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ABSTRACT 

The subject of this study is the development of a set of methods for 

the calculation of the changes in the frequency of vi brat ion and 'mode 

shape of a structure due to changes in the physical system. Such changes 

may consist of variations of the structural properties of a given system 

or even of the addition of new degrees of freedom. 

One family of iterative methods that has been used effectively for 

improvement of modes and frequencies is based on an application of the 

Newton-Raphson technique to the equations defining modes and 

frequencies. The method is applicable to cases with multiple or close 

frequencies as well as to cases where they are widely separated. 

However, in their original statements, these methods are not capable of 

handling additional degrees of freedom arising from changes in the 

structural system. The current work extends these techniques to the 

cases of added degrees of freedom and, moreover, allows for consider­

able reduction in computational effort even when there are no additional 

degrees of freedom. 

The original vibrating system is replaced by an augmented system, 

which may have more degrees of freedom than the original one. The 

augment8.tion is described by mass and stiffness matrices, and the 

original matrix expression of the system may have to be rewritten with 

suitable rows and columns of zeros to make the two sets of matrices 

conformable for addition. The augmentation mass and stiffness matrices 

are taken proportional to a single parameter which can vary from just 
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larger than zero to sizable positive values. A perturbation analysis is 

then performed on this augmented system. 

The iterative character of the basic method for improving 

frequencies and modes is modified so that each step now correspond~ to a 

calculation of the next order of perturbation. This modification 

eliminates the difficulty of dealing with very light additional masses 

and results in successive solutions of linear matrix equations all having 

the same coefficient matrix. Unl ike in the or i ginal met hod, whi ch 

requires a new triangularization at each step,. the expensive repeated 

triangularizations are not needed in the perturbation scheme. 

One important application of the perturbation method is to determine 

the modes and frequencies of a structure to which a light secondary 

system is added - say the piping in a power plant. In situations where a 

frequency of the added system is close to one or more frequencies of the 

original system, the so-called tuned case, the method is quite effective 

and general. 

The additional system may also correspond to a large value of the 

parameter multiplying the augmentation matrices. Here the difficulties 

in adding degrees of freedom and separating initially close frequencies 

are resolved by the perturbation technique, and the larger values of the 

parameter are handled by applying the scheme to reduce the number of 

steps in the original iterative methods. 
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1. INTRODUCTION 

1.1 General Remarks 

In structural engineering it is often desirable to be able to 

predict the consequences of modifying a structural system. Since dynamic 

analysis under earthquake, blast and wind loads often requires knowledge 

of the modes and frequencies of the structure, it is important to know 

how these dynamic properties of the structure are affected by 

modifications in the system. Such modifications may be the result of the 

i nev i table difference between the analyti cal model and the system as 

actually constructed. Non-structural components may also contribute to 

such deviation from the analytical predictions of behavior. 

Overall, the modifications that can be introduced to a given 

structural system may be viewed as consisting basically of two types. In 

the first instance, the modifications consist of simple variations in the 

magnitudes of the parameters of the system. In order to visualize this 

case, imagine that the structural system is di screte. The shear beam 

model of a rigid frame would represent atypical discrete system. If the 

masses i and j in Figure 1.1 are connected by an additional elastic 

connection then this will induce what may be called a local modification 

in the system. This could be the case of a frame with very rigid girders 

where some sort of connection with elastic properties is installed 

between two floors. Another possibility is that of rigidly attaching a 

new mass to the system. This could consist of a piece of equipment 

installed in the frame mentioned above. Thus the effect in the model is 
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that of an increase ).l in the jth mass, as it is shown in Figure 1.2. 

This type of modifications may even be introduced in a system with the 

express purpose of changing the frequencies of the original unmodified 

structural system to avoid a resonance with an applied load. 

The second kind of modification includes the attachment of 

spring-mass combinations to the structural system. This means that new 

coordinates are needed to descri be the motion of these added masses. 

Furthermore, any of the added masses may have more than one point of 

attachment. Typical examples of this kind of modification are, the 

addition of piping systems into buildings as is the case in the coolant 

circulation systems of nuclear power plants, the sprinkler systems in 

vital buildings, ventilation systems, flexibly mounted engines, etc. 

The prediction of the response of mOdified structural systems to the 

dynamic loadings mentioned above has attracted much attention in recent 

years. For the case when the modification consists of the addition of 

light attachments to the initial structural system, the problem has been 

approached as one of primary - secondary system. Under most 

circumstances, the response of the additional subsystem, if it is light, 

can be estimated accurately by imagining that the original system is not 

affected by the modification, or, in other words, that the old system and 

its new addition are decoupled. There are cases, however, referred to as 

tuned systems, where attempt of such decoupling leads to considerable 

errors. In these cases, the analysis is not as simple as in the detuned 

case. 

The method proposed in this st udy permi ts accurate calculation of 

the modes and frequenc ies of a modif i ed system even in the tuned case. 
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The method is also applicable to fairly heavy subsystems or to 

significant modifications of the original structure. 

1.2 Object and Scope 

The object of this study is the development of a set of 

computationally effective methods for the calculation of the changes in 

the frequencies of vibration and mode shapes of a structure due to 

changes in the physical system. Such changes may consist of variations 

of the structural properties of a given system or of the addition of new 

degrees of freedom. 

In this work, only undamped linear systems are considered. Even for 

small damping, the consideration of damping in the combined structural 

systems can lead to non-classical modes. 

As pointed out in Section 1.3, there are existing methods for 

fin din g and com bin i n g mod a 1 r es po n s e s, for s epa rat e dan d c los e 

frequencies. The analysis in Chapters 2 and 3 and numerical results in 

Chapter 4 do not treat dynamic response problems, but concentrate on the 

problem of determining modes and frequencies. 

Additional systems can consist of any configuration of additional 

masses and elastic elements attached to the main structure in any way. 

The magnitude of the elastic additions are characterized by a simple 

parameter. Extremely light additional systems corresponds to very small 

values of the parameter and heavier ones to larger values of the 

parameter. 

From a mathemati cal standpoint, the problem is one of determining 

the eigenvalues and eigenvectors of a perturbed system of the form 
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K X = A M X 

where the modification can even involve new rows and columns of K and M. 

1 .3 Background 

The problem of analyzing the dynamic response of modified structural 

systems has received considerable attention from researchers in several 

areas of the engineering profession. A brief review of some of the 

available literature is presented in this section. 

The study of published work related to the topic of this 

investigation may be divided into two categories. The first one may be 

called the engineering approach and the second one the mathematical 

approach. The intention of the present study is to attempt to bridge 

this two approaches in order to solve the proposed problem. 

In the engineering community the solution of modified structural 

systems has been addressed in many instances as the study of the dynamic 

behavior of the so-called primary-secondary systems. Several methods of 

solution have been proposed for these systems. They all pertain to the 

intended application: the response to blast and earthquake loads. 

Accordingly, the proposed solutions of the problem have been tailored to 

fit to the currently used approach in the respective field. That is, the 

solutions are based on the availability of the usual parameters for 

dynamic loadings: a description of the ground motion either as a time 

history of the displacements and accelerations, a ground response 

spectrum, or a shock response spectrum, together wi th some knowl edge 

of the fixed base modal properties of the primary and secondary 

structures. 
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It is possible to categorize the different approaches to the 

dynamic response of pr imary-secondary systems in several ways. One of 

them would be to look at the methods employed for the solution of the 

combined system. Here, the approaches range from closed form solutions 

for the dynamic behavior of the combined system (usually by transforming 

to the frequency domain) to perturbation analyses of the resulting 

eigenvalue problem. Another is by the modeling of the combined system as 

either a continuous primary system with a discrete secondary system 

attached to it, or as a discrete combined system with all the different 

poss i bil i ties that it Y i e 1 ds: SDO F- SDOF, MDOF- SDOF, MDO F-MDOF, and 

including either classical or nonclassical damping as well as the 

possibility of tuning. 

One of the first solutions of the problem was to assume that the 

secondary sys tern could be uncoupl ed from the pr imary sys tern. In that 

sense, if the dynamic response of a primary-secondary system due to an 

earthquake was needed then the ground mot i on was us ed to find the 

response of the primary structure. Following that, the response of the 

secondary system was calculated based on the computation of its response 

to the motion of the floor to which it was attached. This gave rise to 

the floor response spectrum method. Several authors have done 

considerable work in this approach, among them Singh [58,59,60J, Singh 

and Sharma [61J, Singh and Wen [62J, Gupta [19,20J, Gupta and Tembulkar 

[21J, Hadjian [23J and others [1,9,16,42,48J. The intention of this 

approach is to predict the response of the secondary system to a ground 

motion. This is done by predicting a floor response spectra for the 

secondary system or by estimating the maximum displacement and 
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acceleration of such a secondary system. To estimate the response of the 

secondary system an amplification factor is applied to the ground 

response spectra. The amplification factor is intended to take care of 

the response of the secondary system. The pr inc i pal approximat ion in 

this group is the uncoupling of the two systems, primary and secondary. 

The method has a limited range of applicability because uncoupling 

is only feasible when the ratio of the masses of the secondary system to 

the primary system is very small compared to unity. Another limitation 

is that uncoupling may only be used when the natural frequencies of both 

the primary and the secondary system are well separated and therefore the 

problem of close modes is avoided. 

An improvement was provided by Ruzicka and Robinson [52J and Sackman 

and Kelly [54,55 ,56J when they included the possibility of interaction 

between primary and secondary systems. They showed that the interaction 

is cri ti cal when there is tuning between a frequency of the pr i mary 

system and a frequency of the secondary system, even for the cases where 

their corresponding mass ratio is very small compared to unity. Sackman 

and Kelly and Kelly and Sackman [34J modeled the primary system as a 

continuous shear beam and the secondary system as a SDOF system connected 

to it at one pOint. They then prov ided a closed form solution to the 

problem. Their proposed method of solution is correct in every sense, 

however, it is a very limited result due to the constraints inherent to 

the model. For example, for tuning of very high modes, the mass of the 

secondary system has to be increasingly lighter in order to obtain a 

reasonable solution. Also it only considers one point of connection 

between the primary system and the secondary system. Other authors have 
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proposed closed form sol utions to the problem of dynami c behav ior of 

combined systems. The systems considered consist of beams or plates with 

spring-mass systems attached at discrete pOints. Dowell [12J studied the 

frequencies of a combined beam spring-mass system by using Lagrange's 

equa t ions and by including the spring-mass system wi th the aid of a 

Lagrange multiplier. Later, Nicholson and Bergman [43J attacked the same 

problem by using separation of variables to obtain the frequencies and 

natural modes of the combined system in terms of the Green's functions 

for the vibrating beam or plate. Nei ther work gi ves a thorough 

consideration to the problem of tuning. 

As mentioned above,· the solution to the proposed problem has also 

been attempt ed by the use of perturba t i on methods. DerKiureghian et 

al. [10] and later Sackman et al. [51 J used a perturbat ion approach to 

determine the dynamic properties of a MDOF-SDOF combined system. 

However, the SDOF secondary system considered has only one pOint of 

at tachment to the pr imary system. In essence, they developed a mode 

superposition procedure for the response of very light equipment 

including the effect of closely spaced modes. They obtained the 

equipment response directly in terms of the dynamic properties of the 

primary structure, the dynamic properties of the secondary structure, and 

the design response spectrum for the primary structure (termed the ground 

response spectrum). The method of analysis employed consists essentially 

of a first order perturbation analysis of the combined system. A 

correcting scheme for the modes that are somewhat near the equipment 

frequency is then applied. However, no criteria are given to determine 

the closeness of the modes for which the correction is necessary. The 
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corr e ct i on cons i sts in the orthogonali zation of the close mode wi th 

respect to the rest of the modes. This requires the knowledge of all the 

other modes. Later, Igusa and DerKi ureghian [27,28J continued and 

expanded the scope of the work previously described. They considered the 

more general case of a MDOF-MDOF combined system where the secondary 

system may be multiply supported. The limitation of a very small added 

system helped them simplify the approach by allowing them to neglect the 

corresponding terms on the diagonal of the resulting stiffness matrix for 

the combined system. For tuned cases they used a frequency domain 

analysis of the approximate equations of motion for the combined system. 

Then, they applied a first order perturbation analysis to the determinant 

of the resulting complex frequency response matrix. 

Other studies have been founded on a similar approach. Hernried and 

Sac kman [25 J and Ingham and Sac kman [29 J ernployed a firs t order 

perturbation analysis applied directly to the eigenproblem resulting from 

the equations of motion of the combined system. 

Use of the perturbation methods for the solution of the eigenvalue 

problem is also found in the applied mathematics literature. Most of the 

effort has been dedicated to the solution of the standard form of the 

eigenvalue problem. See for example, Wilkinson [70, pp. 62-109J. Very 

little appears to have been written about the so-called generalized form 

of the eigenvalue problem, AX=ABx. This is probably due to the fact 

that, for most applications, such generalized form may be converted to an 

equivalent standard form, Cy=Ay. However, this conversion requires that 

at least one of the matrices in the problem be positive definite. 

Several authors, [13,17,18J have treated the generalized eigenvalue 
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problems but have not taken on the case of semidefinite operators at 

fl=O. As will be seen later, in this study both stiffness and mass 

matrices of the combined system are positive definite for all values 

of fl, but are semidefinite for J,.l=O .. Therefore, the transformation to the 

standard form is far from convenient, if it is, in fact, possible. Only 

a few references have been found that treat the generalized eigenvalue 

problem under these conditions. Among them, Fix and Heiberger [14J 

propose an algor i thm for the calculation of a subset of the set of all 

eigenvalues on a generalized eigenvalue problem. Those eigenvalues 

correspond only to what will later be called the "old" modes. They do 

not study the "new" modes, because their interest is in examining the 

s tabi Ii ty of the "old" modes. Stewart [61J presented a first order 

theory for the perturbation of generalized eigenvalue problem. It is 

based on the Rayleigh quotient and it essentially deals with the 

treatment of separate eigenvalues. The problem of predicting the 

behavior of close eigenvalues and its corresponding eigenvectors is not 

treated. 

1.4 Outline of Method of Analysis 

The method proposed, which has its origin in previous work by 

Robinson and Harris [49 J and Lee and Robinson [36J, aims at the 

investigation of a single mode or a set of modes with close frequencies. 

The effec ts of changes of parame t ers of the sys tern on mod es and 

frequencies were studied for separate frequencies in [49J and for close 

or equal frequencies in [36J. The approach was one of successi ve 
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approximations and did not contemplate the addi tion of degrees of 

freedom. 

The present method involves two major modifications of the 

approaches of [49J and [36J. First, modifications of the structure' that 

lead to additional degrees of freedom are considered. Secondly, the 

method is cast in the form of a perturbation calculation rather than one 

of successive approximations. 

Since the added mass and the elasti c connection wi th the primary 

structure usually correspond to additional terms in the mass and 

stiffness matrices that are very small in comparison to the original 

entries, a perturbation procedure is a natural approach. Both the added 

mass and stiffness are taken proportional to a single parameter ~, unlike 

the parametrization in Reference [55J where a constant spring stiffness 

is used. 

One advantage of the present method lies in the fact that, for 

separate frequencies, a single mode may be considered without knowledge 

of the other modes. For close frequencies, all modes in the cluster must 

be considered at the same time, but no other modes need be known. 

1.5 Notation 

The symbols used in this study are defined in the text when they 

first appear. For convenient reference, the more important symbols are 

summarized here in alphabetical order. Some symbols are assigned more 

than one meaning; however, in the context of their use there are no 

ambiguities. 
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A,B general linearized operators, may be matrices, differential or 

X. 
1 

A. 
1 

R 

K 

KO 

MO 

X. (l-d 
1 

X~cd 
1 

<p~O) 
1 

s 

integral operators 

ith eigenvector 

ith eigenvalue of the initial system 

increment operator 

residual quantity 

stiffness matrix for the augmented system 

mass matrix for the augmented system 

stiffness matrix for the initial system (bordered) 

mass matrix for the initial system (bordered) 

augmentation stiffness matrix 

augmentation mass matrix 

perturbation parameter 

ith eigenvalue of the augmented system 

ith eigenvalue of the initial system 

ath coefficient of the expansion series for the ith eigenvalue 

of the augmented system 

stiffness matrix for the initial system 

mass matrix for the initial system 

ith eigenvector of the augmented system 

ath coefficient of the expansion series for the ith eigenvector 

is the eigenvector of order n corresponding to the ith 

eigenvalue of the initial system, 

for k = 1, 2, ... is a vector of order n 

is a vector of order m 

number of close or multiple eigenvalues 
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* Y. is a basis vector spanning the space R 
J 

c.. transformation coefficient 
IJ 

R space spanned by the s close or multiple eigenvactors 

corresponding to the pair (K,M) 

* R s-dimensional space nearly orthogonal to the subspace 

Sij 

b. 
J 

[Y] 
6b~k) 

J 

6y~k) 
J 

A 

complementary to subspace R 

Lagrange multiplier 

column corresponding to matrix of the S Lagrange multipliers 

[Y, Y2 ... YsJ matrix containing the s Y
i 

vectors 

incremental value for b~k) 
J 

incremental value for y~k) 
J 

diagonal matrix containing the s dose or multiple eigenvalues 

for the pair (K,M) 

1/2 
€ = perturbation parameter equal to ~ 

Kronecker delta 

number of close or multiple eigenvalues coming from the 

initial system 
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2. DETUNED SYSTEMS 

2.1 Introduction 

In the previous chapter it was explained that the aim of this work 

is the presentation of a set of methods for the calculation of the 

modified and new eigenpairs that arise from the consideration of 

structural modifications to an ini tial system. The purpose of this 

chapter is to explain the proposed method in the simplest case of 

structural modification to a given system, the addition of a single­

degree-of-freedom subsystem to a multiple-degree-of-freedom system. It is 

assumed in this chapter the eigenvalues of the resulting system are 

wi dely separated. The means of verifying that this is the case are 

explai ned in Sect ion 2.4. In other words, the ini t ial sys tern does not 

have any clusters of eigenvalues and, furthermore, no clusters arise when 

the system is augmented. Such a system is said to be detuned. 

2.2 The Robinson-Harris Method 

The study of the detuned systems presented in this work is based 

partially on a generalization of the method proposed by Robinson and 

Harris in Reference [49]. Before proceeding wi th the analysis, a brief 

summary of the method is presented. 

The Robinson-Harris Method consists of a procedure to improve 

approximations to eigenvalues and eigenvectors of a gi ven system by an 

application of Newton's Method to the eigenvalue problem equations. The 
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method improves an eigenvalue and its corresponding eigenvector at the 

same time. 

Essentially the method takes the generalized eigenvalue problem 

AX ABX (2. 1 ) 

which, in the present context, may be interpreted as taking A and B to be 

gi ven operators that are in general dependent on the eigenvalue A. but 
1 

not on the eigenvector X .• 
1 

Then an approximate solution to Equation 

(2.1) will yield: 

( AX . - A. BX. ) (j ) 
1 1 1 

(2.2) 

where the superscript j indicates the jth approximation and R is a 

residual. Equation (2.1) is then expanded about the approximate solution 

represented by the jth iteration. 

This yields, 

( A fiX. - A. B fiX. ) (j ) 
1 1 1 

( - lIAX . + II A . BX. + A. lIBX. - R) (j ) 
1 1 1 1 1 

or 

(AflX. - A. BlIX.) (j) 
1 1 1 

A1. (_ dA X 
LJ./\ X. + B . 

1 dA 1 1 

(2.4) 

The unknowns in Equation (2.4) are lIX i are lIA io Notice now that in 

order to solve Equation (2.4) uniquely, an extra condition is needed 
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since there are n + 1 unknowns and only n equations. The extra condition 

specified is 

T X.B6X. 
1 1 

o 

This side condi t ion allows a uni que sol ution for 6X. 
1 

eliminating the possibility of large changes in the eigenvector if the 

eigenvalue and approximate eigenvector are nearly correct. That is, any 

change of magnitude in the direction of the eigenvector is eliminated. 

An alternative statement of the condition is that xTBX is kept constant 

up to terms of first order. 

Equations (2.4) and (2.5) together now form a system of n + 1 

equations and n + 1 unknowns. That is 

[-~-~T~~~-L-~~~~--J t~~=-} i-=~-} 
-X. B : 0 6A. 0 

1 I 1 
t 

(2.6) 

Provided that the matrix of coefficients is nonsingular, Equation 

(2.6) represents an iterative method that converges more rapidly than a 

second order process. See References [49J and [31J. 

A similar approach can now be used to perform a study of the dynamic 

properties of modified structural systems. However, there are two major 

differences in the approach. First, the method will not be used as a 

fixed-point iteration as Robinson and Harris suggest but rather as an 

extrapolation method to trace the variation of the eigenvalues and their 

corresponding eigenvectors. As mentioned above, this variation will be 

effected by a modification to the structural system. A second, and 
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perhaps more far-reaching modification, permits consideration of new 

degrees of freedom added to the system. That is, the Robinson-Harris 

method will be modified in order to handle an increase in the order of 

the operators. This increase then. translates into an increase in the 

rank of both the stiffness and mass matrices for the case of a discrete 

model of a structure. 

2.3 statement of the Problem 

When dealing with new degrees of freedom, it is necessary to define 

clearly an initial system and an augmented system. 

Consider the free vibration of an undamped n-degree-of-freedom 

system like the one shown in Figure 2. 1 . The associated eigenvalue 

problem can be stated as 

o i=l , . 0 0, n 

where K is the stiffness matrix of the system, 

M is the mass matrix of the system, 

A. is the ith eigenvalue and 
1 

<Pi is the corresponding i th eigenvector. 

A mass m* is now connected elastically to this structural system at 

several points. For example, in Figure 2.2, a system is shown with the 

additional mass m* attached to masses 2 and 3. 

The question then becomes how to predict the solution to the new 

eigenvalue problem that arises when considering the augmented system. 

Naturally, one way of doing it is to simply solve the new eigenproblem by 
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the usual methods. This entails two diff icul ties. First of all, in 

large systems, it can be costly to recalculate everything if any slight 

changes are made in the new structure. That is, the added mass might be 

placed at different locations in the original structure during the 

process of design and the eigenproblem would have to be sol ved several 

times, one for each change in the confi guration. Furthermore, if the 

magnitudes of the added mass and spring stiffnesses are small compared to 

those of the or iginal structure, then accuracy problems can be present 

when the usual methods of solution are used. That is, there will be 

extremely small terms in the diagonal of both the mass and stiffness 

matrices of the system. For a complete reference on these methods, see 

Reference [70, pp. 62-109J. 

To go from the stiffness and mass matrices of the initial system to 

the augmented ones, the original matrices must be bordered with rows and 

columns of zeros. So-called augmentation stiffness and mass matrices are 

then added to the corresponding bordered matr ices. These augmentation 

matrices contain all the information related to the interaction between 

the new degrees and the original components of the system. The case in 

which the additional springs are present but there is no added mass is a 

simple special case. Likewise, another special case arises when the 

modification consists of a mere addition of mass to an existing mass in 

the system. 

The range of cases that can be treated is wide since no particular 

characteristics of the initial system are required. However, a fairly 

accurate solution of the eigenvalue problem of the initial system is 

expected to be available. Indeed, this solution actually constitutes the 
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zero-order approximation to the eigensolution of the augmented system, as 

will be explained in Section 2.4. 

In order to examine the problem from a perturbation standpoint, 

augmentation matri ces are taken proport ional to a single posi ti ve 

parameter].l. For the case considered in this chapter, this parametric 

form can be introduced by setting 

and 

* k 

* m ].lm 

(2.8a) 

(2.8b) 

where the k and m are of the same order of magni tude as the spring 

stiffnesses and masses of the original system. 

The eigenvalue problem for the new augmented system can be expressed 

as follows: 

o i=1, ... ,n+1 (2.9a) 

where K(].l) is the stiffness matrix for the augmented system, 

(2.9b) 

K(O) is the bordered stiffness matrix of order n + 1, 

t-~-- --~-~ (2.9c) 

K(1) is the augmentation stiffness matrix of order n + 1, 
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M(~) is the mass matrix for the augmented system, 

MCa ) is the bordered mass matrix of order n + 1, 

r Mal 

l--~-- --~--J 

M(l) is the augmentation mass matrix of order n + 1, 

Ai (~) is the new ith eigenvalue, 

X. (~) is the corresponding new ith eigenvector of order n + 1, and 
1 

~ is the proportionality parameter. 

(2.9d) 

C2.ge) 

(2.9f) 

(2.9g) 

Notice that if the parameter ~ is taken equal to zero, then the 

structure does not become an n-degree-of-freedom system, but rather one 

in which X 1 is indeterminate. However, for the purpose of this study, 
n+ 

~ will not be taken equal to zero. Instead, the limi ting case when ].l 

approaches zero through posi ti ve values will be studied. In fact, in 

practice, the most interesting case occurs when ].l is small. From the 
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point of view of the applications, the smaller ~ is, the more likely it 

is that the additional mass and springs will not be taken into 

consideration in the preliminary stages of design. Therefore, a method 

to estimate their effect in the structure is especially useful. It is 

important to notice also that as ~ goes to zero, both the stiffness and 

the mass matrices for the augmented system become ill-conditioned. That 

is, their determinant becomes very small, almost zero. It is easy to see 

then why the common methods employed for the solution of the eigenvalue 

problem for a structural system fail. However, a perturbation analysis 

can be performed on the new system to eliminate this difficulty. 

2.4 Perturbation Scheme. Old Modes. 

After a mass is added, there are n + 1 degrees of freedom instead of 

n. It turns out that under certain restrictions, n of these have 

eigensolutions close to the original ones for small ~, and one of them is 

closely related to the characteristics of just the augmentation in 

stiffness and mass, see Reference [1 OJ . This process is conceptually 

illustrated in Figure 2.4. The "old" modes, those close to the 

eigensolution of the original system, are considered in this section. 

For convenience, the eigenvalues and corresponding eigenvectors are 

numbered so that the first n eigenvalues in the augmented system 

correspond to the eigenvalues of the ini tial system and then the (n + 

1)th. eigenvalue corresponds to the eigenvalue of the added system when 

considered separately. This section deals with the behavior of the modes 

of the initial structure. The study of the behavior of the new mode will 

be presented in the following section. 
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In the case of a detuned system, the eigenvalues are simple roots of 

an algebraic equation, that is, the roots of the characteristic equation. 

For this reason, it is possible to state that the eigenvalues are 

single-valued analytic functions of Jl in the neighborhood of ~ = 0 G' The 

same is therefore true of the components X .. of the varied eigenvectors 
lJ 

belonging to the eigenvalues A .. 
1 

See Reference [8J. Thus, it is 

possible to use the Taylor series expansion about zero in order to 

express the eigenvalues of the augmented system. That is, 

+ ••• i = 1 , ••• n 

where A~O) is the ith original eigenvalue of the initial system and 
1 

(2. 10) 

A~k) for k = 1,2, ... are the kth coefficients of the expansion 
1 

series for the'ith eigenvalue. 

Up to now, there has not be~n anything beyond the use of the 

perturbation method as explained in standard texts. The difference 

arises when it becomes necessary to treat the eigenvectors of the 

augmented system. Notice that these eigenvectors must now be of order 

n + 1. That is, they have to account for the displacement component 

corresponding to the new degree of freedom that has been added. 

Note that the totality of eigenvectors of a given system is nothing 

other than a set of coordinates, a very particular one indeed, that must 

completely describe the motion of the system. Hence, for the augmented 

system, the eigenvectors must be of order n + 1 so that they define the 

location of every mass. In the 1 i terature, perturbations appli ed to a 

vibrating system never involve an increment in the number of degrees of 
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freedom of the system in question. Reference [70J contains a good 

summary on perturbation methods for the eigenvalue problem. 

In the present case, the mere assumption that the constant term in 

the series expansion for the eigenvector corresponds to the in'itial 

zero-order solution, that is, when there is no perturbation, is obviously 

not enough. In view of this fact, the use of the following series 

expansion has been considered: 

+ ••• (2.11) 

where X~k) = !!i:;] is the kth coefficient of the expansion series for 
1jJi 

the ith eigenvector, 

¢~O) is the eigenvector of order n corresponding to the ith 
1 

eigenvalue of the initial system, 

¢~k) for k = 1, 2, ... is an unknown vector of order n, and 
1 

1jJ~k) is an unknown vector of order 1. 
1 

The physical interpretation of the vector 1jJ~0) will emerge from the 
1 

analysis. At this point, Equations (2.10) and (2.11) can be substituted 

into the equation of the eigenvalue problem, Equation (2.9a), 

(2.12) 

The indicated multiplications yield 
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+ ••• o (2. 13) 

Equations (2.13) represent the complete expansion about ~ = 0 of the 

eigenvalue problem. Because these equations must be satisfied for all 

values of ~ and, moreover, the quantities A~k) and the vectors X~k) 
1 1 

are 

independent of )..1, the coefficient of each power of ~ must be equal to 

zero. Thus, the perturbation equations are, 

o (2.14a) 

o (2.14b) 

o (2. 1 4c) 

This set of equations is now sol ved recursi vely. In the present 

case, a certain inconvenience seems to arise from the fact that X~O) is 
1 

not known entirely. That is, the vector ~~O) must be solved for. 
1 
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If the system of Equations (2.14) is examined more closely, it can 

be seen that each one of these equations can be parti tioned into two 

groups, one of order n and the other of order one. Thus, the first of 

Equations (2.14) gives, 

[ [--~-- -+-] (2.15) 

Equation (2.15) degenerates to two sets of equations 

o (2.16a) 

and 

o . ~~O) 
1 

o (2.16b) 

It is seen here that the Equation (2.16a) is simply the statement of 

the eigenvalue problem for the initial system. Thus, the equation turns 

into an identity for each one of the old modes. Equation (2.16b) 

provides no information about ~~O), which appears still to be arbitrary. 
1 

The results from Equation (2.16a) are consistent with the assumption 

made that the eigenvalUeS\~O) of the initial system represent the 
1 

zero-order approximation to the solution of the problem. 

The sec 0 n d 0 f E qua t ion s ( 2 . 1 4 ) i s now sub j e c ted tot h e same 

partitioning procedure, yielding 
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l [--~-- --~-1 

+ 

(2.17) 

Equation (2.17) can also be separated into two sets of equations, 

o (2.18) 

and, the scalar equation 

o (2.19) 

Notice that Equation (2.19) can be solved for ~~O) provided that the 
1 

scalar [K(1) - >-(0)M(1)] is not zero. K
2
(2') and M

2
(2') are the spring and 

22 i 22 

mass respectively of the single-degree-of-freedom system being added to 

the initial configuration. For a detuned system; 

i = 1 , ••• ,n (2.20) 
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Thus, the solution of Equation (2.19) gives 

(2.21 ) 

It is seen from this equation that the term 1jJ~0) depends on ¢ ~O) , 
1 1 

the eigenvector corresponding to the i th mode of the in i tial system. 

Equation (2.21) states that, for the zero-order approximation, the 

response of the added mass is due to a forced vibration. That is, the 

motion of the added mass is due to the excitation of its supports. This 

becomes evident when one realizes that, in the special case of Figure 

2 2 11 b t t t f th t K
(1) 

. ,a u wo erms 0 e row vec or 21 are zero. The two non-zero 

terms correspond to the points of support of the added mass. The result 

is neither surprising nor new; it is the basis of the so-called "floor 

response spectrum method." See References [1,59,60,61 ,62J. 

The perturbation process is now continued by substi tuting Equation 

(2.21) into Equation (2.18) and rearranging the resulting terms 

(2.22) 

where 

_ [ K ( 1) _ ,( 0 ) M ( 1 ) ] rh ( 0) _ [ K ( 1) _ ,( 0 ) M ( 1 ) ] ", ( 0 ) 
11 I\i 11 'ri 12 I\i 12 'ri (2.23) 

Notice that the unknowns in Equation (2.22) are the vector ¢~1) and 
1 

the scalar A ~ 1 ) 
1 

Hence, Equation (2.22) cannot be solved for the 

unknowns, since the vector ¢ ~ 1) is of order n. 
1 

An extra condition is 

needed then in order to make this equation solvable. 
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The extra conditions that will be used are the condition of 

orthonormality of the eigenvectors with respect to the mass matrix. 

These are the same side condi tions used by Robinson and Harris in their 

work. That is, the eigenvector is not allowed to have any changes in its 

magnitude. More specifically, only its direction is allowed to change. 

Let us cons i der the orthonormali ty condi t ions for the augment ed 

system. In general we have, 

T X. (~)M(~.dX.(~) 
1 J 

o .. 
lJ 

(2.24) 

substituting Equations (2.ge) and (2.11) into Equation (2.24) 

yields, for i = j 

T T T 
+ [ X ~ 1) M ( 0 ) X ~ 1) + 2X ~ 1) M (1 ) X ~ 0) + 2X.( 2) M ( 0 ) X ~ 0 ) ] ~ 2 

1 1 1 1 1 1 
+ ••• (2.25) 

Equation (2.25) must be satisfied for all values of~. Therefore, 

the coefficient of the zero power of ~ in Equation (2.25) must be equal 

to one while the rest of the coefficients must be equal to zero. Thus, 

o (2.26b) 

o (2.26c) 
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A procedure similar to the one used for equations (2.14) can now be 

followed. That is, each of the Equations (2.26) can be partitioned and 

red ced to terms of initial system. For instance, Equation (2.26a) 

yields 

M o 
(2.27) 

o o 

which reduces to 

(2.28) 

Equation (2.28) is obviously a statement of the normality condition 

for the "old" modes, and it is merely saying that the normali ty 

condi tions for the augmented system is sati sf ied up to the zero-order 

approximation regardless of what the values of ~~o) may be. 
1 

Also, Equation (2.26b) yields 

2 [ ( 1 ) T 
4>i I wi 1) J t-~-- --;--] {-~f;;~-l 

+ [ COlT ~~O) J [_~il~_ -~i~~-l {-~!~;:-} 0 (2.29 ) 4>i 1 M(l) M(1) 
21 22 

which reduces to 



29 

2'" C. 1 ) TM", (. 0) + t/, (0 ) T M C 1 ) '" ( 0) + ,I. ( 0 ) M ( 1 ) t/, CO) 
't'l 't'l 't' i11 't'i '+' i 21 't'i 

o (2.30) 

A re-examination of Equation (2.22) shows that the additional 

imposition of Equation (2.30) permits unique solution for <p~1) and A~1). 

That is, 

where 

and 

C 1') 
P, _[K(1) _ \ (0)M(1 )J"'(O) _ [K(1) _ \ (0)M(1) J"'(O) 

11 I\i 11 't'i 12 I\i 12 '+'i ' 

(2.31) 

(2.23) 

(2.32) 

(2.21 ) 

Indeed, Equation (2.31) constitutes a matrix equation of order n + 

1. This equation is sol vable for <p ~ 1) and A ~ 1) 
1 1 The matrix of 

coefficients is the same as the one obtained in Robinson and Harris [49J, 
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where it is proved that this matrix of coefficients is non-singular if 

there are no multiple roots. 

The solution of Equation (2.31) gives the values needed to calculate 

A(~) up to the first order perturbation. However, X(~) is only known to 

the zero-order perturbation since the equations do not provide the value 

of 1jJ ~ 1 ) . 
1 

The second-order perturbation, Equations ( 2.1 4c), may now be 

analyzed by introducing the same type of partitioning used for the 

first-order perturbation Equations (2.14b). As in the prev ious case, 

Equations (2.14c) can be separated into two sets of equations, 

_ ,(1)M(1)A,(0) _ ,(1)M(1)",(0) _ ,.(2)MA,.(0) 
Ai l 11 't'i Ai 12 't'i A1 't'1 o (2.33) 

and 

_ ,( 1 ) M (1 ) A, (0) _ ,( 1 ) M ( 1 ) ,I, ( 0) = 0 
Ai 21 't'i Ai 22 't'i (2.34) 

since ;I: 0, we have 

_ [ K ( 1) _ ,( 0 ) M ( 1 ) ] A, ( 1) + \ ( 1 ) M ( 1 ) A, ( 0) + ,( 1 ) M ( 1 ) ," ( 0 ) 
21 Ai 21 't'i Ai 21 't'i. Ai 22 't'i 

(2.35) 
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Equation (2.35) can now be substituted into Equation (2.33) to yield 

(2.36) 

where 

P(.2) _[K(1) _ ,(O)M(1)]r/,(1) _ [K(1) _ ,(O)M(1)],I,(1) 
1 11 /\i 11 'Pi 12 /\i 12 'Pi 

Equation (2.36) is of the same form of Equation (2.22). Equation 

(2.26c) can be used as the extra condition needed for the solution of the 

Equations (2.36). But first notice that it can be reduced to 

T 
+ cp(O)TM(1)cp(1) + W(O)M(1)cp(1) + ~~O)TM;~)1jJjl) 2[cp~O) Mcp~2) 

1 J i 11 j i 21 j 

+ w(O)M(1 )W( 1)] 
T 

+ cp ~ 1) Mcp ~ 1 ) 0 (2.38) i 22 j 1 J 

Now Equation (2.38) is used in conjunction with Equations (2.36) to 

yield an equation of the same type of Equations (2.31), that is 

(2.39) 

where 

(2.37) 
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and 

(2.40) 

The solution of Equation (2.39) gives the values of A~2) and <p~2). 
1 1 

Hence, the eigenvalue A(~) can be calculated up to the second-order terms 

in ~. The eigenvector X. (~) can now also be approximated up to the first 
1 

order by using Equation (2.35). 

It is very important to point out the similarity of Equations (2.31) 

and (2.39). Both equations have the same matrix of coefficients. This 

means that in order to solve the two sets of equations numerically, the 

rna tr i x would have to be tr i angular iz ed onl y 0 nc e. This represents 

considerable savings in computational effort. Furthermore, it is easy to 

see that perturbations of third or higher order will be of the same type 

as (2. 31) and (2. 39 ) . Tha tis, 

where p~k) 
1 

( k -1 ) 
is a function of 1JJ. 

1 

k== 1, 2, ••• (2.41 ) 

(k) (k-l ) 
an d Q. and 1V. are known 

1 1 

scalars. Therefore, the eigenvalues and eigenvectors corresponding to 

the "old ll modes of the initial system can be approximated to the desired 

order by using Equations (2.41) in conjunction with Equations (2.10) and 

(2.11). 
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2.5 Perturbation Scheme. New Mode. 

This section deals wi th the behavior of the new mode that arises 

when a mass is added to the initial system. The same type of expansion 

series about ~ ° that was used for. the "old Ii modes can now be used for 

the "new" mode. That is, Equations (2.10) and (2.11) can be used for 

i = n + 1. Hence, 

A (0) + ~ A (1) + ~2 A (2) 
n+1 n+l n+l 

+ ••• (2.42) 

where A~~~ is the eigenvalue of the added single-degree-of-freedom system 

,(k) for k = 1 2 is the kth coefficient of the expansion series I\n+1 ' , ... 

for the (n+1)th eigenvalue, 

and, 

(2.43) 

where X (k) 
n+1 ~%~ r 

(k)} 
is the kth coefficient of the expansion series 

1Pn+ 1 
for the (n+l)th eigenvector, 

",(k) for k 
't'n+1 0,1,2, ... is an unknown vector of order n, and 

~(k) for k = 0,1,2, ... is an unknown scalar. 
n+1 

Thus, the perturbation equations developed for the "old" modes 

continue to have validi ty for the "new" mode. However, some 

simplifications will arise as will be seen below. 

The above equations are now examined in detail. For the new mode, 

Equation (2.16) is now 



[ K - A(O) ] (0) 
n+1 M CPn+1 o 
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(2.44) 

It will be recalled that this equation is the zero-order 

perturbation equation for the augmented system. If A(O) and cpCO) are 
n+1 n+1 

considered as unknowns, this equation also represents the eigenvalue 

problem equation for the initial system. The only way that the 

determinant IK - A~~~MI can equal zero is if the quantity A~~~ is equal 

to any of the eigenvalues of the ini tial system. In that case we would 

have the so-called tuned problem, which will be. discussed in detail in 

Chapter 3. In the case when A (0) 
n+1 is not equal to any of the eigenvalues 

of the initial system, the determinant IK - ACO)MI is different from 
n+1 

zero. Hence, the only possible way in which Equation (2.44) can be 

satisfied is for the vector cp (0
1
) to be zero. This result implies that 

n+ 

for the zero-order perturbation the "new" mode is completely uncoupled 

from the "old" modes. 

The main simplification to the equations obtained in the previous 

section comes from the result that cp(0
1
) is zero. Under that condition, 

n+ 

the first-order perturbation equations, i.e., Equations (2.18) and (2.19) 

become 

o C2.45) 

o C2.46) 

For a lumped mass system like the one shown in Figure 2.2, the first of 

the above equations can be written as 
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(2.47) 

The vector nothing other than the motion of the original 

system caused by the dynamic reaction forces present when the system in 

Fi gur e 2.3 is vibrating freely with an amplitude w(O) n+1 . It is also 

evident here that such free vibration causes only a higher-order effect 

on the ini tial system. This fact corresponds to the assumptions of the 

floor response spectra method for very small added systems. See 

References [1,58,59,60,61 ,62J. 

The second equation, (2.46) is actually the eigenvalue problem for 

the system mentioned above, where the mass m* is attached to a fixed base 

by the spring Iki. The solution to this problem will yield the 

zero-order approximation for the (n+l) th eigenvalue of the augmented 

system. However, it is also necessary to add an "orthonormality" 

( 0) 
condition in order to determine what W 1 can be. In other words, it is n+ 

necessary to use an extra condition in order to solve this eigenvalue 

problem. 

At this point, it is useful to consider Equation (2.24) again. This 

equation can be modified for the new mode in the following way by letting 

the size of the vector X 1 depend on the parameter W, i.e. n+ 

(2.48) 

The object of this modification is to avoid extremely large values of the 

entries in the "new" modal vector. Then Equations (2.26) will now become 

o (2.49a) 
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T 
M(O) X (1 ) (0) T M ( 1 ) X(O) 2X(0) + x 

n+l n+1 n+1 n+1 

T 
M(O) X(2) 

T 
M (1 ) X ( 1 ) ( 1 ) T M(O) X( 1) 2X(0) + 2X CO ) + x 0 

n+1 n+l n+1 . n+1 n+l n+1 

Equation (2.49a) . t· f· d t t . 11 because <p (0 ) 1S sa 1S 1e au oma 1 ca y 
n+l 

Furthermore, Equation (2.49b) now reduces to 

( 0) M ( 1) ,,, ( 0 ) 
Wn+1 22 '¥n+l 

(2.49b) 

(2.49c) 

is zero. 

(2.50) 

It is interesting to remark now that Equation (2.50) represents the 

condi tion of orthonormality for a single-degree-of-freedom system like 

the one shown in Figure 2.3. 

Combining Equations (2.46) and (2.50) it is possible to obtain a 

unique solution for the eigenvalue problem of the added system. 

The second-order perturbation equations are now considered. 

Equations (2.33) and (2.34) become 

o (2.51 ) 

and 

(2.52) 
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Equation (2.52) has two unknowns, however, we can take this equation 

together with an appropriate side condition and solve for ~(1) and A (1). 
n+1 n+1 

This side condition comes from the next higher order in the perturbation 

expansion for the orthogonality cond~tion, i.e., Equation (2.49c). Such 

equation can be rewritten as 

2,1, ( 0) M (1) ( 1) + 2,10 ( 0 ) 
'+'n+l 21 <Pn+1 '+'n+l o (2.53) 

The resulting system of equations is then 

(2.54) 

where 

_[K(1) - A(O) M ] (1) 
21 n+1 21 <Pn+l (2.55) 

(2.56) 

The system of Equations (2.54) has a nonzero determinant just like 

the system (2.41). Hence, it is possible to solve Equations (2.54) for 

~~:~ and A~:~. Substituting these values into Equations (2.51) will then 

yield the value for <p(2) 
n+l· That is, 

(2) -[K - A (0) M]-1 {[K(l ) _ A (0) M(l)] (1) + [K(1) 
<Pn+l n+1 1 1 n+1 11 <Pn+1 12 

- A(O) M(l)] ~ (1 ) _ A ( 1 ) M 
(1 ) - A (1 ) M (1 ) ~(O)} 

n+l 12 n+1 n+1 <Pn +1 n+1 12 n+l (2.57) 
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For higher orders of perturbation it is seen that equations (2.54) 

and (2.57) become 

and 

K(l) _ A(O) M(l) 
22 n+l 22 

-M (1 ) 
22 

W (0) 
n+l ------------------ ------------

(0) M ( 1 ) 
0 -Wn+1 22 

¢ (k+ 1 ) 
n+l 

-[K - A (0) M]-l R(k) 
n+l n+l 

f _~~~L} f-:Ef-} (2.58) 
A (k) 

n+1 n+1 

(2.59) 

(k) . (k) (k) (k) 
where R 1 is a functlon of ,10 1 and A 1 as well as ,+, Thu s, the n+ o/n+ n+ o/n+l . 

eigenvalue and the corresponding eigenvector for the "new" mode of the 

augmented system can be approximated to any desired order by using 

Equations (2.58) and (2.59). 

2.6 Addition of Several Degrees of Freedom 

The modeling of the secondary system as a single degree of freedom 

system is very limited when considering the dynamic behavior of flexible 

non-structural components [50J. Some examples of such components are 

piping systems, cable tray assemblages or perhaps internal elements of a 

large piece of equipment. A better model may then be obtained by adding 

of a system of several degrees of freedom to the initial system. 

In this section, an extension is made to the case where an m 

degree-of-freedom system is added to an n degree-of-freedom system. The 

changes that will occur to the formulations presented in Sections 2.4 and 

2.5 are small. 
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One of the most obvious changes will be in the augmentation 

matrices. They will now have to contain not only the information related 

to the interaction between the new masses and the original system but 

they will also describe any coupling within the added system. For the 

case of a lumped mass system, the augmentation stiffness matrix turns out 

to be equivalent to the stiffness matrix of a system that has rigid body 

modes. The number of rigid body modes is equal to the number of degrees 

of freedom of the ini tial system. For example, consider a combined 

structure composed of a four degree-of-freedom system to which a two 

degree-of-freedom system is added. Such a system is represented in 

Figure 2.5. For that system the augmentation stiffness matrix is equal 

to the stiffness matrix that would result from considering k, 
1 

o for 

i = 1, •.• ,4. It is possible then to introduce a single parameter ~ to 

vary the sizes of the augmentation matrices K(1) and M(1) in much the 

same way that was done in Section 2.3. Also, it may be remarked that the 

, K ( 1 ) d M ( 1 ) , 11 b t' f d h' h '11 submatr ices 22 an 22 Wi now e rna rices 0 or er mxm w lC Wi 

represent the structural properties of the added system when considered 

separately. In fact, for the example mentioned above, the matrices K;~) 
( 1 ) 

and M22 would represent the structural characteristics of the system 

shown in Figure 2.6. 

The results expressed in Sections 2.4 and 2.5 for the case of 

addi tion of a single-degree-of-freedom system to an initial one only 

requires a change from scalar notation to vector notation. Then Equation 

(2.41), which states the perturbation equation for order k, can be used 

without any modifications. 
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Another important result is given by a restatement of Equation 

( 2 . 44 ), i. e . 

o j n+; , ... ,n+m (.2.60) 

This equat ion implies that ¢ ~ 0) is equal to zero for each j. Thus the 
1 

uncoupling between the "new" modes and the "old" ones for the zero-order 

perturbation is still present provided that there is no tuning. Also, 

the orthogonali ty condi tion presented in Section 2.5 can be used as 

stated without any difficulties. 

For the previous reasons, it is possible to say that the Equations 

(2.58) and (2.59) can also be used without any inconveniences in the 

present case. 
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3. TUNED SYSTEMS 

3.1 Introduction 

The purpose of this chapter is to explain the proposed method as it 

pertains to the case where the structural modification introduced causes 

a more complicated result than in Chapter 2. In this chapter the eigen­

values of interest correspond to the addition of an m-degree-of-freedom 

system to an n-degree-of-freedom system where some of the eigenvalues are 

very close or equal. 

The most general case of multiplicity of eigenvalues considered here 

is the one where the added system has a repeated eigenvalue of multi­

plicity q that is equal to a certain eigenvalue of multiplicity r in 

the initial system. The situation is then one of q + r tuned modes. An 

example of the general system studied may be taken as an augmented system 

like the one shown in Figure 3.1. This system consists of an initial 

2-degree-of-freedom to which a 2-degree-of-freedom subsystem has been 

added. The solution of this problem has been at tempted before, but it 

has not been done by using the perturbation approach. In Section 3.2 a 

method proposed by Lee and Robinson in Reference [36J is explained. 

Then, in Section 3.3, the perturbation approach is presented and it is 

compared to the method discussed in Section 3.2. 

3.2 The Lee-Robinson Method 

The Robinson-Harris Method presented in the previous chapter was 

extended to equal eigenvalues (see Reference [49J) but was carried out in 
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an ad hoc method where the equations used lost their sparse character and 

suffered a deterioration of conditioning. Later, Lee and Robinson [36J 

addressed the problem of developing a better approximate method for close 

or repeated eigenvalues. However, their method is an iterative scheme, 

which is successful if the eigenvalues are equal or very close. As in 

the method of Chapter 2, very small masses call for a perturbation 

approach rather than an i terati ve one. The basic idea of the Lee-

Robinson Method will be presented as a p~rturbation technique in Section 

3.3. A brief summary of the original method is given here as a necessary 

introduction. 

The Lee-Robinson Method finds all eigenvectors corresponding to 

multiple or close eigenvalues at the same time. The method finds the 

close eigenvalues for any cluster, together with the corresponding 

eigenvectors in a two-step procedure. The essence of the method consists 

first in finding the subspace spanned by the eigenvectors corresponding 

to the multiple or close eigenvalues. The subspace is found by 

minimizing a quadratic form subject to the constraint that the result is 

a new set that is also orthonormal with respect to the mass matrix M. 

After this step is completed for all the equal or close eigenvalues, the 

improved eigenvalues and eigenvectors are determined from the solution of 

a small eigenvalue problem. 

The method considers the eigenvalue problem for the system: 

KX. 
1 

i =1 , •••• , n 

where K and M are symmetric matrices of order n, 

M is positive definite, 

(3.1) 
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Xi is an eigenvector, and 

Ai is an eigenvalue such that A1 ~ A2 ~ ~ An 

The set of all eigenvalues is then separated into two sets, one of 

them containing the s close or multiple eigenvalues. The s-dimensional 

subspace spanned by the Xj corr.esponding to close or multiple eigenvalues 

is denoted by R. A set of s vectors, Yj' in the neighborhood of R is 

then selected so that they are orthonormal with respect to M. Figure 3.2 

shows a schematic representation of the two frames Xi and Yj, where 

i=1,2, ... ,n and j=l ,2, ... ,s. Each vector Yj of the basis can be expanded 

as a series of the true eigenvectors Xi- Thus 

Y. 
J 

n 
L c .. X. 

i=1 lJ 1 
{ 1 , ••• , s} (3.2) 

For close or equal eigenvalues, the coefficients fall into two groups of 

different order of magnitude, 

2 2 L c .. « L c .. 
iiS lJ isS lJ 

for sufficiently good approximations. 

Equation (3.3) can be interpreted as the summation of the Euclidean 

norms of the projections of vectors of Yj (j s S) onto the two 

complementary subspaces. This means that the vectors Y j ar e near ly 

orthogonal to the set of n - s eigenvectors corresponding to the simple 

eigenvalues. However, a vector Yj needs not be close to anyone of the 

Xj (j E S) in particular. A constrained stationary-value problem is set 

up to find the stationary values of 



w T I Y.KY. 
jES J J 

subj ect to 

T 
Y.MY. 

1 J 
o .. 

IJ 
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(3.4) 

(i,j E S) 

The fact that this stationary-value problem characterizes the 

subspace R of the eigenvectors Xj (j E S) is proved in Reference [36J. 

Lagrange multipliers are introduced to solve the constrained stationary 

value problem. The Lagrangian resulting from Equations (3.4) and (3.5) 

can be written as 

L 
T T I Y. KY. - I I B .. (Y . MY. - 0 iJ' ) 

iES 1 1 iES jES lJ 1 J 
(3.6) 

where the B .. I S form an sxs matrix of Lagrange multipliers. 
IJ 

The minimization yields 

3L 
Oi KY. Is .. MX. 3Y . 

J 
J iES IJ 1 

aL 
Oi 

T 

3 Bij 
Y.MY. o .. 

1 J IJ 
(i,jES) (3.8 ) 

The first equation resembles an eigenvalue problem for matrices K 

and M. In matrix form, the equations are 

M [YJ bj (j E S) (3.9) 



K[YJ 

where B 
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C B 1 j' B 2j , ... , B sj ), C j E S), or 

M[YJB 

I s 

where [YJ = [Y 1 Y2 ... YsJ. 

C 3. 10) 

C3.11) 

Thus, the subspace R of the desired eigenvectors can be found by 

solving Equations C3.9) and C3.11). 

The Newton-Raphson technique is then applied to the above 

equations. The ini tial values for Sand [YJ are assumed to be 

available. They are denoted by sCO) and [yCO)J. As mentioned above, it 

is assumed that the basis vectors forming [yCO)J are in the neighborhood 

of the subspace of the eigenvectors 

[XJ (3.12) 

and that they satisfy the orthonormality condition with respect to M, 

that is 

I s 

For the general kth iteration step, Lee and Robinson use 

C3.13) 

C3.14) 
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(3. 15) 

where 6b~k) and 6y~k) are unknown incremental values for b~k) and y~k). 
J J J J 

By substituting b~k+1) and y~k+1) into the above equations, and arrive at 
J J 

and 

I s 

(3. 16 ) 

The matrix B has zero off-diagonal terms for multiple roots. Thus, 

one starts with a certain matrix B(O) and a number of iterations later, 

when approaching convergence one should find that B( k) has ei ther zero 

off-diagonal terms or that they are very small compared to the diagonal 

ones. For this reason the term may be approximated by 

(3. 18 ) 

Equation (3.18) represents a set of n equations in n + s unknowns that 

combined with the set of s equations in n unknowns in (3.17) yield a 

system of n + s equations in n + s unknowns. 

Taking 

(3.19) 
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Equation (3.17) becomes 

o (3.20) 

Finally, combining Equations (3.18) and (3.20) yields 

-- - - - - - - '- - - - - - - - (3.21 ) 

o 

that is, a system of n + s equations in n + s unknowns. 

When the roots are not exactly equal, the terms neglected in (3.18) 

are dropped as an approximation and the calculation is carried out as if 

the roots where multiple. When the roots are fairly far apart, the 

convergence of the procedure is adversely affected by this 

approximation. (k) (k) (k)" If the approx imat ion of M[ Y ] bJ" by s"" M6Y" 1S not 
JJ J 

made, all s systems of the type (3.21) would be coupled by the extra 

terms. This would be a computationally unacceptable procedure. It 

should be noted that the closer the eigenvalues turn out to be the more 

rapid the convergence of the method will be. 

A second step is needed to complete the problem. The matrix B of 

the Lagrangian coefficients has to be diagonalized (rotated) so that the 

Y vectors associated wi th B become the true eigenvectors of the 

subspace. This system of s eigenvectors and corresponding eigenvalues 

may be written as 

K [X] M [X] A (3.22) 

University of Illinois 
Reference Room 
BI06 NCEL 

208 N. Romine street 
Urbana. Illinois 61801 
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wher e A = diag ( A l' A 2' ••• AS). 

If the rotation is expressed by a square matrix [ZJ of order s, 

[XJ [YJ [ZJ (3.23) 

and (3. 10) 

K [YJ M [YJ B (3.10) 

is taken into account, one has 

K [YJ [ZJ M [YJ [ZJ A M [YJ B [ZJ (3.24) 

Then, premultiplying by [YJT 

[YJT M [YJ [ZJ A [YJT M [YJ B [ZJ (3.25) 

and use of the orthonormality condition results in 

B [ZJ [Z J A (3.26) 

Thus the second stage of the problem is re duced to the solut ion of an 

eigenvalue problem of order s. 

3.3 Perturbation Scheme. Multiple Roots. 

The method of solution that was presented in Chapter 2 breaks down 

for the case of systems that have ei ther repeated or very close 

eigenvalues. It is for this reason that the approach to be followed in 

the solution of the problem has to be different. The work presented in 

this section uses the basic idea behind the method developed by Lee and 

Robinson [36J and explained in the previous section. 
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The Lee-Robinson Method is now implemented by means of series 

expansions for the Lagrangian coeff ic ients B as well as for the Y 

vectors. Consider the eigenvalue problem for the augmented system 

represented by Equation (2.9a). In the detuned case, the solution for 

s u c has y s tern i sob t a in e d on e mo d eat a tim e . Moreover, the side 

condition is chosen as a normality condition for the old modes, thus 

Equations (2.26) are used. However, when consider ing a new mode, the 

scale could be left undetermined because normality is not an essential 

condition in the method. This approach leads to the si de cond it ion 

for the modes of the added system represented by Equation (2.48). By 

contrast, in the tuned case the solution must be obtained by dealing with 

the entire subspace of repeated modes. As explained in Section 3.2, the 

Lee-Rob inson Method requires orthonormali ty among all the Y vectors. 

This normality condition forces the introduction of a ~-1/2 term in the 

expansion series for the Y vectors. In this way, the normality condition 

is sa t isf ied for all the basis vectors Y regardless of whether they 

originate from the old eigenvectors or the new ones. 

Taking E 
1/2 

~ the expansion uti 1 ized for the Lagrangian 

coefficients B is the following 

E + + ••• (i,j E S) (3.27 ) 

and for the vector Y 

Y. 
J 

+ ••• (jES) (3.28) 
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Accordingly, it is convenient to choose the following formulation 

for the stiffness and mass matrices of the augmented system, 

K ( E) (~. 29 ) 

and 

M ( E) (3.30 ) 

where the matrices KCO) and MCO) are the bordered stiffness and mass 

matrices of the initial system and K(2) and M(2) are the same 

augmentation matrices defined in the previous chapter. 

Equations C3.27), C3.28), (3.29) and (3.30) can now be substituted 

into Equations (3.9) 

(j ES) (3.31) 

where bj represents the jth column of the matrix B of Lagrangian 

coefficients. 

Equation (3.31) is now expanded for a certain j r such that 1 ~ r 

~ s. Rearranging the terms by increasing order of exponent in the 

parameter E, Equation (3.31) becomes, for order a = -1, 

(3.32) 

for order a 0, 
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(3.33) 

for order a. ~ 1, 

(3.34) 

In addition, Equations (3.28) and (3.30) can be substituted into 

equation (3.11) 

aT 
Y 

q 

·T 
Y s 

for any q and r, 

[Y 1 ···Y ••• Y ] q s 
I s (3.35 r 

(3.36) 

substituting Equation (3.28) for j q and for j r into Equation (3.36) 

yields 

(3.37 ) 
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performing the indicated multiplications and grouping by powers of E, 

o 

and for a ~ 

o 

o qr 

o 

C3.38) 

C3.39) 

C3.40) 

C 3.41 ) 

Equations C3.38), C3.39), C3.40) can be satisfied identically by 

making the proper choice of matrices [yC-1)] and [yCO)]. 

The choi ce is the followi ng: £ of the s vectors Y wi 11 be of the 

form 

( -1 ) 
y£ { 0 } 

and 

yCO) 
£ ! _~1~~_} 
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where cp~O) corresponds to one of the eigenvectors of the repeated 

eigenvalue when considered for the initial system. The remaining s-Q, 

vectors Y will be of the form 

and 

e -1 ) 
Y 

Q,-s = !---~---] e -1 ) 
WQ,-s 

yeo) {o} 
Q,-s 

where W~=~) corresponds to one of the eigenvectors of the repeated 

eigenvalue for the added system alone. Thus, 

(3.42) 

and 

~~~ ~!_. ~ _ ~i~ ~ ~ _ ~ : ~ ~ _~] 
o ... 0 : 0 ••• 0 

I 

Also BCO), the ini tial approximation to the matrix of Lagrangian 

coefficients, can be chosen as a diagonal matrix containing the repeated 

eigenvalues. That is, 

o 

o 
A­ s 

C3.44) 
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Using the above representations, Equations C3.32) and C3.33) can be 

satisfied identically. 

Rearranging Equation (3.34) yields, 

+ M(O)~~'yca.-k)SCk) + a.I, 
k=l r rr k=O 
k*a. k*a. 

s 0.-1 
+ M(2 ) L L y(a.-2-k)SCk) 

q=l k=O q qr 
C3.48) 

From Equation (3.41), 

a. 
L 

k=O 

o 

or 

+ (3.50) 
k==O 

Notice that the term yCO)T M(2) yCa.-2) 
is always zero because of Equation 
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Equation (3.50) represents a set of s independent equations. Thus, 

Equation (3.50) together with Equation (3.48) form a set of n + s 

equations in n + s unknowns, 

(K(O)_SCO)M CO )) : _M(O)[y~O)y~O) .. ~y~O) ] Y C cd p CcL) 
rr r r 

---------------------------
T 

S (a) QCa) _yeO) MCO) 0 
1 1r 1r 

T 
S (a. ) Q(a.) _yeO) MCO) 0 C3.51) 2 2r 2r 

o 

where 

p(a)= M(o)~aI1 y(a-k)S(k) + 
r k=1 r rr 

k*a 

a+ 1 s 
I I 

k=O q=1 
k*a q*r 

(3.52) 

Q(a) 
a+2 T 
I y(a-k+1) M(0)y(k-1) 

qr 
k=O 

q r 

k*a+1 

a T 
+ I y(a-k-l) M(2)y(k-l) 

k=O 
q r (3.53) 

k*a.-1 

The coefficient matrix in Equation (3.51) can be further reduced. Notice 

that by using Equations (2.9c) and (2.9f), 



(3.54) 

substituting Equation (3.43) and Equation (3.54) into Equation (3.51) 

yields the following two equations, 

K-S(O)M _M[¢~O)¢~O) ... ¢~O)J ¢(a) p (a) 
rr r r 

I 
------------ ------- ----- - - - --

I 

T 
Sea) Q(a) _¢CO) M 0 

1 1r 1r 

CO)T 
0 sCa) QCa) C3.55) -¢ M 2 2r 2r 

o 

where 

pCa) [ a+1 
a+1 s ~(a-k)B(kJ _ K(2 )¢Ca-2) = M L ¢ (a-k) s (k) + L L r k=l r rr k=O q=l 

q qr 11 r 

k;ea k;ea q;er 

_ K(2 )1jJCa-2) 
s a-1 

+ M(2 ) L L ¢Ca-2-k)SCk) 
12 r t 11 k=O q qr q=l 

C3.56) 

a+2 
L 

k=O 
k:;t:a+1 
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and 

o (3.58) 

Equation (3.55) is of order n + ~ and it is solvable because the matrix 

of coefficients is non-singular (see the Appendix of Reference [34J). 

In solving the proposed perturbation problem, a definite sequence of 

calculations is required. Equation (3.55) is used first to find some of 

the parameters of the ath order perturbation and only then is Equation 

(3.58) used to complete the calculation. 

A specific example is useful to illustrate the proposed method. 

Consider an augmented system like the one shown in Figure 3.1, consisting 

of an initial 2-degree-of-freedom system with two repeated eigenvalues to 

which a 2-degree-of-freedom subsystem has been added. Consider then the 

case when the added subsystem has also two repeated eigenvalues equal to 

those of the initial system; hence the combined system has only one 

eigenvalue of multiplicity four. For such a system, substituting 

Equation (3.42) into Equation (3.55) and taking a=1 yields 

K-S(O)M 
rr 

_M<I>(O) 
1 

_M<I>(O) 
2 

<I> (1 ) 
r 

-K(2)w(-1 
12 r 

----_ ...... _- .......... - ......... - ........... - ...". -------

(O)T 
0 0 B (1 ) 0 (3.59) -<I> M 1 1r 

l-<p;o)TM 0 0 

J 
B ( 1 ) 

2r ~ 0 
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and for a=2, Equation (3.58) gives 

o (3.60) 

Equations (3.59) and (3.60) can be solved for each mode r of the subspace 

R. Notice then that the solution must be carried out a definite 

sequence, first for the ath perturbation and then for the (a+l)th 

perturbation. Also the remaining s-1 orthonormality conditions that are 

not needed in Equation (3.55) are instead used to find the values for the 

1jJ'S for the corresponding (a-1 )th perturbation. Once the solution for 

each of the modes r is obtained, it is possible to continue to the next 

order by taking a=2 in Equation (3.55), 

------- --- - -=- ...... -
i 

o 

o 

where 

-M1>(O) 
2 

o 

o 

(3.61) 
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and 

and for a=3 in Equation (3.58), 

o (3.62) 

Higher order perturbations may be obtained in a similar way. 

The above procedure can be simplified considerably by developing a 

computer program that can automatically generate the right-hand sides for 

Equations (3.55) and (3 = 58) for each order of perturbation. In Chapter 

4, such a computer implementation is explained. 

It should be noted that the perturbation calculations given here and 

in Chapter 2 are, at this point, just formal expansions. That the 

perturbation series converge for small enough values of the parameter E 

(or ~ in the detuned case) has not been demonstrated here. 

It mi gh t be po in ted ou t her e tha t the per t urbat ion procedure 

developed in this Chapter differs considerably from the one presented by 

DerKiureghian et ale [10J. In fact, the method employed in [28J and [29J 

might be more properly called a correction procedure. It does not give 

the entire first perturbation but does arrive at the same frequencies for 

the modes of tuned system obtained by the first perturbation in the 

method presented here. The procedure [10J cannot easily be extended to 

higher perturbations, especially in view of the neglect of part of the 

diagonal terms of the stiffness matrix. 
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4. NUMERICAL APPLICATIONS OF THE PERTURBATION PROCEDURES 

4.1 Computer Implementation of the Perturbation Method 

The difficult part of any perturbation problem is the determination 

of the successive right-hand sides of the sets of perturbation equations 

in terms of the results of perturbation solutions already carried out. 

In a program having the capabili ty of calculating perturbations to a 

fair ly high order, the number of terms on the right si des can become 

quite large for the higher-order perturbations. 

A natural way to proceed would be to determine which terms occur on 

the right in exactly the same way as would be done in analytical 

calculation, and then to program the result. However, it has been found 

much more convenient to have the computer determine which terms occur and 

whi ch do not. Then all that must be prov ided in the program is the 

general nonlinear operator that occurs in the problem. Simple logical 

calculations determine which terms in the sums of products of 

perturbation expansions arise for the stage of the perturbation under 

consideration. Those terms, and only those, are then calculated. Such a 

course of computation is not only more generally useful in perturbation 

calculations, but also requires much less programming than any specific 

case. 

To carry out this method of calculation, the scalars, vectors, and 

matrices that contain the perturbation parameters are expressed as what 

will be termed "perturbation arrays." For instance, if six perturbations 
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are desired, an eigenvalue will be expressed in terms of six constants, 

the coefficients of the series 

Similarly, eigenvectors will be expressed as an array of six vectors. It 

turns out that in the problems studied here, only two matrices are needed 

to form the perturbat ion array for K and M. The members of each array 

are marked by counters. In the example just given, the counters for the 

eigenvalues and eigenvectors will range from zero to fi ve, and for the 

matrices from zero to one. (In the case of multiple eigenvalues, the 

counters for the matr ices assume the values zero and two.) As will be 

shown, it is important to set all the unknown arrays equal to zero before 

the perturbation solution is started. 

Detailed flow diagrams are gi ven in the succeeding sections first 

for the case of separated eigenvalues and then for the repeated ones. 

4.2 Separate Roots 

The initial data necessary to run the program consist of the dynamic 

properties of each one of the separate structural systems that constitute 

the augmented system. That is, the stiffness and mass matrices 

corresponding to each system as well as their corresponding eigenvalues 

and eigenvectors. Thus, following the notation of Chapter 2, the 

starting values consist of K<O), K(1), M<O), M(l), <p~0), A,<O) 
'fin ' 

,,, (0 ) 
'fI 1 ' 

(0 ) 
... , 1jJn+m ' and • CD., A (0) and also 

n+m 
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x ~ 1 ) , 
G Q • , 

X ~ p) 0 
1 1 

i = 1, ••• , n+m 

where xCa ) t_!i:~_} 
1 wCa ) 

1 

and 

A ~ 1 ) , 10 0", 
A~P) 0 

1 1 
i =1, ••. , n+m 

where p is the desired order of expansion. 

The program assigns one counter to each of the terms involved in the 

expansion of Equation C2.9a) in the following way: 

assigned one counter, XC~) is assigned another counter and finally A(~) 

is assigned a third counter. 

Consider now how to evaluate a term in a product, say, AMX, that 

occurs in the solution. The sums of all possible counters for the three 

terms are found. Those for which the sum is a certain integer a, a E {1, 

... , p}, the order of perturbation being studied, are calculated and 

accumulated. The others, for which the sum of the counters is not equal 

to a, are not calculated. When all possibilities for the values of the 

counters have been exhausted, the contribution of the right-hand side for 

that product has been correctly calculated. 

One point remains to be clarified. What happens to the term 

containing the unknown scalar or vector being calculated in the ath 

perturbation (where the other counters would usually be zero)? These 

products when calculated for the right-hand side are all zero because the 

values in question have not yet been substituted into the corresponding 

perturbation array. The initialization of the arrays to zero guarantees 
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that terms that are on the left-hand side of the perturbation equations 

do not also occur on the right. It is easier to perform a few 

unnecessary computations than to complicate the program by omitting those 

that really belong on the left. Since the forms of the left sides of the 

perturbation equations never change, it is only the perturbation number u 

that indicates which order of perturbation is being calculated and, 

therefore, where in the arrays the answers should be substituted once 

found. After this process is finished, the next perturbation can be 

started. 

4.2.1 Old Modes 

The procedure for the automatic calculation of the perturbation 

coefficients is different according to whether the modes of vibration of 

the augmented system belong to the initial structure, in which case they 

are called "old tl modes, or to the added system, the "newll modes. This 

classification is the same as presented in Section 2.4 of Chapter 2 where 

the modes are separated into modes that are very close to the ones from 

the initial structure as opposed to those that are very close to the ones 

from the added system. The case of the "old" modes will be treated in 

this section. The flow diagram for the calculation of the right-hand 

side of the perturbation expansions represented by Equation (2.41) is 

presented in Figure 4.1. As the program advances progressively through 

every order of perturbation in the way explained above, every counter is 

varied from an initial value to a final value. An important point that 

must be mentioned is that the solution for each order of expansion must 

be accomplished in a staggered sequence. First one solves for ,,,(u-l) a 
'+'i ' 
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vector of order m, and then updating the current val ues, redo the 

calculation for the right-hand. side of Equation (2.41). This time the 

result are the values p~a.) 
1 

and Q ~a.) that correspond to the proper 
1 

right-hand side for Equation (2.41). More specifically, first the 

perturbation expansion of first order for the Equation (2.9a) is 

calculated. The result of this calculation is a vector of order n+m, 

whose lower portion (a vector of order m) is the right-hand side of 

Equation (2.19). Thus it is possible to solve Equation (2.19) for W~O). 
1 

The resul ting value can be stored in the corresponding member of the 

perturbation array for the eigenvector. Now, redo the calculation of 

the perturbation expansion of the first order for Equation (2.9a). 

Again, the result will be a vector of order n+m, however, this time its 

upper portion (a vector of order n) is selected and saved. Concurrently 

with the calculation performed for equation C2.9a) the expansion of 

Equation (2.24) for i=j, is also performed (see Figure 4.1). Now the 

above mentioned vector of order n that corresponds to the upper portion 

of the vector containing the exp ans ion for the right - hand side of 

Equation (2.9a) together with the result of the expansion of Equation 

(2.24) can be assembled into an n+1 vector that corresponds to the 

right hand side of Equation (2.41) for a perturbation of first order, 

i . e. , p ~ 1) an d Q ~ 1 ) • 
1 1 

Finally, this new equation is solved and thus the 

calculation for the first-order perturbation is completed. This same 

procedure is repeated for each order of perturbation up until the desired 

perturbation number is reached. 

It is important to mention at this point that the matrix of 

coefficients of Equation (2.41) is indefinite (i.e., not positive 
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defini te). Thus, the algor i thm to be employed for the solu ti on of the 

equations must be special in order to avoid problems of stability. The 

algorithm proposed by Bunch and Parlett [6J and used in this work 

emphasi zes the preservation of the symmetry of the matr ix of coeff ic'ients 

and it represents a stable solution to the problem. 

4.2.2 New Modes 

In the case of the new modes the procedure is slightly different. 

However, the solution is still attained in staggered calculations. The 

difference comes from the fact that there is an initial step that must 

take place before the general algorithm is initiated. 

The procedure for the calculation is performed as follows. The 

expansion of the perturbation equation for the first order is carried out 

and then the "top" part of the resulting vector is selected and saved. 

This is really the negative of the right-hand side of Equation (2.47), 

thus Equation (2.47) can be solved for ¢~1) and the result can be stored 
J 

in the corresponding perturbation array. Once this first step is done, a 

somewhat different algori thm is followed for the higher orders. It is 

now necessary to perform the expansion for a second order. This time the 

"bottom" part of the resulting vector is taken and used in conjunction 

wi th the expansion of the orthonormali ty condi tion to build up the 

right-hand side of Equation (2.58) for a=2. Then the solution for 

Equation (2.58) is found and the resulting values are stored in the 

corresponding perturbation arrays. The process can be summarized as 

follows: find w~a), A ~a) and then ¢~a+1), at this point proceed to a next 
J J J 

or der . Not ice that for the new modes, in contras t to the case of old 
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modes, the first-order perturbation yields only ¢~1) and then the second 
J 

an d hi gher or der perturbat ions are needed to find ¢ ~a), 1); ~a-1) and 
J J 

A ~a-1). Thus, the expansion must be carried to one order higher for the 
J 

new modes than for the old modes. Then the perturbation arrays will be 

complete to a certain predefined level for both the old and the new 

modes 0 This extra calculation does increase the number of calculations 

somewhat, but as explained above, it insures that .the expansion for all 

the modes can be carried out to the same predetermined order. 

4.3 Repeated Roots 

The necessary data to run the program is the same as required for 

the case of separate roots. In this case however, the augmentation mass 

and stiffness matrices are proportional to the parameter squared, not to 

the first power. That is, the notation expressed in Equations (3.29) and 

(3.30) is followed. 

The terms involved in the perturbation expansion are assigned one 

counter each. The equations involved this time are Equations (3.31). 

That is, for each one of the repeated modes, an expansion must be made, 

(a mode coming from ei ther the "primary" or "secondary" system). Thus, 

the same subroutine for the calculation of the right hand side of the 

perturbat ion expans ion presented for the case of separate roots can be 

used for the case of multiple roots. See Figure 4.1. The procedure used 

is the same, for each product of the terms, the sum of the counters for 

the terms is found and if the sum is equal to a, the corresponding 

product is taken into account. Inspection of Equations (3.32), (3.33) 

and (3.34) shows that sum of the counters can be performed in the same 



67 

way as for the separate roots. Also the term containing the unknown 

scalar or vector being calculated in the ath perturbation are again zero 

simply because they have not been substi tuted into the correspondi ng 

perturbation array. As it is seen, the mechanisms for the calculation of 

the right-hand side of Equation (3.55) for the ath perturbation are 

essentially the same as for the case of separate roots. The expressions 

in Equation (3.55) and (3.58) do not have to be programmed as such but 

are rather calculated internally in the machine, which simplifies the 

proposed perturbation approach. The calculation of the perturbation 

coefficients once the right-hand side is obtained is also performed in 

staggered fashion. 

The two step procedure consists of first solving Equation (3.55) for 

a and then solving Equation (3.58) for a+l to complete the calculation of 

the Lagrange multipliers B for each mode. Notice that the solution for 

the order of perturbation a must be obtained for each one of the modes in 

the subspace R before the solution for the next perturbation (a+l)th may 

be attempted. The values for w(a) are obtained form the s-~ remaining 

equations for the orthogonality condition. 

4.4 Some Numerical Examples 

The proposed method was tested by using it to solve the eigenvalue 

problem for four different structural systems. The first two are systems 

whose eigenvalues are all separated and the last two have close 

eigenvalues. 

The structural system considered in Example 1 is shown in Figure 

4.2. The primary system consists of a two-degree-of-freedom system to 
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which a single-degree-of-freedom secondary system is added. The dynamic 

characteristics of the system are given in the figure. The ini tial 

frequencies for the augmented system, i.e., when ~=O, are A
1
=1/2, A

2
=2, 

for the primary system and A3=1 for the secondary system. The values for 

all three eigenvalues were calculated using the proposed method for the 

interval 0.0~~~0.4 and using five different orders of perturbation (from 

first order to fifth order). The results for this calculation are 

presented in Tables 1 and 2 and are shown in Fi gures 4.3, 4.4 and 4.5. 

Figure 4.6 represents log-log plots of the errors in eigenvalues versus 

the parameter ~ for the results carried through the first perturbation. 

Figure 4.7 corresponds to the results through the fifth perturbation. 

The slope of the curves in Figure 4.6 is essentially 2.0; in Figure 4.7 

the slopes are 6.0. Th i s pro v ide s an i n t ere s tin g v e r i f i cat ion 0 f 

the correctness of the perturbation approach, since the major part of the 

error in the first perturbation is of the order of the second 

perturbation. Similarly the errors in the fifth perturbation are terms 

of the order ~6. 

Several comparisons are made to give some indication of the accuracy 

of the proposed method. One measure o~ error that will be shown to be 

convenient is what is here termed relative error. This is defined as 

% relative error 
A (11) - A (11) exact ~ approx ~ * 100 (4.2) 

where A(O) is the initial eigenvalue for the system and 

A (11) is the eigenvalue calculated using a standard exact ~ 

eigenvalue solver package (IMSL). 
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Figure 4.8 shows the relative error for all of the eigenvalues of the 

augmented structure in Example 1. It is worth noticing that the error is 

very small for values of up to 1-1==0.25 p less than 10%, when the 

perturbation approximation is carr ied out up to the fifth order. The 

improvement in the use of higher order perturbations is represented in 

Figure 4.9, where the relative errors for first and fifth order expansion 

are given for the lowest eigenvalue. It is evident from Figure 4.3 that 

the perturbations are growing beyond the third one for the value 1-1=0.4. 

The second example consists of a combined system formed by a 

four-degree-of-freedom primary system and a two-degree-of-freedom 

secondary system. Figure 4.10 shows the structural properties of the 

system under consideration. Figures 4.11 through 4.16 show the values 

for all six eigenvalues as calculated by the proposed method for the 

interval 0.0~1-I~0.4 and, again, using five different orders of 

perturbation (from first to fifth order). In each figure the proposed 

method is compared to the exact solution. Fi gures 4. 17 and 4. 18 show 

that the perturbation series used is appropriate, since the slopes in the 

graphs are 2 and 4 respectively. 

The reason for choosing the relative error as a measure of accuracy 

can be illustrated in Figure 4.11. Here the change in the eigenvalue is 

a small percentage of the eigenvalue even for a large value of 1-1. 

However, if the question is whether the perturbation process is accurate 

or not, it is the closeness of the calculated deviation from A(O) to the 

actual deviation that is of significance. In this case, the first 

perturbation is in fact going in the wrong direction for I-I~O. 05. Note 
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that since the denominator can be zero here, the curve in Figure 4.19 is 

not very meaningful for ~<0.1. 

This same example illustrates another interesting fact. It is well 

known (see Gantmacher [15J) that adding a single degree-of-freedom system 

to a spring-mass chain system will cause the old frequencies to shift 

outward from the new one. In the system of Figure 4.10, the augmentation 

is not simply the addi tion of a single degree of freedom system wi th a 

single point of attachment. 

spring-mass chain system. 

Thus the resulting system is not a 

It is found here that the shift in frequency actually changes sign as ~ 

increases. The theorem stated earlier in this paragraph really does 

require the limi tation on type of primary and secondary system. It is 

also interesting to point out that even though the structural system 

under consideration has very well separated frequencies, the use of a 

first-order perturbat ion may indeed gi ve erroneous answers. For higher 

frequencies, though, the first perturbation is all that seems to be 

needed (as seen in Figures 4.12 through 4.16). 

The last two examples treat the case of structur'al systems that 

start out with repeated eigenvalues. Example 3 represents a structural 

system similar to the one used in Example 1. The fr eq uency of the 

secondary system is tuned to one of the frequencies of the primary 

system. The properties of the resulting structural system are presented 

in Fig ur e 4. 2 1 . Tables 5 through 7 present the results of the 

calculation of the eigenvalues of the combined system using a third order 

perturbation expans ion. Figure 4.22 presents a comparison of the 

solution obtained using the proposed method wi th the solution obtained 
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using a standard eigenvalue solver (IMSL), and denoted as the exact 

solution. It may be noticed that the slope of the curves in Figure 4.23 

reflect the order of the error between the two results. 

For Example 3, the usefulness of higher order perturbations when the 

parameter is not very small can be illustrated by the following 

calcula tion. 
(1) (2) 

The values of A2 and A2 are 0.433014 and 0.20833. For 

~=0.2, the exact result for A2 is 0.739495. The results up to the first 

perturbation give a relative error for ~=0.2 of about 19%. When the 

second perturbation is taken into account as well, the relati ve error 

falls to less than 1 .8%. 

Example 4 considers a combined system consisting in a primary system 

and two secondary systems. Both secondary systems are added to the 

pr imary system in the way shown in Fi gure 4.24. The frequenc ies of 

vibration of both secondary systems are tuned to a particular frequency 

of the primary system. Tables 8 through 11 present the results of the 

calculation of the eigenvalues of the combined system using a third order 

perturbation expansion. Figure 4.25 presents a comparison of the 

solution obtained using the proposed method with the exact solution. 

Also, similar to the case in Example 3, the slope of the curves in Figure 

4.26 reflect the order of the error between the two results. 

When the values of ~ are so large that the perturbation process does 

not seem to converge, the results might most profitably be considered as 

an asymptotic representation. It is recommended that in this case the 

process terminate wi th the smallest change due to addition of the next 

perturbation, which will depend on the numerical value~. The error is 

usually less than the first term neglected [32J. 
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5. SUMMARY AND CONCLUSIONS 

5.1 Summary 

The subject of this study is the development of a set of methods for 

the calculation of the changes in the frequency of vibration and mode 

shape of a structure due to changes in the physical system. Such changes 

may consist of variations of the structural properties of a given system 

or even of the addition of new degrees of freedom. 

One family of iterative methods that has been used effectively for 

improvement of modes and frequencies is based on an application of the 

Newton-Raphson technique to the equations defining modes and 

frequencies. The method is applicable to cases wi th multiple or close 

frequencies as well as to cases where they are widely separated. 

However, in their original statements, these methods are not capable of 

handling additional degrees of freedom arising from changes in the 

structural system. The current work extends these techniques to the 

cases of added degrees of freedom and, moreover, allows for considerable 

reduction in computational effort even when there are no additional 

degrees of freedom. 

The original vibrating system is replaced by an augmented system, 

which may have more degrees of freedom than the original one. The 

augmentation is described by mass and stiffness matrices, and the 

original matrix expression of the system may have to be rewri tten with 

sui table rows and columns of zeros to make the two sets of matr ices 

conformable for addition. The augmentation mass and stiffness matrices 
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are taken proportional to a single parameter which can vary from just 

larger than zero to sizable positive values. A perturbation analysis is 

then performed on this augmented system. 

The iterative character of the basic method for improving 

frequencies and modes is modified so that each step now corresponds to a 

calculation of the next order of perturbation. This modifi cation 

eliminates the difficulty of dealing wi th very light addi tional masses 

and results in successive solutions of linear matrix equations all having 

the same coeff icient matr ix. Unlike in the original method, which 

requires a new tr iangular izat ion at each step, the expens i ve repeated 

triangularizations are not needed in the perturbation scheme. 

One important application of the perturbation method is to determine 

the modes and frequencies of a structure to which a light secondary 

system is added - say the piping in a power plant. In situations where a 

frequency of the added system is close to one or more frequencies of the 

original system, the so-called tuned case, the method is quite effective 

and general. 

The addi tional system may also correspond to a large value of the 

parameter multiplying the augmentation matrices. Here the difficulties 

in adding degrees of freedom and separating ini tially close frequencies 

are resolved by the perturbation technique, and the larger values of the 

parameter are handled by applying the scheme to reduce the number of 

steps in the original iterative methods. 

5.2 Conclusions 

The method presented in this study has been shown to give the 

eigenvalues and eigenvectors for a general combined system. The method 
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covers cases of simple as well as multiple roots. The secondary system, 

tuned or untuned, maybe attached to the primary system at several 

pOints. A considerable advantage of the method is that it can be applied 

to each eigenpair separately for the case of simple roots and to a small 

subspace in the case of close or multiple roots. It might be noted that 

although multiple roots do not occur in the primary system for most 

framed structures, they are clearly possible in slabs. 

The mechanization of the perturbation process explained in Section 

4.2 and 4.3 allows for the rapid and relatively. inexpensive calculation 

of the approximate solution to the eigenvalue problem to any desired 

order of perturbation. Carrying out more than a simple perturbation is 

needed to predict the behav ior at all accurately even for some systems 

with simple eigenvalues. As was seen in Section 4.4, it is important to 

be able to calculate more than just first order perturbations in order to 

find out how good the results really are. There seems to be no way to 

determine whether higher order perturbations are needed without 

calculating them. 

5.3 Recommendations for Further Study 

Several possible areas of further study to extend the proposed 

method may be suggested. The first is the extension of the mechanization 

of the perturbation process to all cases of repeated roots. 

Another topic that deserves treatment is the examination of the 

convergence of the perturbation process at least for some nonzero ~. 

Actually, some progress has been made on this question that will be 

reported elsewhere. 
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Also, for large values of ll, the method presented might be 

considered an alternative to substructure methods [41J. In this case the 

identification of the primary and secondary system may be arbitrary. A 

further exploration of this topic in the context of perturbation m~thods 

may be useful. 

A further possible area of improvement is the inclusion of several 

parameters in the formulation of the method. This would make possible 

the application of the proposed method to nonlinear systems approximated 

by bilinear ones. An important application of the use of several 

parameters is found in the optimization of design used in the aerospace 

industry. In fact, some partially successful attempts have been made in 

the past by authors using much less convenient perturbation techniques 

than the ones developed here [51J. 
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TABLES 
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Table 4.1 Comparison of Exact Solution to Approximate 
Solution for First and Fifth Order 
Expansions for Example 1 

EXACT 

0.500000 

0.484442 

0.470726 

0.458438 

0.447294 

0.437093 

0.427683 

0.418948 

0.410796 

% RELATIVE % RELATIVE 
ERROR FOR ERROR FOR 

1ST ORDER 5TH ORDER 1ST ORDER 
EXPANSION EXPANSION EXPANSION 

5TH ORDER 
EXPANSION 

0.500000 0.500000 

0.483333 0.484442 7.128017 0.002203 

0.466667 0.470707 13.866731 0.065801 

0.450000 0.458242 20.300810 0.470840 

0.433333 0.446302 26.488300 1.883423 

0.416667 0.433641 32.471025 5.487993 

0.400000 0.418209 38.280286 13.100732 

0.383333 0.396844 43.940226 27.271649 

0.366667 0.364963 49.469922 51.379273 

% Relative Error 
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Table 4.2 Logarithm of the Difference Between the Exact 
and the Calculated Eigenvalues for Example 1 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

1ST ORDER 
EXPANSION 

6.804336 

5.506734 

4.775067 . 

4.271 497 

3.890922 

3.586933 

3.335002 

3.120633 

5TH ORDER 
EXPANSION 

14.886267 

10.857354 

8.538964 

6.91510 

5.668708 

4.659200 

3.811985 

3.08276 



0.00 

0.05 

O. 10 

o. 15 

0.20 

0.25 

0.30 

0.35 

0.40 

79 

Table 4.3 Comparison of Exact Solution to Approximate 
Solution for First and Fifth Order 
Expansions for Example 2 

EXACT 

0.120615 

0.120581 

0.120346 

0.119952 

0.119430 

0.118806 

o. 118100 

0.117329 

0.116507 

1ST ORDER 5TH ORDER 
EXPANSION EXPANSION 

0.120615 0.120615 

0.120697 0.120581 

o. 120780 0.120346 

0.120862 0.119953 

0.120944 0.119437 

0.121027 0.118831 

0.121109 0.118173 

0.121192 0.117505 

0.121274 0.116884 

% RELATIVE % RELATIVE 
ERROR FOR ERROR FOR 
1ST ORDER 5TH ORDER 
EXPANSION EXPANSION 

342.075258 0.005736 

161.377258 0.044334 

137.300965 O. 195226 

127.824097 0.586640 

122.780526 1.403669 

119.664577 2.892037 

117.559395 5.362183 

116.049957 9.193259 

% Relative Error 
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Table 4.4 Logarithm of the Difference Between the Exact 
and the Calculated Eigenvalues for Example 2 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

1 ST ORDER 
EXPANSION 

9.057932 

7.743861 

7.001945 

6.492667 

6.109783 

5.806080 

5.556449 

5.345957 

5TH ORDER 
EXPANSION 

20.053899 

15.943605 

13.557718 

11 .876665 

10.581093 

9.528812 

8.644021 

7.881508 
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Table 4.5 Comparison of Exact Solution to Approximate Solution 
for Third Order Expansion for Example 3 

EXACT 

0.00 0.500000 

0.04 0.419571 

0.08 0.391891 

0.12 0.371999 

0.16 0.356141 

0.20 0.342840 

0.24 0.331338 

0.28 0.321183 

0.32 0.312081 

0.36 0.303830 

0.40 0.296281 

% Relati ve Error 

3RD ORDER 
EXPANSION 

0.500000 

0.419578 

0.391916 

0.372051 

0.356227-

0.342970 

0.331517 

0.321417 

0.312377 

0.304192 

0.296715 

% RELATI VE 
ERROR FOR 
3RD ORDER 
EXPANSION 

0.011 271 

0.027657 

0.047400 

0.069624 

0.093810 

0.119603 

0.146743 

o. 175026 

0.204289 

0.234399 

of Illinois 
Katz Reference EDom 

Bl06 NCEL 
208 N. Romine Street 

Urban.a. Illinois 61801 
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Table 4.6 Comparison of Exact Solution to Approximate Solution 
for Third Order Expansion for Example 3 

EXACT 

0.00 0.500000 

0.04 0.597912 

0.08 0.642212 

0.12 0.678693 

o. 16 0.711110 

0.20 0.740937 

0.24 0.768934 

0.28 0.795551 

0.32 0.821082 

0.36 0.845729 

0.40 0.869639 

% Relati ve Error 

3RD ORDER 
EXPANSION 

0.500000 

0.597921 

0.642250 

0.678782 

0.711272 

0.741196 

0.769315 

0.796082 

0.821789 

0.846641 

0.870784 

% RELATIVE 
ERROR FOR 
3RD ORDER 
EXPANSION 

0.012158 

0.031290 

0.055660 

0.084394 

0.116967 

0.153019 

0.192279 

0.234536 

0.279615 

0.327373 
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Table 4.7 Logarithm of the Difference Between the Exact 
and the Calculated Eigenvalues for Example 3 

THIRD ORDER EXPANSION 

0.04 11 .879731 11.564324 

0.08 10.610412 10.169843 

o . 12 9.870265 9.333078 

0.16 9.350005 8.731212 

0.20 8.950659 8.259938 

0.24 8.627806 7.872068 

0.28 8.357672 7.542177 

0.32 8.126048 7.254975 

0.36 7.923765 7.000539 

0.40 7.744565 6.772064 
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Table 4.8 Comparison of Exact Solution to Approximate Solution 
for Third Order Expansion for Al in Example 4 

EXACT 

0.00 1 .000000 

0.04 0.953234 

0.08 0.939907 

O. 12 0.930786 

0.16 0.923572 

0.20 0.917433 

0.24 0.911976 

0.28 0.906989 

0.32 0.902346 

0.36 0.897968 

0.40 0.893804 

% Relative Error 

3RD ORDER 
EXPANSION 

1.000000 

0.953405 

0.940472 

0.931871 

0.925239 

0.919694 

0.914809 

0.910350 

0.906174 

0.902193 

0.898346 

% RELATIVE 
ERROR FOR 
3RD ORDER 
EXPANSION 

0.496100 

1.179991 

1.906097 

2.597862 

3.215379 

3.739264 

4.162050 

4.483105 

4.705580 

4.834583 
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Table 4.9 Comparison of Exact Solution to Approximate Solution 
for Third Order Expansion for A2 in Example 4 

EXACT 

0.00 1 .000000 

0.04 1.011224 

0.08 1.023101 

0.12 1 .035932 

0.16 1 .049552 

0.20 1 .063827 

0.24 1 .078649 

0.28 1.093930 

0.32 1 .109597 

0.36 1.125592 

0.40 1 .141865 

% Relative Error 

3RD ORDER 
EXPANSION 

1 .000000 

1 .011067 

1 .022589 

1.034966 

1.048109 

1.061937 

1.076381 

1.091382 

1 . 106887 

1 • 1 22854 

1 • 1 39242 

% RELATIVE 
ERROR FOR 
3RD ORDER 
EXPANSION 

1.465051 

2.267886 

2.726921 

2.942715 

2.984927 

2.901761 

2.726815 

2.483715 

2.189223 

1.855318 
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Table 4.10 Comparison of Exact Solution for Approximate Solution 
for Third Order Expansion for A3 in Example 4 

EXACT 

0.00 1.000000 

0.04 1.073803 

0.08 1 . 111 246 

0.12 1 .143092 

0.16 1 . 171800 

0.20 1.198337 

0.24 1 .223204 

0.28 1 .246701 

0.32 1.269030 

0.36 1 .290332 

0.40 1 .310713 

% Relati ve Error 

3RD ORDER 
EXPANSION 

1.000000 

1 .074026 

1 . 11 21 05 

1. 1 44994 

1.175150 

1 .203534 

1.230641 

1.256767 

1.282104 

1.306785 

1.330911 

% RELATIVE 
ERROR FOR 
3RD ORDER 
EXPANSION 

0.371692 

0.878972 

1.468598 

2.117290 

2.812983 

3.548219 

4.317842 

5. 11 7962 

5.945436 

6.797560 
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Table 4.11 Logarithm of the Difference Between the Exact 
and the Calculated Eigenvalues for Example 4 

THIRD ORDER EXPANSION 

0.04 8.672675 8.758666· 8.404680 

0.08 7.479644 7.576127 7.060441 

0 .. 12 6.825559 ·6 .. 942160 6.264892 

0.16 6.396684 6.540728 5.698842 

0.20 6.092065 6.271052 5.259674 

0.24 5.866370 6.089005 4.901197 

0.28 5.695501 5.972596 4.598639 

0.32 5.565292 5.910943 4.337168 

o e 36 5.466870 5.900338 4.107205 

0.40 5.394481 5.943533 3.902203 
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//// '/// '///,r/// 7'?7.W 

Fig. 1.1 Local Modification to Structural System Produced 
by Elastic Connector Between Masses i and j 

J 
fL I 
i 

///1 r/// ////~//// 7.1/' '/// 

Fig. 1.2 Local Modification to Structural System Produced 
by Addition of Mass ~ at Level i 
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Fig. 2.1 Undamped n Degree-of-Freedom System 

Fig. 2.2 Augmented Structural System Consisting of a 
Four-Degree-of-Freedom Initial System and a 
Single-Degree-of-Freedom Added System 

4 
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Xn+1 

\ (O) 
I\n+1 :: 

Fig. 2.3 Fixed-Base Model of Single-Degree-of-Freedom 
Added System 

A 

".. ,., -- - - - ..., 

A7 A2 • An+1 A~ A~ 

Fig. 2.4 Schematic Representation of the Variation 
of the Eigenvalues 

.. ... 
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Fig. 2.5 Augmented Structural System Consisting of a 
Four-Degree-of-Freedom Initial System and a 
Two-Degree-of-Freedom Added System 

Fig. 2.6 Fixed-Based Model of Two-Degree-of-Freedom 
Added System 
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M 

Fig. 3.1 Four-Degree-of-Freedom Tuned Structural System 

Fig. 3.2 Schematic Representation of Frames of 
Reference Xi and Yj 



P = Order of Expansion 

JORDER = Order of Expansion 
for Matrices K and M 
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Fig. 4.1 Flow Diagram for the Calculation of the 
Right-Hand-Side of the Perturbation Equation 
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MI::: 2 

K 
Secondary Subsystem 

////// '////// 

Primary Subsystem 

Combined Structural System 

Fig. 4.2 Combined Structural System for Example 1 
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ERROR IN APPROXIMATION 
Comparison of exact vs. 1 st order pert. 
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Fig. 4.6 Comparison of the Error in Approximation 
for the Exact Solution and the First Order 
Perturbation 
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RELATIVE ERROR FOR DIFFERENT LAMBDAS 
(For 5th order perturbation.) 
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M3= I 

M2= I 

MI = I 

////// ////// 

Primary Subsystem Secondo ry Subsystems 

Combined Structural System 

Fig. 4.10 Combined Structural System for Example 2 
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Fig. 4.21 Combined Structural System for Example 3 



:J 
L 

a: 
W 
t­
W 
L 
a: 
cr: 
([ 
0.. 

1 .. 00 

.. 75 

.. SO 

.. 25 

o 
.. 3 

115 

,,5 .. 7 .. 9 
EIGENVRLUE LAMBDR 

Fig. 4.22 Variation of Al and A2 for 
Third Order Perturbation 

------ Approximate 

1 .. 1 



E 
R 
R 
Cl 
'R 

I 
N 

L 
A 
M" 
B 
0 
A 

116 

10-2 

10-4 

10-6 

10-8 

10-3 10-2 10-1 

PRRRMETER MU 

Fig. 4.23 Comparison of the Error in Approximation 
Between the Exact and the Third Order 
Perturbation for A1 and A2 

100 



117 

M3= I 
K 

M2= I 

K 
M I = I 

K 

ml=1 

J5 = 0.5 0 k2=0!L 

'7771777 ///, /// 

Primary Subsystem Secondary Subsystems 

Combined Structural System 

Fig. 4.24 Combined Structural System for Example 4 
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