−1/2(1 − 𝑇2) exp 1
4 {⟨𝑤 | 𝑇 (1 − 𝑇2)−1𝑤⟩ + 2⟨𝑤 | (1 − 𝑇2)−1𝑣⟩ + ⟨𝑇 (1 − 𝑇2)−1𝑣 | 𝑣⟩}

on account of the relations:

𝑖_𝑘 ⟨𝑤 | 𝑒𝑘⟩ = ⟨𝑤 | _𝑘𝐽𝑒𝑘⟩ = ⟨𝑤 | 𝑇𝑒𝑘⟩ = ⟨𝑒𝑘 | 𝑇𝑤⟩,
−𝑖_𝑘 ⟨𝑒𝑘 | 𝑣⟩ = ⟨_𝑘𝐽𝑒𝑘 | 𝑣⟩ = ⟨𝑇𝑒𝑘 | 𝑣⟩ = ⟨𝑇𝑣 | 𝑒𝑘⟩.

▶ We may extend the environment of the previous computations as follows. First suppose that
𝑉 is finite-dimensional and let 𝑇, 𝑆 ∈ D′(𝑉). Then (1 − 𝑇𝑆) ∈ Π′(𝑉) has matrix elements
⟨𝑒 𝑗 | 𝑒𝑘⟩ − ⟨𝑆𝑒𝑘 | 𝑇𝑒 𝑗 ⟩ with respect to a given orthonormal basis {𝑒1, . . . , 𝑒𝑁 } of 𝑉 . Thus

det−1/2(1 − 𝑇𝑆) = det−1/2 [⟨𝑒 𝑗 | 𝑒𝑘⟩ − ⟨𝑆𝑒𝑘 | 𝑇𝑒 𝑗 ⟩
]

(3.11)

is holomorphic in 𝑇 and antiholomorphic in 𝑆 as a function of two elements of the Kähler manifold
D′(𝑉). The function 𝑓𝑇 (𝑢) 𝑓 ∗𝑆 (𝑢) = exp 1

4 {⟨𝑢 | 𝑇𝑢⟩ + ⟨𝑆𝑢 | 𝑢⟩} is likewise holomorphic in 𝑇 and
antiholomorphic in 𝑆. Therefore, the inner product of two Gaussians is given by

⟨ 𝑓𝑆 | 𝑓𝑇 ⟩ =
∫

exp 1
4
{
⟨𝑢 | 𝑇𝑢⟩ + ⟨𝑆𝑢 | 𝑢⟩

}
𝑒−

1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢 = det−1/2(1 − 𝑇𝑆), (3.12)

by analytic continuation from the diagonal 𝑆 = 𝑇 , where equality holds by (3.9).
If 𝑉 is infinite-dimensional, then (3.12) holds at any rate for finite-rank elements 𝑇, 𝑆 ∈ D′(𝑉),

on account of (3.3). Both sides of the equation are finite, by the Schwarz inequality and because
(1 − 𝑇𝑆) ∈ Π′(𝑉); by continuity of det−1/2 on Π′(𝑉), equality holds in (3.12) for all 𝑆, 𝑇 ∈ D′(𝑉).

Finally, the general Gaussian integral may be treated similarly. We state it as follows.

Proposition 3.1. If 𝑇, 𝑆 ∈ D′(𝑉) and 𝑣, 𝑤 ∈ 𝑉 , then:∫
exp 1

4
{
⟨𝑢 | 𝑇𝑢⟩ + ⟨𝑆𝑢 | 𝑢⟩ + 2⟨𝑢 | 𝑣⟩ + 2⟨𝑤 | 𝑢⟩

}
𝑒−

1
2 ⟨𝑢 |𝑢⟩ 𝑑𝑢 (3.13)

= det−1/2(1 − 𝑇𝑆) exp 1
4
{
⟨𝑤 | 𝑇 (1 − 𝑆𝑇)−1𝑤⟩ + 2⟨𝑤 | (1 − 𝑇𝑆)−1𝑣⟩ + ⟨𝑆(1 − 𝑇𝑆)−1𝑣 | 𝑣⟩

}
.

Proof. If𝑉 is finite-dimensional, both sides of this equation are holomorphic in 𝑇 and antiholomor-
phic in 𝑆. They coincide on the diagonal 𝑆 = 𝑇 and by analytic continuation the equation is valid
for all 𝑇, 𝑆 ∈ D′(𝑉). In the infinite-dimensional case, (3.13) is thus valid for 𝑆, 𝑇 of finite rank, and
by continuity it holds on all of D′(𝑉). □
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Remark. Several versions of this Gaussian integral calculation exist in the literature for the finite-
dimensional case. The original treatment is due to Bargmann [15], for 𝑇, 𝑆 scalars, and was
extended by Itzykson [17] for general 𝑇, 𝑆. Itzykson’s result is described in detail by Folland [18].
The integrands are expressed therein by complex symmetric matrices, since the Bargmann–Segal
space is built over the polarization𝑊0 rather than over𝑉 itself. A treatment in the spirit of the “real”
approach taken here, eschewing polarizations at this stage, is given by Robinson and Rawnsley [8],
whose path we have followed. The main point of this subsection is that the integral formula (3.13)
extends to the infinite dimensional case without further ado.

4 Weyl systems and free boson fields
4.1 Weyl systems

A boson field over the Hilbert space (𝑉, 𝑠, 𝐽) may be thought of as a rule assigning creation and
annihilation operators to elements of 𝑉 (the “test function” space) in such a way that the canonical
commutation relations are satisfied. Mathematically, the simplest approach is to start with the
exponentiated version of the CCR. We define a Weyl system on the symplectic linear manifold (𝑉, 𝑠)
to be a strongly continuous map 𝛽 to the group of unitary operators on some separable Hilbert
space K, which satisfies

𝛽(𝑣)𝛽(𝑤) = 𝛽(𝑣 + 𝑤) exp[− 𝑖
2 𝑠(𝑣, 𝑤)] for all 𝑣, 𝑤 ∈ 𝑉. (4.1)

In other words, 𝛽 is a projective unitary representation of the additive group of 𝑉 , whose cocycle is
given by the symplectic form on 𝑉 .

The existence question may be settled by taking K = B(𝑉), and defining

𝛽(𝑣)𝐹 (𝑢) := exp( 1
4 ⟨2𝑢 − 𝑣 | 𝑣⟩)𝐹 (𝑢 − 𝑣). (4.2)

In particular,
𝛽(𝑣)𝐸𝑤 = exp(−1

4 ⟨𝑣 | 2𝑤 + 𝑣⟩)𝐸𝑤+𝑣 .

It is immediate that ⟨𝛽(𝑣)𝐸𝑢 | 𝛽(𝑣)𝐸𝑤⟩ = exp( 1
2 ⟨𝑢 | 𝑤⟩) = ⟨𝐸𝑢 | 𝐸𝑤⟩. Since the 𝐸𝑤 generate a

dense subspace of B(𝑉), the operators 𝛽(𝑣) are bounded and unitary on B(𝑉). Notice also that
𝛽(𝑣)Ω = exp(−1

4 ⟨𝑣 | 𝑣⟩)𝐸𝑣.
Moreover, 𝛽 is irreducible. For if K0 is a closed subspace of B(𝑉) invariant under all 𝛽(𝑣), let

𝑃 denote the orthogonal projector on B(𝑉) with range K0. If { 𝐹1, 𝐹2, . . . } is an orthonormal basis
for K0, then so is { 𝛽(−𝑣)𝐹1, 𝛽(−𝑣)𝐹2, . . . } for any 𝑣 ∈ 𝑉 ; it follows that

𝐾𝑃 (0, 0) =
∑︁
𝑘

⟨Ω | 𝛽(−𝑣)𝐹𝑘⟩⟨𝛽(−𝑣)𝐹𝑘 | Ω⟩ =
∑︁
𝑘

⟨𝛽(𝑣)Ω | 𝐹𝑘⟩⟨𝐹𝑘 | 𝛽(𝑣)Ω⟩

=
∑︁
𝑘

𝑒−
1
2 ⟨𝑣 |𝑣⟩ ⟨𝐸𝑣 | 𝐹𝑘⟩⟨𝐹𝑘 | 𝐸𝑣⟩ = 𝑒−

1
2 ⟨𝑣 |𝑣⟩𝐾𝑃 (𝑣, 𝑣)

so that 𝐾𝑃 (𝑣, 𝑣) = 𝑒
1
2 ⟨𝑣 |𝑣⟩𝐾𝑃 (0, 0). Now since 𝐾𝑃 (𝑢, 𝑣) is antiholomorphic in 𝑢 and holomorphic

in 𝑣, we find by analytic continuation that 𝐾𝑃 (𝑢, 𝑣) = 𝑒
1
2 ⟨𝑢 |𝑣⟩𝐾𝑃 (0, 0) = 𝐾𝑃 (0, 0)𝐸𝑣 (𝑢), and so

𝑃 = 𝐾𝑃 (0, 0)1 on B(𝑉). Thus 𝐾𝑃 (0, 0) = 0 or 1, corresponding to the cases K0 = {0} or B(𝑉)
respectively, which establishes the irreducibility of 𝛽(𝑉).
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▶ The particular Weyl system we have introduced on the Segal–Bargmann space B(𝑉) is inter-
twined by the group of “one-particle” unitary operators on B(𝑉). The group U𝐽 (𝑉) is the unitary
group of the Hilbert space (𝑉, 𝑠, 𝐽). For any element𝑈 ∈ U𝐽 (𝑉), the formula

Γ(𝑈)𝐹 (𝑣) := 𝐹 (𝑈−1𝑣)

defines a unitary operator Γ(𝑈) on B(𝑉). Clearly, Γ(𝑈)Ω = Ω for all𝑈. From (4.2) one sees that

Γ(𝑈) 𝛽(𝑣) Γ(𝑈)−1 = 𝛽(𝑈𝑣). (4.3)

The representation Γ of the unitary group U𝐽 (𝑉) has a further positivity property: if 𝐴 is a
positive selfadjoint operator on 𝑉 , its image 𝑑Γ(𝐴) under the derived representation of Γ is a
positive selfadjoint operator on B(𝑉). To see this, first let 𝐴 be a selfadjoint (not necessarily
bounded) operator on the complex Hilbert space (𝑉, 𝑠, 𝐽). Then

Γ(exp(𝑖𝑡𝐴))𝐸𝑣 (𝑢) = 𝐸𝑣 (exp(−𝑖𝑡𝐴)𝑢) = exp 1
2 ⟨𝑢 | exp(𝑖𝑡𝐴)𝑣⟩ = 𝐸exp(𝑖𝑡𝐴)𝑣 (𝑢). (4.4)

The infinitesimal generator of the one-parameter group 𝑡 ↦→ Γ(exp(𝑖𝑡𝐴)), which we shall denote
by 𝑑Γ(𝐴), leaves invariant the subspace D0 := span{ 𝐸𝑣 : 𝑣 ∈ Dom 𝐴 }, which is dense in B(𝑉)
since Dom 𝐴 is dense in𝑉 . Thus D0 is a core for 𝑑Γ(𝐴) [19, Prop. B.3]. For 𝑣 ∈ Dom 𝐴, we obtain

⟨𝐸𝑤 | 𝑑Γ(𝐴)𝐸𝑣⟩ = −𝑖 𝑑
𝑑𝑡

����
𝑡=0

⟨𝐸𝑤 | Γ(exp(𝑖𝑡𝐴))𝐸𝑣⟩

= −𝑖 𝑑
𝑑𝑡

����
𝑡=0

exp( 1
2 ⟨𝑤 | exp(𝑖𝑡𝐴)𝑣⟩) = 1

2 ⟨𝑤 | 𝐴𝑣⟩.

More generally, if 𝐹 =
∑𝑛
𝑗=1 𝑐 𝑗𝐸𝑣 𝑗 ∈ D0, then

⟨𝐹 | 𝑑Γ(𝐴)𝐹⟩ = 1
2

𝑛∑︁
𝑗 ,𝑘=1

𝑐∗𝑗𝑐𝑘 ⟨𝑣 𝑗 | 𝐴𝑣𝑘⟩ = 1
2 ⟨𝑤 | 𝐴𝑤⟩ (4.5)

where 𝑤 =
∑𝑛
𝑗=1 𝑐 𝑗𝑣 𝑗 ∈ Dom 𝐴. Hence the restriction of 𝑑Γ(𝐴) to D0 is symmetric and positive,

and its closure 𝑑Γ(𝐴) is a positive selfadjoint operator on B(𝑉).
A particularly simple example occurs when 𝐴 = 1, which generates an action of the circle group

U(1) on B(𝑉). We may regard U(1) as a subgroup of U𝐽 (𝑉), with 𝑒𝑖𝜙 acting as the operator
cos 𝜙 1 + sin 𝜙 𝐽. Thus

Γ(cos 𝜙 1 + sin 𝜙 𝐽)𝐸𝑣 (𝑢) = 𝐸exp(𝑖𝜙)𝑣 (𝑢),
and by repeated differentiation at 𝜙 = 0, we obtain

𝑑Γ(1)𝑣∨𝑘 = 𝑘𝑣∨𝑘 (𝑘 ⩾ 0).

We see that 𝑑Γ(1) = 𝑁 , the number operator onB(𝑉), which thus has nonnegative integer spectrum.
[Had we chosen to define B(𝑉) as the space of holomorphic rather than antiholomorphic functions,
𝑁 would have negative spectrum.] We also see that Γ(cos 𝜙 1 + sin 𝜙 𝐽)𝑣∨𝑘 = 𝑒𝑖𝑘𝜙𝑣∨𝑘 . In the
language of “loop groups”, this says that the projective unitary representation 𝛽 of 𝑉 is intertwined
with a representation of U(1) in such a way as to yield a “positive energy” projective representation
of 𝑉 , in the terminology of G. Segal [5, 6].
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The term “positive energy” is more often used in connection with some given classical dynamics
on 𝑉 . Suppose 𝑡 ↦→ 𝑔(𝑡) is a one-parameter group of symplectic transformations of (𝑉, 𝑠), and
suppose that a positive, compatible complex structure 𝐽 can be found for which 𝑔(𝑡) ∈ U𝐽 (𝑉)
for all 𝑡 (here we refer again to the Appendix). We say that the one-parameter group 𝑡 ↦→ 𝑔(𝑡)
has positive energy if its generator 𝐴, a selfadjoint operator on (𝑉, 𝑠, 𝐽) – the energy operator –
has nonnegative spectrum and does not have a 0 eigenvalue. It has been shown [12] that a Weyl
system 𝛽 exists for which 𝑡 ↦→ 𝛽(𝑔(𝑡)·) is implementable as a positive-energy unitary group on
the representation space K̃ of 𝛽 only if 𝑡 ↦→ 𝑔(𝑡) already has positive energy on the one-particle
space (𝑉, 𝑠, 𝐽).

We summarize the foregoing construction in the following definition.

Definition 4.1. A full quantization of a symplectic linear manifold (𝑉, 𝑠) with a preferred positive
compatible complex structure 𝐽 consists of

(a) a separable Hilbert space K;

(b) a strongly continuous map 𝛽 from 𝑉 to the group of unitary operators on K satisfying (4.1);

(c) a unit vector Ω ∈ K such that span{ 𝛽(𝑣)Ω : 𝑣 ∈ 𝑉 } is dense in K;

(d) a unitary representation Γ of U𝐽 (𝑉) on K satisfying (4.3), for which Ω is stationary, such that
𝑑Γ(𝐴) is positive selfadjoint on K whenever 𝐴 is positive selfadjoint on the Hilbert space
(𝑉, 𝑠, 𝐽).

The question of uniqueness is settled by the following theorem of I. E. Segal [16]: any two full
quantizations are unitarily equivalent; moreover, a unitary equivalence can be constructed between
two quantizations satisfying (a–c) and the apparently weaker condition (d′): that K supports a
one-parameter unitary group Γ(exp(𝑖𝑡𝐴)) intertwining 𝛽(𝑉) as in (4.3), for which Ω is stationary
and 𝑑Γ(𝐴) is positive selfadjoint, where 𝐴 is a positive selfadjoint operator without 0 eigenvalue
on (𝑉, 𝑠, 𝐽).
▶ A more algebraic approach to Weyl systems is to consider (4.1) to be the defining relation of an
abstract 𝐶∗-algebra, the CCR algebra Δ(𝑉, 𝑠) on 𝑉 , densely spanned by elements { 𝛽(𝑣) : 𝑣 ∈ 𝑉 },
subject only to 𝛽(𝑣)† = 𝛽(−𝑣) and to (4.1) with 𝛽 replaced by 𝛽. Such a 𝐶∗-algebra may be
defined as the 𝐶∗-inductive limit, over the set of finite dimensional symplectic subspaces (𝑉 ′, 𝑠)
of (𝑉, 𝑠), of the corresponding algebras Δ(𝑉 ′, 𝑠), which are uniquely determined by the Schrödinger
representations of (4.1) in each 𝑉 ′: for details, we refer to [20]. The functional

𝜔𝐽 (𝛽(𝑣)) := exp(−1
4 ⟨𝑣 | 𝑣⟩)

extends by linearity and continuity to a faithful state of Δ(𝑉, 𝑠), since if 𝑎 =
∑𝑛
𝑘=1 𝛼𝑘 𝛽(𝑣𝑘 ), then

𝜔𝐽 (𝑎†𝑎) =
𝑛∑︁

𝑗 ,𝑘=1
𝛼∗𝑗𝛼𝑘 exp

(
−1

4 ⟨𝑣 𝑗 | 𝑣 𝑗 ⟩ −
1
4 ⟨𝑣𝑘 | 𝑣𝑘⟩ +

1
2 ⟨𝑣 𝑗 | 𝑣𝑘⟩

)
> 0 unless 𝑎 = 0.

Thus the Gelfand–Naı̆mark–Segal construction [20] produces a faithful representation 𝜋𝐽 of Δ(𝑉, 𝑠)
on a Hilbert space K𝐽 , containing a cyclic vector Ω𝐽 such that 𝜔𝐽 (𝛽(𝑣)) = ⟨Ω𝐽 | 𝜋𝐽 (𝛽(𝑣))Ω𝐽⟩.
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It follows that

⟨𝜋𝐽 (𝛽(𝑢))Ω𝐽 | 𝜋𝐽 (𝛽(𝑣))Ω𝐽⟩ = 𝜔𝐽 (𝛽(𝑢)†𝛽(𝑣))
= exp(−1

4 ⟨𝑢 | 𝑢⟩ − 1
4 ⟨𝑣 | 𝑣⟩ +

1
2 ⟨𝑢 | 𝑣⟩) = ⟨𝛽(𝑢)Ω | 𝛽(𝑣)Ω⟩, (4.6)

so 𝜋𝐽 (𝛽(𝑣))Ω𝐽 ↦→ 𝛽(𝑣)Ω extends to a unitary isomorphism from K𝐽 to B(𝑉), intertwining 𝜋𝐽 and
the representation 𝛽(𝑣) ↦→ 𝛽(𝑣) of Δ(𝑉, 𝑠) on B(𝑉). Also, if 𝑈 ∈ U𝐽 (𝑉), then 𝛽(𝑣) ↦→ 𝛽(𝑈𝑣)
extends to an automorphism 𝛼𝑈 of Δ(𝑉, 𝑠) leaving 𝜔𝐽 invariant, and thus is implemented on K𝐽

by a unitary operator Γ𝐽 (𝑈), i.e., 𝜋𝐽 (𝛼𝑈 (𝑎)) = Γ𝐽 (𝑈)𝜋𝐽 (𝑎)Γ𝐽 (𝑈)−1, leading to the analogue of
(4.3) for 𝛽 and Γ𝐽 ; and Ω𝐽 is stationary for Γ𝐽 (U𝐽 (𝑉)). The argument of (4.4) and (4.5) may be
repeated to show that 𝑑Γ𝐽 preserves positivity. Thus the GNS representation of (Δ(𝑉, 𝑠), 𝜔𝐽) is a
full quantization, for which B(𝑉) with the Weyl system (4.1) is an explicit presentation.

4.2 The derived representation of the Weyl system

The derived representation of the Weyl system is easily computed. We set

¤𝛽(𝑣)𝐹 (𝑢) :=
𝑑

𝑑𝑡

����
𝑡=0
𝛽(𝑡𝑣)𝐹 (𝑢)

and from (4.2) we get at once:

¤𝛽(𝑣)𝐹 (𝑢) = 1
2 ⟨𝑢 | 𝑣⟩𝐹 (𝑢) − 𝐷𝑣𝐹 (𝑢), (4.7)

where 𝐷𝑣 is the directional derivative in the direction 𝑣. It is immediate that

[ ¤𝛽(𝑣), ¤𝛽(𝑤)] = −𝑖𝑠(𝑣, 𝑤).

The domain of the operator ¤𝛽(𝑣) is the space of 𝐹 in B(𝑉) for which the right hand side of (4.7)
has finite norm (it is evidently antiholomorphic in 𝑢). An element 𝐹 ∈ B(𝑉) is a smooth vector for 𝛽
if 𝑡 ↦→ 𝛽(𝑡𝑣)𝐹 is an infinitely differentiable function for any 𝑣 or, equivalently, if 𝑡 ↦→ 𝛽(𝑡𝑣)𝐹 (𝑢) is
smooth, for any 𝑢, 𝑣 ∈ 𝑉 ; for such 𝐹, the right hand side of (4.7) makes sense. It is readily seen that
the principal vectors 𝐸𝑤 are smooth vectors for ¤𝛽 and that

¤𝛽(𝑣)𝐸𝑤 (𝑢) = 1
2 (⟨𝑢 | 𝑣⟩ − ⟨𝑣 | 𝑤⟩)𝐸𝑤 (𝑢).

Let us also write 𝜙(𝑣) := −𝑖 ¤𝛽(𝑣), so that

[𝜙(𝑣), 𝜙(𝑤)] = 𝑖𝑠(𝑣, 𝑤). (4.8)

Then 𝜙(𝑣) is a symmetric operator with kernel 𝐾𝜙(𝑣) (𝑢, 𝑤) = − 𝑖
2 ⟨𝑢 | 𝑣⟩ + 𝑖

2 ⟨𝑣 | 𝑤⟩. Since the
one-parameter group 𝑡 ↦→ 𝛽(𝑡𝑣) leaves span{ 𝐸𝑤 : 𝑤 ∈ 𝑉 } invariant, the principal vectors generate
a common domain of essential selfadjointness for all 𝜙(𝑣).

We define the complexified representation of 𝑉ℂ,

¤𝛽(𝑣1 + 𝑖𝑣2)𝐹 (𝑢) := ¤𝛽(𝑣1)𝐹 (𝑢) + 𝑖 ¤𝛽(𝑣2)𝐹 (𝑢)
= 1

2 ⟨𝑢 | 𝑣1 + 𝐽𝑣2⟩𝐹 (𝑢) − 𝐷𝑣1−𝐽𝑣2𝐹 (𝑢), (4.9)

on the space of smooth vectors for 𝛽.
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If 𝑊 is a positive polarization of (𝑉, 𝑠), we define the vacuum sector associated to 𝑊 as the
subspace of 𝛽-smooth vectors 𝐹 verifying 𝛽(𝑤∗)𝐹 = 0 for all 𝑤 ∈ 𝑊 . (We shall soon interpret
the 𝛽(𝑤∗) as annihilation operators.) Writing 𝑤∗ = 𝑣 + 𝑖𝐽𝑊𝑣 for 𝑣 ∈ 𝑉 , such an 𝐹 satisfies the
differential equation:

𝐷𝑣−𝐽𝐽𝑊𝑣𝐹 = 1
2 ⟨· | 𝑣 + 𝐽𝐽𝑊𝑣⟩𝐹. (4.10)

Since 𝑇𝑊 = (1 + 𝐽𝐽𝑊 ) (1 − 𝐽𝐽𝑊 )−1 by (2.18), this equation may be rewritten as 𝐷𝑣𝐹 = 1
2 ⟨· | 𝑇𝑊𝑣⟩𝐹.

The vacuum sector associated to 𝑊 is thus the 1-dimensional space of solutions of this equation,
which are scalar multiples of the Gaussian labelled by 𝑇𝑊 :

𝐹 (𝑢) = 𝐶 𝑓𝑇𝑊 (𝑢) = 𝐶 exp( 1
4 ⟨𝑢 | 𝑇𝑊𝑢⟩). (4.11)

We have already seen that 𝑓𝑇𝑊 ∈ B(𝑉) if and only if 𝑇𝑊 ∈ D′(𝑉), or equivalently, if and only if
𝐽𝑊 ∈ Σ′(𝑉). In view of (3.9), we may normalize (4.11) by defining

Ω𝑊 (𝑢) := det1/4(1 − 𝑇2
𝑊 ) 𝑓𝑇𝑊 (𝑢) = det1/4(1 − 𝑇2

𝑊 ) exp( 1
4 ⟨𝑢 | 𝑇𝑊𝑢⟩). (4.12)

In particular, if 𝑊0 is the reference polarization for which 𝐽𝑊 = 𝐽 and 𝑇𝑊 = 0, we recover the
vacuum vector Ω.

4.3 Creation and annihilation operators

The annihilation and creation operators for the boson field 𝜙 may now be defined as real-linear
(unbounded) operators on B(𝑉):

𝑎(𝑣) := 1√
2
[𝜙(𝑣) + 𝑖𝜙(𝐽𝑣)], 𝑎†(𝑣) := 1√

2
[𝜙(𝑣) − 𝑖𝜙(𝐽𝑣)] . (4.13)

Clearly 𝑎(𝐽𝑣) = −𝑖𝑎(𝑣) and 𝑎†(𝐽𝑣) = 𝑖𝑎†(𝑣) since 𝑣 ↦→ 𝜙(𝑣) is real-linear. Thus 𝑎(𝑣) is antilinear
and 𝑎†(𝑣) is linear in 𝑣.

From (4.8), we directly obtain the canonical commutation relations:

[𝑎(𝑣), 𝑎(𝑤)] = 0, [𝑎(𝑣), 𝑎†(𝑤)] = ⟨𝑣 | 𝑤⟩. (4.14)

On account of (4.9), we also get the explicit expressions

𝑎(𝑣) = 𝑖
√

2𝐷𝑣, 𝑎†(𝑣) = − 𝑖√
2
𝑣 (4.15)

as differentiation and multiplication operators on B(𝑉). In particular, each 𝑎(𝑣) annihilates the
vacuum Ω, as expected. Notice also that

𝑎†(𝑣1)𝑎†(𝑣2) · · · 𝑎†(𝑣𝑛)Ω = (−𝑖)𝑛𝑣1 ∨ 𝑣2 ∨ · · · ∨ 𝑣𝑛

in B(𝑉), on account of the convention (3.2).
From (4.13), (4.15) and the relation ¤𝛽(𝑣) = 𝑖𝜙(𝑣), there follows:

¤𝛽(𝑣) (𝑣1 ∨ · · · ∨ 𝑣𝑘 ) :=
1
√

2
𝑣 ∨ 𝑣1 ∨ · · · ∨ 𝑣𝑘 −

1
√

2

𝑘∑︁
𝑗=1

⟨𝑣 | 𝑣 𝑗 ⟩ 𝑣1 ∨ · · · ∨ �̂� 𝑗 ∨ · · · ∨ 𝑣𝑘 . (4.16)
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The principal vectors are generated from the vacuum by

𝐸𝑣 = exp
(
𝑖√
2
𝑎†(𝑣)

)
Ω.

These are smooth vectors for all creation and annihilation operators. It is immediate that

exp
(
𝑖√
2
𝑎†(𝑣)

)
𝐸𝑤 = 𝐸𝑣+𝑤, exp

(
− 𝑖√

2
𝑎(𝑣)

)
𝐸𝑤 = 𝑒

1
2 ⟨𝑣 |𝑤⟩𝐸𝑤 . (4.17)

The 𝑛-point functions for the derived representations are readily found from the Segal–Bargmann
representation. We wish to compute

⟨Ω | 𝜙(𝑣1) · · · 𝜙(𝑣𝑚)Ω⟩

for 𝑣1, . . . , 𝑣𝑚 ∈ 𝑉 . This can be rewritten, using the Weyl relation (4.1), as

(−𝑖)𝑚 𝜕𝑚

𝜕𝑡1 · · · 𝜕𝑡𝑚

����
𝑡1=···=𝑡𝑚=0

⟨Ω | 𝛽(𝑡1𝑣1) · · · 𝛽(𝑡𝑚𝑣𝑚)Ω⟩

= (−𝑖)𝑚 𝜕𝑚

𝜕𝑡1 · · · 𝜕𝑡𝑚

����
𝑡1=···=𝑡𝑚=0

exp
(
− 𝑖

2

∑︁
𝑖< 𝑗

𝑡𝑖𝑡 𝑗 𝑠(𝑣𝑖, 𝑣 𝑗 )
)
⟨Ω | 𝛽(𝑡1𝑣1 + · · · + 𝑡𝑚𝑣𝑚)Ω⟩

= (−𝑖)𝑚 𝜕𝑚

𝜕𝑡1 · · · 𝜕𝑡𝑚

����
𝑡1=···=𝑡𝑚=0

exp
(
− 𝑖

2

∑︁
𝑖< 𝑗

𝑡𝑖𝑡 𝑗 𝑠(𝑣𝑖, 𝑣 𝑗 ) −
1
4

𝑚∑︁
𝑟,𝑠=1

⟨𝑡𝑟𝑣𝑟 | 𝑡𝑠𝑣𝑠⟩
)

= (−𝑖)𝑚 𝜕𝑚

𝜕𝑡1 · · · 𝜕𝑡𝑚

����
𝑡1=···=𝑡𝑚=0

exp
(
−1

4

𝑚∑︁
𝑘=0

𝑡2𝑘 ⟨𝑣𝑘 | 𝑣𝑘⟩ −
1
2

∑︁
𝑖< 𝑗

𝑡𝑖𝑡 𝑗 ⟨𝑣𝑖 | 𝑣 𝑗 ⟩
)
,

which vanishes if 𝑚 is odd. If 𝑚 = 2𝑛 is even, the term
∑
𝑘 𝑡

2
𝑘
⟨𝑣𝑘 | 𝑣𝑘⟩ contributes nothing to the

mixed partial derivative at 0; and so

⟨Ω | 𝜙(𝑣1) · · · 𝜙(𝑣2𝑛)Ω⟩ = (−1)𝑛 𝜕2𝑛

𝜕𝑡1 · · · 𝜕𝑡2𝑛

����
𝑡1=···=𝑡2𝑛=0

exp
(
−1

2

∑︁
𝑖< 𝑗

𝑡𝑖𝑡 𝑗 ⟨𝑣𝑖 | 𝑣 𝑗 ⟩
)

=
1
2𝑛

∑︁
𝐼<𝐽

⟨𝑣𝑖1 | 𝑣 𝑗1⟩ · · · ⟨𝑣𝑖𝑛 | 𝑣 𝑗𝑛⟩,

where the last sum runs over the (2𝑛)!/2𝑛 𝑛! “pairings” (𝐼, 𝐽) which are permutations of {1, . . . , 2𝑛}
such that 𝑖𝑟 < 𝑗𝑟 for 𝑟 = 1, . . . , 𝑛.

▶ We take the opportunity to introduce a few quadratic expressions in the creation and annihilation
operators that will prove useful in the sequel; as well as notations profusely used later.

If 𝐵 ∈ Endℝ(𝑉) is an antilinear symmetric operator on 𝑉 , let us write

𝑎𝐵𝑎 :=
∑︁
𝑗 ,𝑘

𝑎(𝑒 𝑗 ) ⟨𝐵𝑒 𝑗 | 𝑓𝑘⟩ 𝑎( 𝑓𝑘 ) (4.18)

with respect to any pair of orthonormal bases {𝑒 𝑗 }, { 𝑓𝑘 } for the Hilbert space (𝑉, 𝑠, 𝐽), provided
the series converges in some suitable sense (to be made precise later on). Note that the right hand
side is actually independent of the chosen orthonormal bases.
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Similarly, let us write
𝑎†𝐵𝑎† :=

∑︁
𝑗 ,𝑘

𝑎†( 𝑓𝑘 ) ⟨ 𝑓𝑘 | 𝐵𝑒 𝑗 ⟩ 𝑎†(𝑒 𝑗 ) (4.19)

If 𝐶 is a linear operator on 𝑉 , we also set

𝑎†𝐶𝑎 :=
∑︁
𝑗 ,𝑘

𝑎†( 𝑓𝑘 ) ⟨ 𝑓𝑘 | 𝐶𝑒 𝑗 ⟩ 𝑎(𝑒 𝑗 ). (4.20)

If 𝐵 is a bounded operator, the series (𝑎𝐵𝑎)𝐹, (𝑎†𝐵𝑎†)𝐹 converge whenever 𝐹 lies in 𝑆(𝑉),
i.e., 𝐹 is a finite sum of vectors of the form 𝑎†(𝑣1) · · · 𝑎†(𝑣𝑚)Ω. However, in order that the principal
vectors 𝐸𝑣 belong to the domains of 𝑎𝐵𝑎 and 𝑎†𝐵𝑎†, we need 𝐵 to be Hilbert–Schmidt. Indeed, if
𝑇 is antilinear, symmetric and Hilbert–Schmidt, let {𝑒𝑘 } be an orthonormal basis of𝑉 so that (2.20)
holds, and take 𝑓𝑘 = 𝑒𝑘 . Then

𝑎†𝑇𝑎† =
∑︁
𝑘

𝑖_𝑘 𝑎
†(𝑒𝑘 )𝑎†(𝑒𝑘 ), 𝑎𝑇𝑎 =

∑︁
𝑘

(−𝑖_𝑘 ) 𝑎(𝑒𝑘 )𝑎(𝑒𝑘 ).

Thus

(𝑎𝑇𝑎)𝐸𝑣 =
𝑖

2

∑︁
𝑘

_𝑘 ⟨𝑒𝑘 | 𝑣⟩2𝐸𝑣 = −1
2

∑︁
𝑘

⟨𝑇𝑒𝑘 | 𝑣⟩⟨𝑒𝑘 | 𝑣⟩ 𝐸𝑣 = −1
2 ⟨𝑇𝑣 | 𝑣⟩ 𝐸𝑣 . (4.21)

We also get

(𝑎†𝑇𝑎†)𝐸𝑣 (𝑢) = ⟨𝐸𝑢 | (𝑎†𝑇𝑎†)𝐸𝑣⟩ = ⟨(𝑎𝑇𝑎)𝐸𝑢 | 𝐸𝑣⟩ = −1
2 ⟨𝑢 | 𝑇𝑢⟩ 𝐸𝑣 (𝑢). (4.22)

Moreover, on using (4.15), we obtain

(𝑎†𝐶𝑎)𝐸𝑣 (𝑢) =
∑︁
𝑗 ,𝑘

1
2
⟨𝑢 | 𝑓𝑘⟩⟨ 𝑓𝑘 | 𝐶𝑒 𝑗 ⟩⟨𝑒 𝑗 | 𝑣⟩ 𝐸𝑣 (𝑢) = 1

2 (𝐶𝑣) 𝐸𝑣 . (4.23)

5 The metaplectic representation
5.1 Kernel operators for the metaplectic representation

If 𝛽 is any Weyl system on the symplectic space (𝑉, 𝑠), then 𝑣 ↦→ 𝛽(𝑔𝑣) is also a Weyl system
acting on the same Hilbert space, since the relations (4.1) remain valid. The question of central
importance is whether these two quantizations of (𝑉, 𝑠) are unitarily equivalent.

For definiteness, let us take the full quantization 𝛽 already constructed on the Segal–Bargmann
space B(𝑉). Notice that if 𝑈 ∈ U𝐽 (𝑉), then the intertwining property (4.3) just says that unitary
conjugation by Γ(𝑈) implements an equivalence between 𝛽 and 𝛽 ◦ 𝑈. More generally, let us
suppose that for some given 𝑔 ∈ Sp(𝑉), there is a unitary operator a(𝑔) on B(𝑉) so that

a(𝑔)𝛽(𝑣) = 𝛽(𝑔𝑣)a(𝑔) for all 𝑣 ∈ 𝑉. (5.1)

Clearly a(𝑔) maps the smooth vectors for 𝛽 to smooth vectors for 𝛽 ◦ 𝑔, so we may differenti-
ate (5.1) to obtain

a(𝑔) ¤𝛽(𝑣) = ¤𝛽(𝑔𝑣)a(𝑔) (5.2)
for all 𝑣 ∈ 𝑉 , or in fact for 𝑣 ∈ 𝑉ℂ. Thus a(𝑔) must map the vacuum sector associated to the
polarization 𝑊0 to that associated to the polarization 𝑔𝑊0. Therefore, a(𝑔) can only be defined for
𝑔 an element of the restricted symplectic group Sp′(𝑉).
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Let us then suppose that 𝑔 ∈ Sp′(𝑉). By unitarity of a(𝑔), we obtain

a(𝑔)Ω(𝑢) = 𝑐𝑔 𝑓𝑇𝑔 (𝑢) = 𝑐𝑔 exp( 1
4 ⟨𝑢 | 𝑇𝑔𝑢⟩), (5.3)

where |𝑐𝑔 | = det1/4(1 − 𝑇2
𝑔 ).

We may fix the phase of 𝑐𝑔 by choosing it to be positive:

𝑐𝑔 := det1/4(1 − 𝑇2
𝑔 ). (5.4)

If 𝑉 is finite-dimensional, an arguably more appropriate choice of phase would be to take 𝑐𝑔 =

det−1/2 𝑝𝑡𝑔. Note that det1/4(1 − 𝑇2
𝑔 ) = det−1/4(𝑝𝑔𝑝𝑡𝑔). However, this choice is ruled out in the

infinite-dimensional case, since 𝑝𝑡𝑔 will not have a determinant for most 𝑔 ∈ Sp′(𝑉). (When 𝑝𝑔 is
positive definite, so that 𝑝𝑔 = (1 − 𝑇2

𝑔 )−1/2, both definitions coincide.) This loss of freedom in the
infinite-dimensional case is what gives rise to the bosonic anomaly.

An advantage of working in the Segal–Bargmann space is that a(𝑔) may be computed explicitly
as a kernel operator. Indeed:

𝐾a(𝑔) (𝑢, 𝑣) = a(𝑔)𝐸𝑣 (𝑢) = 𝑒⟨𝑣 |𝑣⟩/4𝛽(𝑔𝑣)a(𝑔)Ω(𝑢)
= 𝑐𝑔 exp 1

4
{
⟨𝑣 | 𝑣⟩ + ⟨2𝑢 − 𝑔𝑣 | 𝑔𝑣⟩ + ⟨𝑢 − 𝑔𝑣 | 𝑇𝑔 (𝑢 − 𝑔𝑣)⟩

}
= 𝑐𝑔 exp 1

4
{
⟨𝑣 | 𝑣⟩ − ⟨(1 + 𝑇𝑔)𝑝𝑔𝑣 | (1 − 𝑇2

𝑔 )𝑝𝑔𝑣⟩ + ⟨𝑢 | 𝑇𝑔𝑢⟩ + 2⟨𝑢 | (1 − 𝑇𝑔)𝑔𝑣⟩
}

= 𝑐𝑔 exp 1
4
{
⟨𝑢 | 𝑇𝑔𝑢⟩ − ⟨𝑇𝑔𝑝𝑔𝑣 | 𝑝−𝑡𝑔 𝑣⟩ + 2⟨𝑢 | 𝑝−𝑡𝑔 𝑣⟩

}
= 𝑐𝑔 exp 1

4
{
⟨𝑢 | 𝑇𝑔𝑢⟩ + 2⟨𝑝−1

𝑔 𝑢 | 𝑣⟩ + ⟨𝑇𝑔𝑣 | 𝑣⟩
}
. (5.5)

This kernel, for the infinite-dimensional restricted symplectic group, was first derived, without the
computation of 𝑐𝑔, by Vergne [21]. With our choice for the phase of 𝑐𝑔, a |U𝐽

= Γ holds.
With formula (5.5) in hand, it is straightforward to compute the kernel of a(𝑔)a(ℎ) for 𝑔, ℎ ∈

Sp′(𝑉), using the Gaussian integral formula (3.13):∫
𝐾a(𝑔) (𝑢, 𝑠)𝐾a(ℎ) (𝑠, 𝑣) 𝑒−

1
2 ⟨𝑠 |𝑠⟩ 𝑑𝑠

= 𝑐𝑔𝑐ℎ exp 1
4
{
⟨𝑢 | 𝑇𝑔𝑢⟩ + ⟨𝑇ℎ𝑣 | 𝑣⟩

}
×

∫
exp 1

4
{
⟨𝑠 | 𝑇ℎ𝑠⟩ + ⟨𝑇𝑔𝑠 | 𝑠⟩ + 2⟨𝑠 | 𝑝−𝑡ℎ 𝑣⟩ + 2⟨𝑝−1

𝑔 𝑢 | 𝑠⟩
}
𝑒−

1
2 ⟨𝑠 |𝑠⟩ 𝑑𝑠

= 𝑐𝑔𝑐ℎ det−1/2(1 − 𝑇ℎ𝑇𝑔) exp 1
4
{
⟨𝑢 | 𝑇𝑔𝑢⟩ + ⟨𝑇ℎ𝑣 | 𝑣⟩ + ⟨𝑇𝑔𝑝−𝑡ℎ 𝑣 | (1 − 𝑇ℎ𝑇𝑔)−1𝑝−𝑡ℎ 𝑣⟩

+ 2⟨(1 − 𝑇𝑔𝑇ℎ)−1𝑝−1
𝑔 𝑢 | 𝑝−𝑡ℎ 𝑣⟩ + ⟨(1 − 𝑇𝑔𝑇ℎ)−1𝑝−1

𝑔 𝑢 | 𝑇ℎ𝑝−1
𝑔 𝑢⟩

}
= 𝑐𝑔𝑐ℎ det−1/2(1 − 𝑇ℎ𝑇𝑔) exp 1

4
{
⟨𝑢 | 𝑇𝑔ℎ𝑢⟩ + ⟨𝑇𝑔ℎ𝑣 | 𝑣⟩ + 2⟨𝑝−1

𝑔ℎ𝑢 | 𝑣⟩
}
. (5.6)

The last equality follows on rearranging the exponents of the Gaussians by employing the formu-
las (2.8).

Thus we arrive at
a(𝑔) a(ℎ) = 𝑐(𝑔, ℎ) a(𝑔ℎ), (5.7)

which says that a is a projective representation of the restricted symplectic group Sp′(𝑉) on B(𝑉).
This is the metaplectic representation.
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The scalar 𝑐(𝑔, ℎ) must be a phase factor, in order that each a(𝑔) be unitary. From the
computation (5.6), we find directly that

𝑐(𝑔, ℎ) = 𝑐𝑔𝑐ℎ𝑐−1
𝑔ℎ det−1/2(1 − 𝑇ℎ𝑇𝑔)

= det1/4(1 − 𝑇2
𝑔 ) det1/4(1 − 𝑇2

ℎ ) det−1/4(1 − 𝑇2
𝑔ℎ) det−1/2(1 − 𝑇ℎ𝑇𝑔)

= exp
(
𝑖 arg det−1/2(1 − 𝑇ℎ𝑇𝑔)

)
= exp

(
−𝑖 arg det−1/2(𝑝−1

𝑔 𝑝𝑔ℎ𝑝
−1
ℎ )

)
. (5.8)

▶ The metaplectic representation is reducible. The Gaussians { 𝑓𝑇 : 𝑇 ∈ D′(𝑉) } generate a closed
subspace B0(𝑉) of B(𝑉) which we shall show to be invariant under a(Sp′(𝑉)).

First observe thatB0(𝑉) is the closure of the even subalgebra of the symmetric algebra 𝑆(𝑉), and
as such is a nontrivial closed subspace of B(𝑉). Indeed, the quadratic function 𝐻𝑇 (𝑢) := 1

2 ⟨𝑢 | 𝑇𝑢⟩
equals (𝑑2/𝑑𝑡2)

��
𝑡=0 𝑓𝑇 (𝑡𝑢), so that𝐻𝑇 ∈ B0(𝑉). On the other hand, if {𝑒1, 𝑒2, . . . } is the orthonormal

basis of eigenvectors of 𝑇2, we can write

𝐻𝑇 (𝑢) =
1
2

∑︁
𝑘

⟨𝑢 | 𝑒𝑘⟩⟨𝑢 | 𝑇𝑒𝑘⟩ =
∑︁
𝑘

_𝑘 (𝑒𝑘 ∨ 𝐽𝑒𝑘 ) (𝑢) =
∑︁
𝑘

𝑖_𝑘 (𝑒𝑘 ∨ 𝑒𝑘 ) (𝑢),

so that 𝑓𝑇 = exp
(∑∞

𝑘=1
𝑖
2_𝑘 𝑒𝑘 ∨ 𝑒𝑘

)
lies in the closure of the subalgebra 𝑆even(𝑉) generated by the

homogeneous polynomials of even degree. Since B0(𝑉) contains every 𝑖(𝑒𝑘 ∨ 𝑒𝑘 ) as particular
cases of 𝐻𝑇 , the closure of 𝑆even(𝑉) equals B0(𝑉).

From (3.13) it follows that

a(𝑔) 𝑓𝑇ℎ (𝑢) =
∫

𝐾a(𝑔) (𝑢, 𝑣) 𝑓𝑇ℎ (𝑣) 𝑒−
1
2 ⟨𝑣 |𝑣⟩ 𝑑𝑣

= 𝑐𝑔

∫
exp 1

4
{
⟨𝑢 | 𝑇𝑔𝑢⟩ + ⟨𝑣 | 𝑇ℎ𝑣⟩ + 2⟨𝑝−1

𝑔 𝑢 | 𝑣⟩ + ⟨𝑇𝑔𝑣 | 𝑣⟩
}
𝑒−

1
2 ⟨𝑣 |𝑣⟩ 𝑑𝑣

= 𝑐𝑔 det−1/2(1 − 𝑇ℎ𝑇𝑔) exp 1
4
{
⟨𝑢 | 𝑇𝑔𝑢⟩ + ⟨𝑝−1

𝑔 𝑢 | 𝑇ℎ (1 − 𝑇𝑔𝑇ℎ)−1𝑝−1
𝑔 𝑢⟩

}
= det1/4(1 − 𝑇2

𝑔 ) det−1/2(1 − 𝑇ℎ𝑇𝑔) 𝑓𝑇𝑔ℎ (𝑢) (5.9)

on using the expression (2.9) for 𝑇𝑔ℎ. [Alternatively, since 𝑓𝑇ℎ ∝ a(ℎ)Ω, the relation (5.7) implies
that a(𝑔) 𝑓𝑇ℎ ∝ 𝑓𝑇𝑔ℎ . The proportionality constant equals (a(𝑔) 𝑓𝑇ℎ) (0) = 𝑐−1

ℎ
(a(𝑔) a(ℎ)Ω) (0) =

𝑐−1
ℎ
𝑐𝑔ℎ𝑐(𝑔, ℎ) = 𝑐𝑔 det−1/2(1 − 𝑇ℎ𝑇𝑔) from (5.8).] Since Sp′(𝑉) acts transitively on D′(𝑉), we see

that a(Sp′(𝑉)) permutes the 1-dimensional subspaces generated by the Gaussians, and so leaves
B0(𝑉) invariant and acts on it irreducibly.

The orthogonal complement of B0(𝑉) in B(𝑉) is the closure B1(𝑉) of the subspace 𝑆odd(𝑉)
of 𝑆(𝑉) generated by the odd-degree homogeneous polynomials. From (4.16), the operators ¤𝛽(𝑣)
exchange 𝑆even(𝑉) and 𝑆odd(𝑉). Notice also that 𝑓𝑆 ∈ Dom ¤𝛽(𝑣) by (4.15), if 𝑣 ∈ 𝑉 and 𝑆 ∈ D′(𝑉);
and that B1(𝑉) is densely generated by { ¤𝛽(𝑣) 𝑓𝑆 : 𝑣 ∈ 𝑉, 𝑆 ∈ D′(𝑉) }. From (5.2) and (5.9), we
see that a(𝑔) [ ¤𝛽(𝑣) 𝑓𝑇ℎ] ∝ ¤𝛽(𝑔𝑣) 𝑓𝑇𝑔ℎ , and so a acts irreducibly on the subspace B1(𝑉), too.

Furthermore, since a(𝑔) = Γ(𝑔) for 𝑔 ∈ U𝐽 (𝑉), as is clear from (5.5) in the case 𝑇𝑔 = 0, and
since the only stationary vectors for Γ are the constant functions inB(𝑉), we see thatB0(𝑉) contains
nonzero stationary vectors for a(U𝐽 (𝑉)) whereasB1(𝑉) does not. Hence the two subrepresentations
of a – on B0(𝑉) and on B1(𝑉) – are inequivalent.
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In summary, the metaplectic representation, while not irreducible, is the direct sum of two
irreducible (projective) subrepresentations, one of which is given explicitly by (5.9).

▶ The metaplectic representation may alternatively be defined in a more abstract way, as follows.
We can define a complex line bundle on the Kähler manifold D′(𝑉) [or Σ′(𝑉)], whose total space
is 𝐸 := { _ 𝑓𝑆 : 𝑆 ∈ D′(𝑉) } ⊂ B0(𝑉), with the obvious projection [ : 𝐸 → D′(𝑉) : _ 𝑓𝑆 ↦→ 𝑆. 𝐸 is
a trivial line bundle, with _ 𝑓𝑆 ↦→ (𝑆, _) being an obvious trivialization. A family of holomorphic
sections of this line bundle is given by

𝜓𝑆 (𝑇) := det−1/2(1 − 𝑇𝑆) 𝑓𝑇

for 𝑆 ∈ D′(𝑉). These sections generate a prehilbert space whose inner product is given by

⟨𝜓𝑅 | 𝜓𝑆⟩ := det−1/2(1 − 𝑆𝑅). (5.10)

From (5.9), we see that the action 𝑆 ↦→ 𝑔 · 𝑆 of Sp′(𝑉) on D′(𝑉) given by (2.19) induces a linear
mapping ǎ(𝑔) : 𝜓𝑆 ↦→ 𝑐𝑔𝜙𝑔 (𝑆) 𝜓𝑔·𝑆 on the sections, where we have written

𝜙𝑔 (𝑆) := det−1/2(1 − 𝑆𝑇𝑔).

It can then be checked that ǎ(𝑔) preserves the inner product (5.10) and that ǎ(𝑔) ǎ(ℎ) 𝜓𝑆 =

𝑐(𝑔, ℎ) ǎ(𝑔ℎ) 𝜓𝑆, where 𝑐(𝑔, ℎ) is the cocycle (5.8). The correspondence 𝜓𝑆 ↦→ 𝑓𝑆 extends to
a unitary equivalence of ǎ with the subrepresentation of a on B0(𝑉).

The condition (5.7) amounts to saying that the group acting on 𝐸 is not Sp′(𝑉) but rather a
1-dimensional central extension of Sp′(𝑉) by U(1), 𝑐(𝑔, ℎ) being the cocycle of the extension [22].

Rather than give full details of these computations here, we refer the reader to the forthcoming [1],
where this path is followed in constructing the spin representation. In the fermion case, the
corresponding line bundle is not a trivial one.

5.2 The generalized metaplectic representation

One may well ask whether the explicit calculation of a kernel for the metaplectic representative
of a restricted symplectic transformation can be of use for other symplectic transformations lying
outside Sp′(𝑉). Indeed, it has recently been shown by I. E. Segal and coworkers [23] that the kernel
(5.5) can be used to implement many (non-restricted) symplectic transformations in a generalized
sense.

Let us assume that there exists a positive selfadjoint operator 𝐵 on (𝑉, 𝑠, 𝐽) with a bounded
inverse. Suppose moreover that 𝑒−𝑡𝐵 is trace-class for all 𝑡 > 0. Then the description of the full
quantization (B(𝑉), 𝛽,Ω, Γ) may be refined as follows.

We say that 𝑣 ∈ 𝑉 is an entire vector for 𝐵 if 𝑣 ∈ Dom(𝑒𝑡𝐵) for all 𝑡; denote the (dense) subspace
of entire vectors by𝑉ent. The positive selfadjoint operator 𝑑Γ(𝐵) on B(𝑉) is such that 𝑒𝑡 𝑑Γ(𝐵) is also
trace-class for 𝑡 > 0; denote the space of entire vectors for 𝑑Γ(𝐵) by E(𝑉). This is a Fréchet space
under the natural topology for which every 𝑒𝑡 𝑑Γ(𝐵) : E(𝑉) → B(𝑉) is continuous; with this topology,
any 𝑒𝑡 𝑑Γ(𝐵) is a continuous linear operator on E(𝑉). The antidual (space of continuous antilinear
forms) of E(𝑉), denoted E×(𝑉), can be represented as a space of antiholomorphic functions on𝑉ent,
so that E(𝑉) ⊂ B(𝑉) ⊂ E×(𝑉) with continuous dense inclusions. Also, the operators 𝑒𝑡 𝑑Γ(𝐵) act
on E×(𝑉) by transposition, i.e., ⟨𝐹 | 𝑒𝑡 𝑑Γ(𝐵)𝐺⟩ := ⟨𝑒𝑡 𝑑Γ(𝐵)𝐹 | 𝐺⟩ for 𝐹 ∈ E(𝑉), 𝐺 ∈ E×(𝑉). (The
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sesquilinear pairing of E(𝑉) and E×(𝑉) extends the scalar product on B(𝑉), so we use the same
notation.) Moreover, the formula 𝑒𝑡 𝑑Γ(𝐵)𝐺 (𝑢) = 𝐺 (𝑒−𝑡𝐵𝑢) holds, for 𝐺 ∈ E×(𝑉), 𝑢 ∈ 𝑉ent, 𝑡 ∈ ℝ.
These properties of the boson Fock space are proved in [23].

The principal vectors { 𝐸𝑣 : 𝑣 ∈ 𝑉ent } are thus entire vectors for all 𝑒𝑡 𝑑Γ(𝐵) , and we may consider
the kernels

𝐾𝑇 (𝑢, 𝑣) := ⟨𝐸𝑢 | 𝑇𝐸𝑣⟩,
whenever 𝑇 : E(𝑉) → E×(𝑉) is a continuous linear operator. These kernels are defined for
𝑢, 𝑣 ∈ 𝑉ent, and are antiholomorphic in 𝑢 and holomorphic in 𝑣. The continuity of 𝑇 is equivalent
to the requirement that 𝑒𝑠 𝑑Γ(𝐵)𝑇𝑒−𝑠 𝑑Γ(𝐵) be the restriction to E(𝑉) of a bounded operator on B(𝑉),
for some 𝑠 > 0, and it imposes on the kernel 𝐾𝑇 the estimate

|𝐾𝑇 (𝑢, 𝑣) | ⩽ 𝐶 exp 1
2
{
⟨𝑒𝑠𝐵𝑢 | 𝑒𝑠𝐵𝑢⟩ + ⟨𝑒𝑠𝐵𝑣 | 𝑒𝑠𝐵𝑣⟩

}
(5.11)

for some 𝑠 > 0, 𝐶 > 0. Furthermore, if 𝐾𝑇 does satisfy such an estimate, it determines a unique
continuous operator 𝑇 .

If 𝑔 ∈ Sp′(𝑉), _(𝑔) := 𝑐−1
𝑔 a(𝑔) is the bounded operator on B(𝑉) with kernel

𝐾_(𝑔) (𝑢, 𝑣) := exp 1
4
{
⟨𝑢 | 𝑇𝑔𝑢⟩ + 2⟨𝑝−1

𝑔 𝑢 | 𝑣⟩ + ⟨𝑇𝑔𝑣 | 𝑣⟩
}
. (5.12)

Since _(𝑔) is not normalized, it is no longer unitary, but the fundamental intertwining property (5.1)
still holds. Thus we may follow [23] and call an element of Sp(𝑉) “projectively implementable” if
there exists a continuous linear operator _(𝑔) : E(𝑉) → E×(𝑉) such that

_(𝑔) 𝛽(𝑣) = 𝛽(𝑔𝑣) _(𝑔) for all 𝑣 ∈ 𝑉ent, (5.13)

and ⟨Ω | _(𝑔)Ω⟩ = 1. (We waive the requirement of unitarity, so this conventional normalization
should not be thought of as a vacuum persistence amplitude.) Now the conditions 1 − 𝑇2

𝑔 > 0,
𝑝𝑔𝑝

𝑡
𝑔 = (1 − 𝑇2

𝑔 )−1 show that the kernel (5.12) satisfies the estimate (5.11) for all 𝑠 > 0, and so
represents a continuous operator from E(𝑉) to E×(𝑉). The intertwining property follows by an
approximation argument, since we have already shown its validity for the subgroup Sp′(𝑉): given
𝑔 ∈ Sp(𝑉), let 𝑃𝑛 be finite-rank orthogonal projectors commuting with 1−𝑇2

𝑔 so that 𝑃𝑛 → 1 strongly
on 𝑉 ; write 𝑇(𝑛) := 𝑃𝑛𝑇𝑔, 𝑝 (𝑛) := 𝑃𝑛𝑝𝑔 + (1 − 𝑃𝑛) (1 −𝑇2

𝑔 )1/2𝑝𝑔; then 𝑔𝑛 := (1 +𝑇(𝑛))𝑝 (𝑛) ∈ Sp′(𝑉)
and 𝐾_(𝑔𝑛) (𝑢, 𝑣) → 𝐾_(𝑔) (𝑢, 𝑣) pointwise; from this one deduces that _(𝑔𝑛) → _(𝑔) as operators,
and then (5.13) is immediate.

The family of operators { _(𝑔) : 𝑔 ∈ Sp(𝑉) } thereby determined may be called a “generalized
metaplectic representation” of the full symplectic group Sp(𝑉). Although, on account of its
distributional nature, it needs careful handling, it opens the way to extending the validity of many
of the results discussed here, in particular the 𝑆-matrices of Sections 10 and 11.

5.3 Bogoliubov transformations

The metaplectic representation intertwines with the boson field 𝜙 according to (5.2). Its effect on
the creation and annihilation operators can be readily determined. Since the operators are dependent
on the chosen polarization, we write

𝑎𝑔 (𝑣) := 1√
2
[𝜙(𝑣) + 𝑖𝜙(𝑔𝐽𝑔−1𝑣)], 𝑎†𝑔 (𝑣) := 1√

2
[𝜙(𝑣) − 𝑖𝜙(𝑔𝐽𝑔−1𝑣)], (5.14)
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in accordance with (4.13), for any 𝑔 ∈ Sp′(𝑉). Since 𝑔𝐽𝑣 = (𝑝𝑔 + 𝑞𝑔)𝐽𝑣 = 𝐽 (𝑝𝑔 − 𝑞𝑔)𝑣, we obtain
the Bogoliubov transformation:

𝑎𝑔 (𝑔𝑣) = 𝑎(𝑝𝑔𝑣) + 𝑎†(𝑞𝑔𝑣), 𝑎†𝑔 (𝑔𝑣) = 𝑎(𝑞𝑔𝑣) + 𝑎†(𝑝𝑔𝑣). (5.15)

From (4.13), (5.2) and (5.14) we immediately get

a(𝑔) 𝑎(𝑣) = 𝑎𝑔 (𝑔𝑣) a(𝑔), a(𝑔) 𝑎†(𝑣) = 𝑎†𝑔 (𝑔𝑣) a(𝑔), (5.16)

so that each 𝑎𝑔 (𝑔𝑣) annihilates the vacuum sector associated to the polarization 𝑔𝑊0, which consists
of multiples of the “out-vacuum” vector a(𝑔)Ω = 𝑐𝑔 𝑓𝑇𝑔 .

6 The metaplectic representation as a quantization procedure
6.1 The derived metaplectic representation

The Lie algebra sp′(𝑉) of the restricted symplectic group Sp′(𝑉) consists of real-linear operators
𝑋 ∈ Endℝ(𝑉); let us write

𝐶𝑋 := 1
2 (𝑋 − 𝐽𝑋𝐽), 𝐴𝑋 := 1

2 (𝑋 + 𝐽𝑋𝐽)

to denote its linear and antilinear parts. Then𝐶𝑋 is skewsymmetric and 𝐴𝑋 is symmetric. Moreover,
since 𝑇𝑔 = 𝑞𝑔𝑝−1

𝑔 for 𝑔 ∈ Sp(𝑉), differentiation gives

𝑑

𝑑𝑡

����
𝑡=0
𝑝exp 𝑡𝑋 = 𝐶𝑋 ,

𝑑

𝑑𝑡

����
𝑡=0
𝑇exp 𝑡𝑋 = 𝐴𝑋 . (6.1)

Thus 𝐴𝑋 is Hilbert–Schmidt. The linear part 𝐶𝑋 may well be unbounded, as an operator on the
Hilbert space (𝑉, 𝑠, 𝐽).

Elements 𝑋 of sp′(𝑉) can be regarded as quadratic Hamiltonians 𝐻𝑋 on (𝑉, 𝑠), under the
identification 𝐻𝑋 (𝑢) := 1

2 𝑠(𝑢, 𝑋𝑢). Thus we ask whether the metaplectic representation of Sp′(𝑉)
can yield a quantization rule for quadratic functions at the infinitesimal level.

First of all, for a given 𝑋 ∈ sp′(𝑉), the assignment 𝑡 ↦→ a(exp 𝑡𝑋) need not be a one-parameter
group, since the representation a is projective; however, we can always find a real-valued function
\𝑋 so that 𝑡 ↦→ 𝑒𝑖\𝑋 (𝑡)a(exp 𝑡𝑋) is a homomorphism. The group law demands that

𝑒𝑖\𝑋 (𝑠+𝑡) = 𝑒𝑖\𝑋 (𝑠)𝑒𝑖\𝑋 (𝑡)𝑐(exp 𝑠𝑋, exp 𝑡𝑋); (6.2)

differentiating with respect to 𝑠 at 𝑠 = 0 and solving the resulting equation for \𝑋 (𝑡), we obtain

\𝑋 (𝑡) = 𝛼𝑡 − 𝑖
∫ 𝑡

0
ℎ(𝜏) 𝑑𝜏,

where
ℎ(𝜏) :=

𝑑

𝑑𝑠

����
𝑠=0
𝑐(exp 𝑠𝑋, exp 𝜏𝑋) = 1

4
Trℂ [𝐴𝑋 , 𝑇exp 𝜏𝑋] (6.3)

is computed in Section 7, and 𝛼 = ¤\𝑋 (0) is an undetermined real constant.
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The derived representation of a may thus be defined, for 𝑋 ∈ sp′(𝑉), by:

¤a(𝑋)𝐹 :=
𝑑

𝑑𝑡

����
𝑡=0
𝑒𝑖\𝑋 (𝑡)a(exp 𝑡𝑋)𝐹. (6.4)

A formal computation of the kernel of ¤a(𝑋) gives, in view of (5.5),

𝐾 ¤a(𝑋) (𝑢, 𝑣) = ¤a(𝑋)𝐸𝑣 (𝑢) =
(
𝑖𝛼 + 1

4
{
⟨𝑢 | 𝐴𝑋𝑢⟩ + 2⟨𝑢 | 𝐶𝑋𝑣⟩ − ⟨𝐴𝑋𝑣 | 𝑣⟩

})
exp( 1

2 ⟨𝑢 | 𝑣⟩). (6.5)

We see that 𝐸𝑣 is a smooth vector for ¤a(𝑋) if and only if 𝑣 ∈ Dom𝐶𝑋 . Thus ¤a(𝑋) has a dense
subspace of smooth vectors – generated by such 𝐸𝑣 – whenever 𝐶𝑋 is densely defined.

Now, Ω = 𝐸0 is a smooth vector for ¤a(𝑋) in any case. Since the vacuum expectation value
⟨Ω | −𝑖 ¤a(𝑋)Ω⟩ = −𝑖𝐾 ¤a(𝑋) (0, 0) = 𝛼 remains unspecified, we are free to choose it arbitrarily. We
shall set 𝛼 = 0 for every 𝑋 ∈ sp′(𝑉). Thus the quantization rule 𝑋 ↦→ −𝑖 ¤a(𝑋) is uniquely specified
by (6.4) together with the condition

⟨Ω | ¤a(𝑋)Ω⟩ = 0 (6.6)

of vanishing vacuum expectation values.

▶ The intertwining rule (5.2) is mirrored at the infinitesimal level. In fact, if 𝑋 ∈ sp′(𝑉), and
𝑣, 𝑤 ∈ 𝑉 , then

a(exp 𝑡𝑋) ¤𝛽(𝑣) 𝐸𝑤 = ¤𝛽((exp 𝑡𝑋)𝑣) a(exp 𝑡𝑋) 𝐸𝑤 for 𝑡 ∈ ℝ,

and differentiation at 𝑡 = 0 yields

¤a(𝑋) ¤𝛽(𝑣) 𝐸𝑤 = ¤𝛽(𝑋𝑣) 𝐸𝑤 + ¤𝛽(𝑣) ¤a(𝑋) 𝐸𝑤 for 𝑣, 𝑤 ∈ Dom𝐶𝑋 .

In other words,
[ ¤a(𝑋), ¤𝛽(𝑣)] = ¤𝛽(𝑋𝑣) for 𝑣 ∈ Dom𝐶𝑋 .

6.2 The Wick dequantization rule and its inverse

Given an operator 𝐴 on B(𝑉), we define its Wick or covariant symbol 𝑄𝐴 as the function on 𝑉
given by

𝑄𝐴 (𝑣) := 𝑒−
1
2 ⟨𝑣 |𝑣⟩𝐾𝐴 (𝑣, 𝑣).

That is to say, 𝑄𝐴 is the expected value of 𝐴 in the (normalized) state represented by 𝐸𝑣. This
can be called a “dequantization” rule, because it associates a function to each sufficiently regular
operator. Actually, the correspondence 𝐴 ↦→ 𝑄𝐴 is one-to-one under fairly general hypotheses.
To see that, remark that a function 𝑄(𝑢, 𝑣) defined in 𝑉 × 𝑉 , which is antiholomorphic in 𝑢 and
holomorphic in 𝑣, is determined by its restriction to the diagonal 𝑄(𝑣) := 𝑄(𝑣, 𝑣). If we now
consider𝑄𝐴 (𝑢, 𝑣) := 𝑒− 1

2 ⟨𝑢 |𝑣⟩𝐾𝐴 (𝑢, 𝑣), one can clearly recover 𝐴 from𝑄𝐴 and hence from𝑄𝐴; thus
there exists an inverse quantization rule.

Proposition 6.1. 𝑄𝜙(𝑣) =
[
𝑢 ↦→ 𝑠(𝑢, 𝑣) = 𝑑 (𝐽𝑢, 𝑣)

]
.

Proof. Just observe that

𝑒−
1
2 ⟨𝑢 |𝑢⟩ ⟨𝐸𝑢 | 𝜙(𝑣)𝐸𝑢⟩ = − 𝑖

2𝑒
− 1

2 ⟨𝑢 |𝑢⟩
(
⟨𝑢 | 𝑣⟩ − ⟨𝑣 | 𝑢⟩

)
⟨𝐸𝑢 | 𝐸𝑢⟩ = 𝑠(𝑢, 𝑣). □
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From now on, we write 𝑑𝐺 (𝑋) := −𝑖 ¤a(𝑋) for 𝑋 ∈ sp(𝑉), remarking that 𝑑𝐺 (𝑋) = 𝑑Γ(−𝐽𝑋)
whenever the latter makes sense. Its symbol is easily computed.

Proposition 6.2. The covariant symbol of 𝑑𝐺 (𝑋) is given by

𝑄𝑑𝐺 (𝑋) =
[
𝑢 ↦→ 1

2 𝑠(𝑢, 𝑋𝑢)
]
. (6.7)

Proof. Since 𝐴𝑋 is (antilinear) selfadjoint and 𝐶𝑋 is skewadjoint, we obtain

𝑒−
1
2 ⟨𝑢 |𝑢⟩ ⟨𝐸𝑢 | −𝑖 ¤a(𝑋) 𝐸𝑢⟩ = − 𝑖

4
{
⟨𝑢 | 𝐴𝑋𝑢⟩ − ⟨𝐴𝑋𝑢 | 𝑢⟩ + 2⟨𝑢 | 𝐶𝑋𝑢⟩

}
= 1

2 𝑠(𝑢, (𝐴𝑋 + 𝐶𝑋)𝑢) = 1
2 𝑠(𝑢, 𝑋𝑢). □ (6.8)

What is of interest in the previous propositions is that the dequantization rule gives in both
cases the classical Hamiltonian function associated with the Hamiltonian vector fields 𝑢 ↦→ 𝑣 and
𝑢 ↦→ 𝑋𝑢 (on identifying 𝑉 with its tangent spaces by associating to each 𝑣 ∈ 𝑉 the vector ¤𝑣 ∈ 𝑇𝑢𝑉
at any point 𝑢 ∈ 𝑉 for which

¤𝑣 𝑓 (𝑢) = 𝑑

𝑑𝑡

����
𝑡=0
𝑓 (𝑢 + 𝑡𝑣),

where 𝑓 is any smooth function on 𝑉). More precisely, it is easy to check that

𝑖(𝑣)𝑠 = −𝑑𝑄𝜙(𝑣) for 𝑣 ∈ 𝑉,
𝑖(𝑋)𝑠 = −𝑑𝑄𝑑𝐺 (𝑋) for 𝑋 ∈ sp(𝑉);

where 𝑖(𝑌 )𝑠 denotes the contraction of the vector field𝑌 with the symplectic form 𝑠. In other words,
the expectation of the quantum Hamiltonian 𝜙(𝑣) or 𝑑𝐺 (𝑋) is equal to the classical energy. This is
a characteristic property of normal ordering.

▶ The quantization rule inverting (6.7) is found by comparing (6.8) with the formulas for the
expressions (4.18) to (4.20) as quadratic forms on the principal vectors in B(𝑉); polarizing (6.8)
gives

⟨𝐸𝑢 | 𝑑𝐺 (𝑋)𝐸𝑣⟩ = − 𝑖
4
{
⟨𝑢 | 𝐴𝑋𝑢⟩ − ⟨𝐴𝑋𝑣 | 𝑣⟩ + 2⟨𝑢 | 𝐶𝑋𝑣⟩

}
𝐸𝑣 (𝑢),

and from (4.21) to (4.23) we obtain at once:

𝑑𝐺 (𝑋) = 𝑖
2 (𝑎

†𝐴𝑋𝑎
† − 2𝑎†𝐶𝑋𝑎 − 𝑎𝐴𝑋𝑎), (6.9)

using the notations (4.18) to (4.20). In particular, the number operator appears as the Wick
quantization of 𝐽:

𝑁 = 𝑑Γ(1) = 𝑑𝐺 (𝐽) = −𝑖 𝑎†𝐽𝑎 = 𝑎†𝑎. (6.10)

The discussion so far remains in the infinite-dimensional context. It should be clear, however,
that ordinary Quantum Mechanics is described by the theory, when dim𝑉 = 2𝑛 < ∞. In that case,
the space of motions for a spinless particle is identified to the space of initial conditions, i.e., ordinary
phase space. In the latter context the Weyl–Moyal or “symmetric” quantization rule can be used
and usually is preferred. The relations between the Wick rule, the “anti-Wick” or “contravariant”
quantization rule and the Weyl–Moyal rule are discussed in [24], where the transformations between
the corresponding symbols are described. An important property of the Weyl–Moyal rule is full
covariance under linear symplectic transformations. In order to appreciate that, we must turn to the
so-called metaplectic group.
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6.3 The metaplectic group in Quantum Mechanics

As noted in Section 5, it is possible, when 𝑉 is finite-dimensional, to take 𝑐𝑔 := det−1/2 𝑝𝑡𝑔 rather
than 𝑐𝑔 := det1/4(1 − 𝑇2

𝑔 ). With this choice, a glance at (5.8) is enough to verify that the redefined
metaplectic representation ã fulfils

ã(𝑔) ã(ℎ) = ±ã(𝑔ℎ), for 𝑔, ℎ ∈ Sp(𝑉).

In fact, ã is a faithful representation of a nonsplit ℤ2 extension of the symplectic group, called the
metaplectic group.

That extension is of course invisible at the infinitesimal level. Then 𝑑𝐺 is a Lie algebra
isomorphism between sp(𝑉) – or the set of quadratic Hamiltonians with the Poisson bracket as the
Lie algebra operation – and 𝑑𝐺 (sp(𝑉)). [This is why there are no Schwinger terms in ordinary
quantum mechanics: see next section for Schwinger terms in linear quantum field theory.]
Remark. Even in the ordinary brand of quantization, however, the extension by a circle Mpc(𝑉)
of the symplectic group can be of some help. Not every symplectic manifold can be lifted to a
metaplectic manifold, but it can be lifted to an Mpc-manifold. This property has been used to refine
and simplify geometric quantization techniques in [8].

Repeating the computation (6.9) – with \𝑋 (𝑡) = 0 since the new cocycle is ±1 – gives

𝑑𝐺 (𝑋) = 𝑑𝐺 (𝑋) − 𝑖
2 Trℂ [𝐶𝑋] . (6.11)

Notice that the last term is real. This gives Moyal quantization of (the quadratic Hamiltonian
associated to) 𝑋 . Comparing with (6.9), we get

𝑑𝐺 (𝑋) = 𝑖
2 (𝑎

†𝐴𝑋𝑎
† − 𝑎†𝐶𝑋𝑎 − 𝑎𝐶𝑋𝑎† − 𝑎𝐴𝑋𝑎),

with the definition 𝑎𝐶𝑋𝑎† :=
∑
𝑗 ,𝑘 𝑎(𝑒 𝑗 ) ⟨ 𝑓𝑘 | 𝐶𝑋𝑒 𝑗 ⟩ 𝑎†( 𝑓𝑘 ) = 𝑎†𝐶𝑋𝑎 + Trℂ [𝐶𝑋], using the CCR

(4.14). This shows that Moyal quantization is halfway between Wick quantization and the “antinor-
mal” rule.

For finite-dimensional 𝑉 , it is readily seen that all irreducible Weyl systems yield full quantiza-
tions. Then Shale’s theorem implies that all irreducible representations of the canonical commu-
tation relations are equivalent, which is the main contention of the Stone–von Neumann theorem,
usually considered the cornerstone of quantum mechanics. In order to make contact with the
standard formulations, it will be enough to identify our Weyl systems with the standard system of
coherent states.

We shall simplify the notation by assuming 𝑉 ≃ ℝ2. We shall also suppose that Darboux
coordinates (𝑞, 𝑝) have been chosen for 𝑠 so that:

𝑠

((
𝑞1
𝑝1

)
,

(
𝑞2
𝑝2

))
= 𝑞1𝑝2 − 𝑞2𝑝1,

and we shall take 𝐽 conventionally of the form 𝐽 =

(
0 −1
1 0

)
, all other choices being equivalent.

Hence
𝑑𝐽

((
𝑞1
𝑝1

)
,

(
𝑞2
𝑝2

))
= 𝑞1𝑞2 + 𝑝1𝑝2,
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and (𝑉, 𝑠, 𝐽) is identified to ℂ by
(𝑞
𝑝

)
↔ 𝑞 + 𝑖𝑝. According to the above results, the function(𝑞

𝑝

)
↦→ 𝑎𝑞 + 𝑏𝑝 quantizes to 𝜙

(−𝑏
𝑎

)
. Thus 𝑄 = 𝜙

(0
1
)
, 𝑃 = 𝜙

(−1
0
)
, 2−1/2(𝑄 + 𝑖𝑃) = 𝑎

(0
1
)
. Note that

[𝑄, 𝑃] = 𝑖, as expected. We can rewrite the Weyl system 𝛽 as a “symplectic exponential” or a
“displacement operator”:

𝛽

(
𝑞

𝑝

)
= 𝑒𝑖(𝑝𝑄−𝑞𝑃) = 𝑒𝛼𝑎

†−𝛼∗𝑎,

where 𝛼 := (𝑞 + 𝑖𝑝)/
√

2 and 𝑎 := 𝑎
(0
1
)
. The theory of coherent states in quantum mechanics can

be developed from here on as in [25] (which has slightly different conventions from what is natural
in our context). The number operator 𝑑𝐺 (𝐽) is essentially the harmonic oscillator Hamiltonian
and Ω is the harmonic oscillator ground state; this explains the privileged role of that system in
ordinary quantum mechanics. In the Schrödinger representation, homogeneous components of the
symmetric algebra correspond to the span of the Hermite functions of a given degree; on these
subspaces, Γ acts cyclically.

Before we leave the subject of ordinary quantum mechanics, we point out that the metaplectic
representation has been used for calculating geometrical (Aharonov–Anandan) phases in [26].

7 Bosonic anomalies
7.1 The extended symplectic Lie algebra

One may reformulate the discussion of derived representations in subsection 6.1 by passing to the
extended symplectic group S̃p′(𝑉) and the extended symplectic Lie algebra s̃p′(𝑉). Here S̃p′(𝑉) is
the one-dimensional central extension of Sp′(𝑉) by U(1) which is determined by the metaplectic
representation; its elements can be written as (𝑔, _), where 𝑔 ∈ Sp′(𝑉), _ ∈ U(1), with group law

(𝑔, _) · (ℎ, `) = (𝑔ℎ, _`𝑐(𝑔, ℎ)), (7.1)

so that (𝑔, _) ↦→ _a(𝑔) is a (linear) unitary representation of the extended group. Its Lie algebra
s̃p′(𝑉) is a 1-dimensional central extension of sp′(𝑉) by 𝑖ℝ, with commutator

[(𝑋, 𝑖𝑟), (𝑌, 𝑖𝑠)] := ( [𝑋,𝑌 ], 𝛼(𝑋,𝑌 )) (7.2)

where
𝛼(𝑋,𝑌 ) = 𝑑2

𝑑𝑡 𝑑𝑠

����
𝑡=𝑠=0

𝑐(exp 𝑠𝑋, exp 𝑡𝑌 ) − 𝑑2

𝑑𝑡 𝑑𝑠

����
𝑡=𝑠=0

𝑐(exp 𝑡𝑌 , exp 𝑠𝑋),

obtained directly from (7.1) applied to the commutator (𝑔, _) (ℎ, `) (𝑔, _)−1(ℎ, `)−1 in the extended
group, with 𝑔 = exp 𝑠𝑋 , ℎ = exp 𝑡𝑌 .

The Lie algebra cocycle 𝛼 has the physical meaning of a Schwinger term. Indeed:

Proposition 7.1. If 𝑋,𝑌 ∈ sp′(𝑉), then

𝛼(𝑋,𝑌 ) = [ ¤a(𝑋), ¤a(𝑌 )] − ¤a( [𝑋,𝑌 ]). (7.3)

Proof. Because of the normal ordering (6.6), we obtain

𝑑2

𝑑𝑡 𝑑𝑠

����
𝑡=𝑠=0

a(exp 𝑠𝑋) a(exp 𝑡𝑌 ) = ¤a(𝑋) ¤a(𝑌 ),
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and by the Campbell–Baker–Hausdorff formula, there holds

a(exp 𝑠𝑋) a(exp 𝑡𝑌 ) = 𝑐(exp 𝑠𝑋, exp 𝑡𝑌 ) a
(
exp(𝑠𝑋 + 𝑡𝑌 + 1

2 𝑠𝑡 [𝑋,𝑌 ] + higher order)
)
.

Thus,

[ ¤a(𝑋), ¤a(𝑌 )] = 𝑑2

𝑑𝑡 𝑑𝑠

����
𝑡=𝑠=0

a(exp 𝑠𝑋) a(exp 𝑡𝑌 ) − a(exp 𝑡𝑌 ) a(exp 𝑠𝑋)

=
𝑑2

𝑑𝑡 𝑑𝑠

����
𝑡=𝑠=0

(
𝑐(exp 𝑠𝑋, exp 𝑡𝑌 ) − 𝑐(exp 𝑡𝑌 , exp 𝑠𝑋)

)
+ 1

2 𝑠𝑡 [𝑋,𝑌 ] −
1
2 𝑠𝑡 [𝑌, 𝑋]

= 𝛼(𝑋,𝑌 ) + ¤a( [𝑋,𝑌 ]). □

It is not hard to compute explicitly the Schwinger terms in our framework.
Proposition 7.2. If 𝑋,𝑌 ∈ sp′(𝑉), then

𝛼(𝑋,𝑌 ) = 1
2 Trℂ( [𝐴𝑋 , 𝐴𝑌 ]). (7.4)

Proof. Note first that the linear and antilinear parts of [𝑋,𝑌 ] = [𝐶𝑋 + 𝐴𝑋 , 𝐶𝑌 + 𝐴𝑌 ] are given by
𝐶[𝑋,𝑌 ] = [𝐶𝑋 , 𝐶𝑌 ] + [𝐴𝑋 , 𝐴𝑌 ], 𝐴[𝑋,𝑌 ] = [𝐴𝑋 , 𝐶𝑌 ] + [𝐶𝑋 , 𝐴𝑌 ]. The commutator [ ¤a(𝑋), ¤a(𝑌 )] may
be computed from the quantization formula (6.9) by substituting equations (4.18) to (4.20); it is
readily checked that

[𝑎†𝐴𝑋𝑎†, 𝑎†𝐶𝑌𝑎] = 𝑎† [𝐴𝑋 , 𝐶𝑌 ]𝑎†,
[𝑎†𝐶𝑋𝑎, 𝑎𝐴𝑌𝑎] = 𝑎[𝐶𝑋 , 𝐴𝑌 ]𝑎,
[𝑎†𝐶𝑋𝑎, 𝑎†𝐶𝑌𝑎] = 𝑎† [𝐶𝑋 , 𝐶𝑌 ]𝑎,

[𝑎†𝐴𝑋𝑎†, 𝑎𝐴𝑌𝑎] + [𝑎𝐴𝑋𝑎, 𝑎†𝐴𝑌𝑎†] = −4 𝑎† [𝐴𝑋 , 𝐴𝑌 ]𝑎 − 2 Trℂ( [𝐴𝑋 , 𝐴𝑌 ]),
using the canonical commutation relations. It then follows that

[ ¤a(𝑋), ¤a(𝑌 )] = ¤a( [𝑋,𝑌 ]) + 1
2 Trℂ( [𝐴𝑋 , 𝐴𝑌 ]). □

It is also instructive to see how the Schwinger terms may be obtained directly from (7.2). Let
us abbreviate 𝑔 := exp 𝑠𝑋 , ℎ := exp 𝑡𝑌 . We obtain

𝑑

𝑑𝑠

����
𝑠=0
𝑐(𝑔, ℎ) = 𝑑

𝑑𝑠

����
𝑠=0

exp(𝑖 arg det−1/2(1 − 𝑇ℎ𝑇𝑔))

= 𝑐(1, ℎ) 𝑑
𝑑𝑠

����
𝑠=0

(𝑖 arg det−1/2(1 − 𝑇ℎ𝑇𝑔))

= 𝑖ℑ
(
𝑑

𝑑𝑠

����
𝑠=0

det−1/2(1 − 𝑇ℎ𝑇𝑔)
)

= −1
4

Trℂ
(
𝑑

𝑑𝑠

����
𝑠=0

(1 − 𝑇ℎ𝑇𝑔) −
𝑑

𝑑𝑠

����
𝑠=0

(1 − 𝑇𝑔𝑇ℎ)
)
= −1

4
Trℂ( [𝑇ℎ, 𝐴𝑋]),

which verifies (6.3). We then get

𝑑2

𝑑𝑡 𝑑𝑠

����
𝑡=𝑠=0

𝑐(𝑔, ℎ) = −1
4
𝑑

𝑑𝑡

����
𝑡=0

Trℂ( [𝑇ℎ, 𝐴𝑋]) =
1
4

Trℂ( [𝐴𝑋 , 𝐴𝑌 ]).

In like manner, we find that (𝑑2/𝑑𝑡 𝑑𝑠)
��
𝑡=𝑠=0𝑐(ℎ, 𝑔) = 1

4 Trℂ( [𝐴𝑌 , 𝐴𝑋]). Subtracting these two
derivatives then gives (7.4).
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The formula (7.4) yields the Schwinger term directly from the obstruction to linearity of the
metaplectic representation. When 𝑉 is finite-dimensional, the following reformulation is possible:
since the linear commutant [𝐶𝑋 , 𝐶𝑌 ] is traceless, (7.3) reduces to:

𝛼(𝑋,𝑌 ) = 1
2 Trℂ [𝐶[𝑋,𝑌 ]],

which is a trivial cocycle – compare equation (6.10). In the infinite-dimensional case, this is no
longer true, since [𝐶𝑋 , 𝐶𝑌 ] is in general not trace-class. In other words, there is an obstruction to
Moyal quantization at this level. (This does not mean that large classes of functions on 𝑉 cannot be
Moyal-quantized: we owe this remark to E. C. G. Sudarshan.)

▶ We end this subsection by checking directly that 𝛼 is a 2-cocycle for the Lie algebra cohomology
of sp′(𝑉) [22]. The coboundary operator for this cohomology is:

𝛿𝛼(𝑋,𝑌, 𝑍) := 𝛼( [𝑋,𝑌 ], 𝑍) + 𝛼( [𝑌, 𝑍], 𝑋) + 𝛼( [𝑍, 𝑋], 𝑌 ) =
∑︁

cyclic
𝛼( [𝑋,𝑌 ], 𝑍),

where
∑

cyclic denotes a sum over the three cyclic permutations of (𝑋,𝑌, 𝑍). The identity 𝛿𝛼 = 0
can be checked from (7.4), the Jacobi identity and tracelessness of commutants of linear operators:

2𝛿𝛼(𝑋,𝑌, 𝑍) = Trℂ
( ∑︁

cyclic
[𝐴[𝑋,𝑌 ] , 𝐴𝑍 ]

)
= Trℂ

( ∑︁
cyclic

[[𝐴𝑋 , 𝐶𝑌 ], 𝐴𝑍 ] − [[𝐴𝑌 , 𝐶𝑋], 𝐴𝑍 ]
)

= Trℂ
( ∑︁

cyclic
[[𝐴𝑋 , 𝐶𝑌 ], 𝐴𝑍 ] + [[𝐶𝑋 , 𝐴𝑍 ], 𝐴𝑌 ]

)
= Trℂ

( ∑︁
cyclic

[[𝐴𝑋 , 𝐶𝑌 ], 𝐴𝑍 ] + [[𝐶𝑌 , 𝐴𝑋], 𝐴𝑍 ]
)
= 0.

In summary, 𝛼 acts as a generator for the cohomology space 𝐻2(sp′,ℝ) = ℝ.

7.2 The adjoint representation and the anomaly

The exponential map from s̃p′(𝑉) to S̃p′(𝑉) is given by exp 𝑡 (𝑋, 𝑖𝑟) := (exp 𝑡𝑋, exp(𝑖𝑟𝑡 + 𝑖\𝑋 (𝑡)),
in view of (6.2). Now the group Sp′(𝑉) acts on s̃p′(𝑉) by the adjoint action of the central extension;
this action is of the form

Ãd(𝑔) : (𝑋, 𝑖𝑟) ↦−→ (Ad(𝑔)𝑋, 𝑖𝑟 + 𝛾(𝑔, 𝑋)),

where the anomaly 𝛾(𝑔, 𝑋) ∈ 𝑖ℝ depends linearly on 𝑋 .
The term measuring the nonequivariance of the adjoint action has a direct physical meaning:

look at equation (7.6), thinking of 𝑔 as a classical scattering operator and suppose that it commutes
with the observable 𝑋 . Then the formula says that this classical symmetry will not be preserved at
the quantum level in general. Also, see the remark at the end of next section, justifying the name
chosen for 𝛾.
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Since
Ãd(𝑔) [(𝑋, 𝑖𝑟), (𝑌, 𝑖𝑠)] = [Ãd(𝑔) (𝑋, 𝑖𝑟), Ãd(𝑔) (𝑌, 𝑖𝑠)],

using (7.2), we obtain

𝛾(𝑔, [𝑋,𝑌 ]) = 𝛼(Ad(𝑔)𝑋,Ad(𝑔)𝑌 ) − 𝛼(𝑋,𝑌 ), (7.5)

for 𝑋,𝑌 ∈ sp′(𝑉). We conclude that at least for [sp′(𝑉), sp′(𝑉)], the anomaly is determined by the
Schwinger terms. Moreover, the following relation holds.

Proposition 7.3. If 𝑔 ∈ Sp′(𝑉), 𝑋 ∈ sp′(𝑉), then

𝛾(𝑔, 𝑋) = a(𝑔) ¤a(𝑋) a(𝑔)−1 − ¤a(Ad(𝑔)𝑋). (7.6)

Proof. From (6.4) we obtain

a(𝑔) ¤a(𝑋) a(𝑔)−1 =
𝑑

𝑑𝑡

����
𝑡=0
𝑒𝑖\𝑋 (𝑡)a(𝑔) a(exp 𝑡𝑋) a(𝑔)−1

=
𝑑

𝑑𝑡

����
𝑡=0
𝑒𝑖\𝑋 (𝑡)𝑐(𝑔, exp 𝑡𝑋)𝑐(𝑔 exp 𝑡𝑋, 𝑔−1) a(𝑔 exp 𝑡𝑋𝑔−1)

=
𝑑

𝑑𝑡

����
𝑡=0
𝑒𝑖\Ad(𝑔)𝑋 (𝑡)𝑐(𝑔, exp 𝑡𝑋)𝑐(𝑔 exp 𝑡𝑋, 𝑔−1) a(exp 𝑡 Ad(𝑔)𝑋)

=
𝑑

𝑑𝑡

����
𝑡=0
𝑐(𝑔, exp 𝑡𝑋)𝑐(𝑔 exp 𝑡𝑋, 𝑔−1) + ¤a(Ad(𝑔)𝑋), (7.7)

where we have used ¤\𝑋 (0) = ¤\Ad(𝑔)𝑋 (0) = 0, from which it is clear that the right hand side of (7.6)
is an (imaginary) scalar; call it 𝛾′(𝑔, 𝑋). It suffices to show that 𝛾′(𝑔, [𝑋,𝑌 ]) = 𝛾(𝑔, [𝑋,𝑌 ]) in
general. We now compute

𝛾′(𝑔, [𝑋,𝑌 ]) = a(𝑔) ¤a( [𝑋,𝑌 ])a(𝑔)−1 − ¤a( [Ad(𝑔)𝑋,Ad(𝑔)𝑌 ])
= a(𝑔) [ ¤a(𝑋), ¤a(𝑌 )]a(𝑔)−1 − 𝛼(𝑋,𝑌 )

− [ ¤a(Ad(𝑔)𝑋), ¤a(Ad(𝑔)𝑌 )] + 𝛼(Ad(𝑔)𝑋,Ad(𝑔)𝑌 )
= [ ¤a(Ad(𝑔)𝑋) + 𝛾′(𝑔, 𝑋), ¤a(Ad(𝑔)𝑌 ) + 𝛾′(𝑔,𝑌 )]

− [ ¤a(Ad(𝑔)𝑋), ¤a(Ad(𝑔)𝑌 )] + 𝛾(𝑔, [𝑋,𝑌 ]),

which reduces to 𝛾(𝑔, [𝑋,𝑌 ]) since the 𝛾′(𝑔, ·) are scalars. □

The methods of the previous subsection now allow us to compute the bosonic anomaly explicitly,
in terms of the classical quantities.

Proposition 7.4. For 𝑔 ∈ Sp′(𝑉), 𝑋 ∈ sp′(𝑉), the bosonic anomaly is given by

𝛾(𝑔, 𝑋) = 1
2 Trℂ

(
(1 − 𝑇2

𝑔 )−1 ([𝐴𝑋 , 𝑇𝑔] − 𝑇𝑔 [𝐶𝑋 , 𝑇𝑔]) ) . (7.8)

Proof. From (7.7), we see that 𝛾(𝑔, 𝑋) is indeed given by the formula

𝛾(𝑔, 𝑋) = 𝑑

𝑑𝑡

����
𝑡=0
𝑐(𝑔, exp 𝑡𝑋) 𝑐(𝑔 exp 𝑡𝑋, 𝑔−1).
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Writing ℎ := exp 𝑡𝑋 , the right hand side equals

𝑑

𝑑𝑡

����
𝑡=0

exp
(
𝑖 arg(det−1/2(1 − 𝑇ℎ𝑇𝑔) + det−1/2(1 − 𝑇𝑔𝑇𝑔ℎ))

)
= 𝑖

𝑑

𝑑𝑡

����
𝑡=0

arg(det−1/2(1 − 𝑇ℎ𝑇𝑔) + det−1/2(1 − 𝑇𝑔𝑇𝑔ℎ))

= 𝑖ℑ
(
𝑑

𝑑𝑡

����
𝑡=0

det−1/2(1 − 𝑇ℎ𝑇𝑔) + det1/2(1 − 𝑇2
𝑔 )
𝑑

𝑑𝑡

����
𝑡=0

det−1/2(1 − 𝑇𝑔𝑇𝑔ℎ)
)

= − 𝑖
2
ℑTrℂ

(
𝑑

𝑑𝑡

����
𝑡=0

(1 − 𝑇ℎ𝑇𝑔) + (1 − 𝑇2
𝑔 )−1 𝑑

𝑑𝑡

����
𝑡=0

(1 − 𝑇𝑔𝑇𝑔ℎ)
)

=
𝑖

2
ℑTrℂ

(
𝐴𝑋𝑇𝑔 + (1 − 𝑇2

𝑔 )−1𝑇𝑔
𝑑

𝑑𝑡

����
𝑡=0
𝑇𝑔ℎ

)
. (7.9)

Using (2.9), we find that

𝑑

𝑑𝑡

����
𝑡=0
𝑇𝑔ℎ =

𝑑

𝑑𝑡

����
𝑡=0

(
𝑇ℎ + 𝑝−1

ℎ 𝑇𝑔 (1 − 𝑇ℎ𝑇𝑔)−1𝑝−𝑡ℎ

)
= −𝐴𝑋 − [𝐶𝑋 , 𝑇𝑔] + 𝑇𝑔𝐴𝑋𝑇𝑔 .

Since the commutator has purely imaginary trace, on substituting this in (7.9) we arrive at (7.8). □

The appearance of the commuting part of 𝑋 in (7.8) deserves a comment: whereas observables
that are linear in the sense of commuting with the complex structure have non-anomalous commu-
tators in the corresponding linear quantum field theory, they still suffer in general from anomalous
transformation laws.

7.3 The Schwinger term as a cyclic cocycle

It turns out that the Lie algebra cocycle 𝛼 is also a cocycle for the cyclic cohomology of Connes [27];
this provides a link with noncommutative geometry, which has already yielded an interesting
approach to the classical action for the Standard Model [28]. We start from the observation that

𝛼(𝑋,𝑌 ) = − 𝑖
8

Tr(𝐽 [𝐽, 𝑋] [𝐽,𝑌 ]), (7.10)

for 𝑋,𝑌 ∈ sp′(𝑉). Here Tr denotes the usual trace over the polarization 𝑊0; since [𝐽, 𝑋] = 2𝐽𝐴𝑋 ,
the commutators are Hilbert–Schmidt operators on𝑊0 – again we identify elements of Endℝ𝑉 with
their complex amplifications on 𝑉ℂ – and so the trace exists. One checks that

Tr(𝐽 [𝐽,𝑌 ] [𝐽, 𝑋]) = Tr( [𝐽, 𝑋]𝐽 [𝐽,𝑌 ]) = −Tr(𝐽 [𝐽, 𝑋] [𝐽,𝑌 ]) (7.11)

since 𝐽 and [𝐽, 𝑋] anticommute; on using (2.21), skewsymmetrization of the right hand side
of (7.10) yields − 𝑖

4 Tr(𝐽 [𝐴𝑋 , 𝐴𝑌 ]) = 1
2 Trℂ( [𝐴𝑋 , 𝐴𝑌 ]), as claimed.

▶ The cyclic cohomology theory is now defined as follows. Let A be an associative algebra.
A Hochschild 𝑛-cochain over A is a complex (𝑛 + 1)-linear form 𝜔(𝑋0, 𝑋1, . . . , 𝑋𝑛) defined for
𝑋0, 𝑋1, . . . , 𝑋𝑛 ∈ A; it is called cyclic if it satisfies:

𝜔(𝑋0, 𝑋1, . . . , 𝑋𝑛) = (−1)𝑛𝜔(𝑋1, . . . , 𝑋𝑛, 𝑋0). (7.12)
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The factor (−1)𝑛 is the sign of the cyclic permutation of the arguments. The Hochschild coboundary
operator 𝑏 is defined by

𝑏𝜔(𝑋0, . . . , 𝑋𝑛+1)

:=
𝑛∑︁
𝑗=0

(−1) 𝑗𝜔(𝑋0, . . . , 𝑋 𝑗𝑋 𝑗+1, . . . , 𝑋𝑛+1) + (−1)𝑛+1𝜔(𝑋𝑛+1𝑋0, 𝑋1, . . . , 𝑋𝑛); (7.13)

It is clear that if 𝜔 is a cyclic 𝑛-cocycle, then 𝑏𝜔 is a cyclic (𝑛 + 1)-cocycle; one checks that 𝑏2 = 0.
Thus the cyclic cochains over A form a complex 𝐶𝐶•(A). It is a subcomplex of the Hochschild
complex obtained by dropping the cyclicity condition (7.12).

If 𝛼 is a 0-cochain, 𝑏𝛼(𝑋,𝑌 ) = 𝛼( [𝑋,𝑌 ]); so a 0-cocycle is just a trace on A. If 𝛽 is a cyclic
1-cochain, then 𝑏𝛽(𝑋,𝑌, 𝑍) = ∑

cyclic 𝛽(𝑋𝑌, 𝑍).
▶ Now take as A the algebra of bounded operators on 𝑉 whose antilinear part is Hilbert–Schmidt.
A cyclic 𝑛-cocycle is given by:

𝜔(𝑋0, 𝑋1, . . . , 𝑋𝑛) := Tr(𝐽 [𝐽, 𝑋0] . . . [𝐽, 𝑋𝑛]). (7.14)

For even 𝑛, this is identically zero. For odd 𝑛, cyclicity is obvious from (7.11). Moreover, since
[𝐽, 𝑋𝑌 ] = 𝑋 [𝐽,𝑌 ] + [𝐽, 𝑋]𝑌 , the sum in (7.13) telescopes to

𝑏𝜔(𝑋0, . . . , 𝑋𝑛+1) = Tr(𝐽𝑋0 [𝐽, 𝑋1] . . . [𝐽, 𝑋𝑛+1]) − Tr(𝐽 [𝐽, 𝑋0] . . . [𝐽, 𝑋𝑛]𝑋𝑛+1)
+ Tr(𝐽 [𝐽, 𝑋𝑛+1𝑋0] . . . [𝐽, 𝑋𝑛])

= −Tr(𝐽 [𝐽, 𝑋𝑛+1]𝑋0 [𝐽, 𝑋1] . . . [𝐽, 𝑋𝑛]) − Tr(𝐽𝑋𝑛+1 [𝐽, 𝑋0] [𝐽, 𝑋1] . . . [𝐽, 𝑋𝑛])
+ Tr(𝐽 [𝐽, 𝑋𝑛+1𝑋0] . . . [𝐽, 𝑋𝑛]) = 0,

because 𝐽 anticommutes with every [𝐽, 𝑋].
The bosonic Schwinger term 𝛼 is thus (the restriction to sp′(𝑉) of) a cyclic 1-cocycle. The

introduction of cyclic cohomology [27] is a stepping stone to noncommutative geometry, which
allows for a far-reaching development of new methods in the foundations of quantum field theory.
We shall not discuss these matters here, except to say that a convenient first step is to produce a
supersymmetric formulation; it is seen in [1] that the fermionic Schwinger term similarly yields a
cyclic cocycle.

The relation of cyclic cohomology to Lie-algebraic cohomology, that we have exemplified, is a
general result, established in [29, 30]. Recall that a Lie-algebra (𝑛 + 1)-cocycle is an alternating
(𝑛 + 1)-linear form, i.e., it satisfies the analogue of (7.12) for an arbitrary (rather than a cyclic)
permutation of the arguments. If 𝔸 denotes skewsymmetrization of the arguments, the relation
between 𝛿𝛼 = 0 and 𝑏𝛼 = 0 may be extended and succinctly expressed as: 𝔸(𝑏𝛼) = 𝛿(𝔸𝛼).

The remark that [𝐽, ·] is a derivation allows one to lift cyclic cocycles to linear forms on a
universal differential graded algebra Ω•A [27, 31, 32]; for example, (7.14) can be written in the
form 𝜔(𝑋0, 𝑋1, . . . , 𝑋𝑛) = 𝜏(𝑋0 𝑑𝑋1 𝑑𝑋2 · · · 𝑑𝑋𝑛) where 𝜏 is a graded trace and 𝑑 is the differential
which lifts [𝐽, ·]. The starting point of “noncommutative geometry” is that the exterior derivative
of differential forms can be similarly lifted to a universal differential; one can then use 𝑑 to define
noncommutative generalizations of connections and curvatures, from which ordinary connections
and curvatures may be recovered by suitable projections [27, 32].
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It has been pointed out in [33] that the cyclic cocycle 𝛼 of (7.10) can be viewed as a curvature
form representing the first Chern class of a complex line bundle; when Sp′(𝑉) is replaced by the
restricted general linear group of𝑉 , this is the determinant bundle over the unitary Grassmannian [6].

Formula (7.14) obviously works for any element of the Schatten class L𝑛+1; on the other hand
(7.10) must be modified when 𝑋,𝑌 belong to L𝑛+1, for 𝑛 > 1. A recipe for that is given by
Mickelsson in [34].

8 The Virasoro subgroup of the extended symplectic group
Thus far, we have considered general symplectic vector spaces and compatible complex structures.
To go further, we must understand how particular complex structures arise in specific examples.
One wishes in general that the chosen complex structure be invariant under a given “free dynamics”.
The detailed construction of unique preferred complex structures is given in the Appendix; a short
summary of the procedure will suffice for the moment.

One usually starts with a linear Hamiltonian system (𝑉0, 𝑠0, 𝐴0) where 𝑉0 is a real Banach
space (with a suitable norm), 𝑠0 is a symplectic form on 𝑉0, and 𝐴0 is an (unbounded) densely
defined operator on 𝑉0, skewadjoint with respect to 𝑠0; and such that the classical energy function
𝑣 ↦→ 𝑠0(𝑣, 𝐴0𝑣) satisfies a positivity condition of the type 𝑠0(𝑣, 𝐴0𝑣) ⩾ Y∥𝑣∥2, where ∥·∥ denotes the
original Banach norm on 𝑉0. Then 𝑑0(𝑢, 𝑣) := 𝑠0(𝑢, 𝐴0𝑣) is a positive form making Dom 𝐴0 a real
prehilbert space, whose completion𝑉1 is a Hilbert space densely embedded in 𝐴0. The sought-after
complex structure 𝐽 is the polar part of the restriction of 𝐴0 to 𝑉1; we write 𝑑𝐽 (𝑢, 𝑣) := 𝑠0(𝑢, 𝐽𝑣)
and complete 𝑉1 again with respect to the new scalar product 𝑑𝐽 to obtain the final Hilbert space 𝑉 :
see Theorem A.3.

Before tackling the standard Klein–Gordon field, it is instructive to consider the basic example
of function spaces on the circle, which leads to the action of the Virasoro group on a boson Fock
space. Besides its intrinsic interest, the Virasoro example gives us a clearer picture of how the
various strands of the field construction are delicately intertwined.

8.1 A rotation-invariant complex structure

This example, motivated by string theory, arises in the study of the loop group Map(𝕊1, 𝕋 ) of
the circle [5, 6]. It blends itself agreeably with pieces of classical analysis. The Lie algebra of
Map(𝕊1, 𝕋 ) is the vector space Map(𝕊1,ℝ) of smooth real-valued maps of the circle 𝕊1. The
Banach space 𝑉0 is the space 𝐿2(𝕊1,ℝ)/ℝ obtained by enlarging this space to include all square-
integrable functions and quotienting by the constant maps; which can be identified with the space
of periodic square-integrable functions on the interval 0 ⩽ \ ⩽ 2𝜋 whose Fourier expansions have
vanishing constant term. The symplectic form 𝑠0 is then given by

𝑠0( 𝑓 , ℎ) :=
1

2𝜋

∫ 2𝜋

0
𝑓 ′(\) ℎ(\) 𝑑\. (8.1)

which is nondegenerate on 𝑉0 (in the weak sense). For 𝐴0 we take the generator of the rotations of
the circle: 𝐴0 = 𝑑/𝑑\, with Dom 𝐴0 := { 𝑓 ∈ 𝑉0 : 𝑓 ′ ∈ 𝐿2(𝕊1,ℝ) }.
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The energy norm 𝑑0 – see Eq. (A.3) – satisfies the estimate (A.1) with Y = 1, since

𝑑0( 𝑓 , 𝑓 ) := 𝑠0( 𝑓 , 𝑓 ′) =
1

2𝜋

∫ 2𝜋

0
| 𝑓 ′(\) |2 𝑑\ =

∑︁
𝑛≠0

𝑛2 | 𝑓 (𝑛) |2

⩾
∑︁
𝑛≠0

| 𝑓 (𝑛) |2 =
1

2𝜋

∫ 2𝜋

0
| 𝑓 (\) |2 𝑑\, (8.2)

where 𝑓 (𝑛) denotes the 𝑛th Fourier coefficient of 𝑓 . Moreover, since

𝑠0( 𝑓 , ℎ′) =
1

2𝜋

∫ 2𝜋

0
𝑓 ′(\) ℎ′(\) 𝑑\ = 𝑠0(ℎ, 𝑓 ′) = −𝑠0( 𝑓 ′, ℎ) (8.3)

for 𝑓 , ℎ ∈ Dom 𝐴0, the operator 𝐴0 is skewsymmetric with respect to 𝑠0; indeed, it is clear from (8.3)
that 𝑓 lies in the domain of the 𝑠0-adjoint 𝐴‡0 if and only if 𝑓 ′ ∈ 𝐿2(𝕊1,ℝ), so that 𝐴0 is in fact
skewadjoint with respect to 𝑠0.

Thus the hypotheses of Lemma A.2 are verified. From (8.2), it is clear that 𝑉1 = Dom 𝐴0
(which in this case is already complete for the energy norm) and that, if 𝐴 denotes the restriction
of 𝐴0 to Dom 𝐴 := { 𝑓 ∈ 𝑉0 : 𝑓 ′, 𝑓 ′′ ∈ 𝐿2(𝕊1,ℝ) }, then 𝐴 maps this domain onto 𝑉1. Since
(−𝑑2/𝑑\2) (sin 𝑘\) = 𝑘2 sin 𝑘\ and (−𝑑2/𝑑\2) (cos 𝑘\) = 𝑘2 cos 𝑘\, we see that

𝐽 :=
𝑑

𝑑\

(
− 𝑑2

𝑑\2

)−1/2

is given by
𝐽 (sin 𝑘\) := cos 𝑘\, 𝐽 (cos 𝑘\) := − sin 𝑘\,

for 𝑘 positive. In other words, 𝐽 is the classical operator that associates to a periodic function its
conjugate periodic function. This is known to be representable by a Hilbert transform [35]:

𝐽 𝑓 (\) = 1
2𝜋

PV
∫ 2𝜋

0
cot

(
\′ − \

2

)
𝑓 (\′) 𝑑\′ (8.4a)

That is therefore the unique rotation-invariant positive compatible complex structure on 𝑉1 .
Now the real Hilbert space (𝑉, 𝑑𝐽) is determined by

𝑑𝐽 ( 𝑓 , ℎ) :=
1

2𝜋

∫ 2𝜋

0
𝑓 (\)

(
− 𝑑2

𝑑\2

)1/2
ℎ(\) 𝑑\,

i.e., 𝑉 is the space of real “half-densities” on 𝕊1.
Let us note that on the complexification 𝑉ℂ, there holds

−𝑖𝐽 (𝑒𝑖𝑘\) = Y𝑘𝑒𝑖𝑘\ , (8.4b)

with Y𝑘 = +1 or −1 according as 𝑘 is positive or negative. Thus the polarization 𝑊0 = (1 − 𝑖𝐽)𝑉
consists of complex-valued functions on the circle whose Fourier series 𝑓 (\) = ∑

𝑘>0 𝑎𝑘𝑒
𝑖𝑘\ satisfy∑

𝑘>0 𝑘 |𝑎𝑘 |2 < ∞: note that isotropy is directly checked by Cauchy’s theorem! These lie in the
Hardy space 𝐻2(𝔻) of holomorphic functions on the unit disk 𝔻 which extend to square-integrable
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functions on the boundary 𝕊1, and moreover vanish at the origin; similarly, 𝑊∗
0 may be considered

as a subspace of the Hardy space of functions holomorphic outside 𝕊1, square-integrable on the
circle and vanishing at infinity. Elements 𝑓 , 𝑔 ∈ 𝑊0 have the scalar product

⟨⟨ 𝑓 | 𝑔⟩⟩ = 1
𝜋𝑖

∫
𝔻

𝑑𝑓 ∗ ∧ 𝑑𝑔.

In summary, there exists on𝑉 a unique positive symplectic complex structure that commutes with
rotations, given by (8.4); the operator −𝑖 𝑑/𝑑\ is positive on the complex Hilbert space determined
by 𝐽; that will ensure, by means of the theory developed in subsection 4.1, that the corresponding
representation of the Virasoro group is a “positive energy” representation in the sense of [5, 6].

8.2 The Schwinger term for the Virasoro group

Let us now see how this rotation-invariant complex structure, and the full quantization which
follows therefrom, together with the Schwinger term which we have derived from the metaplectic
representation, allows us to compute “from first principles” the well-known anomalous term of the
Virasoro Lie algebra.

The group Diff+(𝕊1) of orientation-preserving diffeomorphisms of the circle acts on the space𝑉
of the previous subsection by (𝑔𝜙 𝑓 ) (\) := 𝑓 (𝜙−1(\)) for 𝜙 ∈ Diff+(𝕊1). In view of (8.1) and the
fundamental theorem of integration theory we conclude that 𝑔𝜙 ∈ Sp(𝑉) for each 𝜙.

In fact, the 𝑔𝜙 belong to the restricted symplectic group Sp′(𝑉), i.e., [𝐽, 𝑔𝜙] is a Hilbert-Schmidt
operator on 𝑉 . To see that [6], we compute the integral kernel of [𝐽, 𝑔𝜙]:

𝐾 (\1, \2) =
1

2𝜋

∫ 2𝜋

0
𝛿(𝜙−1(\1) − \) cot

( \2 − \
2

)
− cot

( \ − \1
2

)
𝛿(𝜙−1(\) − \2) 𝑑\

= cot
( \2 − 𝜙−1(\1)

2

)
− cot

(𝜙(\2) − \1
2

)
𝜙′(\2),

which is continuous except perhaps when \1 = 𝜙(\2). Since cot 𝑥 − 1/𝑥 vanishes at 𝑥 = 0, we need
only observe that

2
\2 − 𝜙−1(\1)

− 2𝜙′(\2)
𝜙(\2) − \1

→ 𝜙′′(\2)
𝜙′(\2)

as \1 → 𝜙(\2)

to conclude that [𝐽, 𝑔𝜙] has a continuous kernel. By the same token, it is seen that 𝐾 is continuously
differentiable – indeed smooth – and hence is Hilbert–Schmidt. Our proof is superficially different
from the arguments given in [6].

The metaplectic representation of Sp′(𝑉) thus gives rise to a projective unitary representation
of Diff+(𝕊1). This lifts to a linear unitary representation of a one-dimensional central extension
of Diff+(𝕊1) by U(1). This extension (i.e., the Virasoro group) could be developed from scratch, as
is done very instructively in [36], for example; but in our case a more powerful approach is available:
we use the U(1) extension of Sp′(𝑉) already constructed from the metaplectic representation and
identify the Virasoro group as the subgroup generated by Diff+(𝕊1) and U(1). Since Diff+(𝕊1) is
simple [37], the metaplectic representation is the only unitary representation of the Virasoro group
intertwining with the given action of Diff+(𝕊1).

39



At the infinitesimal level, the derived metaplectic representation ¤a carries the Virasoro Lie
algebra into an algebra of operators on the boson Fock space B(𝑉). The Lie algebra of Diff+(𝕊1)
consists of vector fields b (\) 𝑑

𝑑\
∈ X(𝕊1) for which b (\) is smooth. The Lie bracket is of course

[b 𝑑
𝑑\
, [ 𝑑

𝑑\
] = (b[′ − b′[) 𝑑

𝑑\
. A basis for the (complexified) Lie algebra is given by the vector fields

𝑋𝑘 := 𝑖𝑒−𝑖𝑘\
𝑑

𝑑\
. (8.5)

It is clear that they verify the Lie algebra relations:

[𝑋𝑘 , 𝑋𝑚] = (𝑚 − 𝑘)𝑋𝑘+𝑚 .

Write 𝐴𝑘 := 1
2 (𝑋𝑘 + 𝐽𝑋𝑘𝐽) to denote the antilinear part of 𝑋𝑘 . Then from (8.4) and (8.5) we get

at once:
𝐴𝑘 (𝑒𝑖𝑛\) = 1

2𝑛(Y𝑛Y𝑛−𝑘 − 1) 𝑒𝑖(𝑛−𝑘)\ .
Notice that the coefficient vanishes unless 𝑛 lies between 0 and 𝑘 , so that 𝐴𝑘 is of finite rank. We
see that [𝐴𝑘 , 𝐴𝑚] (𝑒𝑖𝑛\) is a multiple of (𝑒𝑖(𝑛−𝑘−𝑚)\), and so Trℂ( [𝐴𝑘 , 𝐴𝑚]) = 0 unless 𝑚 = −𝑘 .
Moreover,

[𝐴𝑘 , 𝐴−𝑘 ] (𝑒𝑖𝑛\) = 1
4𝑛

{
(𝑛 + 𝑘) (Y𝑛Y𝑛+𝑘 − 1)2 − (𝑛 − 𝑘) (Y𝑛Y𝑛−𝑘 − 1)2} 𝑒𝑖𝑛\

= 1
2𝑛

{
2𝑘 − Y𝑛 (Y𝑛+𝑘 (𝑛 + 𝑘) − Y𝑛−𝑘 (𝑛 − 𝑘))

}
𝑒𝑖𝑛\ . (8.6)

The Schwinger term acts as the generator of the nontrivial second cohomology space of the
Lie algebra X(𝕊1). It is now easy to compute: Trℂ( [𝐴𝑘 , 𝐴−𝑘 ]) is just the sum of the (diagonal)
coefficients in (8.6) for 𝑛 > 0; and these coefficients vanish for 𝑛 ⩾ |𝑘 |. Thus, if 𝑘 > 0,

𝛼(𝑋𝑘 , 𝑋−𝑘 ) =
1
2

Trℂ( [𝐴𝑘 , 𝐴−𝑘 ]) =
1
4

𝑘−1∑︁
𝑛=1

(2𝑛𝑘 − 𝑛(𝑛 + 𝑘) − 𝑛(𝑛 − 𝑘))

=
1
2

𝑘−1∑︁
𝑛=1

𝑛(𝑘 − 𝑛) = 𝑘3 − 𝑘
12

.

If 𝑋 = b 𝑑
𝑑\

= −𝑖∑𝑘 b̂ (−𝑘)𝑋𝑘 and 𝑌 = [ 𝑑
𝑑\

, we therefore find that

𝛼(𝑋,𝑌 ) = 1
12

∑︁
𝑘

(𝑘 − 𝑘3)b̂ (−𝑘)[̂(𝑘) = − 𝑖

24𝜋

∫ 2𝜋

0
(b′(\) + b′′′(\))[(\) 𝑑\

=
𝑖

24𝜋

∫ 2𝜋

0
(b (\) + b′′(\))[′(\) 𝑑\, (8.7)

which is the Gelfand–Fuchs cocycle [38] determining the Virasoro Lie algebra as a central extension
of X(𝕊1). Notice that the term

∫
b [′ is a Lie algebra coboundary which could be dropped without

altering the extension.
The unitary representation of the Virasoro algebra we have been dealing with has central charge

𝑐 = 1. For a discussion of the properties of the irreducible subrepresentations, we refer to [5, 6].
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8.3 The Virasoro anomaly

The anomaly arising from the adjoint representation of the Virasoro group can in principle be
computed directly from the general expression (7.8) for the bosonic anomaly. However, a shorter
path is afforded by (7.5). We shall use the equality [X(𝕊1),X(𝕊1)] = X(𝕊1). The adjoint action of
Diff+(𝕊1) on X(𝕊1) is easy to determine [39]; indeed, Ad(𝑔𝜙)𝑋 𝑓 = 𝑋 ( 𝑓 ◦ 𝜙) ◦ 𝜙−1 = (𝜙∗𝑋) 𝑓 , so

[Ad(𝑔−1
𝜙 )𝑋 𝑓 ] (\) = 𝑋 ( 𝑓 ◦ 𝜙−1(\)) (𝜙(\)) = b (𝜙(\)) ( 𝑓 ◦ 𝜙−1)′(𝜙(\)) = b (𝜙(\))

𝜙′(\) 𝑓 ′(\),

or, more simply, Ad(𝑔−1
𝜙
)
(
b 𝑑
𝑑\

)
= (b ◦ 𝜙)/𝜙′ 𝑑

𝑑\
. Therefore,

𝛼(Ad(𝑔−1
𝜙 )𝑋,Ad(𝑔−1

𝜙 )𝑌 ) = 𝑖

24𝜋

∫ 2𝜋

0

(
b ◦ 𝜙
𝜙′

+
(b ◦ 𝜙
𝜙′

)′′) ([ ◦ 𝜙
𝜙′

)′
𝑑\. (8.8)

With the notation \ = \ (𝜙) for 𝜙−1 ∈ Diff+(𝕊1), the first term of (8.8) simplifies thus:

𝑖

24𝜋

∫ 2𝜋

0

(b ◦ 𝜙
𝜙′

) 𝑑
𝑑\

([ ◦ 𝜙
𝜙′

)
𝑑\ =

𝑖

24𝜋

∫ 2𝜋

0
(b\′) (𝜙) 𝑑

𝑑𝜙
([\′) (𝜙) 𝑑𝜙

=
𝑖

24𝜋

∫ 2𝜋

0
(b[′) (𝜙)\′(𝜙)2 + (b[) (𝜙)\′(𝜙)\′′(𝜙) 𝑑𝜙

=
𝑖

48𝜋

∫ 2𝜋

0
(b[′ − b′[) (𝜙)\′(𝜙)2 𝑑𝜙. (8.9)

If we write ℎ(𝜙(\)) := 𝜙′′(\)/𝜙′(\)2, we get 𝑑
𝑑\
((b ◦ 𝜙)/𝜙′) = (b′ − ℎb) ◦ 𝜙, so the second term

of (8.8) gives

𝑖

24𝜋

∫ 2𝜋

0

(b ◦ 𝜙
𝜙′

)′′([ ◦ 𝜙
𝜙′

)′
𝑑\ =

𝑖

24𝜋

∫ 2𝜋

0
((b′ − ℎb) ◦ 𝜙)′(([′ − ℎ[) ◦ 𝜙) 𝑑\

=
𝑖

24𝜋

∫ 2𝜋

0
(b′ − ℎb)′([′ − ℎ[) 𝑑𝜙

=
𝑖

48𝜋

∫ 2𝜋

0
(b′ − ℎb)′([′ − ℎ[) − (b′ − ℎb) ([′ − ℎ[)′ 𝑑𝜙

=
𝑖

48𝜋

∫ 2𝜋

0
(b′′[′ − b′[′′) − (2ℎ′ + ℎ2) (b[′ − b′[) 𝑑𝜙. (8.10)

Now we note that

𝜙′(\)2(ℎ′ + 1
2ℎ

2) (𝜙(\)) = 𝜙′′′(\)
𝜙′(\) − 3

2

(𝜙′′(\)
𝜙′(\)

)2
=: 𝑆(𝜙) (\),

where 𝑆(𝜙) is the Schwarzian derivative of 𝜙. We think that the following identity is well known:

𝑆(𝜙) (\)
𝜙′(\)2 = −𝑆(\) (𝜙).
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Combining then (8.9) and (8.10), we arrive at

𝛼(Ad(𝑔−1
𝜙 )𝑋, Ad(𝑔−1

𝜙 )𝑌 ) − 𝛼(𝑋,𝑌 ) = 𝑖

48𝜋

∫ 2𝜋

0
(b[′ − b′[) (𝜙)

(
\′(𝜙)2 − 1 + 2𝑆(\) (𝜙)

)
𝑑𝜙.

Interchanging 𝜙 and 𝜙−1, replacing [𝑋,𝑌 ] by 𝑋 and using (7.5), the Virasoro anomaly is thereby
obtained:

𝛾(𝑔𝜙, 𝑋) =
𝑖

48𝜋

∫ 2𝜋

0
b (\)

(
2𝑆(𝜙) (\) + 𝜙′2(\) − 1

)
𝑑\, (8.11)

where 𝑋 was b 𝑑
𝑑\

.
We can understand this formula in the following way. The dual of the Lie algebra X(𝕊1) –

actually, the regular part of the dual in Kirillov’s terminology [39] – is the space of quadratic
differentials 𝑞(\) 𝑑\2 on the circle. The duality is given by

⟨𝑞, 𝑋⟩ = 1
2𝜋

∫ 2𝜋

0
𝑞(\) b (\) 𝑑\,

which is invariant under reparametrizations 𝜙 ∈ Diff+(𝕊1): this can be seen, at the infinitesimal
level, from the Lie derivative [ 𝑑

𝑑\
(𝑞(\) 𝑑\2) = (2[′𝑞 + [𝑞′)𝑑\2. Thus the Virasoro coalgebra

consists of pairs (𝑞,−𝑖𝑡) with 𝑡 ∈ ℝ, and the coadjoint action of the Virasoro group is given by

⟨�Coad(𝑔−1
𝜙 ) (𝑞,−𝑖𝑡), (𝑋, 𝑖𝑟)⟩ := ⟨(𝑞,−𝑖𝑡), (Ad(𝑔𝜙)𝑋, 𝑖𝑟 + 𝛾(𝑔𝜙, 𝑋))⟩,

which reduces to �Coad(𝑔−1
𝜙 ) (𝑞,−𝑖𝑡) = (𝑞 ◦ 𝜙 + 𝑡

12 (𝑆(𝜙) + 𝜙
′2 − 1),−𝑖𝑡).

This is the starting point for the classification of the coadjoint orbits of the Virasoro group, which
has been studied by several authors [39–41]. (Our formulas have some differences with those of
Witten [41], who uses the alternative version (𝑖/24𝜋)

∫
b′′[′ 𝑑\ of the Gelfand–Fuchs cocycle,

yielding a cohomologous extension.)
Remark. The Virasoro group can also be extracted as a subgroup of a one dimensional extension
of the restricted orthogonal group, if one starts from the one-particle space of a fermion theory [1]
and replaces the metaplectic representation by the spin representation on the fermion Fock space.
An approach in this spirit has been given in an important paper by Maderner [36], who develops
the anomalous terms in the context of a 2-dimensional conformal field theory: his representation of
the Virasoro group is given a priori, as a twisted version of that proposed by G. Segal [5], which is
essentially the one developed here. The Schwinger term for the spin representation is given by (7.4)
or (7.10) but with the opposite – fermionic – sign (see [7], for example) and so one arrives by a
parallel route at the Gelfand–Fuchs cocycle (8.7). The expression (8.11) for the Virasoro anomaly
is also obtained by Maderner (with central charge equal to 1

2 ); his procedure of exponentiating the
action of the Virasoro Lie algebra seems a bit circuitous, but works well in practice. He identifies
it as the energy-momentum tensor anomaly of a conformal field theory.
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9 The neutral scalar field
9.1 The complex structure for the Klein–Gordon equation

Let us take for 𝑉0 a space of real solutions of the Klein–Gordon equation, which we rewrite as a
first-order system:

𝑑

𝑑𝑡

(
𝑓

𝑔

)
=

(
0 1

Δ − 𝑚2 0

) (
𝑓

𝑔

)
=: 𝐴0

(
𝑓

𝑔

)
. (9.1)

The corresponding symplectic form is:

𝑠0

((
𝑓1
𝑔1

)
,

(
𝑓2
𝑔2

))
:=

∫
ℝ3
( 𝑓2(𝒙)𝑔1(𝒙) − 𝑓1(𝒙)𝑔2(𝒙)) 𝑑3𝒙, (9.2)

where we write 𝒙, 𝒚, 𝒌, . . . for 3-vectors and 𝑥, 𝑦, 𝑘, . . . for 4-vectors.
We recall that the Sobolev space 𝐻𝑠 (ℝ3), for 𝑠 real, is defined as the completion of 𝐶∞

𝑐 (ℝ3),
say, in the norm

∥ 𝑓 ∥2
𝑠 :=

∫
ℝ3
(1 + 𝒌2)𝑠/2 | 𝑓 (𝒌) |2 𝑑3𝒌 .

The operator 𝜔 := (𝑚2 − Δ)1/2 is positive from 𝐻𝑠 (ℝ3) to 𝐻𝑠−2(ℝ3) with bounded inverse of
norm 𝑚−1.

The energy norm on 𝑉0 is given by:

𝑑0

(
𝑓

𝑔

)
=

1
2
𝑠0

((
𝑓

𝑔

)
, 𝐴0

(
𝑓

𝑔

))
=

1
2

∫
ℝ3

(
(𝑔(𝒙))2 + (∇ 𝑓 (𝒙))2 + 𝑚2( 𝑓 (𝒙))2) 𝑑3𝑥. (9.3)

The completion of 𝐶∞
𝑐 (ℝ3) ⊕ 𝐶∞

𝑐 (ℝ3) in this norm is the real Hilbert space 𝐻1(ℝ3) ⊕ 𝐿2(ℝ3).
Note that the integrand is the usual Hamiltonian density of classical Lagrangian field theory.

The formal solution of (9.1) with Cauchy data 𝑓 (·, 0), 𝑔(·, 0) is:(
𝑓 (·, 𝑡)
𝑔(·, 𝑡)

)
=

(
cos𝜔𝑡 𝑓 (·, 0) + 𝜔−1 sin𝜔𝑡 𝑔(·, 0)
−𝜔 sin𝜔𝑡 𝑓 (·, 0) + cos𝜔𝑡 𝑔(·, 0)

)
. (9.4)

We obtain the appropriate solution space applying the machinery developed in the Appendix.
We could as well start with the Banach space 𝑉0 := 𝐿2(ℝ3) ⊕ 𝐿2(ℝ3) with 𝑠0 given by (9.2),
and take 𝐴0 as in (9.1) with domain Dom 𝐴0 := 𝐻2(ℝ3) ⊕ 𝐿2(ℝ3). The energy norm (9.3) gives
𝑉1 = 𝐻1(ℝ3) ⊕ 𝐿2(ℝ3). It is readily seen that Dom 𝐴

‡
0 = Dom 𝐴0 and that 𝐴‡0 = −𝐴0. Remark that

condition (A.2) holds. Thus we may proceed to apply Lemma A.2.
In order that the restriction 𝐴 of 𝐴0 have range in𝑉1, we must take Dom 𝐴 := 𝐻2(ℝ3) ⊕𝐻1(ℝ3).

Then 𝐴 is skewadjoint with respect to 𝑑0 and to 𝑠, and the complex structure 𝐽 := 𝐴(−𝐴2)−1/2 is
given by

𝐽 =

(
0 1

−𝜔2 0

) (
𝜔 0
0 𝜔

)−1
=

(
0 𝜔−1

−𝜔 0

)
. (9.5)

Note that 𝐽 = 𝑒𝜋𝐴/2. This is a bounded operator on 𝐻1(ℝ3) ⊕ 𝐿2(ℝ3) – or on 𝐻𝑠 (ℝ3) ⊕ 𝐻𝑠−1(ℝ3),
for that matter. Use of 𝑠(·, 𝐽·) takes us finally to 𝑉 := 𝐻1/2(ℝ3) ⊕ 𝐻−1/2(ℝ3). In this final space,
𝑠 is strongly symplectic.
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On 𝐻1/2(ℝ3) ⊕ 𝐻−1/2(ℝ3) the functional calculus allows us to make sense of (9.4) as defining
a one-parameter group of unitary transformations that solves the initial-value problem for the
Klein–Gordon equation.

The moral of the story might be that complex structures are associated to the dynamics itself,
they do not come from quantum considerations. Once they have been properly chosen, quantization
can proceed.

Nor was the choice of 𝑠 given by (9.2) arbitrary. It is well known that it is the only continuous –
on 𝐻1/2(ℝ3) ⊕𝐻−1/2(ℝ3), say – Poincaré-invariant skewsymmetric form, apart from multiplication
by a constant.

9.2 Quantization of the Klein–Gordon equation

We can now complete the casting of the theory of the neutral scalar field into the metaplectic mold.
From (9.2) and (9.5) we derive

𝑑𝐽

((
𝑓1
𝑔1

)
,

(
𝑓2
𝑔2

))
=

∫
ℝ3

(
𝑓1(𝒙) 𝜔 𝑓2(𝒙) + 𝑔1(𝒙) 𝜔−1𝑔2(𝒙)

)
𝑑3𝑥.

The polarization projector which we must use is

𝑣 :=
(
𝑓

𝑔

)
↦−→ 1

2

(
𝑓 − 𝑖𝜔−1𝑔

𝑖𝜔( 𝑓 − 𝑖𝜔−1𝑔)

)
=: 𝑃+𝑣,

and one may check that 𝐽𝑃+𝑣 = 𝑖𝑃+𝑣. Now define

𝑐(𝒌) := F−1(𝜔 𝑓 − 𝑖𝑔) (𝒌), (9.6)

where F denotes the standard (unitary) Fourier transform on 𝐻𝑠 (ℝ3). Denote 𝜔(𝒌) :=
√
𝑚2 + 𝒌2.

Consider the Hilbert space H0,+
𝑚 of square summable functions over the forward mass hyperboloid

𝐻+
𝑚 with the Lorentz-invariant measure 𝑑`(𝑘) := 𝑑3𝒌/2𝜔(𝒌). This space carries the unitary

irreducible representation of the Poincaré group corresponding to massive particles of zero spin, as
described by Wigner [42]. It is clear now that there is a unitary map (𝑉, 𝑠, 𝐽) → H+

𝑚,0 given by( 𝑓
𝑔

)
↦→ 𝑐, with inverse given by:

𝑓 (𝒙) = (2𝜋)−3/2
∫ (

𝑐(𝒌)𝑒−𝑖𝒌𝒙 + 𝑐∗(𝒌)𝑒𝑖𝒌𝒙
)
𝑑`(𝑘),

𝑔(𝒙) = 𝑖(2𝜋)−3/2
∫

𝜔(𝒌)
(
𝑐(𝒌)𝑒−𝑖𝒌𝒙 − 𝑐∗(𝒌)𝑒𝑖𝒌𝒙

)
𝑑`(𝑘).

For some purposes it is convenient to work with the column vector
( 𝑐
𝑐∗
)
. We shall commit in the

following a slight abus de notation, not distinguishing between 𝜔 and the multiplication operator
F−1𝜔F. Since (

𝑐

𝑐∗

)
=

(
𝜔F−1 −𝑖F−1

𝜔F 𝑖F

) (
𝑓

𝑔

)
,

the Hamiltonian is thus given by

1
2

(
𝜔F−1 −𝑖F−1

𝜔F 𝑖F

) (
0 1

−𝜔2 0

) (
𝜔−1F 𝜔−1F−1

𝑖F −𝑖F−1

)
=

(
𝑖𝜔 0
0 −𝑖𝜔

)
,
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and the evolution is given by
𝑐(𝒌) ↦→ 𝑐(𝒌) 𝑒𝑖𝜔(𝒌)𝑡 .

Therefore, we can write (9.4) in covariant form:(
𝑓 (𝒙, 𝑡)
𝑔(𝒙, 𝑡)

)
= (2𝜋)−3/2

( ∫
(𝑐(𝒌)𝑒𝑖𝑘𝑥 + 𝑐∗(𝒌)𝑒−𝑖𝑘𝑥) 𝑑`(𝑘)

𝑖
∫
𝜔(𝒌) (𝑐(𝒌)𝑒𝑖𝑘𝑥 − 𝑐∗(𝒌)𝑒−𝑖𝑘𝑥) 𝑑`(𝑘)

)
,

where 𝑘𝑥 := 𝑘`𝑥` with metric tensor diag(1,−1,−1,−1).
At last the stage is set. Now, the standard Bargmann–Fock construction, as performed in the

previous sections, effected over (𝑉, 𝑠, 𝐽) or equivalently over 𝐻+
𝑚,0, gives the correct quantization of

the real Klein–Gordon equation. There has been no need to mention the infamous “positive-energy”
or “negative-energy” solutions. In the process we have uncovered an affinity with the method of
quantization based on Wigner’s classification of Poincaré group representations [43].

We finally remark that
𝑑𝐺 (𝐴) = −𝑖 𝑎†𝐴𝑎 = 𝑎†𝜔𝑎.

This is the rigorous counterpart in our treatment of the quantized Hamiltonian operator usually
written as [44]:

1
2

∫
:
(𝜕𝜙
𝜕𝑡

)2
+ (∇𝜙)2 + 𝑚2𝜙2: 𝑑3𝒙.

9.3 The Feynman propagator and the generating functional

Henceforth we shall use the notation |0⟩ to denote the vacuum. In this section we shall witness the
natural appearance of the Feynman propagator in the quantized theory. Consider the Klein–Gordon
equation with an external source 𝑆:

𝑑

𝑑𝑡

(
𝑓

𝑔

)
= 𝐴

(
𝑓

𝑔

)
+

(
0
𝑆

)
.

The solution of this equation is(
𝑓 (𝑡)
𝑔(𝑡)

)
= 𝑒𝐴𝑡

[(
𝑓0
𝑔0

)
+

∫ 𝑡

0
𝑒−𝐴𝜏

(
0

𝑆(𝜏)

)
𝑑𝜏

]
=: 𝑒𝐴𝑡

((
𝑓0
𝑔0

)
+ 𝛼(𝑡, 0)

)
.

The quantities of physical interest are related to the scattering by the source. Write 𝛼 for 𝛼(+∞,−∞).
A classical solution 𝑣 of the Klein–Gordon equation will be classically scattered into the solution
𝑣 + 𝛼. The incoming vacuum is scattered into |0out⟩ = 𝛽(𝛼) |0in⟩.

In this case the vacuum persistence amplitude is nothing but the vacuum state functional we
encountered in Section 4:

⟨0in | 0out⟩𝑆 = exp(−1
4 ⟨𝛼 | 𝛼⟩).

We can compute easily the probability 𝑝1 that one particle is created out of the vacuum. Consider
an arbitrary orthonormal basis {𝑒𝑘 } of 𝑉 ; then 𝑃1 =

∑
𝑘 |𝑒𝑘⟩⟨𝑒𝑘 | is the projector on the one-particle

subspace of B(𝑉), so:

𝑝1 = ⟨0out | 𝑃1 | 0out⟩𝑆 =
∑︁
𝑘

|⟨𝑒𝑘 | 𝛽(𝛼) | 0⟩|2 =
1
2
𝑒−

1
2 ⟨𝛼 |𝛼⟩

∑︁
𝑘

|⟨𝑒𝑘 | 𝛼⟩|2

=
1
2
⟨𝛼 | 𝛼⟩𝑒− 1

2 ⟨𝛼 |𝛼⟩,
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where we have used 𝛽(𝛼) |0⟩ = 𝑒−⟨𝛼 |𝛼⟩/4 exp
(
𝑖√
2
𝑎†(𝛼)

)
|0⟩ from Section 4.

More generally, the probability of creation of 𝑛 particles out of the vacuum is given by

𝑝𝑛 = ⟨0out | 𝑃𝑛 | 0out⟩𝑆 :=
∑︁

𝑘1,...,𝑘𝑛

1
𝑛!

��⟨𝑒𝑘1 ∨ · · · ∨ 𝑒𝑘𝑛 | 0out⟩
��2

=
1

2𝑛𝑛!
𝑒−

1
2 ⟨𝛼 |𝛼⟩

∑︁
𝑘1,...,𝑘𝑛

��⟨𝑒𝑘1 | 𝛼⟩ · · · ⟨𝑒𝑘𝑛 | 𝛼⟩
��2 =

( 1
2 ⟨𝛼 | 𝛼⟩)𝑛

𝑛!
𝑒−

1
2 ⟨𝛼 |𝛼⟩,

yielding the Poisson distribution with mean 1
2 ⟨𝛼 | 𝛼⟩.

From (9.4) and (9.6) it is clear that one can rewrite the functional in momentum space in the
following form:

⟨0in | 0out⟩𝑆 = exp
{
−𝜋

2

∫
|𝑆(𝒌, 𝜔(𝒌)) |2 𝑑`(𝑘)

}
,

where 𝑆 denotes the 4-dimensional Fourier transform of 𝑆. Equivalently,

⟨0in | 0out⟩𝑆 = exp
{
𝑖

2

∬
𝑆(𝑥) 𝐷𝐹 (𝑥 − 𝑦) 𝑆(𝑦) 𝑑4𝑥 𝑑4𝑦

}
=: 𝑒

𝑖
2 ⟨𝑆𝐷𝐹𝑆⟩,

where
𝐷𝐹 (𝑥 − 𝑦) :=

1
(2𝜋)4

∫
(−𝑝2 + 𝑚2 − 𝑖0)−1𝑒−𝑖𝑝(𝑥−𝑦) 𝑑4𝑝

is the Feynman propagator.

9.4 Covariant description and the Feynman propagator

Denote by 𝐷 (𝒙, 𝑡; 𝒚, 0) the (distributional) kernel of the operator −𝜔−1 sin𝜔𝑡:

(−𝜔−1 sin𝜔𝑡)𝑔(𝒙, 𝑡) =
∫
ℝ3
𝐷 (𝒙, 𝑡; 𝒚, 0)𝑔(𝒚, 0) 𝑑3𝒚.

Note that 𝐷 is skewsymmetric in its arguments (𝒙, 𝑡) and (𝒚, 0). We can write the solution of the
Klein–Gordon equation as

𝑓 (𝒙, 𝑡) =
∫
ℝ3

(
𝑓 (𝒚, 0) 𝜕

𝜕𝑠

����
𝑠=0
𝐷 (𝒙, 𝑡; 𝒚, 𝑠) − 𝐷 (𝒙, 𝑡; 𝒚, 0)𝑔(𝒚, 0)

)
𝑑3𝒚.

By a standard argument, using that 𝐷 solves the Klein–Gordon equation, the hyperplane 𝑠 = 0 in
Minkowski space 𝑀4 can be replaced by any spacelike hypersurface Σ. One obtains:

𝑓 (𝑥) =
∫
Σ

(
𝑓 (𝑦) 𝜕𝜌𝑦 𝐷 (𝑥, 𝑦) − 𝐷 (𝑥, 𝑦) 𝜕𝜌 𝑓 (𝑦)) 𝑑𝜎𝜌 (𝑦), (9.7)

where 𝑑𝜎𝜌 denotes the volume element on Σ. Also the symplectic form 𝑠 of (9.2) can be covariantly
written:

𝑠( 𝑓1, 𝑓2) =
∫
Σ

( 𝑓2(𝑥)𝜕𝜌 𝑓1(𝑥) − 𝑓1(𝑥)𝜕𝜌 𝑓2(𝑥)) 𝑑𝜎𝜌 (𝑥), (9.8)
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(making apparent its Poincaré invariance). More elegantly:

𝑠( 𝑓1, 𝑓2) =
∫
Σ

𝑓2★𝑑𝑓1 − 𝑓1★𝑑𝑓2,

where ★ is the Hodge operator.
Now we want to express elements of 𝑉 as 4-dimensional integrals. Let ℎ be a smooth function

on 𝑀4 of compact support. Then

𝑓 (𝑥) =
∫

𝐷 (𝑥, 𝑦)ℎ(𝑦) 𝑑4𝑦 (9.9)

corresponds to an element of 𝑉 , because 𝐷 (·, 𝑦) is a solution of the Klein–Gordon equation.
Reciprocally, any element 𝑓 ∈ 𝑉 with compact support can be represented in this way. For we may
take any four spacelike surfaces Σ1, Σ2, Σ3, Σ4 subject to Σ1 < Σ2 < Σ3 < Σ4 and write

ℎ 𝑓 (𝑦) := (□ + 𝑚2)𝜙(𝑦) 𝑓 (𝑦), (9.10)

where 𝜙 is a smooth function with 𝜙(𝑦) = 0 before Σ2 and 𝜙(𝑦) = 1 after Σ3. Then (9.9) with
ℎ = ℎ 𝑓 of (9.10) gives a solution of the Klein–Gordon equation which coincides on Σ4 with 𝑓 and
hence equals 𝑓 .

Of course, such an ℎ 𝑓 is far from unique. We can add to the right hand side of (9.9) any function
of the form (□+𝑚2)𝑘 , where 𝑘 is a smooth function of compact support but otherwise arbitrary. In
fact, in so doing we are identifying elements of 𝑉 with residue classes of functions on Minkowski
space, modulo the range of the Klein–Gordon operator □ + 𝑚2.

Next we rewrite 𝑠 and 𝐽 in terms of the representation (9.9). Substituting in (9.8) we get:

𝑠( 𝑓1, 𝑓2) =
∬

ℎ 𝑓2 (𝑥)𝐷 (𝑥, 𝑦)ℎ 𝑓1 (𝑦) 𝑑4𝑥 𝑑4𝑦.

The previous arguments show that such an apparently hugely degenerate form is actually well
defined. This can be verified also by 4-dimensional Fourier transformation: it is then seen that only
the on-mass-shell harmonics of ℎ 𝑓1 , ℎ 𝑓2 contribute.

Now let 𝐷1(𝑥, 𝑦) be the kernel of𝜔−1 cos𝜔𝑡, a different solution of the Klein–Gordon equation,
which obeys 𝐷1(𝑥, 𝑦) = 𝐷1(𝑦, 𝑥). Then we find that:

𝐽 𝑓 (𝑥) = −
∫
Σ

(
𝑓 (𝑦) 𝜕𝜌𝑦 𝐷1(𝑥, 𝑦) − 𝐷1(𝑥, 𝑦) 𝜕𝜌 𝑓 (𝑦)

)
𝑑𝜎𝜌 (𝑦),

because, by (9.4) and (9.5), this is true when Σ is the hypersurface 𝑦0 = 0. Substituting (9.9) for 𝑓
and applying the propagation formula (9.7) to 𝐷1 – as we may, again because 𝐷1 is a solution – one
gets simply:

𝐽 𝑓 (𝑥) = −
∫

𝐷1(𝑥, 𝑦)ℎ 𝑓 (𝑦) 𝑑4𝑦. (9.11)

The complex structure property 𝐽2 = −1 is equivalent [45,46] to the following distributional identity
for the kernels 𝐷 and 𝐷1:

𝐷 (𝑥, 𝑦) =
∫
Σ

(
𝐷1(𝑥, 𝑧) 𝜕𝜌𝑧 𝐷1(𝑧, 𝑦) − 𝐷1(𝑧, 𝑦) 𝜕𝜌𝑧 𝐷1(𝑥, 𝑧)

)
𝑑𝜎𝜌 (𝑧).
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From (9.7), (9.8) and (9.11) it follows easily that

𝑠( 𝑓1, 𝐽 𝑓2) =
∬

ℎ 𝑓1 (𝑥) 𝐷1(𝑥, 𝑦) ℎ 𝑓2 (𝑦) 𝑑4𝑥 𝑑4𝑦.

Assume that supp ℎ1 ∩ (past of supp ℎ2) = ∅. Recall that 𝐷𝐹 = 1
2 (𝐷ret + 𝐷adv + 𝑖𝐷1) and also

𝐷 = 𝐷adv − 𝐷ret. If 𝑣1 =
( 𝑓1
𝑔1

)
with ℎ1 = ℎ 𝑓1 and similarly for 𝑣2, we get

⟨𝑣1 | 𝑣2⟩ = 𝑠(𝑣1, 𝐽𝑣2) + 𝑖𝑠(𝑣1, 𝑣2)

=

∫
ℎ1(𝑥) [𝐷1 + 𝑖𝐷] (𝑥, 𝑦) ℎ2(𝑦) 𝑑4𝑥 𝑑4𝑦 = −2𝑖 ⟨ℎ 𝑓1𝐷𝐹ℎ 𝑓2⟩.

Analogously, if ℎ1 is to the past of ℎ2, we obtain:

⟨𝑣2 | 𝑣1⟩ =
∫

ℎ1(𝑥) [𝐷1 − 𝑖𝐷] (𝑥, 𝑦) ℎ2(𝑦) 𝑑4𝑥 𝑑4𝑦 = −2𝑖 ⟨ℎ 𝑓1𝐷𝐹ℎ 𝑓2⟩.

This is of course consistent with the results of the previous subsection: it suffices to remark that
𝛼 is a solution of the Klein–Gordon equation given by −

∫
𝐷 (·, 𝑦) 𝑆(𝑦) 𝑑4𝑦.

In order to obtain transition amplitudes from test functions on 𝑀4, we must smear them out with
the Feynman propagator. In other words, 𝐷𝐹 , which plays no classical role, is related to the choice
of quantization; hence its inevitability.

Part of the previous treatment can be immediately generalized to equations of Klein–Gordon type
in globally hyperbolic Lorentzian spacetimes, with no other change than substituting the invariant
volume element √−𝑔 𝑑4𝑥 for 𝑑4𝑥. Whereas 𝐷 for time-dependent field theories can still be defined
merely from the dynamics, the definition of 𝐷𝐹 and of 𝐽 are linked; and the (difficult) problems
of figuring out what are the correct complex structures and the Feynman propagator are essentially
the same. There is a large – and continually growing – literature on the subject. Consult, as well
as [45, 46], the now-classic [47] for static spacetimes (where no major difficulties arise) and [48]
for conformally, asymptotically Minkowskian spacetimes. Also the book by Fulling [49] and the
review [11] are pertinent.

10 The scattering matrix for boson fields
10.1 The out vacuum

In analyzing a scattering experiment of a Klein–Gordon particle by an external field, it makes sense
to keep the complex structure associated to the free motion as the preferred one; with respect to the
corresponding quantization, the evolution of the system under the full Hamiltonian is interpreted as
creating or annihilating particles. To fix ideas, consider the scalar coupling of the Klein–Gordon
equation to an external potential:

𝜕2

𝜕𝑡2
𝑓 = (Δ − 𝑚2 +𝑉 (𝒙, 𝑡)) 𝑓 ,

that we rewrite as:

𝑑

𝑑𝑡

(
𝑓

𝑔

)
=

(
0 1

−𝜔2 0

) (
𝑓

𝑔

)
+

(
0 0
𝑉 0

) (
𝑓

𝑔

)
=: (𝐴 +𝑉)

(
𝑓

𝑔

)
. (10.1)
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The space of solutions of this equation is again a symplectic space and the symplectic form 𝑠 has
the same form as for the free equation. The vector field 𝐴 + 𝑉 is still Hamiltonian and the (total)
energy function is:

𝑑0

(
𝑓

𝑔

)
= 𝑠

((
𝑓

𝑔

)
, (𝐴 +𝑉)

(
𝑓

𝑔

))
=

1
2

∫
𝑔(𝒙)2 + ∇ 𝑓 (𝒙)2 + (𝑚2 +𝑉 (𝒙)) 𝑓 (𝒙)2 𝑑3𝒙

when 𝑉 is time-independent.
This system, or its momentum space equivalent, can be dealt with perturbatively following the

Dirac–Dyson strategy: if 𝑈 (𝑡, 𝑠) denotes the solution of (10.1), introduce the “interaction picture”
propagator

𝑔(𝑡, 𝑠) := exp(−𝐴𝑡)𝑈 (𝑡, 𝑠) exp(𝐴𝑠).
Thus

𝑑

𝑑𝑡
𝑔(𝑡, 𝑠) = exp(−𝐴𝑡)𝑉 (𝑡) exp(𝐴𝑡) 𝑔(𝑡, 𝑠),

and we solve the attendant integral equation by iteration; under appropriate restrictions for 𝑉 ,
the procedure is wholly rigorous. It is well known that then the classical scattering matrix is
𝑆cl = 𝑔(∞,−∞). We shall simply write 𝑔 for 𝑆cl.

The quantum scattering transformation will have to intertwine between the boson field 𝜙(·) and
the boson field corresponding to the scattered solution 𝜙(𝑔 ·). Thus it coincides – except perhaps
for the phase – with the metaplectic representation. Since we have computed a explicitly in the
Segal–Bargmann presentation, we already possess the exact form of the quantum scattering matrix.
All we need to do is to translate our results in the usual Fock space language of quantum scattering
theory.

Simple considerations allow us to find immediately the form of the out-vacuum. The out vacuum
is characterized, up to a phase factor, by the equation 𝑎𝑔 (𝑔𝑣) |0out⟩ = 0, for all 𝑣 ∈ 𝑉 . In view
of (5.15), replacing 𝑣 by 𝑝−1

𝑔 𝑣, this condition is:

(𝑎(𝑣) + 𝑎†(𝑇𝑔𝑣)) |0out⟩ = 0, for all 𝑣 ∈ 𝑉. (10.2)

We already know that this equation has an essentially unique solution 𝑐𝑔 𝑓𝑇𝑔 in B(𝑉). It is, however,
instructive to rederive it in a more concrete fashion.

If 𝐵 is an antilinear symmetric operator on𝑉 , the operator 𝑎†𝐵𝑎† given by (4.19), when applied
to the vacuum vector |0⟩, produces the antiholomorphic function −1

2 ⟨𝑢 | 𝐵𝑢⟩. Thus

exp(−1
2𝑎

†𝑇𝑔𝑎
†) |0⟩(𝑢) = exp( 1

4 ⟨𝑢 | 𝑇𝑔𝑢⟩) = 𝑓𝑇𝑔 (𝑢), (10.3)

so that |0out⟩ ∝ exp(−1
2𝑎

†𝑇𝑔𝑎†) |0⟩ is indeed a solution to the equation (10.2).
Formal computations with the CCR (4.14) indicate that [𝑎(𝑣), 𝑎†𝐵𝑎†] = 2𝑎†(𝐵𝑣) and thus that

[𝑎(𝑣), exp(−1
2𝑎

†𝐵𝑎†)] = − exp(−1
2𝑎

†𝐵𝑎†) 𝑎†(𝐵𝑣),

which serves as a heuristic derivation of the solution from the CCR alone.
The absolute value of the vacuum persistence amplitude is now given by

|⟨0in | 0out⟩| = 𝑐𝑔 𝑓𝑇𝑔 (0) = 𝑐𝑔 .
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There is no reason to suppose that the imaginary part of the vacuum persistence amplitude is
zero. Nevertheless, the phase of the quantum scattering matrix may in principle be determined by
a reasoning similar to the one used in subsection 6.1. It is thus intimately related to the metaplectic
cocycle and anomaly.

To compute the phase factor, we assume that the quantum evolution operator given by

𝑈 (𝑡, 𝑠) := 𝑒𝑖\ (𝑡,𝑠) a(𝑔(𝑡, 𝑠))

exists; this is the case for tame enough external potentials. From 𝑈 (𝑡, 𝑟) = 𝑈 (𝑡, 𝑠)𝑈 (𝑠, 𝑟) for
𝑡 ⩾ 𝑠 ⩾ 𝑟, we obtain

𝑒𝑖\ (𝑡,𝑟) = 𝑒𝑖\ (𝑡,𝑠)𝑒𝑖\ (𝑠,𝑟) 𝑐(𝑔(𝑡, 𝑠), 𝑔(𝑠, 𝑟)). (10.4)
We may as well suppose also that 𝜕

𝜕𝑡

��
𝑡=𝑠
\ (𝑡, 𝑠) = 0 – which is a kind of “normal ordering” rule,

analogous to (6.6). Differentiating (10.4) with respect to 𝑡 at 𝑡 = 𝑠 and solving the resulting equation
for \ (𝑡, 𝑟) then yields

\ (𝑡, 𝑟) = −𝑖
∫ 𝑡

𝑟

𝜕

𝜕𝜏

����
𝜏=𝑠

𝑐(𝑔(𝜏, 𝑠), 𝑔(𝑠, 𝑟)) 𝑑𝑠.

As in the proof of Proposition 7.2, we get

𝜕

𝜕𝜏

����
𝜏=𝑠

𝑐(𝑔(𝜏, 𝑠), 𝑔(𝑠, 𝑟)) = 𝜕

𝜕𝜏

����
𝜏=𝑠

exp(𝑖 arg det−1/2(1 − 𝑇𝑔(𝑠,𝑟)𝑇𝑔(𝜏,𝑠)))

= −1
4

Trℂ
(
[ 𝜕
𝜕𝜏

��
𝜏=𝑠
𝑇𝑔(𝜏,𝑠) , 𝑇𝑔(𝑠,𝑟)]

)
.

We thus find, for the phase of the scattering matrix:

𝑒𝑖\ = 𝑒𝑖\ (+∞,−∞) = exp
{

1
8

∫ ∞

−∞
Trℂ

(
[𝑒−𝐴𝑡 (𝑉 (𝑡) + 𝐽𝑉 (𝑡)𝐽)𝑒𝐴𝑡 , 𝑇𝑔(𝑡,−∞)]

)
𝑑𝑡

}
.

10.2 The scattering matrix in the boson Fock space

We effect now the promised translation, following [50]. Let us recall the form of the kernel of the
metaplectic representation (5.5). We may factorize it as follows:

a(𝑔) 𝐸𝑣 = 𝑐𝑔 exp( 1
4 ⟨𝑇𝑔𝑣 | 𝑣⟩) 𝑓𝑇𝑔𝐸𝑝−𝑡𝑔 𝑣 .

Thus we seek to factorize a(𝑔) as
a(𝑔) = 𝑐𝑔𝑆1𝑆2𝑆3, (10.5a)

where the 𝑆𝑖, for 𝑖 = 1, 2, 3, are operators on B(𝑉) such that

𝑆3𝐸𝑣 = exp 1
4 (⟨𝑇𝑔𝑣 | 𝑣⟩)𝐸𝑣,

𝑆2𝐸𝑣 = 𝐸𝑝−𝑡𝑔 𝑣,

𝑆1𝐸𝑤 = 𝑓𝑇𝑔𝐸𝑤 . (10.5b)

First of all let us note that, because the 𝑎†(𝑣) act as multiplication operators, the result of (10.3)
extends immediately to give exp(−1

2𝑎
†𝑇𝑔𝑎†)𝐹 = 𝑓𝑇𝑔𝐹 for any 𝐹 in the domain of this exponential.

Since the principal vectors are smooth vectors for (𝑎†𝑇𝑔𝑎†), we may take 𝐹 = 𝐸𝑤 and thereby obtain

𝑆1 = exp(−1
2𝑎

†𝑇𝑔𝑎
†). (10.6)
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From (4.21) we also see that
𝑆3 = exp(−1

2𝑎𝑇𝑔𝑎). (10.7)

More precisely, (4.21) shows that the right hand side defines an operator whose domain includes
all 𝐸𝑣, and hence is dense, and that both sides of (10.7) coincide on all 𝐸𝑣.

To obtain an expression for 𝑆2, we must mix creation and annihilation operators. Now the
vanishing of vacuum expectations (6.6), which has been adopted as the quantization rule for the
derived metaplectic representation, forces us to take the normal ordering in our explicit expressions
for a(𝑔). We may thus expect 𝑆2 to be a Wick-ordered exponential:

𝑆2 = :exp(𝑎†𝐶𝑎): (10.8)

=

∞∑︁
𝑛=0

1
𝑛!

∑︁
𝑘1...𝑘𝑛
𝑙1...𝑙𝑛

𝑎†( 𝑓𝑘1) · · · 𝑎†( 𝑓𝑘𝑛)⟨ 𝑓𝑘1 | 𝐶𝑒𝑙1⟩ · · · ⟨ 𝑓𝑘𝑛 | 𝐶𝑒𝑙𝑛⟩𝑎(𝑒𝑙𝑛) · · · 𝑎(𝑒𝑙1),

for some bounded linear operator 𝐶 on 𝑉 . This expression makes sense as a quadratic form whose
domain includes every 𝐸𝑣. Indeed:

⟨𝐸𝑤 | 𝑆2𝐸𝑣⟩ =
∞∑︁
𝑝=0

1
2𝑝 (𝑝!)2 ⟨0 | 𝑎(𝑤)𝑝𝑆2𝑎

†(𝑣)𝑝 | 0⟩,

with

⟨0 | 𝑎(𝑤)𝑝𝑆2𝑎
†(𝑣)𝑝 | 0⟩

=

𝑝∑︁
𝑛=0

1
𝑛!

∑︁
𝑘1...𝑘𝑛
𝑙1...𝑙𝑛

〈
0

��� 𝑎(𝑤)𝑝𝑎†( 𝑓𝑘1) · · · 𝑎†( 𝑓𝑘𝑛)
𝑛∏
𝑗=1

⟨ 𝑓𝑘 𝑗 | 𝐶𝑒𝑙 𝑗 ⟩𝑎(𝑒𝑙1) · · · 𝑎(𝑒𝑙𝑛)𝑎†(𝑣)𝑝
��� 0

〉
=

𝑝∑︁
𝑛=0

(
𝑝

𝑛

)
⟨𝑤 | 𝑣⟩𝑝−𝑛

∑︁
𝑘1...𝑘𝑛
𝑙1...𝑙𝑛

𝑛∏
𝑗=1

⟨𝑤 | 𝑓𝑘 𝑗 ⟩ ⟨ 𝑓𝑘 𝑗 | 𝐶𝑒𝑙 𝑗 ⟩ ⟨𝑒𝑙 𝑗 | 𝑣⟩

=

𝑝∑︁
𝑛=0

(
𝑝

𝑛

)
⟨𝑤 | 𝑣⟩𝑝−𝑛⟨𝑤 | 𝐶𝑣⟩𝑛 = ⟨𝑤 | 𝑣 + 𝐶𝑣⟩𝑝,

so that ⟨𝐸𝑤 | 𝑆2𝐸𝑣⟩ converges and equals ⟨𝐸𝑤 | 𝐸(1+𝐶)𝑣⟩. Therefore, :exp(𝑎†𝐶𝑎): 𝐸𝑣 = 𝐸(1+𝐶)𝑣;
comparing with (10.5), we arrive at

𝑆2 := :exp(𝑎†(𝑝−𝑡𝑔 − 1)𝑎):

and in particular, we notice also that :exp(−𝑎†𝑎): = |0⟩⟨0|.
Let us take stock of the explicit form of the scattering matrix:

𝕊 = 𝑒𝑖\a(𝑔) = ⟨0in | 0out⟩ exp(−1
2𝑎

†𝑇𝑔𝑎
†) :exp(𝑎†(𝑝−𝑡𝑔 − 1)𝑎): exp(−1

2𝑎𝑇𝑔𝑎). (10.9)

The (𝑝, 𝑇) parametrization of the restricted symplectic group is revealed here as the nursery
for a useful calculus, lending itself for a very explicit expression of the 𝑆-matrix. We saw already
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that 𝑐𝑔 could be interpreted as the absolute value of the vacuum persistence amplitude. Many other
parameters of the symplectic group and the metaplectic representation acquire a physical meaning
when the latter is reinterpreted as a scattering matrix. For example, the total number of particles
created in the scattering process is easily computed:

⟨0out | 𝑁 | 0out⟩ = ⟨0 | a(𝑔−1) 𝑎†𝑎 a(𝑔) | 0⟩ =
〈
0

��� ∑︁
𝑘

𝑎†(𝑔−1 𝑓𝑘 )𝑎(𝑔−1 𝑓𝑘 )
��� 0

〉
=

〈
0

��� ∑︁
𝑘

𝑎(𝑞𝑔−1 𝑓𝑘 )𝑎†(𝑞𝑔−1 𝑓𝑘 )
��� 0

〉
= ∥𝑞𝑔−1 ∥2

𝐻𝑆 = ∥𝑞𝑔∥2
𝐻𝑆 .

Thus Shale’s theorem may be paraphrased as saying that the classical symplectic transformation
is unitarily implementable if and only if the average number of particles produced is finite. This
will certainly happen if the total energy of the external field – after integration over the whole of
spacetime – is finite. Note however, that this condition is not necessary. There could be an infinite
expectation value of the quantum Hamiltonian 𝑑𝐺 (𝐴 + 𝑉) in the final state. Already this points to
the somewhat conventional character, from the physical point of view, of Shale’s restriction. This
is one reason why, as Fulling [49] indicates, there may be situations in which the particle density
and other local observables remain finite, in the presence of a non-Fock final state. Our formulas
keep a heuristic value in such “infrared-divergent” contexts, that should not be regarded a priori
as physically pathological. Moreover, even prior to the introduction of the generalized metaplectic
representation, it was clear, for purely algebraic reasons, that the dynamics of operators that can be
expressed as finite sums of creation and annihilation operators is unconditionally computable in the
present formalism.

The reducibility of the metaplectic representation shows that coupling with quadratic Hamilto-
nians will always result in creation of particles only in pairs, even for a neutral field; whereas we
saw in the previous section that coupling to a source gives rise to states containing contributions
from both odd and even particle-number states.

▶ We close this section by considering the effect of the factorized 𝑆-matrix on the Gaussians 𝑓𝑇 .
This is done in order to better compare the bosonic 𝑆-matrix with the fermionic equivalent, wherein
a good analogue of the 𝐸𝑣 is not available.

Lemma 10.1. If 𝑅 ∈ D′(𝑉), then

𝑆1 𝑓𝑅 = 𝑓𝑇𝑔+𝑅 ,

𝑆2 𝑓𝑅 = 𝑓𝑝−𝑡𝑔 𝑅𝑝−1
𝑔
,

𝑆3 𝑓𝑅 = det−1/2(1 − 𝑅𝑇𝑔) 𝑓𝑅(1−𝑇𝑔𝑅)−1 , (10.10)

whenever 𝑓𝑅 lies in the domain of 𝑆1, 𝑆2 or 𝑆3, respectively.

Proof. Since 𝑓𝑇𝑔+𝑅 (𝑢) = exp 1
4 ⟨𝑢 | (𝑇𝑔 + 𝑅)𝑢⟩ = 𝑓𝑇𝑔 (𝑢) 𝑓𝑅 (𝑢), the relation 𝑆1 𝑓𝑅 = 𝑓𝑇𝑔+𝑅 is just

a special case of 𝑆1𝐹 = 𝑓𝑇𝑔𝐹 for 𝐹 ∈ Dom 𝑆1; and it is evident that 𝑓𝑅 ∈ Dom 𝑆1 whenever
𝑇𝑔 + 𝑅 ∈ D′(𝑉).

If 𝑣 ∈ 𝑉 , then 𝑆†2𝐸𝑣 = :exp(𝑎†(𝑝−1
𝑔 − 1)𝑎): 𝐸𝑣 = 𝐸𝑝−1

𝑔 𝑣. From this we obtain

𝑆2 𝑓𝑅 (𝑣) = ⟨𝐸𝑣 | 𝑆2 𝑓𝑅⟩ = ⟨𝑆†2𝐸𝑣 | 𝑓𝑅⟩ = ⟨𝐸𝑝−1
𝑔 𝑣 | 𝑓𝑅⟩

= 𝑓𝑅 (𝑝−1
𝑔 𝑣) = exp 1

4 ⟨𝑝
−1
𝑔 𝑣 | 𝑅𝑝−1

𝑔 𝑣⟩ = 𝑓𝑝−𝑡𝑔 𝑅𝑝−1
𝑔
(𝑣).
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We thereby see that 𝑓𝑅 ∈ Dom 𝑆2 whenever 𝑝−𝑡𝑔 𝑅𝑝−1
𝑔 ∈ D′(𝑉).

Since the Gaussians 𝑓𝑆 generate a dense subspace of B0(𝑉), which is preserved by 𝑆3, we
conclude from

⟨ 𝑓𝑆 | 𝑆3 𝑓𝑅⟩ = ⟨𝑆†3 𝑓𝑆 | 𝑓𝑅⟩ = ⟨exp(−1
2𝑎

†𝑇𝑔𝑎
†) 𝑓𝑆 | 𝑓𝑅⟩

= ⟨ 𝑓
𝑆+𝑇𝑔 | 𝑓𝑅⟩ = det−1/2(1 − 𝑅(𝑆 + 𝑇𝑔))

= det−1/2(1 − 𝑅𝑇𝑔) det−1/2(1 − 𝑅(1 − 𝑇𝑔𝑅)−1𝑆)
= det−1/2(1 − 𝑅𝑇𝑔)⟨ 𝑓𝑆 | 𝑓𝑅(1−𝑇𝑔𝑅)−1⟩

that 𝑓𝑅 ∈ Dom 𝑆3 whenever 𝑅(1 − 𝑇𝑔𝑅)−1 ∈ D′(𝑉), and then 𝑆3 𝑓𝑅 = det−1/2(1 − 𝑅𝑇𝑔) 𝑓𝑅(1−𝑇𝑔𝑅)−1

follows. □

We remark that, on applying 𝑆1, 𝑆2, 𝑆3 in turn to 𝑓𝑅, the index of the Gaussian undergoes the
transformation

𝑅 ↦→ 𝑇𝑔 + 𝑝−𝑡𝑔 𝑅(1 − 𝑇𝑔𝑅)−1𝑝−1
𝑔 = 𝑔 · 𝑅

by (2.19), and so (𝑐𝑔𝑆1𝑆2𝑆3) 𝑓𝑅 = 𝑐𝑔 det−1/2(1 − 𝑅𝑇𝑔) 𝑓𝑔·𝑅 = a(𝑔) 𝑓𝑅 by (5.9). This provides a
second proof of the factorization (10.5) of the 𝑆-matrix.

11 The scattering matrix for a charged boson field
11.1 The charge operator

So far, our arguments have dealt principally with neutral fields; no charge operator has been
manifested. We now take up the case of a charged field, to obtain a system where particles and
antiparticles differ. Classically, the starting point is simply a pair of real Klein–Gordon equations,
but it is technically convenient to work with a complex equation, although multiplication by 𝑖 there
is by no means the adequate complex structure.

We write the equation in the form

𝑖
𝑑

𝑑𝑡

(
𝑓

𝑔

)
=

(
0 1
𝜔2 0

) (
𝑓

𝑔

)
where 𝑓 , 𝑔 are now complex-valued functions, 𝑔 := 𝑖

𝜕 𝑓

𝜕𝑡
. The symplectic form on the space of

Cauchy data of this equation is now

𝑠

((
𝑓1
𝑔1

)
,

(
𝑓2
𝑔2

))
= ℑ

∫ (
𝑓 ∗1 (𝒙) 𝑔2(𝒙) + 𝑔∗1(𝒙) 𝑓2(𝒙)

)
𝑑3𝒙, (11.1)

which is invariant under the equations of motion. One adopts as the Hilbert space of solutions
the complexification 𝑉ℂ of the space 𝑉 of solutions of the real Klein–Gordon equation, and the
complex structure 𝐽 on 𝑉ℂ is just the complex amplification of the operator (9.5). It follows that
𝐽 = 𝑖(𝑃+ − 𝑃−), where

𝑃± =
1
2

(
1 ±𝜔−1

±𝜔 1

)
.
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On 𝑉ℂ, one can then write

𝑑𝐽

((
𝑓1
𝑔1

)
,

(
𝑓2
𝑔2

))
= ℜ

∫ (
𝑓 ∗1 (𝒙) 𝜔 𝑓2(𝒙) + 𝑔∗1(𝒙) 𝜔

−1 𝑔2(𝒙)
)
𝑑3𝒙.

Now the (indefinite) sesquilinear form

𝑞

((
𝑓1
𝑔1

)
,

(
𝑓2
𝑔2

))
:= ℜ

∫
( 𝑓 ∗1 (𝒙) 𝑔2(𝒙) + 𝑔∗1(𝒙) 𝑓2(𝒙)) 𝑑

3𝒙 (11.2)

is also conserved by the equations of motion; the associated operator 𝑄, determined by:

𝑠(𝑢, 𝑄𝑣) := 𝑞(𝑢, 𝑣),

is the charge operator. Its presence is directly related to the invariance of the complex Klein–
Gordon equation under transformations 𝑓 ↦→ 𝑒𝑖𝛼 𝑓 ; this is the symmetry that becomes gauged. On
comparing (11.1) and (11.2), it is immediate that𝑄 acts on𝑉ℂ as multiplication by 𝑖, so𝑄 is 𝐽-linear
and moreover 𝑠(𝑄𝑢, 𝑣) = −𝑠(𝑢, 𝑄𝑣), that is, 𝑄 ∈ sp(𝑉ℂ), with 𝑉ℂ regarded as a real symplectic
space under (11.1).

▶ As in the real case, it is possible to pass to a momentum-space representation, given essentially

by (9.6) but with
(
𝑐

𝑐∗

)
replaced by

(
𝑏

𝑑∗

)
, with 𝑏, 𝑑 ∈ H0,+

𝑚 not necessarily equal. This transformation
is inverted by:

𝑓 (𝒙) = (2𝜋)−3/2
∫ (

𝑏(𝒌)𝑒−𝑖𝒌𝒙 + 𝑑∗(𝒌)𝑒𝑖𝒌𝒙
)
𝑑`(𝑘),

𝑔(𝒙) = 𝑖(2𝜋)−3/2
∫

𝜔(𝒌)
(
𝑏(𝒌)𝑒−𝑖𝒌𝒙 − 𝑑∗(𝒌)𝑒𝑖𝒌𝒙

)
𝑑`(𝑘).

On this space 𝐽 goes over to multiplication by 𝑖 and 𝑄 goes over to
(
𝑖 0
0 −𝑖

)
. Evolution is trivial.

For the charge form, we obtain:

𝑞

((
𝑏1
𝑑1

)
,

(
𝑏2
𝑑2

))
:= ℜ

∫ (
𝑏∗1(𝒌) 𝑏2(𝒌) − 𝑑1(𝒌) 𝑑∗2(𝒌)

)
𝑑`(𝑘).

11.2 The scattering matrix for a charged field

In view of the above, we shall regard the complex space 𝑉ℂ = 𝑉 ⊕ 𝑖𝑉 , for a general (𝑉, 𝑠, 𝐽), as the
classical phase space for a field with particles and antiparticles. In this subsection, the operators
𝑔, 𝑇𝑔, etc. will thus be complex-linear operators on 𝑉ℂ. Our strategy is very simple: it is to adapt
the general formulas of the previous section. As before, we denote by 𝑃+ and 𝑃− the projectors on
the respective subspaces 𝑊0 and 𝑊∗

0 , which are the spaces of one-particle solutions of positive or
negative energy. Let us write, with respect to the decomposition 𝑉ℂ = 𝑊0 ⊕𝑊∗

0 = 𝑊0 ⊕𝑊⊥
0 ,

𝑔 =

(
𝑆++ 𝑆+−
𝑆−+ 𝑆−−

)
. (11.3)

It is immediate that
𝑝𝑔 =

(
𝑆++ 0
0 𝑆−−

)
and 𝑞𝑔 =

(
0 𝑆+−
𝑆−+ 0

)
, (11.4)
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from which
𝑇𝑔 =

(
0 𝑆+−𝑆−1

−−
𝑆−+𝑆−1

++ 0

)
and 𝑇𝑔 =

(
0 −𝑆−1

++𝑆+−
−𝑆−1

−−𝑆−+ 0

)
. (11.5)

The conditions for 𝑔 ∈ Sp′(𝑉ℂ) are that 𝑔(𝑃+ − 𝑃−)𝑔† = (𝑃+ − 𝑃−) and that 𝑆+− ∈ HS.
Since 𝑇†

𝑔 = 𝑇𝑔 on 𝑉ℂ, we obtain

|⟨0in | 0out⟩| = det1/4(1 − 𝑇2
𝑔 ) = det1/2(1 − (𝑆+−𝑆−1

−−)†𝑆+−𝑆−1
−−)

= det1/2 ((𝑆†−−)−1(𝑆†−−𝑆−− − 𝑆†+−𝑆+−)𝑆−1
−−

)
= det1/2 ((𝑆†−−)−1𝑆−1

−−
)
= det−1/2(𝑆−−𝑆†−−),

since 𝑆†−−𝑆−−−𝑆†+−𝑆+− = 1 by combining (2.7) and (11.4). Recall [7] that det(1−𝐴𝐵) = det(1−𝐵𝐴)
whenever both determinants exist. On the other hand,

|⟨0in | 0out⟩| = det−1/4(𝑝𝑔𝑝†𝑔) = det−1/4(𝑆++𝑆†++) det−1/4(𝑆−−𝑆†−−),
and hence both factors on the right-hand side are equal.

We thus arrive at the simplified form
|⟨0in | 0out⟩| = det−1/2(𝑆−−𝑆†−−) = det−1/2(𝑆++𝑆†++)

= det−1/2(1 + 𝑆+−𝑆†+−) = det−1/2(1 + 𝑆−+𝑆†−+), (11.6)
on again using (2.7) to obtain the last two expressions.

Let {𝜙1, 𝜙2, . . . } and {𝜓1, 𝜓2, . . . } be orthonormal bases for 𝑊0 and 𝑊∗
0 , with respect to the

scalar product (2.11) on𝑉ℂ. In view of (2.12), two orthonormal bases { 𝑓𝑘 }, {𝑒𝑘 } of𝑉 are determined
by 𝑃+( 𝑓𝑘 ) = 𝜑𝑘 , 𝑃−(𝑒𝑘 ) = 𝜓𝑘 . We can now distinguish the positive and negative energy sectors
by setting 𝑏†(𝜑𝑘 ) := 𝑎†( 𝑓𝑘 ), 𝑑†(𝜓𝑘 ) := 𝑎†(𝑒𝑘 ) and similarly for the annihilation operators. Since
𝑇
†
𝑔 = 𝑇𝑔, bearing in mind the relations (2.12), we find:

−1
2𝑎

†𝑇𝑔𝑎
† = −1

2

∑︁
𝑗 ,𝑘

𝑎†( 𝑓𝑘 ) ⟨ 𝑓𝑘 | 𝑇𝑔𝑒 𝑗 ⟩ 𝑎†(𝑒 𝑗 ) + 𝑎†(𝑒 𝑗 ) ⟨𝑒 𝑗 | 𝑇𝑔 𝑓𝑘⟩ 𝑎†( 𝑓𝑘 )

= −1
2

∑︁
𝑗 ,𝑘

𝑏†(𝜑𝑘 ) ⟨⟨𝜑𝑘 | 𝑇𝑔𝜓 𝑗 ⟩⟩ 𝑑†(𝜓 𝑗 ) + 𝑑†(𝜓 𝑗 ) ⟨⟨𝑇𝑔𝜑𝑘 | 𝜓 𝑗 ⟩⟩ 𝑏†(𝜑𝑘 )

= −1
2

∑︁
𝑗 ,𝑘

𝑏†(𝜑𝑘 ) ⟨⟨𝜑𝑘 | 𝑆+−𝑆−1
−−𝜓 𝑗 ⟩⟩ 𝑑†(𝜓 𝑗 ) + 𝑑†(𝜓 𝑗 ) ⟨⟨𝑆−+𝑆−1

++𝜑𝑘 | 𝜓 𝑗 ⟩⟩ 𝑏†(𝜑𝑘 )

= −
∑︁
𝑗 ,𝑘

𝑏†(𝜑𝑘 ) ⟨⟨𝜑𝑘 | 𝑆+−𝑆−1
−−𝜓 𝑗 ⟩⟩ 𝑑†(𝜓 𝑗 ) =: −𝑏†𝑆+−𝑆−1

−−𝑑
†,

−1
2𝑎𝑇𝑔𝑎 = −1

2

∑︁
𝑗 ,𝑘

𝑎( 𝑓𝑘 ) ⟨𝑇𝑔 𝑓𝑘 | 𝑒 𝑗 ⟩ 𝑎(𝑒 𝑗 ) + 𝑎(𝑒 𝑗 ) ⟨𝑇𝑔𝑒 𝑗 | 𝑓𝑘⟩ 𝑎( 𝑓𝑘 )

= −1
2

∑︁
𝑗 ,𝑘

𝑏(𝜑𝑘 ) ⟨⟨𝜓 𝑗 | 𝑇𝑔𝜑𝑘⟩⟩ 𝑑 (𝜓 𝑗 ) + 𝑑 (𝜓 𝑗 ) ⟨⟨𝑇𝑔𝜓 𝑗 | 𝜑𝑘⟩⟩ 𝑏(𝜑𝑘 )

=
1
2

∑︁
𝑗 ,𝑘

𝑏(𝜑𝑘 ) ⟨⟨𝜓 𝑗 | 𝑆−1
−−𝑆−+𝜑𝑘⟩⟩ 𝑑 (𝜓 𝑗 ) + 𝑑 (𝜓 𝑗 ) ⟨⟨𝑆−1

++𝑆+−𝜓 𝑗 | 𝜑𝑘⟩⟩ 𝑏(𝜑𝑘 )

=
∑︁
𝑗 ,𝑘

𝑑 (𝜓 𝑗 ) ⟨⟨𝜓 𝑗 | 𝑆−1
−−𝑆−+𝜑𝑘⟩⟩ 𝑏(𝜑𝑘 ) =: 𝑑𝑆−1

−−𝑆−+𝑏. (11.7)
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The Wick-ordered product :exp(𝑎†(𝑝−𝑡𝑔 − 1)𝑎): contains terms of type 𝑏†(𝜑𝑘 ) 𝑏(𝜑𝑙) and
𝑑 (𝜓𝑟) 𝑑†(𝜓𝑠), but no 𝑏†𝑑 or 𝑑†𝑏 terms, from the block diagonal form of (𝑝−𝑡𝑔 − 1). Moreover,
the 𝑏†(𝜑𝑘 ) 𝑏(𝜑𝑙) and 𝑑 (𝜓𝑟) 𝑑†(𝜓𝑠) commute, so :exp(𝑎†(𝑝−𝑡𝑔 − 1)𝑎): = 𝑆2𝑏 𝑆2𝑑 . On account of
⟨ 𝑓𝑘 | (𝑝−𝑡𝑔 − 1) 𝑓𝑙⟩ = ⟨⟨𝜑𝑘 | ( (𝑆†++)−1 − 1)𝜑𝑙⟩⟩, the series expansion for 𝑆2𝑏 is

𝑆2𝑏 =

∞∑︁
𝑛=0

1
𝑛!

∑︁
𝑘1...𝑘𝑛
𝑙1...𝑙𝑛

𝑏†(𝜑𝑘1) · · · 𝑏†(𝜑𝑘𝑛)
𝑛∏
𝑗=1

⟨⟨𝜑𝑘 𝑗 | ( (𝑆
†
++)−1 − 1)𝜑𝑙 𝑗 ⟩⟩ 𝑏(𝜑𝑙𝑛) · · · 𝑏(𝜑𝑙1)

= :exp(𝑏†((𝑆†++)−1 − 1)𝑏):

and similarly we obtain

𝑆2𝑑 =

∞∑︁
𝑛=0

1
𝑛!

∑︁
𝑘1...𝑘𝑛
𝑙1...𝑙𝑛

𝑑†(𝜓𝑘1) · · · 𝑑†(𝜓𝑘𝑛)
𝑛∏
𝑗=1

⟨⟨(𝑆†−−)−1 − 1)𝜓𝑙 𝑗 | 𝜓𝑘 𝑗 ⟩⟩ 𝑑 (𝜓𝑙𝑛) · · · 𝑑 (𝜓𝑙1)

= :
∞∑︁
𝑛=0

1
𝑛!

∑︁
𝑘1...𝑘𝑛
𝑙1...𝑙𝑛

𝑑 (𝜓𝑙1) · · · 𝑑 (𝜓𝑙𝑛)
𝑛∏
𝑗=1

⟨⟨𝜓𝑙 𝑗 | (𝑆−1
−− − 1)𝜓𝑘 𝑗 ⟩⟩ 𝑑†(𝜓𝑘𝑛) · · · 𝑑†(𝜓𝑘1):

= :exp(𝑑 (𝑆−1
−− − 1)𝑑†): .

In summary, the 𝑆-matrix for the charged boson field has the explicit form:

𝕊 = 𝑒𝑖\a(𝑔) = ⟨0in | 0out⟩ exp(−𝑏†𝑆+−𝑆−1
−−𝑑

†)
× :exp(𝑏†((𝑆†++)−1 − 1)𝑏 + 𝑑 (𝑆−1

−− − 1)𝑑†): exp(𝑑𝑆−1
−−𝑆−+𝑏). (11.8)

In fine, the full scattering matrix for charged boson fields may be explicitly derived from the general
theory of the infinite-dimensional metaplectic representation.

▶ The quantized charge operator is ℚ := 𝑑𝐺 (𝑄) = −𝑖 ¤a(𝑄) = −𝑖 𝑎†𝑄𝑎 from (6.9) and 𝐽-linearity.
Now ⟨ 𝑓𝑘 | 𝑄 𝑓𝑘⟩ = ⟨⟨𝜑𝑘 | 𝑖𝜑𝑘⟩⟩ = 𝑖 whereas ⟨𝑒 𝑗 | 𝑄𝑒 𝑗 ⟩ = ⟨⟨𝑖𝜓 𝑗 | 𝜓 𝑗 ⟩⟩ = −𝑖, which leads to

ℚ = :𝑏†𝑏 − 𝑑𝑑†: = 𝑏†𝑏 − 𝑑†𝑑.

Conservation of charge at the quantum level now follows from the anomaly formula (7.8). Since
𝑄 is linear, we get 𝐴𝑄 = 0, 𝐶𝑄 = 𝑄. The classical charge conservation Ad(𝑔)𝑄 = 𝑄 also yields
[𝑄,𝑇𝑔] = 0, and so 𝛾(𝑔, 𝑄) = 0, leading at once to a(𝑔)ℚ a(𝑔)−1 = ℚ; taking 𝑔 = 𝑆cl shows that
the scattering transformation leaves ℚ invariant, without further calculation.

A The choice of complex structures
In subsection 4.1 we remarked that there exists essentially one full quantization for each complex
structure defined on a symplectic vector space. In this Appendix we address the matter of how a
preferred 𝐽 may be chosen in the first place. It is here that physics intervenes. In general, we start
from a given classical linear dynamical system:

𝑑𝑣

𝑑𝑡
= 𝐴𝑣.
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Assume that we have solved it:
𝑣(𝑡) = 𝑒𝐴𝑡 𝑣0,

using, say, semigroup theory. We would like the evolution operator 𝑒𝐴𝑡 to be unitary in the
one-particle space (𝑉, 𝑠, 𝐽); in other words, we inquire whether it is possible to choose some 𝐽
commuting with 𝐴. This cannot always be done; but when it is possible, the procedure given below
singles out the needed complex structure in a completely satisfactory way.

Most material in this appendix can be found in [51]. We have streamlined it to suit our needs.
Of course, the matter is bound up with the general question of hilbertizability touched on in
subsection 2.1. We first prove the assertion made there.

Proposition A.1. Let (𝑉, 𝑑0) be a real Hilbert space and let 𝑠 be a symplectic form on 𝑉 which is
continuous with respect to 𝑑0. Then (𝑉, 𝑠) is hilbertizable.

Proof. Continuity of 𝑠 means that 𝑠(𝑢, 𝑣) = 𝑑0(𝐵𝑢, 𝑣) for some bounded operator 𝐵 on (𝑉, 𝑑0).
Since 𝑠 is nondegenerate, 𝐵 is injective, and since 𝑠 is an antisymmetric form, 𝐵𝑡 = −𝐵 is also
injective (the transpose here being taken with respect to 𝑑0). Thus the range of 𝐵 is dense in (𝑉, 𝑑0).
Hence the polar part 𝐽 of the polar decomposition 𝐵 =: 𝐽 (−𝐵2)1/2 is a 𝑑0-isometry. The point to
note is that 𝐵 is normal, so the three operators 𝐵, 𝐽 and (−𝐵2)1/2 commute. It follows that 𝐽2 = −1,
𝑠(𝐽𝑢, 𝐽𝑣) = 𝑑0(𝐽𝐵𝑢, 𝐽𝑣) = 𝑠(𝑢, 𝑣) and 𝑠(𝑣, 𝐽𝑣) = 𝑑0(𝑣, (−𝐵2)1/2𝑣) > 0 for 𝑣 ≠ 0, so that 𝐽 is a
compatible complex structure.

Define 𝑑 (𝑢, 𝑣) := 𝑠(𝑢, 𝐽𝑣) = 𝑑0(𝐵𝑢, 𝐽𝑣) = 𝑑0((−𝐵2)1/2𝑢, 𝑣); this is a positive definite symmet-
ric bilinear form on 𝑉 . With the scalar product 𝑑 + 𝑖𝑠 as in (2.4), 𝑉 becomes a prehilbert space. It
is not complete in general, because the inverse of 𝐵 can be unbounded; as is indeed the case unless
𝑠 is strongly symplectic. □

We return to the main issue. Classically, one is given a linear Hamiltonian system (𝑉0, 𝑠0, 𝐴0).
Some extra topological structure is needed in practice; to fix ideas, we shall assume that 𝑉0 is a
Banach space under some suitable norm ∥ · ∥. Since 𝐴0 is unbounded in all interesting cases, a little
care is necessary. We shall assume that 𝐴0 is a densely defined operator on 𝑉0, skewadjoint with
respect to 𝑠0, i.e., 𝐴‡0 = −𝐴0, where 𝐴‡0 denotes the 𝑠0-adjoint of 𝐴0, with domain

Dom 𝐴
‡
0 := { 𝑣 ∈ 𝑉0 : 𝑠0(𝑣, 𝐴0𝑢) = 𝑠0(𝑤, 𝑢) whenever 𝑢 ∈ Dom 𝐴0, for some 𝑤 ∈ 𝑉0 },

setting 𝐴‡0𝑣 := 𝑤.
Remark. We can show that 𝐴‡0 = −𝐴0 if 𝐴0 is the generator of a strongly continuous group𝑈 (𝑡) of
linear canonical transformations in the Banach space 𝑉0; skewsymmetry follows from

𝑑

𝑑𝑡
𝑠0(𝑈 (𝑡)𝑣1,𝑈 (𝑡)𝑣2) = 𝑠0(𝐴0𝑈 (𝑡)𝑣1,𝑈 (𝑡)𝑣2) + 𝑠0(𝑈 (𝑡)𝑣1, 𝐴0𝑈 (𝑡)𝑣2), (A.1)

so that 𝐴0 ⊆ −𝐴‡0. We remark that𝑈‡(𝑡) = 𝑈 (−𝑡). Now if 𝑣 ∈ Dom 𝐴
‡
0 with 𝐴‡0𝑣 = 𝑤, then for any

𝑢 ∈ Dom 𝐴0,𝑈 (𝑡)𝑢 = 𝑢 +
∫ 𝑡

0 𝐴0𝑈 (𝑡)𝑢 𝑑𝑡, so that

𝑠0(𝑢,𝑈 (−𝑡)𝑣) = 𝑠0(𝑈 (𝑡)𝑢, 𝑣) = 𝑠0(𝑢, 𝑣) +
∫ 𝑡

0
𝑠0(𝑢,𝑈 (−𝜏)𝑤) 𝑑𝜏,

the interchange of 𝑠0 and the integral being permissible by continuity of 𝑠0 and well-known properties
of the Bochner integral. Now, Dom 𝐴0 is dense and 𝑠0 is nondegenerate, yielding the relation
𝑈 (−𝑡)𝑣 = 𝑣 +

∫ 𝑡

0 𝑈 (−𝜏)𝑤 𝑑𝜏. By differentiation, 𝑣 ∈ Dom 𝐴0 and −𝐴0𝑣 = 𝑤 = 𝐴
‡
0𝑣.
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In order to proceed we require a symmetric form 𝑑0, and there is no other raw material to
fabricate it than 𝑠0 and 𝐴0 themselves! Suppose that the classical energy function 𝑣 ↦→ 𝑠0(𝑣, 𝐴0𝑣)
obeys the following positivity condition:

𝑠0(𝑣, 𝐴0𝑣) ⩾ Y∥𝑣∥2 when 𝑣 ∈ 𝑉0, for some Y > 0. (A.2)

Then we can define
𝑑0(𝑢, 𝑣) := 𝑠0(𝑢, 𝐴0𝑣), for 𝑢, 𝑣 ∈ Dom 𝐴0; (A.3)

and (A.2) shows that 𝑑0 is a positive definite (real) scalar product on 𝑉0.

Lemma A.2. Let 𝑉0 be a Banach space with norm ∥ · ∥, let 𝑠0 be a weakly symplectic form on 𝑉0,
and let 𝐴0 be a densely defined linear operator on 𝑉0 satisfying (A.2) for some Y > 0. Suppose
moreover that 𝐴0 is skewadjoint with respect to 𝑠0. Then there is a hilbertizable symplectic space
(𝑉1, 𝑠) and a densely defined linear operator 𝐴 on 𝑉1 such that

Dom 𝐴 ⊆ Dom 𝐴0 ⊆ 𝑉1 ⊆ 𝑉0

with dense inclusions, 𝑠 being the restriction of 𝑠0 to𝑉1 and 𝐴 a restriction of 𝐴0 that is skewadjoint
with respect to 𝑠.

Proof. Denote by 𝑉1 the completion of Dom 𝐴0 with respect to energy norm, i.e., that arising
from the scalar product 𝑑0 of (A.3). The inclusion Dom 𝐴0 ↩→ 𝑉0 extends to a continuous map
𝑚 : 𝑉1 → 𝑉0. This map is one-to-one, since if ℎ ∈ 𝐻 with 𝑚(ℎ) = 0, then ℎ = lim𝑛→∞ 𝑣𝑛 for some
Cauchy sequence (in the 𝑑0-norm) {𝑣𝑛} ⊆ Dom 𝐴0; the continuity of 𝑚 gives 𝑣𝑛 → 0 in 𝑉0 and
𝑑0(ℎ, 𝑢) = lim𝑛→∞ 𝑑0(𝑣𝑛, 𝑢) = lim𝑛→∞ 𝑠0(𝑣𝑛, 𝐴0𝑢) = 0 for 𝑢 ∈ Dom 𝐴0, so that ℎ = 0. Hence we
can identify 𝑉1 with the subspace 𝑚(𝑉1) of 𝑉0.

Now let 𝐴 denote the restriction of 𝐴0 to Dom 𝐴 := { 𝑣 ∈ Dom 𝐴0 : 𝐴0𝑣 ∈ 𝑉1 }, and let 𝑠 be the
restriction of 𝑠0 to 𝑉1. Then

𝑠(𝑢, 𝐴𝑣) = 𝑑0(𝑢, 𝑣) = 𝑑0(𝑣, 𝑢) = 𝑠(𝑣, 𝐴𝑢) = −𝑠(𝐴𝑢, 𝑣), for 𝑢, 𝑣 ∈ Dom 𝐴, (A.4)

so 𝐴 is skewsymmetric with respect to 𝑠. In fact, 𝐴 is also skewsymmetric with respect to 𝑑0, since

𝑑0(𝐴𝑢, 𝑣) = 𝑠(𝐴𝑢, 𝐴𝑣) = −𝑠(𝐴𝑣, 𝐴𝑢) = −𝑑0(𝐴𝑣, 𝑢) = −𝑑0(𝑢, 𝐴𝑣), for 𝑢, 𝑣 ∈ Dom 𝐴.

If we now consider 𝐴 as an operator on the real Hilbert space𝑉1, it generates a strongly continuous
group of isometries. This follows from Stone’s theorem once we verify that 𝐴 is skewadjoint for 𝑑0.
To see this, notice that for any 𝑣 ∈ 𝑉0, the linear functional 𝑢 ↦→ 𝑠0(𝑣, 𝑢) is continuous on 𝑉0 and
a fortiori on 𝑉1, so by the Riesz theorem there is a vector 𝑧 ∈ 𝑉1 such that 𝑠0(𝑣, ℎ) = 𝑑0(𝑧, ℎ) for all
ℎ ∈ 𝑉1. But then 𝑠0(𝑣, ℎ) = 𝑠0(𝑧, 𝐴0ℎ) for ℎ ∈ Dom 𝐴0, which shows that 𝑧 ∈ Dom 𝐴

‡
0 = Dom 𝐴0

and 𝐴0𝑧 = −𝐴‡0𝑧 = −𝑣. In other words, 𝐴0 is surjective, hence 𝐴 is surjective with a bounded
inverse, and therefore is skewadjoint with respect to 𝑑0.

Let 𝑈 (𝑡) := 𝑒𝐴𝑡 denote this strongly continuous group of isometries. Now (A.4) shows that
𝑑
𝑑𝑡
𝑠(𝑈 (𝑡)𝑢,𝑈 (𝑡)𝑣) = 0, so that𝑈 (𝑡) is also a group of canonical transformations of (𝑉1, 𝑠). We can

thus conclude that 𝐴 is skewadjoint with respect to 𝑠. □
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Theorem A.3. Under the hypotheses of Lemma A.2, there is a unique complex structure 𝐽 on 𝑉1
which is compatible with 𝑠 and positive, and which commutes with 𝐴. If 𝑉 denotes the completion
of𝑉1 with respect to 𝑑 (𝑢, 𝑣) := 𝑠(𝑢, 𝐽𝑣), then𝑉 is a complex Hilbert space under the scalar product
𝑑 + 𝑖𝑠, on which −𝐽𝐴 is a positive selfadjoint operator with bounded inverse.

Proof. This 𝐽 is none other than the orthogonal part of the polar decomposition of the skewadjoint
operator 𝐴 constructed in Lemma A.2, i.e., 𝐴 = 𝐽 (−𝐴2)1/2; in other words, 𝐽 is the closure of the
operator 𝐴(−𝐴2)−1/2 on𝑉1. As in the proof of Proposition A.1, 𝐽 is a complex structure, compatible
with the symplectic form 𝑠 and positive.

The final step in the definition of a canonical setting for the dynamical system (𝑉0, 𝑠0, 𝐴0) is
to drop the energy norm 𝑑0 and extend 𝑉1 to its completion 𝑉 with respect to 𝑑 (𝑢, 𝑣) := 𝑠(𝑢, 𝐽𝑣).
Since 𝐽 commutes with 𝐴, the group 𝑈 (𝑡) extends by continuity to a group of unitary operators
on 𝑉 whose generator is 𝐴 (regarded as an operator on 𝑉) which is (complex) skewadjoint, with
bounded inverse. Also, −𝐽𝐴 is a positive selfadjoint operator on 𝑉 without zero eigenvalue, which
may be used to verify the existence of a full quantization of (𝑉, 𝑠, 𝐽) in the sense of Definition 4.1.

This is the only complex structure commuting with 𝐴, since any other would commute also
with 𝐽 and hence would coincide with 𝐽 on account of (2.17). □

There is an equivalent procedure to obtain 𝐽, which amounts to showing that −𝑖𝐴 is selfadjoint
on 𝑉ℂ; then the spectral projections 𝑃± on the positive and negative parts of its spectrum give rise
to polarizations and 𝐽 may be defined as 𝑖(𝑃+ − 𝑃−) restricted to 𝑉 ; then −𝑖𝐴 is positive on (𝑉, 𝐽).
Both procedures are clearly illustrated in the Virasoro example in Section 8.
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