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UNDERGRADUATE STUDENTS’ LEARNING OF LINEAR ALGEBRA THROUGH 

MATHEMATICAL MODELLING ROUTES 

 

 
Abstract  

Mathematical modelling has acquired relevance at all educational levels in the last decades since integrating 

this activity in instruction provides significant contexts for improving students’ learning, including in linear 

algebra courses that have a notable presence in many undergraduate courses from different fields, including 

engineering and sciences. This paper reports a study aiming to characterize the distinct modelling routes 

performed by Costa Rican undergraduate students when solving a mathematical modelling task involving 

the concept of system of linear equations (SLE). In analysing those modelling routes, it was possible to 

identify their learning of linear algebra concepts and their modelling competencies as well as the associated 

difficulties that students faced. Data collection included participant observation, with audio recording of 

the students’ discussions, their written work on the task and digital files of their work with technology. The 

results show that non-linear routes are associated with a greater mobilization of students’ knowledge on 

SLE concepts and with their development of modelling competencies. The results also highlight the need 

to improve the students’ competency of validating results, an important step that they did not take, and 

suggest the need to make technology relevant to the students’ work on modelling tasks.  

 
Keywords: linear algebra; systems of linear equations; mathematical modelling routes; undergraduate 

students. 

 

INTRODUCTION 

Linear algebra is a fundamental discipline in undergraduate education in many areas, including sciences, 

engineering, or economics. It involves the knowledge of important mathematical concepts such as systems 

of linear equations (SLE), which allow modelling a variety of real situations (Costa & Rossignoli, 2017). 

However, the learning of linear algebra concepts has proved to be difficult for many students, leading 

researchers to consider and explore innovative didactical approaches for the teaching of linear algebra, 

namely by fostering its connections with real situations, including those that are related with students’ future 

professional activity (Bianchini, Lima, & Gómez, 2019).  

The consistent body of research on the teaching and learning of mathematical modelling (Cai et al., 2014) 

clearly confirms its relevance in all educational levels, including tertiary education, namely in providing 

significant contexts for improving students’ learning (Alsina, 2007). The understanding of everyday 

phenomena and the many real-world problems that can be modelled through a variety of mathematical 

models are important trends in current educational systems (Blum, 2015; Rosa & Orey, 2012). 

Mathematical modelling, considered from a cognitive perspective, is the process of finding a solution to a 

real-world problem by using mathematical models and focuses on how the students’ thinking leads to the 

construction of a model (Czocher, 2018) as a way to find answers to real life questions (Blum, 2015). 
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As the regular traditional classes of linear algebra in Costa Rican courses do not encourage students to work 

on real-world situations but instead only propose pure mathematics contexts (Sánchez, 2019), we developed 

a teaching experiment at the University of Costa Rica with undergraduate students of Engineering and 

Sciences, using mathematical modelling as an approach to the learning of linear algebra, which enables 

connections between concepts and real-world situations (Trigueros & Possani, 2013).  

Typically, the mathematical modelling activity is described as a cyclic process involving several transitional 

phases between the real world and the mathematical world together with a set of sub-processes that mediate 

such transitions (Borromeo Ferri, 2018). However, as modelling is an iterative and idiosyncratic activity 

(Galbraith & Stillman, 2006), the students tend to go through some phases of the modelling cycle more 

than once and to avoid the transition to other phases during their work (Czocher 2018; Galbraith & Stillman, 

2006); this results in different modelling trajectories known as mathematical modelling routes (Borromeo 

Ferri, 2018). Thus, assuming an educational and cognitive perspective (Kaiser & Sriraman, 2006), 

mathematical modelling is not only a pertinent approach to develop students’ linear algebra concepts 

(Trigueros & Possani, 2013) but also an opportunity for teachers to identify the learning and modelling 

competencies developed by students, and the difficulties they face when working on mathematical 

modelling activities. The latter can be achieved by analysing their modelling routes, which show the phases 

that students go through, together with the processes performed while advancing throughout the cycle.  

There are few studies that look at the modelling routes of undergraduate students aiming to understand how 

the mathematical modelling activity can be used as an effective learning context to promote and broaden 

their knowledge in linear algebra and the development of their modelling competences. To address this gap 

and the concerns stated above on the need to relate linear algebra concepts with real-world situations, this 

study aims to characterize the modelling routes performed by Costa Rican undergraduate students when 

solving a mathematical modelling task involving the concept of SLE. For this, we addressed the following 

research question: what are the characteristics of the modelling routes performed by students in solving the 

task and what knowledge of SLE and modelling competencies do they activate in those routes? 

PREVIOUS STUDIES ON TEACHING AND LEARNING OF LINEAR ALGEBRA 

Linear algebra is a field of mathematics whose applications range from pure mathematics to external areas 

such as engineering (Costa & Rossignoli, 2017), which explains why that field of knowledge is mandatory 

in numerous curricula in higher education courses related to science and technology. In the last decades, 
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the research related to higher education has also been paying increasing attention to the learning of linear 

algebra topics, and several studies have been discussing pedagogical approaches aimed at improving the 

teaching and learning of linear algebra (e.g., Trigueros & Bianchini, 2016). Several authors have reviewed 

the literature stemming from empirical studies about linear algebra teaching, carried out in the last years 

(e.g., Bianchini et al., 2019; Stewart, Andrews-Larson, & Zandieh, 2019). Focusing on the Latin American 

context, studies such as that of Bianchini et al. (2019) offer a review of the research studies on the teaching 

and learning of linear algebra in undergraduate engineering programs; their findings however do not include 

the study of SLE, namely because the topic is not always considered to be fundamental in linear algebra 

but rather it is seen as a tool to solve linear algebra problems. The authors’ analysis shows that the studies 

carried out have focused on promoting the learning of other topics, namely the concept of vector spaces 

and associated concepts, such as basis of a subspace (Parraguez, 2009), linear transformations (Silva, 2016), 

theorems on the matrix of a linear transformation (Roa-Fuentes & Parraguez, 2017), and eigenvalues and 

eigenvectors (Salgado & Trigueros, 2015), all considered as highly abstract for most undergraduate students 

who take a linear algebra course (Costa & Rossignoli, 2017). 

On the other hand, Stewart et al. (2019) highlight extensive empirical studies on linear algebra, including 

literature reviews like the one by Bianchini et al. (2019), some of them introducing mathematical modelling 

contexts (Possani, Trigueros, Preciado, & Lozano, 2010). The authors indicate that mathematical modelling 

has been implemented by using specific theoretical lenses, such as Realistic Mathematics Education for the 

learning of abstract concepts, such as span and linear independence (e.g., Wawro et al., 2012). They also 

refer to the apparent need of further studies focusing on the learning of SLE, properties of linear 

transformations, orthogonality, and least squares, as well as on cross-cutting themes such as proof in linear 

algebra. 

From the reviewed studies, Bianchini et al. (2019) reinforce the need to adopt pedagogical approaches 

involving real contexts to promote the learning of linear algebra in order to motivate students and show 

them the applicability of mathematics in their future professional life. In the same vein, Trigueros and 

Possani (2013) point out that mathematical modelling is a relevant learning environment that facilitates the 

consolidation of linear algebra concepts, allowing more effective learning if students are encouraged to 

work on problem situations in which they feel the need to use algebra concepts. In some of those studies, 

the pedagogical approaches also included the use of technology, namely mathematical software such as 
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Matlab or Maple (Nomura & Bianchini, 2009), Derive (Porras, Silverio, & Vargas, 2010), and Mathematica 

(Legorreta & Andalón, 2016), to address real problems in real contexts.  

Investigations on the teaching and learning of linear algebra, outside the Latin American scope (e.g., Mallet, 

2007), discuss specific didactical proposals for the learning of SLE by means of visual, algebraic, and 

tabular representations, using mathematical software that includes computer algebra systems, such as 

Maple, helping students to understand the meaning of SLE and of the solution set of a SLE. Mallet’s results 

reveal that students are able to leverage the understanding gained on visual representations for working 

algebraically on SLE, by referring, for example, the solution set of a SLE with infinite solutions in terms 

of the infinite points on a line, intersection of three planes, or the intersection of two planes. However, they 

acknowledge students’ difficulties in working on SLE with tabular representations, highlighting the need 

for further studies involving the use of tabular representations when working on the concept of SLE. 

Zandieh and Andrews-Larson (2019) focus on the symbolizing processes that undergraduate students use 

when solving SLE, in an introductory linear algebra course, expanding their analysis to the use of matrices. 

The authors analyzed students’ final examination papers by looking at two strategies: reduced row echelon 

form (RREF) strategies and other linear system solving strategies. The results show similarities and 

differences between the processes of solving SLE, with students using the RREF being able to represent a 

SLE as an augmented matrix, although having more difficulties in interpreting the information from the 

reduced matrix when solving systems involving planes compared to systems involving lines. In a similar 

way but focusing on the interpretation of a matrix equation 𝐴𝑋 = 𝐵 as linear combination, SLE, or 

transformation, Larson and Zandieh (2013) show different examples of tasks which encourage students to 

make sense of a matrix equation by assigning a symbolic and geometric interpretation to it. The results 

reveal that in each example there are students which interpret 𝐴𝑋 = 𝐵 as a SLE, which showed the 

pertinence of using matrix equations as tools to understand the students’ ways of thinking about systems of 

equations. 

In their work, Stewart et al. (2019) refer to the study developed by Possani, et al. (2010), which involved 

undergraduate students of Engineering, Social Sciences and Economy working on a modelling task related 

to a traffic flow situation, aiming at evaluating the possibility of introducing concepts related to SLE. The 

results revealed that the situation presented in the task was significant but cognitively demanding for the 

students, when compared with traditional practical exercises often performed in the linear algebra class. In 

addition, there were many opportunities for discussion in which students could reflect on the concepts of 
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SLE (augmented matrix, solution set of a SLE and inverse matrix), on which mathematical models were 

based and used to respond to the traffic flow problem situation. This study, like other investigations on the 

teaching and learning of SLE with mathematical modelling tasks, highlight students’ difficulties in 

proposing adequate models to the problem situation, namely in establishing hypotheses that simplify the 

problem situation, identifying variables to create a mathematical model, understanding mathematical 

results, and using and interpreting parameters in mathematical solutions.  

Moreover, investigations using mathematical modelling with technology, such as the study by Galbraith 

and Stillman (2006), show that the work on mathematical models for the study of linear equations is limited 

when the student does not have the mathematical and technical knowledge necessary for working on the 

task, which indicates that previous work with the students is necessary to maximize their learning within 

environments including modelling and technology.  

From this standpoint, mathematical modeling is a pertinent didactical approach to promote competencies 

and pose different challenges to the students (Czocher, 2018), including skills to work with technology, as 

well as the application of relevant mathematical knowledge to solve a task, both being aspects that influence 

the students’ modeling processes (Borromeo Ferri, 2018).     

MATHEMATICAL MODELLING TASKS 

Working on mathematical modelling tasks can make the linear algebra class a motivating but also a 

challenging learning environment for undergraduate students. According to Blum and Borromeo Ferri 

(2009), modelling tasks are highly demanding in terms of the competencies involved in the modelling cycle, 

but it is also possible that such competencies are acquired and mobilized by the students in the mathematics 

classroom, which means that modelling tasks offer many opportunities for learning (Blum & Borromeo 

Ferri, 2009; Kaiser & Sriraman, 2006).  

Blum (2015) highlights four main reasons to justify the need for including modelling tasks in mathematics 

teaching: (1) pragmatic justification: to understand and master real-world situations; (2) formative 

justification: to foster mathematical modelling competencies; (3) cultural justification: to acquire a 

comprehensive sense of mathematics as a science and of its relation with the extra-mathematical world; 

and (4) psychological justification: to motivate the student’s interest in mathematics and to promote 

understanding of mathematical content and its applications.  
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However, some limitations of this kind of tasks should be attended, namely the possible difficulties that the 

students may face in solving them. For example, the students often state that they have never worked with 

mathematical modelling tasks and therefore are not familiar with formulating hypotheses, exploring 

concepts, interpreting information, and validating mathematical solutions (Sokolowski, 2015). Also 

associated with the nature of the modelling tasks, the transition between phases in the modelling cycle is a 

possible difficulty (Galbraith & Stillman, 2006), being customary that many students have difficulties 

during the phase of understanding the problem situation (Blum, 2015). Validation of results, which is an 

important competency in solving modelling tasks, often results in a big challenge for the students as they 

do not always notice what is wrong in their models or results (Czocher, 2018). 

Based on the findings of the previously mentioned studies, one may see some possibilities to overcome the 

identified obstacles in the learning of linear algebra: the use of modelling real situations, which offer 

opportunities to give meaning to concepts and procedures involved in them, and the development of 

relevant modelling competencies; moreover, the use of technological tools allows to combine the 

conceptual and procedural aspects in solving a modelling task. 

MATHEMATICAL MODELLING ROUTES: BEYOND AN IDEAL MODELLING PATH  

Depending on the goals of mathematical modelling in the classroom, different perspectives on the teaching 

and learning mathematical modelling have been identified over the last few years (Kaiser & Sriraman, 

2006). From an educational perspective, modelling focuses on the teaching and learning processes, 

differentiating itself in didactic educational modelling (structuring and promoting learning processes) and 

conceptual educational modelling (introducing or consolidating concepts). Related with this educational 

perspective, the cognitive perspective seeks the identification and description of the cognitive processes 

and associated difficulties that are evidenced by the students when they go through the mathematical 

modelling cycle (Figure 1). So, an important target of studying the mathematical modelling activity is to 

identify the modelling path developed by the student through the ideal modelling cycle (Borromeo Ferri, 

2018). 
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Figure 1: Modelling cycle from a cognitive perspective (Borromeo Ferri, 2018) 

The ideal cycle (Borromeo Ferri, 2018) begins in the so-called “rest of the world”, presenting a problem 

about a real situation. From then on, the student needs to make sense of the problem to create a mental 

representation of the situation that will allow the translation of the presented information. Next, the student 

must take decisions to structure and simplify the problem, and thus moves towards obtaining a real model, 

which constitutes an individual construction, that will require mathematization and leads to the 

mathematical model, through external representations (formulas, diagrams, tables, etc.) but also integrates 

extra-mathematical knowledge. With the elaboration of a mathematical model, the student enters the world 

called “mathematics”, in which (s)he must use mathematical knowledge and, if needed or preferred, use 

any technological resource for working mathematically on the model to perform mathematical procedures 

until obtaining mathematical results. After that, students must interpret the mathematical results in the 

context of the real situation to get real results, which later must be validated in the context of the real 

situation and thus accepted or rejected. Depending on the validation activity, the modeller may choose to 

answer to the initial questions based on the results obtained or to start a new modelling cycle to improve 

the mathematical model, according to whether the actual results are considered adequate or not (Galbraith 

& Stillman, 2006).  

It should be noted that the student will not always follow this ideal modelling cycle, but rather a trajectory 

that may reveal the transition through all or only some of the phases of the modelling cycle and may go 

backward to phases already transited. This is called the student’s modelling route (Borromeo Ferri, 2007). 

According to the author,  
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Modelling route is the individual modelling process on an internal and external level. The 

individual starts this process during a certain phase, according to their preferences, and then 

goes through different phases several times or only once, focussing on a certain phase or 

ignoring others. (p. 2083) 

When the transitions between the sequential phases occur only once and following the direction of the ideal 

modelling cycle, we have a linear modelling route. On the other hand, when the transitions involving one 

or more phases take place several times, we consider it as a non-linear modelling route. Students need to 

learn the difference between a real model and a mathematical model to understand what mathematical 

modelling means, including that they can go through these and other phases several times (non-linear 

modelling route) to get an appropriate real solution for the task (Borromeo Ferri, 2018).  

The research also shows that the student’s mathematical knowledge and competencies are not enough to 

successfully complete a modelling activity, suggesting that the routes are influenced by three factors: (i) 

mathematical thinking styles (visual, analytical, integrated), (ii) mathematical competencies developed by 

the student, and (iii) extra-mathematical experiences and knowledge (Borromeo Ferri, 2007, 2018). In 

particular, “there is a strong connection between the conception of the modelling process and modelling 

competencies” (Maaß, 2006, p.114). The mathematical modelling competency, in this sense, refers to the 

abilities that are essential to appropriately carry out activities involved in the modelling process and is 

defined by Niss, Blum, and Galbraith (2007) as: 

the ability to identify relevant questions, variables, relations or assumptions in a given real 

world situation, to translate these into mathematics and to interpret and validate the solution 

of the resulting mathematical problem in relation to the given situation, as well as the ability 

to analyse or compare given models by investigating the assumptions being made, checking 

properties and scope of a given model. (p. 12) 

In more detail, Maaß (2006) proposes a list of mathematical modelling competencies and offers a 

description for each of them. In Table 1, that list of modelling competencies is presented in columns 1 and 

2, where column 3 contains the several cognitive processes taking place in the modelling activity, drawing 

on the cognitive view endorsed by Borromeo Ferri (2018). As such, Table 1 highlights the fact that 

developing competencies entails cognitive processes, and vice versa. The modelling competencies, in 

particular, influence the student’s modelling route, which is often a nonlinear process (Galbraith & 

Stillman, 2006). 

Table 1. Mathematical modelling competencies and cognitive processes  

Modelling competencies Competency to… Cognitive processes  

To understand the real 

problem and to set up a 

model based on reality 

make assumptions about the problem and 

simplify the situation; recognize quantities 

that influence the situation, identify key 

variables; construct relations between the 

(1)  Understanding the 

task 
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variables; look for available information and 

to differentiate between relevant and 

irrelevant information. 

(2)  Simplifying/ 

Structuring the task 

To set up a mathematical 

model from the real model 

mathematize relevant quantities and 

their relations: simplify relevant quantities 

and their relations if necessary and to reduce 

their number and complexity; choose 

appropriate mathematical notations and to 

represent situations graphically. 

(3)  Mathematising the 

model 

To solve mathematical 

questions within this 

mathematical model 

use heuristic strategies such as division 

of the problem into part problems, 

establishing relations to similar or analogue 

problems, rephrase the problem, 

view the problem in a different form, vary the 

quantities or the available data, etc.; use 

mathematical knowledge to solve the 

problem. 

(4)  Working 

mathematically on 

the model 

To interpret mathematical 

results in a real situation 

interpret mathematical results in extra-

mathematical contexts; generalize solutions 

that were developed for a special situation; 

view solutions to a problem by using 

appropriate mathematical language and/or to 

communicate about the solutions. 

(5)  Interpreting 

mathematical 

results 

To validate the solution critically check and reflect on found 

solutions; review some parts of the model or 

again go through the modelling process if 

solutions do not fit the situation; reflect on 

other ways of solving the problem or if 

solutions can be developed differently; 

generally question the model. 

(6)  Validating results 

into the real 

situation 

The modelling route may be supported by the use of technology, offering the student the option to use a 

computer model to obtain computer results, which occurs prior to obtaining mathematical results. The 

technology is especially relevant in building models that could not be created without technological 

resources and in simplifying and allowing new possibilities, such as: visualizing; exploring, organizing, or 

evaluating a large amount of data (Siller & Greefrath, 2010). Thus, the students must consider the need and 

relevance of using technology so that it becomes a helpful resource for working on mathematical modelling 

activities (Greefrath, Hertleif, & Siller, 2018).  

METHODOLOGY 

Context and participants 

This study is part of a broader research based on a teaching experiment, which is considered a 

methodological approach aiming to understand the learning and reasoning of students when teaching and 

learning strategies are implemented to solve a specific problem that was taken as the target of the 

experiment (Bernabeu, Moreno, & Llinares, 2019). The study was carried out with 21 undergraduate 
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students (13 boys and 8 girls) that were attending a linear algebra course at the University of Costa Rica, 

which involved a sequence of five modelling tasks combined with mathematical exercises, in both cases 

with the optional use of computer and educational software, such as Mathematica, GeoGebra and Excel. 

Each modelling task was proposed after the teaching of the concepts involved in it, through lectures and 

practice tasks involving only mathematical contexts. The students who participated in the study had no 

previous experience on applying concepts of linear algebra in real contexts. In the present article, we will 

focus on the first modelling task of the sequence, which aimed to activate and develop concepts associated 

with the topic of SLE, namely the concepts of SLE, augmented matrix and solution set of a SLE. Regarding 

the technological resources, they were expected to provide optional support to work on the task, so students 

were not required to use it, although mathematical software was available in the computer lab where the 

classes of linear algebra took place.  

The researcher (first author) assumed the role of teacher during the five 70-minute classes of the teaching 

experiment where the students worked on the modelling tasks. The classes followed a three-phase structure: 

teacher presentation of the task to the students, explaining the real context of the task and the organization 

of the class work; students’ autonomous work on the task, in 10 groups of 2 or 3 elements, involving 

moments of discussion between the students and between them and the teacher; and a final whole group 

discussion with the students, guided by the teacher, where they shared and discussed their models, and a 

synthesis of the solutions obtained in the class was produced. 

The task “Preventive traffic” used in this study was adapted from the problem proposed in Possani et al. 

(2010) and aimed to activate concepts involving SLE in a context of car traffic. The context of the task is 

realistic as it presents a car traffic average flow in an area of the capital of Costa Rica, known by the 

students, where some fixed visual flow orientations obtained from Google Maps are indicated (Figure 2). 
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Figure 2: Task context representing the car traffic at four intersections  

The task statement also includes information on the average number of vehicles, per hour, entering and 

leaving each of the four intersections and referred as Points 1 to 4 (Figure 3), although not all vehicle flows 

are provided for each intersection. The task questions (Figure 3), to be answered in the context of traffic 

flow, are oriented to exploring the possibility of closing routes but keeping the traffic circulating, and to 

analyse the minimum and maximum amount of traffic that will circulate on routes whose average flow is 

unknown. 

 
Figure 3: Data of car traffic at four intersections in task statement 
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Thus, the task invites the students to use their learning of SLE to formulate mathematical models that, after 

being analysed, would allow answering the questions proposed in the task, and at the same time it aims at 

promoting students’ mathematical modelling competencies. It was expected that students used formal 

concepts of SLE (analytical representation and solution of a SLE, augmented matrix) to create an equation 

for each intersection, by using the known and unknown values of traffic flow, assuming that entries and 

exits in each intersection have to be equal for keeping the flow constant. As part of the 

simplifying/structuring process, students could decide whether to consider flows in one or both directions 

for each path, except for two segments of traffic: the street section above and the section on the left from 

point 1, according to the information provided in Figure 2 (known flows) and Figure 3 (flow directions 

between intersections). As the sketch presented in Figure 4 illustrates, the conditions imposed require 

students to consider the left and the up segment of traffic as two-way street sections. Moreover, if students 

choose one flow direction in some sections of the streets, they have to follow the directions of the arrows 

in Figure 2 and respect the flow values given in Figure 3.  

 
Figure 4: Sketch illustrating the conditions for the traffic flow given in the map and in the table  

So, students had the possibility to formulate a real model with one-way or two-way street segments, but 

always considering the information provided in Figure 2 and Figure 3, suggesting a possible real context 

of traffic in Costa Rica. Then, students would have to analyse the SLE composed of equations formulated 

for each intersection and get the solution set by fixing some unknown traffic flow and determining 

conditions on the paths, always considering positive numbers for solutions in the real context. Real models 
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with several two-way segments would require that students define several variables, associated with 

unknown traffic flows. It was expected that students would interpret solutions with negative values as 

impossible real situations and that they would consequently consider reformulate their real model.  

Data collection and analysis 

The study follows a qualitative and interpretative methodology (Cohen, Manion, & Mohinson, 2007). Data 

collection included the students’ written work on the modelling tasks and the digital files created with the 

software Mathematica by some of the students, as well as participant observation, with audio recording of 

the discussions held in the groups. The descriptive and interpretative data analysis focuses on the algebraic 

concepts and modelling competencies that students used in solving the task, drawing on the modelling 

routes they performed. 

For identifying such modelling routes, the modelling cycle proposed by Borromeo Ferri (2018) was used, 

according to the cognitive perspective presented in Figure 1, and the competencies as pre-established 

categories described in Table 1, associated with the cognitive modelling processes. The difficulties shown 

in the students’ modelling processes and the knowledge on SLE they used were documented and 

interpretations for the reasons of such difficulties were proposed, in connection with their modelling routes. 

Divergent interpretations or doubts concerning the results of the analysis, independently performed by the 

first author, were discussed by all the authors until full agreement was reached.  

In the next section, we characterize and discuss the modelling routes that represent the diversity of routes 

performed by the students in solving this task, including excerpts of their work to support the analysis. In 

the excerpts presented, the code Gx is used to designate the group 𝑥, in a total of ten groups of students. To 

ensure participants’ confidentiality and anonymity, the students’ names are fictitious. 

RESULTS: UNDERGRADUATE STUDENTS’ MODELLING ROUTES 

In the “Preventive traffic” task, different linear and non-linear modelling routes were identified, revealing 

different scopes of the modelling processes carried out, some of them being complete and others only partial 

modelling cycles. There were those who ended up with the construction of a mathematical model (G1, G3, 

G9); those who finished with getting computer results (G5); those who achieved the phase of obtaining 

mathematical results, without interpreting those results (G2, G6, G10); those who achieved real results but 

incorrectly interpreted a mathematical solution (G8); and those who got to the initial real problem, exposing 

their final results, but also incorrectly interpreting results (G4, G7). In Table 2, we present the groups 
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divided by those categories, along with the linear algebra concepts involved in their solutions, and their 

choice for the use of technology. 

Table 2. Summary of the students’ modelling processes on the task  

Group (G) Final modelling 

step  

Learning of concepts involved Type of 

route 

Technology 

use 

G1, G3, G9 Mathematical 

model 

Formal concept of SLE Linear No 

G2 Mathematical 

results 

Formal concept of SLE, augmented 

matrix, solution set of a SLE 

Non-linear No 

G4 Real situation Formal concept of SLE, solution set 

of a SLE 

Linear No 

G5 Computer 

results 

 Augmented matrix. 

Knowledge of Mathematica 

Linear Yes 

G6 Mathematical 

results 

Informal concept of SLE (equality 

between numerical quantities), 

solution of a SLE 

Linear No 

G7 Real situation Formal concept of SLE, augmented 

matrix, solution set of a SLE 

Non-linear No 

G8 Real results Formal concept of SLE, augmented 

matrix, solution set of a SLE 

Linear No 

G10 Mathematical 

results 

Formal concept of SLE, augmented 

matrix 

Linear No 

From the table, we may observe that most students did not use technology to work on the task, except one 

group that resorted to the use of Mathematica. The task allowed the creation of diverse mathematical models 

where students mobilized knowledge on concepts of linear algebra, such as informal (non-analytical use) 

and formal (analytical use) concept of SLE, matrix associated with a SLE and solution set of a SLE. 

Linear modelling routes 

In the linear modelling routes, we observed that the students’ modelling process did not go through any 

phase more than once. Within the linear modelling routes, we highlight the one schematized in Figure 5 

that integrates the use of technology. This route was performed by Martim and Fabiana (G5), who relied 

on the Mathematica software to work on the mathematical model. 
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Figure 5: Modelling route of Martim and Fabiana (G5) 

As shown in Figure 5, Martim and Fabiana (G5) ended their modelling process in the Technology world. 

These students and other five groups (G1, G3, G6, G9, G10) performed linear routes whose final modelling 

step was the construction of a mathematical model (G1, G3, G9) or some mathematical work on the model 

but without obtaining mathematical results corresponding to a solution set (G5, G6, G10). These six groups 

did not advance beyond the mathematical world, due to: having invested a lot of time in understanding the 

task, not having enough time to obtain a solution set after creating the mathematical model (G1, G3, G9, 

G10), as they state in their written report; having obtained a numerical solution for the task but without the 

verification of the results (G6); showing difficulty in connecting the real situation to the mathematical 

object of an augmented matrix and in defining the solution of a SLE (G5). In the case of Martim and 

Fabiana, they revealed competencies to work on the mathematical model using the technology, obtaining 

computational results (as shown in Figure 6), but they did not interpret those as mathematical results and 

thus were not able to find the solution set of the proposed model. Thus, the technology helped them with 

the calculations but not with interpreting them. 

Figure 6: Mathematical work on Mathematica performed by Martim and Fabiana (G5) 
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These students used the values in the table provided (Figure 3), by drawing on their position in the table, to 

create the augmented matrix with which they worked with (Figure 6). They have incorrectly matched the 

empty cells in the table with zeros in the matrix instead of considering variables in the mathematical model. 

This shows that they were not adequately applying the concept of augmented matrix of a SLE. Moreover, 

the way of placing the values in the augmented matrix shows that they improperly associated the equations 

of the SLE with the columns of an augmented matrix, which contradicts the fact that the rows of the matrix 

associated to a SLE are the ones that should provide information about a particular equation.  

In solving the task, Martim and Fabiana stated: “to solve this problem we thought of a homogeneous matrix, 

since we made all equations equal to zero so that there is no traffic jam”. By mentioning “we made all 

equations equal to zero”, the students reveal to recognize that the condition to keep the traffic flow constant 

is to keep the difference between the entry and exit flows at the same intersection equal to zero, which 

shows that they understood the problem. However, by associating this previous statement to the augmented 

matrix (Figure 6), there is evidence that these students did not mobilize the SLE concept since in their 

mathematical model they consider three equations, instead of the four corresponding to the total of 

intersections. This difficulty in creating real models was also seen in most of the groups that performed 

linear routes finishing in the mathematical world (G1, G3, G6, G9). To some extent, this was expected in 

this first task, as the students had never worked on linear algebra problems that involved real contexts. So, 

they were able to formulate mathematical models but with some inaccuracies resulting from the real model 

they formulated. For example, the route performed by Edite and Thiago (G6) (Figure 7) and their real model 

(Figure 8) revealed their competencies to make assumptions about the flow in the problem and to simplify 

the situation by using a trial-and-error process. However, this choice shows that there was no attempt to 

identify variables and, therefore, represents a non-algebraic model with some limitations.  
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Figure 7: Modelling route of Edite and Thiago (G6) 

 
Figure 8: Real model of Edite and Thiago (G6) 

Edite and Thiago tried to obtain a solution to the problem by experimenting possible numerical values for 

unknown flows and testing them to verify if they would meet the conditions imposed in some intersections, 

revealing a rudimentary notion of the concept of SLE. When they were asked by the teacher about their 

solution, while working on the task, Thiago replied: 

What we were thinking is that, from one point to another, for example here [from point 3 to 

point 2, in Figure 8], there are 300 vehicles crossing per hour. Then, we are looking for the 

values that complete the constant traffic flow, by making the differences between outgoing 

and incoming vehicular flows”. 

From Thiago’s comment, we interpret that this group of students know the concept of SLE solution, since 

he refers to finding values that keep equal outgoing and incoming flows, simultaneously at the four 

intersections, which means to find a solution for a SLE. However, their solving process does not reveal the 

mobilization of the necessary knowledge to find the solution of the system, since they assume that by 

satisfying the equations of intersection 2, the equations of intersections 1, 3 and 4 will also be satisfied. 
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Furthermore, the choice of a single solution reveals that the concept of solution set of a SLE was not clear 

to these students, which is consistent with their incorrect idea that the problem would have a finite number 

of solutions. A similar finding was revealed in the approach of G8 that solved the task by using analytical 

procedures. As to the other groups, which also obtained analytical mathematical results and tried to 

understand their meaning in the real situation, all of them presented an infinite number of solutions to the 

problem, thus showing their understanding of the concept of solution set for the SLE in the given problem.  

Regarding the linear modelling routes that terminate in the rest of the world, performed by two groups (G4, 

G8), we find the case of Artur and Hugo (G8) whose modelling route is shown in Figure 9. 

 
Figure 9: Modelling route of Artur and Hugo (G8) 

The route shows the development of the first three processes of the modelling cycle, which are also 

developed by the other groups; nevertheless, this group reveals competencies to obtain and interpret 

mathematical results by communicating information about the mathematical solutions in terms of 

conditions for the w and t variables, thus obtaining also real results. Although these students have advanced 

in the process of interpreting mathematical results, their interpretation (Figure 10) is not completely correct, 

since they possibly consider the condition w = t (observed in the first and third equations of the SLE) as not 

generating changes in the values of x and z, regardless of the w and t values, by deciding to consider the 

referred values “negligible”.  
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[Note: “𝑤” and “𝑡” are negligible, because regardless of the values assigned to them, the values of the 

other variables do not vary] 

Figure 10: Interpretation of mathematical results by Artur and Hugo (G8) 

Looking at the second and fourth equations (Figure 10), it is possible to observe that any change in the 

value of w and t implies changes in the values of y and v, so the statement of these students is not adequate 

in terms of analysing the solution set but it suggests a way of finding a particular solution for the problem 

situation, namely, when w = t = 0. Thus, Artur and Hugo, like one of the groups of students who performed 

non-linear routes (G7), activated the analytical concept of SLE, as well as the augmented matrix of a SLE. 

However, these students did not show the mathematical knowledge to realize the existence of infinite 

solutions of the SLE, judging by the single solution they were able to obtain for the SLE. 

Non-linear modelling routes 

In the non-linear modelling routes, we find the case of Fátima and Heitor (G7), whose route is schematized 

in Figure 11. Their work differs from the other groups because they were the only ones who answered all 

the questions of the task and went through all the phases of the modelling cycle, some of which carried out 

more than once. They have considered more than a real model and proposed two different solution 

processes, which was also the case observed in the group of Marcelino and Estela (G2). 
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Figure 11: Modelling route of Fátima and Heitor (G7) 

The route performed by Fátima and Heitor shows a transition between phases from the rest of the world to 

the mathematical world, advancing and returning to the previous stage in some moments of the modelling 

cycle, for example in the elaboration of the mathematical model, with the real model being modified at least 

one time, as they mentioned in their written work: “For the elaboration of the model, different conditions 

were analysed, some were inconsistent, and others complicated the problem a lot, so they were not 

considered”. 

From this comment and the mathematical model created by these students (Figure 12) we may interpret 

that they initially thought on models of two-way streets, and at the end they are able to identify relevant 

and irrelevant information (necessary conditions to avoid inconsistent flows) and reduce the complexity of 

the problem (discard options with many unknown flows). They decided to create models with only one-

way streets for the unknown flows because the two-way model or any other similar “complicated the 

problem a lot” in terms of the variables to include in the mathematical model. Moreover, they recognized 

“inconsistent” conditions showing that they reflected on the context of the problem in terms of its solution 

(namely the impossible result of a negative flow of traffic). Thus, the transition between the mental 

representation of the situation and the elaboration of the mathematical model demonstrates the development 

of learning related to the concept of SLE and of the solution set of a SLE. 
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Figure 12: Mathematical model of Fátima and Heitor (G7) 

After the mathematization process, Fátima and Heitor started to work on the mathematical model, having 

considered two options, as mentioned in their written work: “In order to simplify and obtain solutions from 

the constructed SLE, we thought to use substitution, but then we decided to use matrices and the Gauss-

Jordan method”. From this affirmation is possible to interpret that students initially thought to solve the 

model without applying knowledge of linear algebra but ended up realizing that the presence of five 

variables in the model could make the calculations difficult. Therefore, they decided to restart the 

mathematical work, by moving from obtaining incomplete mathematical results to the initial mathematical 

model, this time working mathematically on the model using the Gauss-Jordan reduction method. Figure 

13 shows students’ mathematical model reorganized and ready to be treated as a matrix, which shows that 

students recognised the concept of matrix associated to a SLE when they decided to use the Gauss-Jordan 

reduction method to work on the mathematical model in a correct way. 

  
[If path z is closed, you get …] 

Figure 13: Mathematical results for question 2,  

presented byFátima and Heitor (G7) 

Similar options and work on the mathematical model were observed in the group of Marcelino and Estela 

(G2), although they did not go beyond the mathematical results obtained. These students revealed 

competencies for dividing the problem into two parts (creating one-way and two-way models of flows), but 

they did not realize the need to verify their mathematical answer. After Fátima and Heitor reduced the 
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matrix associated to the SLE as much as possible, they found the values for each unknown flow by defining 

the parameters of the solution set as belonging to ℝ, therefore not having interpreted the mathematical 

results in the context of the problem situation by observing that the traffic flow must have positive 

quantities. So, they revealed difficulties in interpreting their mathematical results in extra-mathematical 

contexts, which is evidenced by their decontextualized interpretation of the value 𝑦 = −450 (Figure 13), 

corresponding to a mathematical result obtained when asked about what would happen if the path z was 

closed. They assumed this value as a possible measure of traffic flow, interpreting that the negative value 

means that “the flow behind must be increased”, that is, a negative flow in one of the routes is a consequence 

of a positive flow in the rear route, to keep the flow constant. Fátima and Heitor, like all other students, did 

not validate their results, which led them to answer the problem situation transferring the mathematical 

results directly to the problem situation. So, their competencies for validating mathematical results were 

not evidenced. 

CONCLUSIONS 

In this study we have analysed, from a cognitive perspective, the modelling routes performed by Costa 

Rican undergraduate students when solving a mathematical modelling task involving concepts associated 

to systems of linear equations. The purpose of the study was to get insights into their learning of the linear 

algebra concepts and on their modelling competencies, when tackling a real-world problem. The results 

show a variety of students’ modelling routes: those that performed partial or complete cycles; those who 

follow linear or non-linear routes; and those that used technology or not to build a mathematical model and 

work on that model. 

The modelling task proved to be cognitively demanding for the students (Blum & Borromeo Ferri, 2009), 

but also suitable, both for working on linear algebra concepts such as the SLE, augmented matrix, and set 

solution and for developing modelling competencies such as creating adequate real models or interpreting 

and validating results (Possani et al., 2010). Stronger modelling competencies were evident in the groups 

that performed non-linear modelling routes and reflected about the mathematical procedures to work on the 

model and properly mobilized their knowledge about the concepts of SLE, associated matrix and solution 

set in ℝ𝑛. Those competencies were not revealed by most groups that performed linear routes, which 

reflects their difficulties in creating real models, mainly associated with a limited understanding of the 

context, and resulting in an inappropriate interpretation of the information provided, as also observed by 

Mallet (2007), and not so much with difficulties in understanding the task and its context. Moreover, in 
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these groups there was no reflection on the concept of a solution set when mathematical models were built 

based on trial-and-error strategies, and their work with analytical models also revealed incorrect 

constructions of the matrix associated with a SLE, which may be associated with insufficient learning about 

the concept of augmented matrix and solution set, and about processes to find the solution set.  

In the only modelling route supported by technology, the students’ mastery of technological resources to 

work on the mathematical model did not increase their competencies to go through all the phases of the 

modelling cycle, since they stopped their route with the obtaining of computational results. They revealed 

difficulties in interpreting the mathematical results due to lack of knowledge about the concepts of SLE and 

associated matrix. This reinforces the need to make technology relevant for students in modelling tasks 

(Greefrath et al., 2018) for constructing effective computer models that have an actual operating nature and 

represent the functioning of the real model. It also suggests the need for students to master the required 

algebra knowledge to take advantage of using technology in their modelling process (Galbraith & Stillman, 

2006). 

It should also be noted that the validation process was a step that students did not take, including the cases 

of those groups who reached the stage of getting real results. This can be possibly explained by the students’ 

lack of experience in working on tasks with real contexts, as they did not have the chance to develop 

competencies to validate their mathematical results when working on tasks in pure mathematical contexts 

(Sokolowski, 2015), nor did they practice this activity in other tasks (Borromeo Ferri, 2018). Therefore, it 

is necessary to consider the development of this competency in the classroom, either in learning SLE or 

other topics of linear algebra, as the validation of results is crucial in several other tasks. 

Looking at the students’ learning and modelling competencies, the results are consistent with other studies 

on modelling tasks involving the SLE concepts (e.g., Possani et al. 2010), but they also raise new insights 

regarding their difficulties to relate the information given in tabular and graphical representations to 

formulate real models. The results also show that non-linear routes, when compared with the linear routes 

performed, are associated with a greater mobilization of students’ algebraic knowledge on SLE concepts 

and with stronger modelling competencies. Moreover, this study may contribute to extend the previous 

research about the teaching and learning of linear algebra, namely the SLE concepts that are still little 

investigated. Particularly, the modelling routes performed by the students in the task may provide useful 

information for teachers to diagnose the students’ knowledge on SLE and their modelling competencies, 

and also to detect their difficulties, which can be a starting point to guide the planning and implementation 
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of more effective teaching practices. However, further research is needed, especially of an interventional 

nature, focusing on other topics of linear algebra and on the role of technology in the teaching and learning 

of linear algebra using a mathematical modelling approach, to illuminate how to make the use of 

technological tools relevant for the students’ work on modelling tasks and for developing their knowledge 

on fundamental concepts.  
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