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2 RESUMEN 

La creciente incidencia de trastornos y enfermedades óseas causadas por el 

envejecimiento progresivo y el aumento de la esperanza de vida constituyen un 

problema importante para las sociedades modernas, lo que genera la necesidad 

de desarrollar estrategias para la regeneración y síntesis de tejido óseo artificial. 

En particular, los materiales conductores inteligentes para la administración de 

fármacos se han convertido en una herramienta importante para la medicina 

regenerativa para promover la liberación controlada de agentes bioactivos 

osteogénicos. En este trabajo, el agente de diferenciación de osteoblastos, 

dexametasona 21-fosfato (Dex), se incorporó durante la polimerización de un 

material conductor en un electrodo de oro, y posteriormente se indujo su 

liberación controlada a través de estimulación eléctrica de bajo voltaje. La 

cantidad de fármaco liberado se determinó mediante voltamperometría cíclica y 

espectrometría de masas de alta resolución. El sistema conductor de liberación 

controlada de Dex se aplicó durante el cultivo de células madre mesenquimales 

humanas (hMSC) para inducir su diferenciación a osteoblastos. La actividad 

enzimática de ALPL, análisis de marcaje con anticuerpos fluorescentes y análisis 

moleculares de qPCR se utilizaron para estudiar los principales marcadores de 

osteoblastos expresados durante la diferenciación celular, lo que demostró que 

la liberación controlada de Dex desde la película conductora indujo la 

osteogénesis de las hMSCs. Además, se preparó un material poroso a base de 

polisacáridos y se utilizó también para la inmovilización y posterior liberación de 

Dex desencadenada principalmente por difusión. Asimismo, el sistema poroso 

también se utilizó durante el cultivo de hMSC, demostrando tener efecto durante 

la diferenciación a osteoblastos. Los resultados obtenidos son de gran valor para 

el desarrollo de diversas estrategias y sistemas de implantes en la reparación del 

tejido óseo y la medicina regenerativa. 

 

 



ix 
 

3 ABSTRACT 

The increasing incidence of bone disorders and diseases caused by progressing 

aging and the increase in life expectancies constitute a major problem for modern 

societies, triggering a need to develop strategies for the regeneration and 

synthesis of artificial bone tissue. Particularly, smart conductive materials for drug 

delivery have become in an important strategy for regenerative medicine to 

promote the controlled release of osteogenic bioactive agents. In this work, the 

osteoblast differentiation agent, dexamethasone 21-phosphate (Dex) was added 

during the polymerization of a conductive material on a gold electrode, 

consequently, controlled drug release was accomplished during low voltage 

electrical stimulation. The amount of released drug was determined using cyclic 

voltammetry and high-resolution mass spectrometry. Dex conductive controlled 

released system was applied during human mesenchymal stem cells (hMSCs) 

culture to induce their differentiation to osteoblast. ALPL enzymatic activity, 

immunofluorescence analysis and qPCR molecular studies were used to analyze 

the main osteoblast markers expressed during cells differentiation, demonstrating 

that controlled released of Dex from a conductive layer induced osteogenesis 

from hMSCs. Additionally, a porous material based on polysaccharides was 

prepared and used for Dex immobilization, where drug released was triggered 

mainly by diffusion. The system was used during hMSCs culture, demonstrating 

exceptional effect during osteoblast differentiation. Results are useful in the 

development of diverse strategies and implant systems in bone tissue repair and 

regenerative medicine field. 
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9 Introduction 

The increasing incidence of bone disorders and diseases imply a need to 

develop strategies for the regeneration and synthesis of artificial bone tissue that 

can be applied in vivo (1). Specifically, tissue engineering applications during 

tissue regeneration have become a potential tool to be applied in bone repair 

therapies and orthopedic diseases.  

Regenerative medicine and tissue engineering aim to repair damaged tissues 

using cells or synthetic/natural cellular components to initialize the natural 

regeneration process (2). The basic tissue engineering strategy involves the use 

of biomaterials and scaffolds with growth factors that, in combination with specific 

cell types, restore the damage and functionality of the affected tissue (3, 4). 

The development of devices for the activation of osteogenic differentiation on 

precursory cells to provide approaches for the reduction of inflammation and 

subsequent infections is currently being studied, mainly because the release of 

pharmacological molecules incorporated on the systems provide better control 

over their supply and improve the specificity of drug targeting (1, 4, 5). 

Progress in the study and synthesis of relevant biomedical applications have 

focused on the use of pluripotent stem cells; particularly since certain stem cells 

offer promising results for the formation of osteoblasts and their application in 

tissue repair therapies (6).  

Mesenchymal stem cells (MSCs) have been for many years an interesting field of 

research as suitable candidates for many therapeutic applications, including 

tissue regeneration and cell therapy (2, 7). The importance is reinforced by the 

multipotentiality of MSCs to differentiate in several cell lineages, where the main 

application is focus in improving healing of large bone defects (7, 8). Current 

research in tissue engineering often involve the combination of MSCs with novel-
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synthetized bioactive biomaterials with physical, chemical, and structural 

similarities to physiological MSCs-niche (2, 7, 8). 

Dexamethasone base (Dx) is one of the most prescribed corticosteroids 

worldwide due to its effect on the negative regulation of the expression of 

inflammatory cytokines, chemokines, and metalloproteases (9). Moreover, it is 

one of the most important drugs used during the MSCs culture, specifically, this 

synthetic glucocorticoid in combination with other growth factors and therapeutic 

drugs is recognized for its in vitro effect to induce and enhance the differentiation 

of MSCs to osteoblasts (5, 10–12). 

GAGs are a family of polydisperse, sulfated, anionic, linear polysaccharides that 

have been employed on MSCs culture (13) and are responsible for several critical 

biological functions (14–16). Preliminarily, it is well known that the negative 

charges of these molecules may interact with cell receptors associated with 

numerous biological processes (17). On the contrary, other authors have reported 

undesirable GAGs effects on cells culture, because of that, its use as additive on 

culture media has been a controversial issue (18). 

Several multidisciplinary studies and research involving the field of biochemistry 

and cell culture engineering have been developed to generate novel strategies for 

stem cell differentiation, a well-known example is the controlled release of drugs 

(19, 20). Dexamethasone 21-phosphate disodium salt (Dex) immobilization and 

delivery from polysaccharide-based porous and non-porous conductive materials 

have been confirmed by collaborators (5, 12), to create synthetic appropriate 

scaffolds for osteo-induction of MSCs. 

Drug release methods may be described by two main approaches: mechanical 

systems related to those that work through pump-type mechanisms, which have 

miniaturized technology to be implanted in vivo (21, 22); and by the use of 

polymeric materials, which include diffusional release, chemical release, and 

more recently, electrochemical release methods (19, 20). Many of these systems 

are implanted in vivo and drug release is controlled according to the drug carrier 
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system used (22). Particularly, the diffusion-controlled release from aerogels has 

been studied, so that they ultimately function as scaffolds for in vivo tissue 

regeneration studies (5, 23).  

Additionally, using electrochemical mechanisms, the release of drugs from a 

matrix constituted for the conductive polymer poly (3,4 ethylenedioxythiophene) 

(PEDOT) was studied in 2019, from which the drug dissociates according to an 

electrical stimulus (12, 24). Polysaccharide-based porous materials and PEDOT-

polysaccharides systems have been proposed as carriers for bioactive 

compounds immobilization and their subsequently controlled or non-controlled 

delivery (12).  

Finally, κ-Carrageenan (κC) in combination with other polysaccharides is the 

focus of study during the synthesis of scaffolds that may function as an 

extracellular matrix (ECM). ECM is a dynamic three-dimensional structure which 

provides structural support for cells (25). The diversity of ECM components and 

their interaction with cells receptors makes possible the regulation of cellular 

behavior (26, 27). Certain porous materials based on polysaccharides have been 

proposed as ECMs and as drug-delivery systems (28, 29), mainly because they 

offer a highly porosity, three-dimensional structure, and controllable-mechanical 

properties (25, 30). Porous systems can act as a carrier for drugs, showing high 

loading capacity, enhanced stability upon storage, and accelerated drug release 

(i.e. Dx and Dex), if required (31), because of that, tissue engineering applications 

have also studied these type of systems as potent stimulators of MSCs 

differentiation to bone cells.  

In this work, κC/PEDOT-conductive materials and polysaccharides-based porous 

systems containing Dex were prepared. Self-made gold electrodes were used for 

PEDOT films synthesis. Cryogels and electrodes were used as Dex-delivery 

scaffolds obtaining the drug at therapeutic concentrations and, both systems were 

applied during MSCs culture to study their potential influence during osteoblast 

differentiation of cells. Finally, the potential effect of the heparin (Hep), which is 
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the most negatively charged GAG, during MSCs differentiation to osteoblast was 

also confirmed.  
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10 Theorical framework 

10.1 Mesenchymal stem cells in tissue engineering applications for bone 

repair therapies. 

10.1.1 Bone diseases as consequence of aging progressive.  

The bone is a high-density and complex calcified tissue, chemically built up 

as a mineralized matrix which comprises organic matrices, water, lipidic contents, 

collagen, and a small amount of non-collagenous proteins (32–34). Bone tissue 

exerts vital functions: protects internal organs, is a support for the body, facilitates 

the movement, produces blood and progenitor lymphoid cells, regulates blood pH, 

and stores and releases fats and minerals. A summary of the bone composition 

and functions is showed in Figure 1:  

 

 

Figure 1. Schematic representation of the functions and chemical/cellular composition of bones. 
From Zhang X, et al. 2021 (32).  
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As progressing aging and the increase in life expectancies, the impact of bone-

related diseases such as bone cancer (e.g., osteosarcoma, bone metastasis), 

bone infection, osteoporosis, and osteoarthritis (OA) also increased (35). In fact, 

several reports have demonstrated that these bone defects have increased in the 

last years, constituting a major issue for modern societies, affecting more than 50 

million people in the United States, threatening public health (35, 36). 

Bone autografts and allografts are the most traditional strategies for the treatment 

of these diseases and bone reconstruction, nevertheless, some of these 

treatments may present several drawbacks. Because of that, numerous strategies 

employing organic and inorganic porous and non-porous scaffolds for the in vitro 

or in vivo colonization of MSCs have been extensively studied, mainly controlling 

the physical and mechanical properties of the scaffolds, and approaching the 

properties of multipotentiality of MSCs (37–39), as will be discussed in the 

following chapters.  

 

10.1.2 Characteristics of mesenchymal stem cells. 

The human body houses several cell types with capacity to give to daughter 

cells restricted potential. Some examples of such cells are the embryonic stem 

cells, the hematopoietic stem cells, and the MSCs (40). 

Specifically, MSCs represent a rare population of multipotent progenitors, 

described as adherent and non-hematopoietic stromal cells. These cells were 

initially described in bone marrow (BM) by Friedenstein in 1966 (41). However, 

their isolation has been carried out from other adult connective tissues (40, 42, 

43).  

MSCs are described as a fibroblastic cell type with high replicative capacity that 

can produce clonal cells. Because their multipotentiality, their use has been very 

explored in tissue engineering studies and for clinic uses. MSCs are capable to 

induce multilineage differentiation from a single cell, and it is known their ability to 
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differentiate into osteoblasts, chondrocytes, adipocytes, myocytes, tenocytes, 

and neural cells (40, 44).  

Even though of the importance of MSCs differentiation abilities for tissue repair, 

the main mechanism of MSCs therapeutic effects is related to their paracrine 

effects (45). According with Pounos (40), after a tissular damage event, these 

cells are activated by several signals including injury, inflammation, and necrosis, 

triggered their paracrine effects including angiogenesis, preventing apoptosis, 

and modulating extracellular matrix dynamics. Equally, MSCs are related with the 

modulation of the activation or suppression of the immune system, to control the 

whole-tissue regeneration process. 

Therefore, it is important to know that although the in vitro expansion of MSCs 

constitutes a marked and sustained increase in proliferation, MSCs are affected 

by their replicative senescence, and the slowly replication will increase over time, 

while the multipotentiality will gradually decline. This phenomenon affects the 

downstream applications including the ex vivo MSC expansion before 

reimplantation to home to sites of injury and inflammation (43). 

 

10.1.3 MSCs isolation sources. 

Several sources in the human body have been employed for stem cells 

isolation. The selection of the organ or tissue depends on the logistical and 

practical isolation method and of the stem cells in vitro desirable characteristics, 

also, is important to define the differentiation potential of cells (46, 47).  

Although MSCs are obtained from almost any tissue on the human body, the most 

common sources are bone marrow (BM) and adipose tissue (AT). Nevertheless, 

there are some practical limitations during isolation method depending on the 

difficulty and invasiveness of the process (46, 48).  

MSCs were first discovered in the bone marrow, where these cells constitute an 

element of stromal cells in the tissue. However, only a small percentage of the 
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total number of bone marrow populating cells are MSCs, some researchers have 

reported the isolation of only 0.01% to 0.001% of these mononuclear and plastic 

adherent fibroblasts like cells colonies and their isolation depend on the patient 

status and the volume of aspirates. In bone marrow, MSCs are in close 

association with the resident hematopoietic stem cells (HSCs), near of the 

sinusoidal endothelium. These cells participate as osteogenic progenitors but also 

in the production of signals for the modulation of the maturation of HSCs through 

the secretion of tropic factors such as angiopoietin 1 (Ang1), stem cell factor 

(SCF), and CXC ligand 12 (CXCL12) (42, 48, 49). 

Although cells isolated from BM are the most employed during bone tissue 

therapies, BM isolation is a highly invasive and painful procedure implying general 

anesthesia and many days for hospital care, making the isolation more 

problematic in comparison with peripheral blood, AT, or birth-derived tissues. 

Because of that some researchers have searched alternative sources for MSCs 

isolation (48). One example are the AT-derived MSCs, which can be isolated from 

subcutaneous lipoaspirates resulted as a product of cosmetic and therapeutic 

surgical interventions, peritoneal and inguinal fat pads (47, 50).  

According with some authors, AT allows the isolation of a large number of high 

activity cell, in fact, it is reported that the percentage of MSCs are nearly of 2% of 

stromal vascular fraction on AT and sometimes nearing 30%, reported as the 

greatest one in all tissues (47, 50, 51). One important thing is that approximately 

the 98–100% of the cells obtained from AT are viable and could be expanded 

effectively in vitro conserving their stability in long-term cell cultures (50). 

In comparison with BM-MSCs, AT-MSCs present very similar characteristics in 

terms of morphology, phenotype, functions, and multilineage differentiation 

potential. The isolation methods are easier and less painful than BM-MSCs, 

nevertheless, depending on the donor characteristics (e.g. age and sex), the 

expansion and differentiation could be affected (50). 
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On the other hand, MSCs populations could be also found in dental tissues (52, 

53), which not only display self-renewal and multi-differentiation potential but also 

present immunomodulatory mechanisms and potent tissue regenerative 

properties. Umbilical derived-MSCs present similar surface phenotype, 

multipotency and plastic adherence properties of those MSCs found in other 

sources, they are also important in regenerative medicine (54, 55).  Other sources 

for MSCs isolation include endometrial derived MSCs (56), synovium and synovial 

fluid derived MSCs (57), placental derived MSCs (58), peripheral blood (59), and 

others. 

 

10.1.4 Mesenchymal stem cells surface markers. 

Once MSCs isolation is completed, the characterization of cell markers 

should be carried out. According to some authors, hMSCs expresses a specific 

set of cell surface markers that make it different for the other cells. HMSCs are 

positive for CD73, CD90, CD105 whereas are negative for the expression of 

CD14, CD34, and HLA-DR. The main MSCs markers according with the body 

source are reported in Table 1.  

 

Table 1. Human mesenchymal stem cells (hMSCs) surface markers according with the body 
isolation source. 

MSCs type Cell markers Reference 

BM-hMSCs CD105 CD73 CD90 CD271 CD146, CD13, CD45, SSEA-3 Stro-4 (60–64) 

AT-hMSCs CD90, CD44, CD105, CD73, CD166, CD13, CD146 (65–68) 

Dental tissue-

hMSCs 

CD73, CD90, CD105, CD146, CD29, CD44, CD105  (69–71) 

Umbilical-hMSCs CD44, CD29, CD105, CD73, HLA-ABC, CD90, CD70, CD166 (69–71) 
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Endometrial-

hMSCs 

CD105, CD90, CD73, CD44, CD29, PDGFRβ (72–74) 

Placental-hMSCs CD166, CD105, CD90, CD73, CD49e, CD44, CD29, CD13, HLA-

ABC, CD146, CD49a/VLA-1, STRO-1, CD106 

(75–79) 

 

10.1.5 Multilineage differentiation of mesenchymal stem cells. 

One of the most important characteristics of MSCs is their capability to 

differentiate into a diverse set of mesoderm-type cells, including osteoblasts, 

adipocytes, and chondrocytes (Figure 2). This property of MSCs opens 

therapeutic opportunities for the treatment of lesions in mesenchymal tissues, 

focusing mainly on bone and cartilage defects, for the tissue regeneration 

therapies. In general, the differentiation into different cell lineages is determined 

by different factors and signaling pathways. Collectively, canonical and 

noncanonical β-catenin-dependent Wnt signaling has demonstrated both pro-

osteogenic and anti-adipogenic activities (80, 81). 

Wnt/β-catenin signaling pathway maintains preadipocytes in an undifferentiated 

state through inhibition of the adipogenic transcription factors: the enhancer 

binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ 

(PPARγ), because of that, several studies have demonstrated that the inhibition 

of Wnt/β-catenin signaling positively regulates adipogenesis (81). 
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According with Figure 3, PPARγ is considered the master regulator of 

adipogenesis as well as RunX family transcription factor 2 (RunX2) is reported as 

the master regulator of osteogenesis. PPARγ not only is an adipogenic regulator, 

but also is implicated as an anti-osteoblastogenic molecule.  

PPARγ and RunX2 act together to mediate the effects of various cytokines in 

determination of adipogenesis versus osteogenesis during MSC differentiation, 

the expression of a transcriptional factor is related with the down regulation of the 

other. Particularly, secreted frizzled-related proteins (sFRPs) are induced during 

adipogenesis, the overexpression of sFRP1 promotes adipogenic differentiation 

through inhibition of canonical Wnt signaling. Nevertheless, currently, it is lack of 

the fully mechanism through which Wnt/β-catenin signaling is regulated in 

controlling the fate of MSCs is known (80, 81, 83, 84). 

 

Figure 2. Human mesenchymal stem cells sources and their differentiation capacity: osteoblasts, 

chondrocytes, myotubes, stromal cells, fibroblasts, and adipocytes. From James AW. 2013 (81). 
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On the other hand, myogenic differentiation of MSCs understands the activation 

of some specific myogenic transcription factors, including paired box 3 (Pax3), 

MyoD, and Myf-5, which are required for the differentiation of MSCs on skeletal 

myogenic lineages, whereas myogenin and MRF4 are thought to regulate cell 

fusion and terminal differentiation. MyoD is considered the master regulator on 

MSCs differentiation to myoblast. Pax3 also has a great influence during myoblast 

differentiation. Some studies have reported that Pax3 overexpression promotes 

the myogenic differentiation and blocks the adipogenic, osteogenic, and 

Figure 3. Flowchart depicting the biogenesis of osteoblasts after RunX2 transcriptional factor 
expression. From Thiagarajan L, Abu-Awwad HADM, Dixon JE. 2017 (93). 
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chondrogenic differentiation of MSCs. In addition, MyoD overexpression was 

found to inhibit Twist-1 (an antagonist of myogenesis), resulting in an increase in 

muscle cell differentiation (85–90). 

Figure 2 also shows that MSCs are recognized as the common ancestor for 

osteoblast. According with Hang, et al. (91), these cells participate during the 

endochondral and intramembranous ossification. Firstly, the transcriptional factor 

RunX2 is expressed to limit the potential of stem cells to differentiate to osteoblast. 

In fact, this transcriptional factor is the most essential for osteoblast commitment, 

differentiation, matrix production, and mineralization during bone formation. 

Rutkovskiy, et al. (92) reported that the ectopic expression of RunX2 in non-

osteoblastic cells leads to the expression of genes that determine the osteoblast 

phenotype and controls the expression of osteogenic marker genes such as ALPL 

(Alkaline phosphatase), OPN (Osteopontin), OSX (Osterix), Col1A1 (type-I 

collagen), BSP (Bone sialoprotein), and OCN (Osteocalcin) (93). 

There is a nuclear matrix targeting signal (NMTS) in the C terminal of RunX2. 

These NMTS can localize RunX2 in the osteoblast-specific cis-acting element 

(OSE2) in the nucleus, Runx2 binds OSE2 in the promoter to initiate 

osteogenesis. During the first step, the expression of osteoblast differentiation 

markers including the fibronectin, Col1A1 and OPN is completed. After that, the 

maturation of extracellular matrix is carried out by expression and activation of 

ALPL enzyme, and finally, matrix mineralization is enriched by OCN, which 

promotes the calcium deposition in the matrix (Figure 3) (93–97).  

Bones of the axial skeleton are formed by a film of cartilage intermediate, formed 

in the process of endochondral ossification. During this process, MSCs begin to 

differentiate along a pathway that leads the differentiation of chondrocytes, which 

is required for skeletogenesis. Chondrogenesis starts when MSCs are stimulated 

to express Sox9, which is require only at the onset of chondrogenesis. Sox9 is 

the main transcription factor essential for chondrocyte differentiation, their 

expression is followed by deposition of cartilage matrix containing collagen I, IX 

and XI as well as aggrecan.  



14 
 

 
 

The expression of the SOX protein is controlled by fibroblast growth factor (FGF), 

transforming growth factor-β (TGF-β), bone morphogenetic proteins (BMPs) and 

Wnt families. Specifically, BMPs control the expression of Sox9 via the BMP 

receptors BMPIRA and BMP1RB, FGF has an important role for the proliferation 

and survival of cranial neural crest derived cells, and the Wnt signalling molecules 

initiates chondrogenesis activating β-catenin into canonical Wnts and 

noncanonical Wnts.  

Members of the TGF-β family also have been shown to play a major role in bone 

and cartilage development. Particularly, TGF-β promotes proteoglycan 

deposition, because of that, TGF-β is a standard media additive used during 

chondrogenesis differentiation of MSCs (82, 98–102).  

 

10.1.6 Importance of the mesenchymal stem cells in tissue engineering and 

bone defects. 

After orthopedic surgeries caused by bone defects, most people 

experiment trauma, inflammation, or remnant tumors. Because of that, tissue 

engineering has provided diverse strategies for repairing such tissue defects, 

nevertheless, their clinical application or scaleup has given suboptimal results, 

been still limited (103, 104).  

Different types of bone grafts have been used: autografts, allografts, and synthetic 

grafts. The autograft in comparison with the others is considered the best strategy 

to treat bone defects, mainly considering the osteoinductive and osteoconductive 

properties, and the histocompatibility of the biological scaffold employed (105). 

Nevertheless, diverse studies have evidenced that a MSCs-based therapy in 

combination with allogenic grafts could be a viable alternative to autologous bone 

transplants, specifically, taking advantage of the MSCs multipotentiality, the 

possibility of being easily isolated from tissue aspirates, and their high ex vivo 

expansion potential. The above is accompanied by the release of growth factors, 
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and the stimulation of these progenitor cells to be finally injected in the damaged 

tissue (105–107).  

An example of MSCs-based therapies consisted in the culture of cells on a three-

dimensional scaffold. According with some authors (108), MSCs have been 

seeded on ceramic biomaterials, the local implantation at the defect resulted in 

complete fusion at 5–7 months post-surgery, showing good integration with the 

affected tissue and causing repair.  

Currently, some other scaffolds based on natural and synthetic materials are 

available, an example is the use of hydroxyapatite (HA) scaffolds for in vitro MSCs 

culture, which has been used in several animal models, showing a great potential 

in promoting bone union and repair. One of the most important properties of these 

materials is the open porosity which make possible the vascularization, the blood 

vessels are closely involved in osteogenesis, the osteoblast cells produce osteoid 

tissues, which differentiate to osteocytes, and finally form healthy bone (106, 107). 

Nevertheless, several strategies for enhancing vascularization including the 

modification of the scaffold design, the release of angiogenic factors, and in vivo 

and in vitro pre-vascularization are currently under study, which will be reviewed 

in upcoming chapters.  

 

10.2 Dexamethasone and glycosaminoglycans as osteoblast differentiation 

factors during in vitro MSCs culture.   

10.2.1 Effect of dexamethasone on MSCs differentiation. 

Differentiation of hMSCs is influenced by changes in the biochemical 

agents of the culture medium that contains them under in vitro conditions, such 

as the drug Dx. 

Dx is a synthetic glucocorticoid that reduces inflammation in the central nervous 

system, acting through glucocorticoid receptors found in most neurons and glial 

cells (5, 10, 23, 109–111). In addition, is one of the most prescribed 
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corticosteroids worldwide as a treatment for eye diseases, rheumatoid arthritis 

and to reduce inflammation due to its effect on the negative regulation of the 

expression of inflammatory cytokines (IL-b, IL-6, IFN-g and TNF-α), chemokines 

(CXCL10 and CCL-5), and metalloproteases (9).  

Dx along with other growth factors and therapeutic drugs is recognized for its in 

vitro effect to induce and enhance the differentiation of hMSCs to osteoblasts (10, 

11). Due to being locally delivered, the specificity and efficiency of Dx means that 

only small amounts of the drug are required (5, 10, 23, 109–111). In this case, the 

optimal Dx concentration used to drive differentiation of MSCs is in the range of 

10 to 100 nM. An interesting point to consider is that concentrations greater than 

1000 nM can have a toxic effect on cells and have even been related to the 

development of osteoporosis and bone density loss (4, 10).   

MSC differentiation into osteoblasts is strictly regulated by diverse factors that 

persist in intracellular signaling pathways such as Notch/Hedgehog, ERK, and 𝛽-

catenin. The activation of these signaling pathways leads to the initial expression 

and subsequent regulation of the RunX2 gene, this process induces to the 

transcription of the RunX2, which as was mentioned, is the main transcriptional 

factor for osteoblast differentiation. After RunX2, the expression of other important 

markers of osteoblast is carried out, including the ALPL gene that codes for 

alkaline phosphatase, and the Col1A1, followed by the mineralization of the 

extracellular matrix (112, 113).  

The role of Dx in MSC and its influence on osteoblast differentiation is explained 

by the expression of RunX2 by various mechanisms. The first one, through the 

transcriptional activation of the gene mediated by FHL2 (upregulated in presence 

of Dx) protein which activates the WNT/β-catenin signaling-dependent RunX2 

expression. Dx binds to the corticosteroid-binding site of the response element in 

the FHL2 promoter, inducing protein synthesis. FHL2 is bound to 𝛽-catenin in the 

presence of WNT3a (an activator of the WNT signaling pathway), this leads to the 

release of 𝛽-catenin to the nucleus and enhances the RunX2 transcription.  
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The second mechanism explains that the regulation of RunX2 is mediated by the 

activity of a TAZ molecule (a transcriptional coactivator) type 𝛽-catenin. In this 

case, TAZ is responsible for the recruitment of components of the transcriptional 

machinery for RunX2 while repressing PPARγ gene transcription, to avoid 

adipogenic differentiation. Finally, the third mechanism of osteogenesis induction 

by Dx is through the activation of MKP-1 (ERK2). For the latter case, Dx increases 

the transcription of the ERK2 gene, once transcribed, it phosphorylates the RunX2 

factor at serine 125, which leads to greater activity and expression of osteogenic 

genes (10, 112, 114) (Figure 4). 

 

 

 

 

 

 

10.2.2 Glycosaminoglycans and their potential use as differentiation factor 

on MSCs.  

GAGs are a family of polydisperse, sulfated, anionic, and linear polysaccharides 

responsible for a great number of critical biological functions. In general, GAGs 

Figure 4. Dexamethasone signaling pathways during mesenchymal stem cells differentiation to 
osteoblast lineage. From Langenbach F, Handschel J. 2013 (10). 
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consist of repeating disaccharide units composed of uronic acid and amino 

sugars. There are 4 main types of glycosaminoglycans: Hep and heparan sulfate 

(HS), chondroitin sulfate (CS) and dermatan sulfate (DS), hyaluronan (HA), and 

finally, keratan sulfate (KS) (14–16). 

In 2015 (17), it was reported that Hep is associated with numerous biological 

processes, including osteogenesis from MSCs through the interaction with 

extracellular components as growth factors, cytokines, lipoproteins, and ECM 

proteins, a process that could be closely related to the concentration of the drug 

added to the culture medium (18). 

Regarding their structure, Hep and HS are the most complex existing GAGs. They 

are composed of 20 to 40 repeating disaccharide units linked by 1,4-glycosidic 

bonds, including uronic acid (D-glucuronic acid (GlcA) or L-iduronic acid (IdoA)), 

commonly linked to sulfate groups; and by D-glucosamine residues (GlcN, a 

hexosamine) with N-sulfate, N-acetyl, or free amino groups. In contrast to HS, in 

the Hep molecule, L-iduronic acid predominates by 90% compared to D-

glucuronic acid and has more sulphate groups (14, 15). 

Hep and HS are synthesized in the Golgi complex and exported to the outside of 

the cell, where they are predominantly found in the ECM or on the cell surface 

bound to core proteins, where they form particular complexes called 

proteoglycans (14, 16). Hep is a highly important GAG that is frequently used in 

the pharmaceutical field as an anticoagulant to treat high-risk thrombotic 

disorders, since it binds with high affinity to antithrombin III (ATIII), which 

deactivates various enzymes of the coagulation cascade (115, 116). 

 

10.3 Porous and non-porous materials as drug delivery systems.  

Sections 10.3.2 - 10.3.4 were published by the thesis author in 2020 as it is 

reported in Annexes section (117). 
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10.3.1 PEDOT as conductive polymer for drug immobilization. 

The conductive polymer PEDOT is synthesized from EDOT (Figure 5). It has 

been extensively studied for its high transparency, its easy processing in aqueous 

solution with surfactants, and its applicability for flexible devices (118). The 

controlled synthesis of PEDOT from EDOT is possible through 

electropolymerization or electrodeposition (119).  

PEDOT is categorized as a biocompatible conductive polymer (109). However, in 

cases where organic molecules or whole cells are involved, it is recommended to 

evaluate the combination with biopolymers, to improve the biocompatibility of the 

matrix (120). Previusly,, the cytotoxicity of a PEDOT porous matrix in combination 

with the biopolymer κC was confirmed in a human neuroblastoma cell line (SH-

SY5Y) (109). The high surface-volume ratio, high porosity, the high degree of 

interconnection of pores, and an appropriate pore size are some of the properties 

that this type of scaffold must have to improve the biological and electrical 

properties of the interface (121). 

 

Figure 5. Molecular structure of the EDOT monomer (left) and the PEDOT polymer (right). 

 

The electrochemical properties of PEDOT and its simple processability can be 

exploited in a wide range of applications, including biomedicine and biotechnology 

(122). This polymer has been described as a promising material for the local 

release of drugs (specifically charged molecules), since it allows the incorporation 

of these anionic molecules by electrostatic mechanisms during 

electropolymerization in thin films and their subsequent release by charge transfer 
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through of the interface during an electrical stimulation event (24, 123). In addition, 

the controlled release of Hep and HS from conductive polymeric matrices has also 

been investigated, although not extensively (124). However, it constitutes a 

potential method for the future generation of a scaffold for bone tissue 

regeneration. 

The application of external electrical stimuli on MSCs was studied on 2013, as 

result, authors confirmed that cells were not negatively affected by low alternating 

current stimuli even in periods of 6 hours of stimulation (6), which strengthens that 

the drug fixation and subsequent release from PEDOT matrices could be applied. 

The electrodeposition of the PEDOT/κC polymeric matrix can be carried out on 

different types of materials such as gold (Au), platinum (Pt) or indium tin oxide 

(ITO) (109, 118, 123). However, given its biocompatibility and in accordance with 

previously research (109, 123), the gold electrodes system is the best to stimulate 

the matrix and to induce drug release. 

 

10.3.2 Controlled drug release by electrical stimulation employing 

nonporous conductive materials. 

In order to prevent the negative effects resulting from exposure to high 

dosages of drugs, local electronically controlled release of pharmaceutical 

compounds from implantable devices appears as a promising option (125). Drugs 

anchored inside the conductive materials have been reported using supercritical 

technology and electropolymerization (126, 127). 

Electrochemical methods involve the use of conductive polymers, which are 

electrochemically oxidized during the polymerization processes, generating 

charge carriers, and, thus, allowing ionic drugs’ impregnation based on 

electrostatic interactions (128). There are two main electrochemical methods to 

induce the immobilization of drugs. In the first one, an ionic drug (preferably 

anionic) acts as a doping agent and its anchoring proceeds simultaneously with 

the process of matrix formation, commonly named one-step immobilization or in 
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situ immobilization (126, 129). Drug fixation is the result of the ion-exchange 

processes during polymer oxidation. Ionic drugs can serve as counter-ions for the 

positively charged centers in the growing polymer chain (130).  Anti-cancer drugs, 

anti-inflammatory compounds, and hormones have been fixed on conductive 

materials using one-step immobilization, mainly for the development of neural 

devices (24, 131, 132). 

The second method corresponds to the two-step or ex situ immobilization. The 

incorporation of the drug is carried out after the synthesis of the matrix, through 

ion exchange processes taking place at their surface. First, the polymer film is 

synthesized from a solution consisting of the monomer and a small ionic molecule 

as doping agent, without the drug. The obtained film is later reduced and oxidized 

by an electrical stimulus (126, 129). Reduction induces the removal of the dopant 

from the film; meanwhile, the drug, which acts as the second doping agent, is 

incorporated during the process of matrix oxidation (130).This approach allows to 

prevent the interference of drugs during the growth of polymer matrix and their 

subsequent release does not have much impact on their physicochemical 

properties (126, 129). 

Different strategies of drug fixation on conductive polymers using two different 

doping agents have been reported (12, 130). The anti-inflammatory drugs Dex 

and the polysaccharide κ-carrageenan were included simultaneously during 

PEDOT film formation, using in situ immobilization. After film oxidation, κC was 

maintained on the matrix, granting the film greater stability and integrity even after 

drug release (12). 

Drug delivery is caused by electrochemical stimulation of the conductive matrix, 

which induces the oxidation and/or reduction of the film. By applying a negative 

potential, the polymeric matrix is reduced, and the cationic charge of the polymer 

backbone is neutralized, causing the release of the anionic drug by electrostatic 

mechanisms (129). In a similar procedure, applying negative and positive cyclic 

potentials induces the reduction and oxidation of the polymeric film, respectively; 

meanwhile, the matrix experiments expansion and contraction, which force the 
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release of the drug. Although cyclic stimulation allows a greater amount of drug 

release in comparison with other methods, some authors have reported that the 

application of the stimulus may cause delamination, cracks, and breakdowns of 

the matrix, mainly in one-step immobilization systems (133–135).   

The controlled release of drugs using electrical stimulation from conductive 

polymer films (12, 24, 127) opens the door for a different approach regarding the 

application of polysaccharide aerogels on drug delivery. Since these materials 

can be coated with an electrically conductive material while incorporating active 

compounds, those composites may be used in the controlled release of bioactive 

molecules by electrical stimulation (136, 137). These biochemical release 

systems are the focus of several research groups and further investigations 

should follow this path to promote smart porous scaffolds that merge mechanical, 

electrical, and biochemical stimulation processes, mimicking the in vivo ECM 

conditions. 

 

10.3.3 Polysaccharide-based porous materials as drug-delivery systems. 

One of the main approaches and most relevant applications of biopolymer-

based porous materials is their use as drug-delivery systems (28, 29). The 

application of these materials as controlled drug-release matrices has gained 

interest in the last years due to their properties, such as its high surface area, high 

porosity, and biocompatibility (29). Porous materials can act as carriers for 

bioactive compounds, showing high loading capacity, enhanced stability upon 

storage, and accelerated drug release, if required (138). Along with the high 

loading capacity, biopolymer-based porous materials also show an improved 

dissolution rate of poorly water-soluble drugs (29). 

The biocompatibility of natural polymers along with the outstanding performance 

of porous matrices as carriers for active compounds, such as drugs, have 

promoted the systems as scaffolds in body implants to accelerate tissue formation 

by providing a suitable porous structure that promotes cell colonization (5, 139). 
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Diverse authors have also studied the incorporation of drugs and growth factors 

to promote the attachment, proliferation, and differentiation of cells, in order to 

provide both substitutes for damaged tissues and therapeutic schemes that 

reduce post-implantation inflammation and infections (1, 4, 5). 

Controllable drug-release systems may be categorized as mechanical methods, 

which are mainly in vivo implantable pump delivery systems built from 

biocompatible nanomaterials (21, 22), and as polymeric drug delivery systems. 

The last one makes use of biopolymers, in which the delivery of drugs is mainly 

dominated via diffusion and by electrochemical methods as was recently reported 

(22). Hence, the incorporation of drugs within these kinds of porous scaffolds has 

been studied previously for osteogenic differentiation, bone repair activity, and the 

stimulation of neural tissues (5, 127). 

 

10.3.4 Diffusive phenomena on the controlled release of drugs on 

polysaccharide-based porous materials. 

Different methods for drug impregnation can be found in literature regarding 

porous materials from polysaccharides. Supercritical technology employing 

scCO2 has been defined as the most innovative technique for producing 

polymer/drug composite systems for pharmaceutical applications (140). By 

means of supercritical fluid technology, the impregnation of scaffolds with drugs 

such as ketoprofen was achieved (139). This process consists of placing aerogel 

particles and ketoprofen in a closed autoclave under agitation; the ketoprofen is 

dissolved in scCO2 and adsorbed in the aerogel matrix. The same procedure was 

reproduced for obtaining poly(ɛ-Caprolactone) (PCL) scaffolds loaded with 

ketoprofen (141) and for alginate-based aerogel microparticles for mucosal drug-

delivery (29).  

Three steps are considered for the diffusion model: first, the film diffusion; the 

second step is the slowest, thus controlling the kinetics of the phenomenon, and 

it is called intraparticle diffusion; finally, the last step is the adsorbate release on 
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adsorbent active sites (142). Several works have been published regarding the 

release of drugs by means of diffusion phenomena (23, 29, 138, 139, 143, 144). 

The first mechanism when a drug-loaded polymeric material meets an aqueous 

solution is the filling of the pores near the surface; then, drug diffusion is initiated 

by the dissolution of the solute in the water-filled pores and the continuous 

diffusion in water (145). Through time, the polymeric network starts swelling, 

inducing several structural changes that are affected by the cross-linking density 

and the degree of crystallinity of the 3D network. From the swelling of the polymer, 

a new diffusion starts through the swelled polymer structure (145). By analyzing 

the release profile of drugs, conclusions can be obtained on whether the kinetics 

follow a Fickian or non-Fickian diffusion profile (139). 

Innovative drug delivery systems are not only studied to improve cellular 

responses in different tissues but as a strategy that develops platforms and nano-

scale devices for selective delivery of therapeutic small drug molecules to the cells 

or tissues of interest, for the maintenance of appropriate doses, and to improve 

individual therapy. To meet this demand, many drugs have been reformulated in 

new drug delivery systems to provide enhanced efficiency and more beneficial 

therapies (21, 22). 

 

10.3.5 Future perspective: innovative polysaccharide-based porous 

materials as extracellular matrices for tissue regeneration. 

In recent years, tissue engineering and regenerative medicine studies has 

been based on the combination of specific types of cells and three-dimensional 

(3D) porous scaffolds to induce a successful in vitro generation of diverse tissues 

(146–148). The main efforts on engineered ECMs in the biomedical field have 

been focused on the use and stimulation of pluripotent stem cells. 

An ECM is an organized network composed by a mixture of cellular and non-

cellular components. It plays an important role in tissue and organ 

morphogenesis, cell function, and structure maintenance. The biochemical and 
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mechanical stimulus that cells receive from the matrix influences their growth, 

migration, differentiation, survival, and homeostasis (149). 

Aerogels are porous three-dimensional matrices, which possess a nanostructure 

that it is able to mimic the extracellular matrix of the natural tissue, providing a 

favorable environment for the regeneration of tissues and organs (28). Coupled 

with high porosity, low densities, and high inner surface areas, porous materials 

can provide appropriate morphology engineering, opening the possibility for their 

application as synthetic scaffolds for tissue engineering (121). 

Specifically, the scaffold acts as a template for new tissue formation (150) and its 

three-dimensional structure guides the proliferation and colonization of cells, 

promoting tissue growth (151). An ideal synthetic ECM should exhibit a highly 

open and uniform porosity, over 80%, with micro-and mesopores that enable cell 

infiltration and macropores for proper vascularization (152). The configuration of 

the scaffold topology is critical in controlling cellular function, it should match the 

endogenous topology of the cell membrane in order to enhance signaling and 

function. 

Nowadays, regenerative medicine is focused on the evaluation of novel skeletal 

muscle regeneration strategies, which involve the prefabrication of muscle tissues 

in vitro by differentiation and maturing of muscle precursor cells on a scaffold, 

providing the required environment for myogenic differentiation of the cultured 

cells (153). Researchers are studying the incorporation of products obtained from 

cellular metabolism in synthetic ECMs. These materials are mainly constituted of 

glycosaminoglycans, a group of polysaccharides that can modulate cell activity 

by mimicking aspects of the in vivo extracellular environment, providing important 

roles in cell signaling, proliferation, and orientation through their ability to interact 

with ECM proteins and growth factors (14–16, 154). Hyaluronic acid, heparan 

sulfate, and heparin are the most used glycosaminoglycans in synthetic ECMs, 

mainly to direct the culture of MSCs (155, 156). 
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On the other hand, the synthesis of alginate hydrogels for platelet-rich plasma 

encapsulation as a coating for polylactic acid porous devices is another strategy 

used to improve cellular responses on synthetic ECM, the hydrogel system allows 

for better cellular integration and influences the vascularization into the membrane 

after skin implantation of the device, and the access to nutrients and growth 

factors was also improved with the engineered hydrogel. Platelet-rich plasma 

hydrogels could also support oxygenation of cells, avoiding hypoxia immediately 

post-transplantation (157, 158). In a similar study, calcium peroxide (CPO) was 

used during the synthesis of a gelatin methacryloyl bioprinted scaffold to achieve 

improved cellular oxygenation and increase fibroblast viability under hypoxia 

conditions (159). 

The spatial arrangement, porosity, biocompatibility, and proper scale of the ECM 

are some of the most important features that must be adjusted for use in nervous 

tissue, skin, bone, and muscle (153). Nevertheless, several other factors, such as 

mechanical properties and chemical modification of scaffolds, significantly 

influence cellular behavior and are also considered during synthetic ECM (160, 

161).  

Current and future studied strategies are based in the use of these type of 

scaffolds which could be employed and modified for drug immobilization and as 

conductive systems for MSCs stimulation focused on cell stimulation for the 

synthesis of in vitro bone tissue for regeneration. 
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11 Justification 

 Degenerative conditions causing by aging, defects on bone tissue, and the 

needed for organ transplant have gained interest in the control of hMSCs 

differentiation making use of scaffolds designed with bioactive materials to 

facilitate the formation of functional tissues. 

HMSCs differentiation into different lineages can be induced by incorporating 

biochemical agents into the culture medium, and it has also been studied that 

some glycosaminoglycans can favor the response time in the differentiation to 

osteoblasts. 

Given that, the study of the in vitro role of the controlled release of at least one 

bioactive agent in the proliferation and differentiation of cells to the osteogenic 

lineage, may be a promising approach for future design and development of 

scaffolds that allow cell establishment and differentiation, favoring a normal tissue 

regeneration process. 

In this case, the faradic mechanism of a conductive polymer on a gold electrode 

allowed the fixation and subsequent release of Dex in a cell culture medium. This 

system permitted a more precise control of the quantity and concentration of drug 

released, reducing the possible diffusion events; so that it could be a better 

candidate in future therapy strategies for various injuries or chronic diseases. In 

parallel, a three-dimensional porous system for Dex incorporation was prepared 

and applied during hMSCs culture. 
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12 Hypothesis  

The controlled release induced by electrical stimulation of at least one charge 

molecule from gold electrodes coated by conductive polymeric matrices promotes 

the differentiation of hMSCs into osteoblasts. 
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13 Objectives 

13.1 General objective: 

To study the in vitro effect of the controlled release of charged molecules 

from porous and non-porous conductive materials, on the proliferation and 

differentiation of human mesenchymal stem cells. 

13.2 Specific objectives: 

1. To synthesize conductive materials for the controlled release of a charged 

molecule for the study of the proliferation and differentiation of human 

mesenchymal stem cells. 

2. To establish the concentration profile of at least one charged molecule for 

the differentiation of human mesenchymal stem cells to osteoblasts. 

3. To analyze the expression of osteoblasts characteristic markers to confirm 

the differentiation of mesenchymal stem cells after suffering biochemical 

stimulation. 

4. To evaluate the in vitro effect of the controlled release of at least one 

charged molecule from conductive matrices on the proliferation and 

differentiation of human mesenchymal stem cells, for its prior study as 

tissue regeneration therapy. 
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14 Materials and methods 

This work was carried out at School of Chemistry and Biotechnology 

Research Center (CIB) from Tecnológico de Costa Rica, Cartago, Costa Rica. 

Characterization of materials were carried out at Materials Science and 

Engineering Research Center (CICIMA) and Tropical Diseases Research Center 

(CIET) from Universidad de Costa Rica. Finally, the cellular and molecular 

analyses were studied at Pharmaceutic Technology Laboratory from Pharmacy 

Faculty and at Molecular medicine and Chronic Diseases Research Center 

(CiMUS) from Universidad de Santiago de Compostela, Santiago de Compostela, 

Spain. 

 

14.1 Materials. 

κCa from red algae (quality level 200), isopropyl-alcohol (IPA, gradient 

grade, for LC-GC), potassium chloride (KCl, >99.0% purity), ammonium acetate 

(NH4CH3CO2, purity 98%), dexamethasone 21-phosphate disodium salt (Dex, 

98.0% purity), fetal bovine serum (FBS), dexamethasone base (Dx), 3,4-

ethylenedioxythiophene (EDOT, 97.0% purity), ultrapure water MS quality, MS 

methanol, and ALPL enzymatic activity kit (AP100) were obtained from Sigma 

Aldrich (San José, Costa Rica). Anti-human ALPL ABfinity™ Rabbit monoclonal 

antibody (7H11L3), rabit anti-human osteopontin polyclonal antibody (PA5-

34579), prolong with DAPI, and α-MEM no nucleosides culture medium were 

purchase from ThermoFisher Scientific. Goat anti-rabbit 

(IgG) secondary antibody preadsorbed with Alexa Fluor® 594 (ab150084), and 

anti-Col-I (ab280968), was purchased from Abcam, starch from corn (St, N-460, 

52% amylose) was adquired from Roquette (Lestrem, France). All chemical 

reagents were used without further purification. Distilled and deionized water was 

used in all experiment. 
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14.2 Deposition of the gold electrode. 

Gold electrodes (Au, 99.99 % pure, Goodfellow Corporation, Coraopolis, PA 

15108-9302, USA) fabrication was extensively studied by the author and others 

in earlier researches (162–164). In general, electrodes preparation for drug 

immobilization was carried out by the deposition of gold on a polyimide substrate 

using a high vacuum chamber. A coating thickness of 42.0 ± 0.4 nm of gold was 

deposited by means of electron beam evaporation with a base pressure of the 

order of 2.2 x10-6 Torr, deposition rates of 0.38 ± 0.03 nm·s-1 were used. After 

that, electrodes were passivated using a shadow mask to leave a specific 

exposed area (20.49 ± 0.02 mm2, Figure 6). In parallel, gold electrodes to be used 

during cell culture analyses were prepared using the same method, nevertheless, 

the dimensions of the system were corrected to adjust it to a 24-well dish (exposed 

area of 132.52 ± 0.02 mm2).  

 

Figure 6. Deposited PEDOT/κC/Dex film on a passivated electrode after 160 cycles of electrical 
oxidation (left) and gold electrode without passivation as reference (right). From Ramírez-
Sánchez, et al. 2020 (12). 

 

Prior to the drug deposition, electrodes were electrochemically cleaned with KCl 

0.2 M (165) applying cyclic voltammetry (CV) sweeps from a range of −600 to 900 
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mV with 100 mV·s−1 scan rate, using an Autolab Potentiostat supplied by Metrohm 

(PGSTAT-302N, AUTOLAB, Utrecht, The Netherlands).  

Finally, the functionality of the electrode system was confirmed by physics 

modelation (162) using the COMSOL® (COMSOL Inc., Burlington, 

Massachusetts, USA) multiphysics package. The simulations were performed 

using the Secondary Current Distribution physics and considered the gold (Au) 

electrode structure in KCl 0.2M (Annex 7) 

14.3 Modification of the gold electrode with a coating of PEDOT/κC/Dex. 

Firstly, the surfactant dispersion was prepared according to a previous work 

(123), briefly: κC at micellar critical concentration (0.2% wt.) and KCl electrolyte 

(0.2 M) were added to deionized water previously heated at 50 °C and 

magnetically stirring at 150 rpm for 1 hour. After that, the samples were sonicated 

using 140 Joules in a Sonifier QSonica (Q700, Ultrasonic Corporation, Danbury, 

CT, USA), before and after adding the monomer EDOT (10 mM) and Dex at three 

different concentrations: 1 mM, 5 mM, and 10 mM. 

Once the dispersion system was established, the solution was electropolymerized 

on the electrode surface under galvanostatic conditions using an Autolab 

Potentiostat. The gold electrode (Figure 6) was used as a working electrode, a 

platinum sheet as counter electrode, and Ag|AgCl (KCl 3.0 M) worked as 

reference electrode. The electrical polymerization was carried out by a 

potentiometry method, applying a constant current of 102.45 µA (current density: 

0.5 mA·cm−2), a potential limit on a range of 1400 mV to 1700 mV during 360 s 

(ca. 180 mC·cm−2 of charge density). Next, the electrodes were intensively rinsed 

with deionized water and stored at 4 °C before their use (1 week maximum). 

 

14.4 Evaluation of the stability and size of the dispersion systems. 

The characterization of the particle size and ζ-potential was performed using 

triplicates of six dispersions, prepared in deionized water, namely: (1) κC 0.2% 
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wt.; (2) Dex 10 mM; (3) EDOT 10 mM/κC 0.2% wt.; (4) EDOT 10 mM/Dex 10 mM; 

(5) κC 0.2% wt./Dex 10 mM; and (6) EDOT 10 mM/κC 0.2% wt.:Dx 10 mM. 

Measurements were performed in a Zetasizer instrument (Nano ZS, Malvern 

Panalytical Ltd., Worcestershire, UK) at 25 °C and 173° angle. Finally, dispersions 

were sonicated using a high-power ultrasonic bath (Bransonic®, Merck 

corporation, San José, Costa Rica) for 6 min to promote their homogenization. 

Two additional formulations of EDOT/κC/Dex were prepared to reach lower 

dexamethasone concentrations into the conductive layer. 

 

14.5 Analysis of the Topography and Composition of PEDOT/κC/Dex 

Coating by Profilometry and µ-Raman Spectroscopy Methods. 

Electrode topography was studied by profilometry analysis (Bruker, model: 

Dektak TX Advance, AZ, USA). The arithmetical mean roughness of the surface 

(Sa) was calculated to describe the topography of the materials by using a 2 µm 

tip radius and a force of 1 mg in a 300 × 300 μm2 and a scan area rate of 2.5 

μm·s−1. 

To analyze the coating composition, Raman spectroscopy analysis was carried 

out using a confocal µ-Raman microscope (Alpha300 R WITec, GmbH, Ulm, 

Germany) with a 532 nm excitation laser, using an exposure time of 0.5 s, and 

105 accumulations. The Raman stack scan was obtained using an integration 

time of 4 s in 4 µm2 of area, a total of 200 measurements per line were recorded, 

reached 20 lines in each stack. Oversampling was used to improve the image 

quality, which was done in case of the cross-sectional scan. The scan depth was 

fixed at 5 µm and a total of 10 stack scans were achieved. The intensity of the 

relative wavenumber at 1435 cm−1 and 1625 cm−1 were extracted from each 

acquired spectrum, corresponding to PEDOT (163) and Dex/κC (135, 165), 

respectively and plotted as 2D image. The intensity counts are related to the 

presence of the functional group, and it is presented as bright yellow areas. 
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14.6 Dexamethasone-21 phosphate release experiments from the 

PEDOT/κC/Dex film. 

The drug release from the modified electrode was carried out in a continuous 

flow cell (Figure 7) using cyclic voltammetry (CV) sweeps with a three electrodes 

system (PEDOT/κC/Dex, Ag|AgCl, and a gold film as working, reference, and 

counter electrodes, respectively). The buffer solution was injected with a constant 

flow of 250 µL·min−1 using a syringe pump (New era pump systems, NE-1002X). 

The active release of the drug was performed in 1 mL of fresh ammonium acetate 

solution (0.10 M) pH 7.2 (166), by scanning of CV from −600 to 1000 mV with a 

25 mV·s−1 scan rate, over a period of 300 min (5 samples total) at room 

temperature. 

In order to analyze the amount of drug released by diffusion events, the same 

procedure but, without electrical stimulation, was performed. For the experiment, 

1.0 mL of 0.10 M ammonium acetate was injected through the cell containing the 

electrodes, a total of five samples were collected during 300 min of analysis. 

 

 

Finally, Dex containing samples were filtered using a nitrocellulose 0.2 µm filter. 

The concentration of drug for the active and passive release events, was 

determined using a Xevo G2-XS quadrupole time of flight (Q-tof) mass 

spectrometer (Waters Corporation, Wilmslow, UK) coupled with an Acquity UPLC 

Outflow 

Inflow 

Reference electrode 

Modified electrode 

Figure 7. Schematic representation of the polymethylmethacrylate (PMMA) continuous flow cell 
used in electrochemical stimulation of PEDOT/κC/Dex modified electrode. Designed by Eng. 
Jorge Sandoval. 
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H-Class. For the analysis, a 10-µL injection of the sample was separated with an 

Acquity UPLC® C18 column (2.1 mm·50.0 mm). The mobile phase consisted of a 

solution of water:formic acid 0.05% and methanol:formic acid 0.05% and they 

were supplied under not isocratic conditions with a constant flow of 0.3 mL·min−1 

(Table 2). 

Table 2. Gradient elution method for the mobile phase using during dexamethasone-21 phosphate 
analysis. Solvents were H2O:0.05% formic acid (A) and methanol:0.05% formic acid (B). 

Time (min) Flow (mL·min–1) % A % B 

0 0.3 95 5 

1 0.3 95 5 

2 0.3 5 95 

10 0.3 5 95 

12 0 50 50 

15 0.3 50 50 

16 0.3 50 50 

 

Configuration of the mass spectrometer was set according to the parameters in a 

previous work (167), with the following modifications: Capillary voltage of 2 kV, 40 

V sampling cone and a source offset of 80 V. Source temperatures were 

stablished at 130°C and 280°C for the desolvation temperature. The cone gas 

flow was set at 9 L·h–1 and 792 L·h–1 for the desolvation gas. Finally, for the 

identification of the Dx, MS mode under negative polarity was used with a mass 

range from 50 to 500 m·z-1. Quantification was carried out using Multiple Reaction 

Monitoring (MRM) acquisition method with the optimized transition of 471.1584 

m·z-1 for the precursor ion and 78.9585 m·z-1 for the product ion, with a collision 

energy of 35 eV. Concentration in each sample was calculated using the Software 

MassLynx™ (V4.1, Waters Corporation, Wilmslow, UK) and an external 

calibration curve between 0.5 ppb to 1000 ppb of Dex (R2 = 0.9965). 
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14.7 Preparation of three-dimensional scaffolds based on polysaccharides 

and dexamethasone-21 phosphate. 

Aqueous solutions containing starch, κCa and Dex were prepared using 

continuous magnetic stirring for 2 hours or until no appreciable lumps were 

observed. The concentration of each component is showed in Table 2. 

Table 3. Polysaccharide-based cryogels notation regarding the initial content of the polymers 
(expressed in weight percentage of initial blend solution for the cryogel formation). 

 

Each dispersion was autoclaved at 121°C and 1.1 bar for 7 minutes used an 

autoclave Raypa AES-12 (Spain). Then, the autoclave was quickly depressurized 

until atmospheric pressure was reached (at 95°C). Immediately, the resulting 

viscous solution were poured into 12.9 ± 0.2 mm diameter cylindrical molds and 

were subsequently stored at 4°C during 48 hours for starch retrogradation. After 

that, the resulting hydrogels were frozen at -80°C overnight and finally, the frozen 

samples were freeze-dried for 24 hours using a freeze-dryer (Telstar, LyoQuest 

Plus -85/ECO,Spain) at -65° and 0.025 mbar. The resulted cryogels were then 

UV-irradiated for 2 hours to induce sterilization.  

 

14.8 Physical characterization of polysaccharide/Dex-based cryogels.  

Skeletal density of polysaccharide-based cryogels (𝜌𝑠𝑘𝑒𝑙) was determined 

using a He pycnometer (Quanta-Chrome MPY-2, Spain) set at room temperature 

and 15 psi. A total of 5 replicates were used for each measurement. Cryogels bulk 

density (𝜌𝑏𝑢𝑙𝑘) was calculated by weighing and measuring individual cryogels 

Sample Starch (wt. %) κ-Carrageenan (wt. %) Dexamethasone (wt. %) 

St 9 0 0 

St/κCa 9 0.5 0 

Dex 0.00005 % 9 0.5 0.00005 

Dex 0.0002 % 9 0.5 0.0002 

Dex 0.0004 % 9 0.5 0.0004 

Dex 0.0010 % 9 0.5 0.001 

Dex 0.0018 % 9 0.5 0.0018 
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dimensions. Finally, equation 1 and equation 2 were used to calculate cryogels 

overall percentage porosity (ε) and total pore volume (𝑉𝑝), respectively (168). 

𝜀 = 1 − 
𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘𝑒𝑙
× 100  (Equation 1) 

𝑉𝑝 =
1

𝜌𝑏𝑢𝑙𝑘
−

1

𝜌𝑠𝑘𝑒𝑙
  (Equation 2) 

 

On the other hand, mass gain analysis after water exposure was adopted to 

monitor the swelling behavior of the synthetized cryogels according with a 

previous work (169). Swelling ratio were calculated by triplicate using equation 3. 

Firstly, the initial mass of the dried composites was determined, after that, the 

samples were immersed in 3 mL of deionized water, and were incubated at 37°C. 

Later, samples were taken out and then, the weight of the swollen samples were 

immediately recorded. The swelling kinetics were determined based on the mass 

changes at 24 hours of analysis.  

The data analysis was carried out by one-way analysis of variance (ANOVA) 

method with a confidence level of 95% using IBM SPSS software.  

𝑆𝑟 =  
𝑊𝑠−𝑊𝑖

𝑊𝑖
 × 100 (Equation 3) 

Where 𝑆𝑟 is swollen ratio, 𝑊𝑠 is the weight of the swollen sample and 𝑊𝑖 is the 

weight of the dried samples.  

Degradation ratio of cryogels was determinate by their weight loss after 

phosphate saline buffer (PBS 0.1 M, pH 7.1) exposure according to equation 4.  

For the analysis, the weight of dried scaffolds was recorded. After that, samples 

were transferred to 1.5 mL tubes containing 1 mL of PBS and incubated at 37 °C 

at 60 rpm for a maximum of 7 days. Finally, samples were washed three times 

using distilled water, frozen at -80 °C and dried at -62 °C under vacuum conditions 

and weighed at regular time points.  

𝐷𝐷 =  
(𝑊𝑖 – 𝑊𝑓)

𝑊𝑖
 × 100 (Equation 4) 
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Where, DD is degradation degree, 𝑊𝑖 is the weight of the dried cryogel and 𝑊𝑓 is 

the weight of the cryogel after water exposure. 

Finally, micrographs of the prepared cryogels were recorded by scanning electron 

microscopy (SEM, Zeiss FESEM ULTRA PLUS, Oberkochen, Germany). 

Samples were gold-sputtered prior to imaging to minimize charging and to 

improve the contrast of the images.  

 

14.9 Dexamethasone-21 phosphate release experiments from the 

polysaccharide-based cryogels. 

Dex at diverse concentrations (Table 3) were added during the synthesis of 

cryogels to induce their subsequent release from the samples. Scaffolds pieces 

of 100 mg were immersed in 24-well dishes containing 4.5 mL of ammonium 

acetate solution (0.1 M, pH 7.2). The plates were placed in a thermoblock 

(EchothermTM, Torrey Pines Scientific Inc) at 100 rpm and 37°C during a period 

of 96 hours. For the analysis, aliquots of 0.3 mL were sampled at selected times, 

and the withdrawn volumes were replaced with fresh medium. All samples were 

centrifuged during 10 minutes at 14000 rpm to avoid interferences in the drug 

quantification analysis due to the presence of scaffolds debris. Finally, the amount 

of Dex released from the scaffolds was determined using mass spectrometry 

method, according with method described previously.  

A second analysis using micro infrared spectroscopy was carried out to 

monitoring the presence of the drug before and after the release events. Firstly, a 

group of dry scaffolds were triturated to collapse the structure, in parallel, another 

cryogels samples were immersed in ammonium acetate buffer during 24 hours at 

37°C and 100 rpm, after that time, samples were dried at 40°C under vacuum 

conditions and finally, them were triturated. Micro-FTIR spectroscopy 

measurements were performed using a Spotlight 400 FTIR Imaging System. The 

analyses were performed individually, measurements were obtained for a range 

of 4000-750 cm-1 with a resolution of 16 cm-1 and studying the intensity of the 
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relative signal at 1625 cm−1 (130, 170, 171). Molecular micrographs were obtained 

for randomly selected areas of 50·100 µm2 on the sample surface, using 128 

scans·pixel-1 and was plotted as 2D image. The absorbance intensity was related 

to the presence of the drug. 

 

14.10  Osteogenic differentiation of human mesenchymal stem cells. 

hMSCs were purchased by ATCC. Firstly, cells at density of 5000 cells·cm2 

were cultured in a T75 cm2 flask, removing non-adherent cells after 24 h of 

incubation. Cells were expanded in vitro using basal medium (BM), constituted by 

non-nucleosides α-Minimum Essential Media (α-MEM) with L-Glutamine, and 

supplemented with 10% fetal bovine serum (FBS) and 1% of penicillin (10 000 

UI·mL-1) and streptomycin (10 000 UI·mL-1), and maintained at 37°C in a 

humidified atmosphere of 5% CO2. Passage 4 and passage 5 were used. 

14.11  Biocompatibility test for the electrodes and cryogels system. 

Biocompatibility test for the electrodes and cryogels was performed 

according to the International Standards Organization (ISO 10993-5:2009). 

hMSCs (passage 5) were seeded in 48-well plates using α-MEM culture media in 

a density of 14000 cells·cm2. After 24 hours of culture, a monolayer of adherent 

cells was obtained, and the culture media was replaced by fresh media. In parallel, 

prior to seeding, materials were sterilized by UV-light for 120 minutes. After that 

time, polymerized electrodes were place around the well and the cryogels pieces 

of 13 mg and 1 mg containing dexamethasone 0.0005% wt. and 0.018% wt. 

respectively, were placed in self-made stainless steel trans-wells and transferred 

to the culture plate (Figure 8). A culture of cells without the scaffolds and other of 

cells with the trans wells were maintained as negative controls. All analysis were 

carried out by triplicate and maintained at 37 °C and 5% of CO2. 

Finally, biocompatibility determination was performed by cell proliferation analysis 

after 24 h and 48 h, using Cell Counting Kit-8 (CCK-8, Roche, Basel, Switzerland), 
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according with manufacture’s protocol: test compounds were removed and 

replaced by 180 µl of fresh culture medium containing 20 µL of a solution of water-

soluble tetrazolium salt (WST-8). The plate was protected from the light and 

incubate for 2 hours at 37ºC, after that time, absorbance was determined at 450 

nm using a plate reader. Statistical analysis was carried out using SPSS software. 

 

 

14.12  Effect of high molecular weight heparin on hMSCs differentiation to 

osteoblast. 

HMSCs (passage 5) were culture in 96-well plates in a density of 14000 

cells·cm-2, after 24 hours, cells were exposed during 14 days to osteoblastic 

differentiation conditions. Cells were exposed to culture medium consisted in BM 

containing β-Glycerophosphate (10 mM), ascorbic acid (50 µg·mL-1), Dex 100 nM, 

and Hep at several concentrations (0.025 UI·mL-1 to 25 UI·mL-1) (Table 4), the 

same culture medium without heparin was used as positive control. Cells in basal 

media were used as negative control. and lastly, a control containing basal media 

containing β-Glycerophosphate (10 mM), ascorbic acid (50 µg·mL-1), and Hep 0.5 

UI·mL-1 was used. Finally, in order to evaluate the differences between the type 

of dexamethasone used, a comparison between Dx and Dex containing culture 

medium was carried out. The culture medium was changed every 3 days. 

Samples were analyzed at 3, 7 and 14 days. 

Figure 8. Squematic representation of a gold electrode (left) and a stainless steel homemade 
trans well containing a Dex-based cryogel (right) adjusted to a well of a 48-wells culture plate. 
Designed by Eng. Sebastián León-Carvajal. 
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Table 4. Culture media composition used during osteoblast differentiation of hMSCs. 

Culture medium Culture medium composition 

Negative control Basal medium (αMEM + SFB + antibiotics) 

Dx  BM + β-Gly + AA + Dx 100 nM 

Dex  BM + β-Gly + AA + Dex 100 nM 

Dx + Hep 0.025 U·mL-1  BM + β-Gly + AA + Dex 100 nM + Hep 0.025 U·mL-1  

Dx + Hep 0.25 U·mL-1  BM + β-Gly + AA + Dex 100 nM + Hep 0.25 U·mL-1  

Dx 21-ph + Hep 0.5 U·mL-1  BM + β-Gly + AA + Dex 100 nM + Hep 0. 5 U·mL-1 

Dx 21-ph + Hep 2.5 U·mL-1  BM + β-Gly + AA + Dex 100 nM + Hep 2.5 U·mL-1  

Dx 21-ph + Hep 25 U·mL-1  BM + β-Gly + AA + Dex 100 nM + Hep 25 U·mL-1  

Hep 0.5 U·mL-1  BM + β-Gly + AA + Hep 0.5 U·mL-1  

 

14.13  Alkaline phosphatase enzymatic activity measurement. 

Differentiation potential to osteoblast of hMSCs using Dex and Hep was 

quantitative evaluated by the enzymatic activity of ALPL (172, 173). Prior analysis, 

a standard calibration curve of the enzymatic activity product, p-nitrophenol, in the 

range of (0 to 25 nmol per well) was analyzed. 

After 3, 7, and 14 days of analysis, culture medium was removed from culture 

plates, and 200 µL of distilled water was added to each well. After that, cells were 

exposed to three continuous freeze-thawed cycles (120 minutes at -80°C and 120 

minutes at room temperature) to induce their lysis and the subsequent protein 

release (174, 175). Immediately, cell lysates were added in a culture plate and 

finally, the enzymatic substrate p-nitrophenyl phosphate 5 mM dissolved in 

diethanolamine buffer (pH 9.3) was added. Enzymatic reaction was carried out at 

37°C, and the reaction product p-nitrophenol was quantified in a plate reader 

(Synergy HTX multi-mode reader, Biotek) using a wavelength of 412 nm every 5 

minutes until 60 minutes. The enzymatic activity was calculated according to the 

product formation in comparison with the standard curve. 

Finally, ALPL activity assay was normalized by the whole protein content, 

determined with the bicinchoninic acid (BCA) assay at 562 nm using 
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BCA Protein Assay Kit (Pierce™, ThermoFisher Scientific), according with 

manufacturer’s protocol, with some modifications: 25 µL of each standard protein 

concentration (0 to 250 µg·mL-1) or each sample replicate were added into a 96-

wells microplate well, after that, 200 µL of the working reagent were added to each 

well and the plate was mixed thoroughly on a plate shaker for 30 seconds. The 

plate was incubated at 37°C in a dark chamber and was cooled to room 

temperature before each measure. Measurements of the absorbance were 

carried out at 562 nm on a plate reader. The incubation time was extended to 1.5 

hours for all samples. Finally, whole protein concentration was calculated in 

comparison with the standard curve, and ALPL activity content was normalized 

with the whole total protein content data.  

 

14.14  Qualitative analysis of osteogenesis by immunofluorescence 

analysis of osteoblast cell markers. 

HMSCs (passage 5) were seeded in Nunc™ Lab-Tek™ culture plates in a 

density of 14000 cells·cm-2. After 24 hours, cells were exposed to differentiation 

medium, containing Dex 100 nM and Hep 0.5 UI·mL-1. Cells in basal medium were 

used as negative control and differentiation medium without heparin as positive 

control. After 7 and 14 days of differentiation, culture medium was removed and 

cells were fixed with 4% paraformaldehyde for 10 minutes and then, 

permeabilized for 10 minutes using 0.1 % Triton-X100 in PBS (PBST) at room 

temperature. Bovine serum albumin 1% wt. in PBST was used as blocking buffer, 

where cells were exposed at room temperature for 30 minutes. ALPL expression 

was determined with ALPL recombinant rabbit monoclonal antibody 1:200 

working solution (BSA 1% wt. in PBS) for 60 minutes at 37°C, after that, cells were 

washed three times 5 minutes each with PBS and lastly, cells were stained with 

goat Anti-Rabbit IgG (Alexa Fluor® 594) secondary antibody 1:400 working 

solution at room temperature for 60 minutes and washed 3 more times using PBS. 

To finish, the same samples were incubated with recombinant Alexa Fluor® 647 

Anti-Collagen I antibody 1:200 working solution at room temperature during 60 
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minutes in a dark chamber, washed 3 times with PBS and finally, nucleus were 

stained using 1 drop of mountain medium with DAPI and then, observed under a 

confocal microscope. 

A second immunofluorescent analysis using anti-OPN and anti-ALPL antibodies 

was carried out for samples containing cryogels and electrodes. 

14.15  RNA isolation from hMSCs. 

HMSCs (passage 5) were culture in 24-well plates, with a cell density of 

14000 cells·cm-2. Culture media consisting in BM, β-glycerophosphate, ascorbic 

acid, Dex 100 mM, and Hep 0.5 UI·mL-1 was changed every three days, all the 

controls were included in the analysis. RNeasy mini kit (Qiagen) was used during 

RNA isolation, according with manufacture’s protocol: cells were detached from 

the culture plate using TrypLE and centrifuged at 6000 rpm for 10 minutes to 

obtain a pellet. After that, 350 µL RLT buffer (lysis buffer) was added to the pellet 

and vortex 1 minute, immediately, 350 µL of 70 % v/v ethanol was added to the 

lysate and mixed by pipetting.  

Sample was transferred to a RNeasy Mini spin column, placed in a 2 mL collection 

tube, and centrifuged for 15 seconds at 8 000 RCF. Subsequently, 700 μl of Buffer 

RW1 were added to the RNeasy spin column (centrifugation 15 seconds·8000 

RCF-1), after that, 500 μl of buffer RPE was added to the RNeasy spin column 

(centrifugation 2 min·8000 RCF-1). The column was placed in a new 1.5 mL 

collection tube and finally, 30 μL of RNase-free water was added directly to the 

spin column membrane and centrifuged for 1 minute at 8000 RCF to elude the 

RNA. Total RNA concentration was determined by spectrophotometric 

quantification and finally stored at -80°C before their use. 

 

14.16  Quantitative analysis of osteoblast differentiation by qPCR. 

Total RNA (80 ng) was reverse transcribed into cDNA using Power SYBR™ 

Green RNA-to-CT™ 1-Step Kit (Applied Biosystems) according with 
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manufacture’s protocol (Table 5). cDNA was immediately analyzed in the same 

reaction, using the primers to amplify the following genes: RunX2, ALPL, and 

OPN. Thermocycling reactions were carried out at 48°C during 30 minutes for 

reverse transcription, and at 95°C for 10 minutes for DNA polymerase activation. 

Finally, reaction was followed by several cycles at 95°C for 15 seconds 

(denaturation) and 54°C for 60 seconds (annealing). Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was employed as housekeeping gene. The ∆Ct values 

were calculated for each sample by subtracting the threshold cycle value (Ct) of 

GAPDH from the Ct value of gene of interest. Lower Ct and ∆Ct values indicate 

higher gene abundance. Finally, data were normalized to obtain ∆∆Ct values, 

which was directly related with the percentage of gene expression. 

 

Table 5. qPCR reaction components using for the analysis of osteoblast markers. 

Master mix component Volume/concentration 

Power SYBR® Green RT-PCR Mix (2✕) 10 µL 

Forward primer final concentration 200 nM 

Reverse primer concentration 200 nM 

Enzyme Mix (125✕) 0.16 µL 

RNA template 80 ng 

RNase-free H2O to complete 10 µL 

 

All primer sequences and qPCR temperatures are reported in Table 6.  

 

Table 6. Primers/probes used for real-time polymerase chain reaction during the osteoblast 
differentiation of hMSCs. 

Gene Primer sequence (forward/reverse) T 

annealing 

(°C) 

Cycles Product 

size 

Reference 

GAPDH 5’GAGTCAACGGATTTGGTCGT’3 54 50 192 (176) 

5’CATTGATGACAAGCTTCCCG’3 

ALPL 5’ACACTGAAATATGCCCTGGA’3 54 50 177 (176) 

5’GAAGGGGAACTTGTCCATCT’3 

OPN 5’CATGAGAATTGCAGTGATTTGCT’3 54 50 186 (177) 

5’CTTGGAAGGGTCTGTGGGG’3 

RunX2 5’AAGCAGTATTTACAACAGAGGGTACAAG’3 54 50 124 (178) 

5’GGTGCTCGGATCCCAAAA’3 
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14.17  hMSCs differentiation using dexamethasone 21-phosphate 

controlled released systems.  

HMSCs (passage 5) were culture in 24-well plates, in a cellular density of 

14000 cells·cm-2. Culture media consisted in BM for negative control, BM, β-

glycerophosphate, ascorbic acid, Dex 100 nM, and Hep 0.5 UI·mL-1 for positive 

control. On the other hand, culture medium containing BM, β-glycerophosphate, 

ascorbic acid, and Hep 0.5 UImL-1 were used for the test, where Dex was added 

from the electrodes and cryogels delivery systems.  

For the experiment, a PEDOT/κC:Dx electrode specifically designed to be 

adjusted to 24-wells plates and previously sterilized by UV-radiation, was put into 

a well and was immediately electro-stimulated during 6 minutes, using an 

electronic device to generate custom waveforms for stimulation. The device 

consisted in a 12-bit Digital-to-Analog (DAC) converter from Visgence, Inc (USA), 

adjusted to a potential range from -0.6 V to 1.0 V.  Finally, the electrode was 

removed from the well. Four replicates were used during the analysis. 

For the cryogels test, a total of 25 mg of Dx 0.00005 % scaffold was used. 

Cryogels were put on a homemade stainless steel trans well into the well, and 2 

mL of culture media was used. Cryogels were replaced every three days, four 

replicates were used during the test. 

To confirm the effect of the Dex controlled-delivery systems on hMSCs, ALPL 

enzymatic activity, immunofluorescence analysis of ALPL and OPN proteins, and 

qPCR test were carried out as was described previously. 
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15 Results and discusión 

15.1  Evaluation of the stability and size of the dispersion systems. 

The dispersions used to electrodeposit the monomer and the Dex on the 

electrode were evaluated by their ζ-potential values and particle size distribution 

in order to determine its stability in aqueous medium. ζ-potential data was 

obtained for the six prepared dispersions, and they are shown in Table 7. It is 

possible to observe that EDOT/κC/Dex system has an appropriate stability (-48.70 

mV), which is dominated for the κC micellar system (-43.30 mV). Values of ζ-

potential over -30 mV are considered stable assuming that an electrostatic charge 

is the main stabilization mechanism, and the colloidal system is in the range of 

hundreds (179, 180). The anionic nature of the κC and Dex avoids aggregation 

due to the negative values obtained in the ζ-potential analysis, which are 

comparable with previously reported results for these molecules (123, 181, 182). 

A stable dispersion prevents aggregation or deposition of the particles that carried 

the monomer during the electrochemical deposition. Additionally, the stable 

system may allow a homogeneous dispersion of κC and Dex in the 

electrodeposited film as seem by Raman spectroscopy. 

 

Table 7. ζ-potential values of dispersions used in the fixation of the drug on the electrode. 

System ζ-potential (mV) SD (mV) 

Dex -69.40 1.14 

κC -43.30 3.31 

κC/Dex -42.63 1.67 

EDOT/Dex -70.83 1.09 

κC:EDOT -48.46 1.70 

EDOT/κC/Dex -48.70 1.21 

 

Particle size measurements of the main three dispersions were performed to 

determine the dimension of their aggregates after the sonication process. Figure 

9a shows the size distribution for the κC 0.2% wt. solution, it is possible to observe 

a single population for the surfactant. Some authors have reported previously that 
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κC solutions are polydisperse (two or more populations), because it increases the 

gel behavior due to its polysaccharide nature (183, 184). Nevertheless, they 

emphasized that the main signal for the κC aggregates has an average size in the 

range of 800 to 1000 nm (184), which agrees with our results. The intensive 

sonication process before the measure and the low concentration of κC used in 

the analysis may explain why only one population were observed in Figure 9a, 

similar to a previous report (123). 

On the other hand, once the Dex was added to the dispersion, a polydisperse 

behavior was found in the κC/Dex system and two populations were detected 

(Figure 9b). Dex solutions are characterized by a single population with a particle 

size average of 100 nm (185), which is consistent with our result. Eventually, it is 

possible to observe that the stability of the system has remained when the 

monomer was added (Figure 9c). The stability of the dispersions depends mainly 

on the used surfactant, and it has an important influence in the physical and 

electrochemical properties of the electrodeposited films (186). 
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15.2 Analysis of the topography and composition of PEDOT/κC/Dex coating 

by µ-Raman spectroscopy and profilometry methods. 

The PEDOT/κC/Dex composite was obtained from an EDOT/κC/Dex 

dispersion by electrochemical deposition under galvanostatic conditions (Annex 

2), as it was established in a previous work (123, 163). Then, the topography of 

the PEDOT/κC/Dex coating was characterized before (Sa: 0.270 ± 0.005 µm, 

Surface area: 1361 mm2, Negative volume 0.1562 mm3 and Volume 1.695 mm3) 

and after (Sa: 0.250 ± 0.005 µm, Surface area: 1337 mm2, Negative volume 

0.1707 mm3 and Volume 1.690 mm3) releasing the Dex from the conductive 

coating. The roughness data of both surfaces did not show significantly 

differences between them (see Figure 10a and 10b). The volume ratio between 

peaks and valleys describes the symmetry in the surface topography. A negative 

value is indicative of more distinct valleys and positive is more distinct peaks about 

the average plane. Our samples were dominated by peaks and low negative 

volume (around ten times) and those values are consistent with a previous report 

Figure 9. Size distribution (d.nm) of a. κC; b. κC/Dex and c. EDOT/κC/Dex dispersions, measured 
by dynamic light scattering (DLS) method. 
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for PEDOT/κC coatings (123). It is suggested that rough surfaces in comparison 

with smooth surfaces improve cell attachment due to the formation of specific 

surface-cell contacts by increasing the expression of different integrins subunits 

(187, 188). Although, diverse authors have reported that surface roughness 

values higher than 0.5 µm are desirable to ensure the maximum attachment and 

proliferation of cells, large rough surface also stimulates more anti-inflammatory 

responses because the activation of M2 macrophages and the subsequent 

release of anti-inflammatory cytokines (124). The PEDOT/κC/Dex surface 

roughness value and the lack of their significative variation during the delivery of 

Dex may indicate the reliability of electroactive composite for cell culture studies, 

since no additional mechanism may be seemed due to the topography changes.  

 

 

The qualitative composition of the conductive film was determined using Confocal 

µ-Raman spectroscopy before (Figure 11a and 11c) and after (Figure 11b and 

11d) 160 sweeps of electrical stimulation in a 4 µm2 area and 5 µm depth inside 

the composite. The analysis was performed to determine the presence of PEDOT, 

Dex and κC inside the electroactive composite. The signal was obtained and 

Figure 10. Profilometry images obtained for PEDOT/κC/Dex films (a.) before and (b.) after 160 
cycles of Cyclic Voltammetry in a 0.10 M ammonium acetate solution. 
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plotted in a 2D image that allows the association of the signal (counts) to the 

presence of the corresponding functional groups for each component. 

PEDOT shows a strong signal in the spectral range of 1421-1442 cm-1, associated 

to the thiophene symmetric Cα=Cβ stretching (123, 163, 189) and its oxidation 

state. The corresponding signal was obtained from the composite (Annex 3) 

before and after 160 cycles of electrical stimulation and it was mapped at 1430 ± 

25 cm-1 (Figure 11a and 11b), where bright yellow dots corresponded to presence 

of PEDOT. A homogeneous distribution of the conductive polymer was detected 

in both samples.  

 

 

Additionally, a relative intense band at 1625 ± 30 cm-1 was detected, corroborating 

the qualitative existence of Dex and κC in the conductive film (Figure 11c and 

11d). This signal is distributed through the conductive matrix. The result is similar 

to previous studies (111, 190), which reported the characteristic spectral signals 

Figure 11. 2D confocal Raman map of the 1430 cm-1 band a. before release process and b. after 
160 release cycles. Raman mapping of the 1625 cm-1 band intensity c. before release process 
and d. after 160 release cycles at 0.5 µm depth inside the conductive layer.  
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of Dex in the ranges of 3200-3500 cm-1, 2850-3000 cm-1 and near to 1650 cm-1, 

as is verified in Annex 4, corresponding to hydroxyl, methyl and carbonyl groups, 

respectively. Dex and κC act as doping agents, so, there is a consistent 

association of the respective signal for both molecules and the PEDOT band. The 

identification of the band at 1625 cm-1 overlapping with PEDOT signal, confirmed 

the presence of the doping agent before and even after electrochemical 

stimulation, as is shown in Annex 3a and Annex 3b, respectively. Adding κC in 

the formulation provides a proper doping agent during the release of the Dex, 

reducing the degradation by overoxidation and eventually delamination as is 

shown in Figure 6 (123).  

15.3 Dexamethasone-21 phosphate release experiments from the 

PEDOT/κC/Dex coating. 

Drug loading into the conducting polymers films is based on the fact that this 

kind of polymers are electrically oxidized during the polymerization processes, 

generating charge carriers (134, 135, 164). The doping agent (e.g. Dex and κC) 

is incorporated to the oxidized polymer to maintain charge neutrality (128). In this 

work, Dex and κC are used as doping agents, the presence of sulfate and 

phosphate groups imparts negative charges in the polysaccharide and the drug, 

respectively.    

The electrochemical controlled release studies from PEDOT/κC/Dex coating were 

performed within a potential range of -600 to 1000 mV to evaluate intrinsic redox 

processes of the film (111, 134, 182). Figure 12 shows the characteristic oxidation 

and reduction potential signal ranges at 0 to 500 mV and -100 to -400 mV 

respectively, after different number of voltammetry scans. According to some 

authors, the voltammetric behavior of dexamethasone shows a reduction signal 

at the potential of -350 mV (111, 134), which indicates the release of the drug 

from a stimulated electrode. The corresponding CV signals are shown in Figure 

12, this signal decreased gradually according to the sweep number, disappearing 

completely after 160 cycles of electrical stimulation. Electrochemical reduction of 

a conducting polymer results in the migration of small doping molecules from the 
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conducting composite to maintain the electro neutrality of the matrix (128, 135). 

Thus, the application of alternating positive and negative potentials during cyclic 

voltammetry analysis caused the release of the Dex from the PEDOT coating. 

Spontaneous release of the dopant from the PEDOT structure is an instant 

process, but the Dex release is slow since it is driven by diffusion from the inner 

film to the surface. κC is a large molecule, this type of dopant is more attached 

into the polymer coating and it is not leached out during the electrical stimulation, 

granting to the polymer greater electrochemical stability (111, 128, 191), as was 

confirmed by raman spectroscopy. 

 

 

The release profile of the Dex was investigated under passive conditions 

(unstimulated) and under active electrically stimulation using an ammonium 

acetate 0.10 M solution as supporting electrolyte. The surface area of the 

electrode is associated to promote larger amounts of passive drug release 

Figure 12. Cyclic voltammograms for the PEDOT/κC/Dex recorded at 25 mV·s-1 after 10, 60 and 
160 cycles of electrical stimulation in ammonium acetate 0.10 M. 
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according to the second Fick’s law of diffusion (192, 193), yet, in our case, the 

electrode surface and total area are maintained virtually constant. The 

quantification of Dex from the PEDOT/κC/Dex modified electrodes was achieved 

using HR-mass spectroscopy (Figure 13). 

 

 

 

  

The active release profile was performed with a total of 76 CV sweeps in five 

release events, taking around 300 minutes to be completed. Accordingly, the 

passive release profile from unstimulated electrodes were evaluated over the 

same period.  

Figure 13. a. The passive release profile of Dex as a function of square root of time, over 300 
minutes from unstimulated electrodes. The active electrically controlled delivery process by 
stimulation events (columns) compared to the passive release profile (line). 
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Figure 13.a shows the passive release profile of Dex as a function of square root 

of time according to the Higuchi model for the drug release from a polymer film 

(5, 194), where pure Fickian diffusion is the dominant phenomena (192). The low 

diffusion value, in the beginning of the process, may depend on the slow 

penetration of supportive electrolyte into the polymeric film (193). The pattern 

changed after 80 minutes, and a higher diffusion value reflects the diffusivity of 

the passive Dex release process. The three systems (1 mM, 5 mM and 10 mM) 

showed analogous Fickian diffusion behavior. 

On the other hand, the Figure 13.b, 13.c and 13.d showed a remarkable 

dependency of the released Dex concentration during the electrical stimulated 

events (bars) compared to a passive unstimulated electrode (line). Some authors 

have studied controlled drug release systems using conductive polymers such as 

polypyrrole and PEDOT, where the anionic molecule is used as doping agent and 

their subsequent release is mainly determined via diffusion (24, 111, 133–135). 

Nevertheless, for a controllable release system, it is desirable to have a high 

active release and low diffusion relationship (24, 127), as shown by our system 

(see Figure 13). For instance, the initial concentration of 10 mM released in the 

passive process ca. 2% of the delivered Dex in stimulated process. This is 

probably associated with the use of κC as second doping in the matrix, which 

granting the film stability and integrity during stimulation cycles (123, 128). 

The therapeutic dosages of dexamethasone in mesenchymal stem cells cultures 

are effective at levels of 100-1000 nM to promote their differentiation to osteoblast 

or in order to be used during anti-inflammatory treatment (17, 114, 195). In this 

work, the accumulative concentration of the released Dex using 1 mM and 5 mM 

initial formulations (Figure 13.b and 13.c) were 300 nM (0.66 µg·cm-2) and 600 

nM (1.60 µg·cm-2), respectively. Even though, these values are at therapeutically 

relevant levels, they are in part determined by the Dex amount released via 

diffusion. 

Instead, when 10 mM of drug was poured in the initial formulation, a total of 3700 

nM (8.89 µg·cm-2) of cumulative Dex was detected. This concentration range far 
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in excess of the quantity of Dex released from similar systems using an identical 

initial concentration of drug for the coating preparation, for which values are even 

lower than 5.03 µg·cm-2 (24, 127, 133). Such concentrations surpass the amount 

of drug needed in cell cultures and it is not recommended to apply in biological 

systems. Nonetheless, using a specific electrochemical stimulation profile may be 

allowed to provide an adequate quantity of drug to different biological applications. 

Finally, based on the previous characterization, the quantity of initial drug to be 

immobilized on the electrodes designed for 24-well plates was adjusted to 250000 

nM. It was because the electrodes used during cell culture presented a total area 

approximately 3.5 times bigger that electrodes in Figure 6. After that, the number 

of stimulation cycles were also studied to determine the amount of electrical 

stimulation events needed to release the adequate drug concentration in the cell 

culture. 

According with the above, electrode was stimulated six times in total, the first two 

events of stimulation released an excess of drug in the well, after, it was obtaining 

the desirable concentration of drug (approximately 110 ng in each event) in the 

next four events. Because of that, during cell culture, once the electrode was 

prepared, it was cycling 2 times to release the excess of drug and finally, electrode 

was applied in the cell culture plate, where it was stimulated 4 more times (1 event 

per well). The obtained results are shown in Figure 14, arrows indicate the cycles 

of stimulation where the electrode was applied into the culture well. 
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Figure 14. Dexamethasone 21-phosphate release profile from PEDOT/κC/Dex electrodes after 

electrical stimulation events. Arrows shown the events where the desirable Dex concentration 

was released. 

15.4 Physical characterization of starch based cryogels. 

Cryogels were obtained in a cylindrical shape, and had a whitish color, 

regardless polysaccharide content used. Data from physical and textural 

characterization of cryogels are shown in Table 8. The volume rate before and 

after samples lyophilization is reported as shrinkage percentage and was directly 

obtained from geometric measurements of the samples before and after drying.  

In general, the volume shrinkage was lower than 40% for all cryogel samples and 

is in accordance with those informed for starch-based aerogels with similar 

amylose content (139). Hydrogels drying method may affect the final gel structure 

due to the liquid-gas surface tension and liquid-solid adhesive forces. 

Furthermore, shrinkage of porous structures based on starch and other 

polysaccharides is very common due to their hydrophilic nature (196). 



57 
 

 
 

Furthermore, all samples presented very low bulk densities (𝜌𝑏𝑢𝑙𝑘) and there were 

not apparently differences between samples according to initial formulation (p< 

0.05), the obtained values are comparable with previous reports using a similar 

concentration of corn starch (139). Similarly, not significant differences were 

determinate between skeletal density sample values, which were in the range of 

native starch (1.50 g·cm-3) (197), see Table 8. 

Finally, porosity was determined using equation 1, which is directly related to the 

geometrical scaffold density. The obtaining values were higher than 90 %, which 

represent high porosity and compiles the requirements for synthetic scaffolds to 

be used for tissue engineering applications (151).  

Table 8. Textural and physical properties of the polysaccharide-based cryogels. 

Sample  Shrinkage (%)  
𝝆𝒃𝒖𝒍𝒌 

(g·cm-3) 

𝝆𝒔𝒌𝒆𝒍 

(g·cm-3) 

ε (%)  Vp (cm3) 

St 39.94 ± 4.01 0.14 ± 0.01 1.47 ± 0.01 90.22 ± 0.01 6.26 ± 0.01 

St/κCa 33.58 ± 8.12 0.13 ± 0.01 1.46 ± 0.01  91.08 ± 0.01 6.95 ± 0.01 

Dx 0.00005 28.79 ± 4.84 0.13 ± 0.01 1.45 ± 0.02 91.02 ± 0.01 6.58 ± 0.01 

Dx 0.0018  36.43 ± 8.38 0.13 ± 0.01 1.48 ± 0.02 90.51 ± 0.01 6,82 ± 0.01 

  

15.5 Analysis of polysaccharide-based scaffolds microstructure. 

Scanning electron microscopy (SEM) was used to analyze the 

microstructure of all the cryogels samples (Figure 15). As result, SEM images 

revealed a three-dimensional porous structure with interconnected pores, 

showing an attractive porosity for tissue engineering applications. Similarly, pores 

presented a diameter in a range of approximately 50 to 100 nm for all cryogels 

formulations, this pore size is in the range to be used for hMSCs culture 

applications (198, 199). Besides, according with (200), this type of porous 

structure facilitates their usage as drug delivery systems due to the water 

circulation efficiency.  
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Generally, the presence of κC and Dex in the cryogel formulations did not show a 

significant impact on the porous morphology and pores size in the fibrous network, 

demonstrating that the main contribution in the scaffold structural organization is 

attributed to the starch presence. 

 

 

Figure 15. SEM images of the textural appearance of a. Starch, b. Starch/κC, c. Starch/κC/Dex 
0.00002% wt., and d. Starch/κC/Dex 0.0018 % wt. 

 

15.6 Cryogels swelling ratio test. 

Swelling kinetic studies were performed for all the different cryogel samples, 

determination of swelling percentage gives indication about the porosity and 

stability of scaffolds (201, 202). The profiles of the swelling kinetics presented on 

Figure 16 indicate that the water uptake capacity for all samples increased quickly 

at the first 15 minutes at 37°C. The fast water uptake is a characteristic behavior 

of cryogels, while hydrogels swelling is lower (203).  

a. b.

. 

c.

. 

d.

. 
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Additionally, as it was presented in the same figure, the maximum swelling ratio 

was observed for the pure St/κCa/Dex cryogels, nevertheless, there were not 

significant differences in comparison with St/κCa and St samples.  

According with (203), a porous structure containing high starch percentage leads 

to an increment in the hydrophilicity of the scaffold, increases water absorption, 

and favors the water transport through the porous matrix, as was perceived on 

the analysis of structural organization of the scaffold (Figure 16).  

Finally, it is of our best interest that Dex-based cryogels showed a quickly 

maximum swelling ratio above 900%, this result is similar to some research, which 

confirm that an elevated swelling ratio may allow a fast transport of solute 

molecules, nutrients and waste products on the cryogels structure, favoring their 

use as drug release system and for biomedical applications, as will be explained 

in the next section (169). 

Figure 16. Swelling ratio of St, St/κC, St/κCa/Dex 0.00005% and St/κC/Dex 0.0018% based  
cryogels after 120 minutes of water exposure at 37°C.     ** Significant differences (p < 0.05), 
letters are grouping statistically equal treatments.   
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15.7 Cryogels erosion studies. 

The erosion test of scaffolds was carried out to study the removal of the 

cryogels surface layers due to the polymer-solvent interactions to determinate if it 

is depended on the chemical composition of the surface.  

A kinetic analysis of the weight loss after saline buffer immersion at 37°C was 

used to obtain the erosion percentage after 7 days. Figure 17 shows the 

comparative degradation profiles of St, St/κCa, and St/κCa/Dex based cryogels. 

All the samples showed the maximum degradation at third day of analysis (except 

for St), where the weight loss was determined between 12% and 25%, this is also 

related with the hydrophilicity of the starch based-cryogel. Not significant 

differences were detected between treatments. 

Some authors have report that erosion test promotes information about 

the possible in vivo degradability of the matrix, this is important because could be 

correlated the kinetics of drug release (202, 204). In fact, drug delivery systems 

can be described such as diffusion-controlled, swelling-controlled, erosion-

controlled, and stimulus-controlled, some of these properties make polymeric 

biomaterials adequate to deliver drugs to human body. In general, kinetic studies 

have shown that the general drug release behavior of cryogels is controlled by 

diffusion, swelling, and erosion control (205). These properties confirms that the 

formulated polysaccharide-based cryogels could be employed as Dex delivery 

systems. 
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Figure 17: Erosion profiles of St, St/κC, St/κCa/Dex 0.00005% and St/κC/Dex 0.0018% based 
cryogels after 6 days of water exposure at 37°C. 

15.8 Drug release experiments from the polysaccharide-based cryogels. 

Results obtained for the in vitro release of Dex from the polysaccharide-

based cryogels produced by the freeze-drying method are shown in Figure 18. 

Generally, all Dex cryogel formulations achieved accelerated drug release rates 

during the first six hours of analysis, followed by a sustained release in the 

following 24 hours, releasing an approximate of 28% to 35% of the total drug after 

4 days. 
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Figure 18: Dexamethasone release profiles from St/κC/Dex porous materials containing 
0.00005 wt.% to 0.0018 % of dexamethasone-21 phosphate in ammonium acetate 0.1 M, pH 7.2 
at 37 °C and 100 rpm for 24 hours. 

 

As it was previously reported, the dosages of Dex to promote the differentiation 

of mesenchymal stem cells to osteoblast during in vitro culture are effective at 

levels of 100–1000 nM (206, 207). In this work, the amount of released drug for 

the cryogel containing Dex 0.00005 wt. % were of 1.85 ± 0.55 ng of drug·mg-1 of 

porous scaffold, so that, approximately ≥25 mg of cryogel is necessary to release 

cells appropriate concentrations (100 nM) of drug in 24-well culture plates. 

Similarly, when 0.0018% of Dex was used in the initial formulation, a total of 55.55 

± 7.21 ng of drug·mg-1 of scaffold was released. Diverse authors report that this 

amount of drug may be used during human in vivo Dex administration in order to 

obtain an anti-inflammatory potential response (208, 209). Consequently, the 

cryogel system containing Dex at high dosages may be useful as drug delivery 
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scaffolds for biological applications or could be used as a potential model to 

design strategies for in vivo drug administration through diverse routes (210).  

On the other hand, the composition of the cryogels was determined using micro-

FTIR spectroscopy before and after 24 hours of Dex delivery to monitoring 

qualitatively the drug released. Dex presence was confirmed by the analysis of 

the signal at 1625 cm-1 (12), corresponding to the presence of the carbonyl 

functional group on the drug and represented as light-blue and green zones in the 

2D graphic. As is showed by Figure 19, the signal is distributed through the matrix 

confirming the presence of the drug before and even after 24 hours of delivery, 

nevertheless, it is potentially reduced after delivery process in all Dex 

formulations. 

 

Figure 19: 2D micro-FTIR map of the 1625 cm-1 signal before (a-d) and after (e-h) 24 hours of 
Dex release from the polysaccharide-based cryogel using 0.0002% wt. (a; e); 0.0004%wt.  (b; f); 
0.0010% wt. (c; g), and 0.0018% wt. (d; h) of drug in the initial formulation. 
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15.9 PEDOT/κC/Dex electrodes and polysaccharide-based cryogels 

biocompatibility analysis.   

Cytotoxicity and biocompatibility assays are extremely important during 

biomedical applications, because of that, viability assays were carried out using 

Cell Counting Kit-8 to study the ability of cells to survive in the presence of the 

PEDOT/κC/Dex films and polysaccharide-based cryogels.   

Figure 20 shows the results for all the samples after 24 and 48 h of incubation, 

not significant differences on cell viability between control and samples were 

detected. It is well known that according to ISO 10993-5:2009 a material is 

consider biocompatible when the standard cell viability is ≥ 70%, which is in 

accordance with our results, confirming the biocompatibility of the scaffolds and 

films (211–213). 

Biocompatibility of starch and κC based porous structures at several 

concentrations has been extensively demonstrated in previous studies (214–219). 

Biocompatibility, in addition to excellent mechanical and physical properties, and 

versatility for modification with other polymers make those cryogels promising 

candidates in recent and future studies as carriers for drug delivery, implantable 

tissue systems, and as extracellular matrices for cell colonization (28, 117, 121).  

The low rate of decrease in cell viability for cryogels samples at 24 h (85.0 % of 

viability compared with the control group), could be attributed to the cryogel 

degradation at 24 h (section 15.7), it is important to mention that those cryogels 

were partially dissolved during the first 24 h of culture, degradation of 

polysaccharides samples could trigger the increase of the culture medium 

osmolarity and viscosity, as it was demonstrated in previous studies (170). 

Hypertonic conditions generate variations in cell metabolism, causing a decrease 

in their proliferation rate (220, 221), nevertheless, not cell viability effects were 

detectable at 48 h of incubation. 
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Finally, biocompatibility of PEDOT nanostructures has been demonstrated with 

SH-SY5Y human neuroblastoma cell line (109) and C3H10 mouse embryonic 

fibroblasts (222). Porous and non-porous electrical systems polymerized with 

PEDOT are proposed as potential structures during electrical stimulation of cells 

for tissue regeneration and as drug delivery systems (222–224), making this one 

excellent conductive polymer to be incorporated in MSC cultures to induce their 

differentiation to osteoblast. 

Figure 20. Biocompatibility analysis of starch-based cryogels and PEDOT/κC/Dex modified 
electrode using the CCK-8 assay on hMSCs culture. 

 

15.10 Effects of dexamethasone 21-phosphate and high molecular weight 

heparin on MSCs differentiation to osteoblast. 

Differentiation process of hMSCs to osteoblast was monitoring by ALPL 

enzymatic activity, immunofluorescence analysis and real time PCR.  
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As was previously explained, the negative charges of the phosphate groups in 

Dex make possible their incorporation in the PEDOT conducting film and their 

subsequent release by electrical stimulation, nevertheless, traditionally, the in 

vitro process of MSCs differentiation has been controlled using media containing 

specific biomolecules (e.g., Dx, ascorbic acid, and β-gly) (225), because of that, 

the study of the effect of dexamethasone 21-phosphate on MSCs culture in 

comparison with dexamethasone base was carried out.  

Figure 21 shows the obtained results, confirming that not significant differences 

(p>0.05) according with ALPL activity·min-1 were determinate between 

treatments, namely, Dex in comparison with Dx influences in a similar way the 

differentiation of hMSCs to osteoblast. 

Figure 21. ALPL enzymatic activity·min-1·ug-1 total protein of hMSCs at 3, 7 and 14 days of 

analysis. C-: Basal media; Dx: Basal media + Dx 100 nM; Dex-21 ph: Basal media + Dex 100 nM. 
**Significant differences (p < 0.05), letters are grouping statistically equal treatments.   
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Since it was demonstrated that Dex is entrapped in human erythrocytes to be 

dephosphorylated to diffusible Dx (226–228), most scientific reports have limited 

the use of this drug during in vivo studies (229), and Dx as the in vitro 

differentiation factor on MSCs, nevertheless, as it was mentioned, not differences 

between drugs were identified in this study, which is in accordance with some 

recent reports (225, 230, 231). The obtained results are important because 

confirms that the developed controlled released system of Dex could be employed 

during MSCs in vitro applications, the same conclusion was obtained for some 

researchers in the controlled released systems field (225, 232–235). 

As was mentioned, Dx is bind to the nucleus corticosteroid receptor and acts 

through Notch/Hedgehog, ERK, and 𝛽-catenin signaling pathways, inducing 

RunX2 expression which upregulates ALPL gene, inducing differentiation (112, 

113). In general, several studies have demonstrated that Dx induces an increase 

in the global metabolic hyperactivity of MSCs at day 7, increasing levels of 

glutamine, cholesterol, glycerolipid precursors, and osteoblastic markers, some 

of which are subsequently reduced at day 14, and continuing to be reduced until 

day 21 (114, 236, 237), which is in accordance with the results obtained in Figure 

21. 

On the other hand, Hep has been used in many biological applications due to its 

specific affinity to a wide variety of cellular important signals (238–240), because 

of that, in a similar manner, Hep concentration in response to hMSCs osteoblast 

differentiation was stablished in accordance with ALPL enzymatic activity 

normalized with the total protein content at day 3, 7, and 14 (Figure 22). 
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Figure 22. ALPL enzymatic activity·min-1·ug-1 total protein of hMSCs culture on culture media 
containing different concentrations of hep at 3, 7 and 14 days of analysis. Negative control: Basal 
media, Dex-21ph: Basal media + Dex 100 nM, Dex-21ph + Hep 0.025: Basal media + Dex 100 
nM + Hep 0.025 UI·mL-1; Dex-21ph + Hep 0.25: Basal media + Dex 100 nM + Hep 0.25 UI·mL-1¸ 
Dex-21ph + Hep 0.5: Basal media + Dex 100 nM + Hep 0.5 UI·mL-1; Dex-21ph + Hep 2.5: Basal 
media + Dex 100 nM + Hep 2.5 UI·mL-1; Dex-21ph + Hep 25: Basal media + Dex 100 nM + Hep 
25 UI·mL-1. ** Significant differences (p < 0.05), letters are grouping statistically equal treatments.   

 

Results demonstrated that Hep in combination with Dex promotes osteogenic 

differentiation of hMSCs, which is dependent of drug concentration.  ALPL 

enzymatic activity increased at the third day of stimulation at concentration of 2.5 

UI·mL-1, nevertheless, the most remarkable difference was obtained at seventh 

day, where only 0.5 UI·mL-1 of Hep were enough to induce a significant difference 

between Dex containing culture medium and treatment. On contrary, significant 

differences were detected for the assay containing only heparin in comparison 

with Dex treatment (Figure 23), which confirms that the Hep has an effect only 

when is added on dexamethasone containing culture medium, which is in 

accordance with previous reports (241, 242).  
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Figure 23. ALPL enzymatic activity·min-1·ug-1 total protein of hMSCs culture at 3, 7 and 14 days 
of analysis. Negative Control: Basal media, Dex-21ph: Basal media + Dex 100 nM + ascorbic acid 
+ β-Glycerophosphate, Hep 0.5 UI·mL-1: basal media + ascorbic acid + β-Glycerophosphate + 
Hep 0.5 UI·mL-1. ** Significant differences (p < 0.05), letters are grouping statistically equal 
treatments.   

 

In this work, although a concentration of 25 UI·mL-1 of Hep caused hMSCs 

differentiation at the third day of stimulation, the concentration of 0.5 UI·mL-1 was 

selected for the subsequent experiments. This selection was based on previously 

reports (18). Some researchers determined that low doses of Hep (0.03 UI·mL-1) 

modestly could change hMSCs behavior in terms of proliferation, whereas cell 

culture for long periods under high drug concentrations (18 UI·mL-1) cause the 

expression of senescence markers, and result in significantly larger cells and 

nuclei, which are morphological features consistent with a senescent cellular state 

(18, 243).  
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Several scientists have analyzed the changes in gene expression profile of 

hMSCs upon Hep treatment and concluded that this drug alters expression of 

genes related with cell cycle control, specifically, CDKN1B (p27) and CCNG2 

(cyclin G2) are upregulated at high Hep concentrations, these genes are 

associated with cell growth inhibition, thus, high doses of drug could be prejudicial 

for hMSCs viability in long term cultures (18). Therefore, as was demonstrate in 

this work, drug concentration is an important factor to consider. 

On the other hand, researchers revealed that Hep could stimulates expression of 

several cell surface proteins and nuclear effectors, due to its biochemical activity 

as a multivalent co-ligand, in fact, the most striking effect is the major induction of 

members of the TGFβ/BMP superfamily and Wnt and FGF, precisely, these 

factors and biochemical pathways are the most important on osteoblast 

differentiation of hMSCs, which justifies the results obtained in this work (18, 244, 

245). 

Finally, the study of the Hep effect on stem cells culture are important in the field 

of tissue engineering and regenerative medicine, specifically for the study and the 

development of functionalized scaffolds with cell signaling epitopes, such as 

proteins, drugs, and growth factors that could influence outside-in signaling, in 

order to elicit specific biological responses such as differentiation (156). 

Hep is a protein-binding GAG, because of that is an attractive drug to modify 

scaffolds for regenerative medicine and cell culture applications, some similar 

studies were carried out for some researchers previously, obtaining interesting 

results in terms of colonization and differentiation of cells into the scaffold (246–

248). 

Equally, once Hep was added, the effect of Dex in comparison with Dx was 

confirmed through the analysis of ALPL, OPN, and RunX2 genes by real time 

PCR. As was mentioned, these genes are the main markers during hMSCs 

differentiation to osteoblast. Figure 24 shows the obtained results at 7 and 14 

days of analysis. ALPL gene presented the maximum expression at day 7 of 
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biochemical stimulation, decreasing significantly at day 14 for both treatments, 

confirming the results obtaining in Figure 21. Nonetheless, unlike the ALPL 

enzymatic activity analysis, relative ALPL gene expression was higher for 

treatments containing Dx in comparison with Dex, suggesting that there could be 

some differences in stimulation pattern according with the type of drug used. 

To confirm that, OPN gene expression was also analyzed, in that case, not 

significant differences were determined between treatments, although a little 

increasement at day 7 in Dx treatment was identified, demonstrating that possibly 

this treatment experiments a shorter differentiation time in comparison with cells 

exposed to Dex, which explains that OPN gene were expressed until day 14 in 

Dex containing treatments. The same result was obtained for the RunX2 gene, 

both treatments expressed the marker at 7 days of analysis, nevertheless a higher 

expression percentage was identified for Dx treatments, decreasing at day 14. On 

contrary, RunX2 gene expression in Dex exposed cells continued to be identified 

until day 14, as is part of the common differentiation process of hMSCs to 

osteoblast.  

Despite the obtained results related with the type of drug used, it was confirmed 

that Dex treatments induced the differentiation of hMSCs, which supports that this 

drug could be used in drug delivery systems to be applied in hMSCs cultures. 

Figure 24. Comparisons of gene expressions of ALPL, OPN, and RunX2 among Dex-21ph 100 
nM and Dx base 100 nM treatments after 7 and 14 days of analysis. ** Significant differences (p 
< 0.05), letters are grouping statistically equal treatments.   
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Lastly, the osteogenic proteins ALPL and type I collagen (Col-I) were qualitative 

studied by immunofluorescent staining at day 7 and 14, specifically, Col-I is the 

most abundant extracellular protein in bone and is expressed during all stages of 

osteoblast development, while ALPL is commonly found to precede the bone 

matrix mineralization (249).  

Figure 25 and Figure 26 shown the results obtained at day 7 corresponding to 

ALPL and Col-I analysis respectively. In that figures it is possible to observe that 

the expression of ALPL were higher in heparin containing culture media in 

comparison with positive control, which confirms the results obtained previously, 

contrary, Col-I is expressed in all treatments and not apparently differences were 

determined between Dex and Dex + Hep treatments. Additionally, ALPL is also 

expressed in negative control assay, which is in accordance with the result 

obtained during ALPL enzymatic activity. Researchers have determined that this 

protein is always expressed in hMSCs at basal levels and are upregulated after 

biochemical stimulus in osteogenic culture media (250).  
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Figure 25. Immunofluorescence analysis of hMSCs using anti-ALPL antibody during hMSCs 
osteoblast differentiation induced by dexamethasone 21-phosphate and heparin: a. Negative 
control, b. Dex 100 nM, and c. Dex 100 nM + Hep 0.5 UI·mL-1. 

 

Similarly, some researchers have described that Col-I and ALPL expression is 

higher between the first and the seventh day of analysis, nevertheless, their 

presence was also appreciable by IF assays at day 14. Both proteins are primarily 

involved in the early stages of osteogenic differentiation, after that time, proteins 

a. 

b. 

c. 
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are downregulated, and cells continue with the mineralization of ECM and OCN 

expression. In fact, OCN is regarded as the hallmark in the final stages of 

differentiation and maturation of stem cells into osteoblasts, nevertheless it was 

not tested in this assay (250).  

 

Figure 26:Immunofluorescence analysis of hMSCs using anti-Col I antibody during hMSCs 
osteoblast differentiation induced by dexamethasone 21-phosphate and heparin: a) Negative 

control, b) Dex 100 nM and c) Dex 100 nM + Hep 0.5 UI·mL-1. 

a) 

b) 

c) 
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Sun and collaborators (251) carried out research to determine the collagen 

deposition by pre-osteoblastic cells. It is well known that Col-I is a typical 

component of ECM, because of that, deposition of this protein is a natural process 

of homeostatic metabolism of cells, nevertheless, during osteoblastic 

differentiation cells are stimulated to produced large amounts of Col-I, these 

collagen fibrils are densely banded, causing the cells assemble in an aligned 

orientation, continuing with extracellular matrix biomineralization, and ending in a 

matrix with compositionally and morphologically similar features to the in vivo 

bone tissue microenvironment, this explains the results obtained for Col-I staining, 

which was deposited in the ECM of all treatments.   

 

15.11 hMSCs differentiation using dexamethasone 21-phosphate controlled 

released systems. 

ALPL enzymatic activity was used to test the released drug capability 

caused by electrical stimulation and from porous systems on the differentiation of 

hMSCs to osteoblast. Recently, the application of systems to deliver proteins, 

growth factors, and other therapeutic agents to induce stem cells stimulation has 

attracted much attention (225, 229, 230, 232, 233, 235, 252–257). 

Based on the analysis of ALPL enzymatic activity (Figure 27), is possible to 

conclude that the controlled release of drugs from both systems induced 

osteoblast differentiation of cells. In fact, not significant differences were obtained 

between positive control and treatments, which signifies that the systems are 

efficient to be applied during hMSCs culture.  

For the electrodes system, Dex was release after electrical stimulus on the cell 

culture well, after that, the electrode was removed. The same method was carried 

out every three days, during two complete weeks. It is well known that traditional 

drug release systems are based on diffusional events from three-dimensional 

scaffolds, nevertheless, currently the use of electrical systems to trigger certain 

biological responses has drawn attention (258, 259). 
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Figure 27. ALPL enzymatic activity·min-1·ug-1 total protein of hMSCs culture on culture media 
containing at 7 and 14 days of analysis. Negative : Basal media, Dex-21ph: Basal media + Dex 
100 nM + Hep 0.5 UI·mL-1, Cryogel 0.00005%: Basal media + Hep 0.5 UI·mL-1 + 25 mg Dex 
0.00005% cryogel; Electrode: Basal media + Hep 0.5 UI·mL-1 + Electrode. ** Significant 
differences (p < 0.05), letters are grouping statistically equal treatments.   

 

In 2013, researchers designed a conductive system using graphene-conductive 

materials containing a drug to be applied to induce cell differentiation (260). 

Additionally, researchers mentioned that is possible to control the differentiation 

of hMSCs using only the electrical stimulation, nevertheless, the stimulation 

cycles must be at high frequencies, using high voltages and should be continuous 

during all the experiment (258, 259, 261), because of that, the effect of the 

electrical stimulus caused during Dex released in this work is negligible.  

Similarly, St/κC cryogels were proposed as Dex delivery systems to induce 

hMSCs biochemical stimulation, as was mentioned, the release profile of drug 

from scaffolds resulted in an initial burst release due to the hydrophilicity nature 

of drug and starch, completing the total release of drug after 24 hours. 
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Researchers have proposed the use of this type of three-dimensional scaffolds 

based on biomaterials to be employed as ECM to cause mechanical stimulation 

of cells, more recently, the use of these systems have drawn attention as vehicles 

for drug delivery, which is important for tissue engineering applications, to be used 

as implantable systems to induce tissue regeneration. 

In conclusion, the controlled released of Dex obtained from both systems were 

useful for differentiation of hMSCs and provided valuable information for the 

preparation of innovative Dex loaded systems for bone regeneration, focused on 

the strategy on preparation of three-dimensional matrices with conductive 

materials to create smart systems for controlled drug delivery. 

Additionally, a real time PCR analysis to study the expression levels of ALPL, 

OPN and RunX2 genes after Dex controlled released was carried out. Figure 28 

shows the obtained results for electrode system, nevertheless, it was not possible 

to determinate the effect of cryogels system at molecular level, it is possible that 

cryogels erosion cause a contamination of the RNA, as was determinate for the 

relation 260/230 and 260/280 obtained by the UV-analysis reported in Annex 5. 

The obtained results in Figure 28 are in accordance with the obtained for Figure 

27. ALPL gene presented the maximum expression at 7 days for both treatments, 

decreasing at day 14, as the normal osteoblast differentiation process of hMSCs 

reported previously. Nonetheless, the most important results are shown for OPN 

and RunX2 genes, unlike the ALPL, these genes were expressed at 7 days in the 

treatments containing the electrode system for controlled Dex release in 

comparison with the positive control, which experimented the higher gene 

expression at 14 days.  

As was mentioned, the differentiation of hMSCs by the effect of electrical 

stimulation, needs several stimulation cycles during a long time applied at high 

frequencies, and under high voltages, because of that, the observed effect related 

to the earliest differentiation in cells exposed to electrode could be not attributed 

to the electrical stimulus. Nevertheless, as it was observed in Figure 14, there are 
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some variations in relation with the drug released between stimulation events. 

These variations cause differences on the amount of drug in each well, some 

researchers reported that hMSCs differentiation profile depends on the Dex 

concentration, little variations could affect the cycle of differentiation, causing an 

earliest or later expression of osteoblast differentiation (253, 262, 263), which 

could justifies the obtained results. Therefore, a good strategy to consider is to 

increase the number of samples in the qPCR analyzes for future tests. 

Figure 28. Comparisons of gene expressions of ALPL, OPN, and RunX2 among Dex-21ph 100 
nM and Dex-21ph controlled released treatments after 7 and 14 days of analysis. ** Significant 
differences (p < 0.05), letters are grouping statistically equal treatments.   

 

 

Immunofluorescence analysis was carried out to confirm the results obtained in 

Figure 27 and Figure 28 in accordance with hMSCs differentiation caused from 

Dex released. In this case, the osteogenic proteins ALPL and OPN were 

qualitative studied by immunofluorescent staining at day 7 and 14. As was 

expected, ALPL enzyme was detected in all samples during all times, which is in 

accordance with the results represented on Figure 25, where the protein was 

expressed in all samples, including the negative control, related with the protein 

basal levels, the results may be consulted in Annex 6. 

OPN protein, which is a soluble extracellular matrix-associated glycoprotein, was 

studied by immunofluorescent staining to confirm differentiation of hMSCs to 

osteoblast caused in treatments containing the cryogels and electrodes (Figure 

29).  Some authors (264) reported that OPN is mainly secreted by osteoblasts 
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and by osteogenesis progenitor cells, such as hMSCs. In fact, OPN is secreted 

once cells undergoing changes behavior such as differentiation (265), to aid their 

biological activities and functions. Once hMSCs secrete OPN, their proliferation 

and migration are increased, causing in vivo bone resorption (264). At molecular 

level, OPN activates the FAK/ERK signaling, which are related with the complete 

process of osteogenesis, as was described previously (264, 265).  

Results in Figure 29 showed that OPN was expressed in all samples under Dex 

stimulation at day 14, including the negative control, confirming osteoblast 

differentiation, which is in accordance with qPCR obtained results. This assay 

makes possible conclude that like electrodes, cryogels influence differentiation of 

hMSCs, increasing the expression of master osteoblastic regulation markers as 

the OPN protein. 
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Figure 29. Immunofluorescence analysis of hMSCs using anti-OPN antibody after biochemical 
stimulation induced by dexamethasone 21-phosphate and heparin: a. Negative control, b. Dex 
100 nM + Hep 0.5 UI·mL-1, c. 25 mg Dex 0.00005% cryogel + Hep 0.5 UI·mL-1, and d. electrode 
+ Hep 0.5 UI·mL-1. 

a. 

b. 

c. 

d. 
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16 Conclusions 

• Dex was successfully included into a polymer formulation and 

subsequently released at therapeutic doses by electrically-controlled 

triggering and diffusion from a gold-PEDOT electrode system. The total 

released drug was achieved controlling the initial amount of Dex and the 

electrical stimulation events. The chemical composition inside the 

conductive film was confirmed by 2D Raman and electrochemical cyclic 

voltammetry analysis. Concentrations of drug obtained are recommended 

ideal to be applied during mesenchymal stem cells culture to induce their 

differentiation.  

• Cryogels formulation and preparation protocol allowed Dex impregnation, 

showed adequate physical properties in terms of porosity, porous size, 

degradation, and swelling kinetics to be used as controlled drug release 

systems to be applied in vitro and in vivo and as three-dimensional 

extracellular matrices for cell culture. 

• The porous and conductive non-porous systems used for Dex 

immobilization showed excellent biological compatibility during hMSCs 

culture, confirming their potential use as drug release systems during in 

vitro MSCs culture. 

• ALPL enzymatic activity, qPCR, and immunofluorescence analysis 

confirmed that Hep in combination with Dex is critical to cause an earliest 

osteoblast differentiation on human mesenchymal stem cells, showing 

significant differences between treatments and controls even at 3 days of 

analysis. Concentrations in the range of 0.5UI·mL-1 to 25 UI·mL-1 may be 

used during MSCs differentiation protocols; this is of relevance in clinical 

trials and cell therapy to accelerate hMSC differentiation and in tissue 

engineering applications during three-dimensional scaffolds preparation.  

• Diffusive and electrically controlled release of Dex using porous and 

conductive non-porous scaffolds respectively, induced MSCs 

differentiation to osteoblast in basal culture media combined with Hep as 

was confirmed by ALPL enzymatic activity, immunofluorescence, and 
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qPCR analysis. These results have potential for future applications that use 

these types of scaffolds during tissue engineering and clinical trials.  
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18 Annexes 

 

Annex 1. Code used for the configuration of the electrode stimulator 

#include <SPI.h> 

 

//Use direct port write for aditional speed over DigitalWrite 

#define SS0 (1 << 4) //Slave Select 0 PORTB 

#define SS0PORT &PORTB    

 

#define SS1 (1 << 6) //Slave Select 1 PORTH 

#define SS1PORT &PORTH 

 

#define SS2 (1 << 5) //Slave Select 2 PORTH 

#define SS2PORT &PORTH 

 

#define SS3 (1 << 4) //Slave Select 2 PORTH 

#define SS3PORT &PORTH 

 

//Pins needed for Soft SPI 

#define MOSI 11 

#define CLK  13 

 

int i; 

 

void setup() { 

  // set the slaveSelectPin as an output: 

 

  pinMode (MOSI,OUTPUT); 

  pinMode (CLK,OUTPUT); 

  pinMode (10, OUTPUT); 

  pinMode (11, OUTPUT); 

  i=0; 

} 

 

void loop() { 

 

  if (ciclos > 0){   

 

    // Onda ciclovoltametria (-0.6 V hasta + 1 V): 

    for(i=1912;i<2275;i++) { 

      writeMCP492x((int)( (i) ),SS0,SS0PORT); 

      delay(steptime); 

    } 

    for(i=2275;i>1912;i--) { 

      writeMCP492x((int)( (i) ),SS0,SS0PORT); 

      delay(steptime); 

    } 
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    ciclos--; 

  } 

  else{ 

    // poner la salida en cero: 

    writeMCP492x((int)( 2048 ),SS0,SS0PORT); 

  } 

 

} 

 

 

//Method to write to the DAC 

void writeMCP492x(uint16_t data,uint8_t ss,volatile uint8_t* slave_port) { 

  // Take the top 4 bits of config and the top 4 valid bits (data is actually a 12 bit number) and or 

them together 

  uint8_t top_msg = (0x30 & 0xF0) | (0x0F & (data >> 8)); 

   

  // Take the bottom octet of data 

  uint8_t lower_msg = (data & 0x00FF); 

    

  // Select our DAC 

  *slave_port &= ~ss; 

  // Send first 8 bits 

  shiftOut(MOSI,CLK,MSBFIRST,top_msg); 

  // Send second 8 bits 

  shiftOut(MOSI,CLK,MSBFIRST,lower_msg); 

  *slave_port |= ss; 

} 
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Annex 2. Galvanostatic curve of the electro-polymerization process from an EDOT/κC/Dex 
dispersion onto a bare gold electrode. 

 

Figure 1: Galvanostatic curve of the electro-polymerization process from an 

EDOT/κC/Dex dispersion onto a bare gold electrode using a constant current of 102.45 

microamperes. 
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Annex 3. Raman spectra of the PEDOT/κC/Dex coating. 

 

Figure 1. Raman spectra of the PEDOT/κC/Dex coating (a) before dexamethasone release 

process (inset: PEDOT/κC/Dex electrode surface) and (b) after 160 release cycles (inset: 

PEDOT/κC/Dex electrode surface). The signals at 1435 cm–1 and 1625 cm–1 were used to identify 

PEDOT and κC/Dex, respectively. 
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 Annex 4. µ-Raman spectral measurement of the dexamethasone 21-phosphate disodium salt. 

Figure 1: µ-Raman spectral measurement of the dexamethasone 21-phosphate disodium 

salt. 
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Annex 5. RNA concentration values. 

 

Sample Time RNA (ng/µL) Abs 260/280 Abs 260/230 

C- 7d 9.200 2.120 0.160 

C- 7d 12.400 2.110 0.120 

C- 14d 8.724 2.172 0.068 

C- 14d 11.211 2.078 0.079 

Dex 7d 12.300 2.240 0.300 

Dex 7d 12.000 2.090 0.290 

Dex 14d 17.932 2.041 0.253 

Dex 14d 7.697 2.032 0.801 

Dx 7d 10.060 2.130 0.100 

Dx 7d 8.700 2.300 0.060 

Dx 14d 29.387 2.122 0.136 

Dx 14d 28.956 2.023 0.661 

Cryogel 7d 8.800 2.040 0.070 

Cryogel 7d 8.800 2.320 0.040 

Cryogel 14d 14.050 2.011 0.646 

Cryogel 14d 8.691 2.061 0.046 

Electrode 7d 10.800 2.100 0.160 

Electrode 7d 9.200 1.930 0.050 

Electrode 14d 20.533 2.064 0.493 

Electrode 14d 17.517 2.062 1.176 
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Annex 6. Immunofluorescence analysis of hMSCs using anti-ALPL antibody after biochemical 
stimulation induced by dexamethasone 21-phosphate and heparin: a. Negative control, b. Dex 
100 nM + Hep 0.5 UI·mL-1, c. 25 mg Dex 0.00005% cryogel + Hep 0.5 UI·mL-1, and d. electrode 
+ Hep 0.5 UI·mL-1. 
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Annex 7. Paper 1. Design and simulation of flexible thin-film electrodes for cell culture 
stimulation 
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Annex 8. Paper 2. Polysaccharide κ-Carrageenan as Doping Agent in Conductive Coatings for 
Electrochemical Controlled Release of Dexamethasone at Therapeutic Doses. 
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Annex 9. Paper 3. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue 
Engineering 
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