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ABSTRACT

The subject of this study is the development of a set of methods for
the calculation of the changes in the frequency of vibration and ‘mode
shape of a structure due to chanées in phe physical system. éuch changes
may consist of variations of the structural properties of a giveﬁ system
or even of the addition of new degrees of freedom.

One family of iterative methods that has been used effectively for
improvement of modes and frequencies is based on an application of the
Newton-Raphson technique to the equations defining modes and
frequencies. The method is applicable to cases with multiple or close
frequencies as well as to cases where they are widely separated.
However, in their original stateménts, these methods are not capable of
handling additional degrees of freedom arising from changes in the
structural system. The current work extends these techniques to the
cases of added degrees of freedom vand, moreover, allows for consider-
able reduction in computational effort even when there are no additional
degrees of freedom.

The original vibrating system is replaced by an augmented system,
which may have more degrees of freedom than the original one. The
augmentation is described by mass and stiffness matrices, and the
original matrix expression of the system may have to be rewritten with
suitable rows and columns of zeros to make the two sets of matrices
conformable for addition. The augmentation mass and stiffness matrices

are taken proportional to a single parameter which can vary from Jjust
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larger than zero to sizable positive values. A perturbation analysis is
then performed on this augmented system.

The iterative character of the basic method for Iimproving
frequencies and modes is modified so that each step now corresponds to a
calculation of the next order of perturbation. This ﬁodification
eliminates the difficulty of dealing with very light additionai masses
and results in successive solutions of linear matrix equations all having
the same coefficient matrix. Unlike in the original method, which
requires a new triangularization at each step, the expensive repeated
triangularizations are not needed in the perturbation scheme.

One important application of the perturbation method is to determine
the modes and frequencies of a structure to which a light secondary
system is added - say the piping in a power plant. In situations where a
frequency of the added system is close to one or more frequencies of the
original system, the so-called tuned case, the method is quite effective
and general.

The additional system may alsc correspond to a large value of the
parameter multiplying the augmentation matrices. Here the difficulties
in adding degrees of freedom and separating initially close frequencies
are resolved by the perturbation technique, and the larger values of the
parameter are handled by applying the scheme to reduce the number of

steps in the original iterative methods.
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1. INTRODUCTION

1.1 General Remarks

In structural engineering it is often desirable to be able to
predict the consequences of modifying a structural system. Since‘dynamic
analysis under earthquake, blast and wind loads often requires knowledge
of the modes and frequencies of the structure, it is important to know
how these dynamic properties of the structure are affected by
modifications in the system. Such modifications may be the result of the
inevitable difference between the analytical model and the system as
actually constructed. Non-structural components may also contribute to
- such deviation from the analytical predictions of behavior.

Overall, the modifications that can be introduced to a given
structural system may be viewed as consisting basically of two types. In
the first instance, the modifications consist of simple variations in the
magnitudes of the parameters of the system. In order to visualize this
case, imagine that the structural system is discrete. The shear beam
model of a rigid frame would represent a typical discrete system. If the
masses 1 and J in Figure 1.1 are connected by an additional elastic
connection then this will induce what may be called a local modification
in the system. This could be the case of a frame with very rigid girders
where some sort of connection with elastic properties is installed
between two floors. Another possibility is that of rigidly attaching a
new mass to the system. This could consist of a piece of equipment

installed in the frame mentioned above. Thus the effect in the model is
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that of an increase u in the jth mass, as 1t is shown in Figure 1.2.
This type of modifications may even be introduced in a system with the
express purpose of changing the frequencies of the original unmodified
structural system to avoid a resonance with an applied load.

The second kind of modification includes the attachment of
spring-mass combinations to the structural system. This means ﬁhat new
coordinates are needed to describe the motion of these added masses.
Furthermore, any of the added masses may have more than one point of
attachment. Typical examples»of this kind of modification are, the
addition of piping systems into buildings as is the case in the coolant
circulation systems of nuclear power plants, the sprinkler systems in
vital buildings, ventilation systems, flexibly mounted engines, etc.

The prediction of the response of modified structural systems to the
dynamic loadings mentioned above has attracted much attention in recent
years. For the case when the modification consists of the addition of
light attachments to the initial structural system, the problem has been
approached as one of primary - secondary system. Under most
circumstances, the response of the additional subsystem, if it is light,
can be estimated accurately by imagining that the original system is not
affected by the modification, or, in other words, that the old system and
its new addition are decoupled. There are cases, however, referred to as
tuned systems, where attempt of such decoupling leads to considerable
errors. In these cases, the analysis is not as simple as in the detuned
case.

The method proposed in this study permits accurate calculation of

the modes and frequencies of a modified system even in the tuned case.
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The method is also applicable to fairly heavy subsystems or to

significant modifications of the original structure.

1.2 Object and Scope

The object of this study 1is the development of a set of
computationally effective methods for the calculation of the changes in
the frequencies of vibration and mode shapes of a structure due to
changes in the physical system. Such changes may consist of variations
of the structural properties of a given system or of the addition of new
degrees of freedom.

In this work, only undamped linear éystems are considered. Even for
small damping, the consideration of damping in the combined structural
systems can lead to non-classical modes.

As pointed out in Section 1.3, there are existing methods for
finding and combining modal responses, for separated and close
frequencies. The analysis in Chapters 2 and 3 and numerical results in
Chapter 4 do not treat dynamic response problems, but concentrate on the
problem of determining modes and frequencies.

Additional systems can consist of any configuration of additional
masses and elastic elements attached to the main structure in any way.
The magnitude of the elastic additions are characterized by a simple
parameter. Extremely light additional systems corresponds to very small
values of the parameter and heavier ones to larger values of the
parameter,

From a mathematical standpoint, the problem is one of determining

the eigenvalues and eigenvectors of a perturbed system of the form



KX =)2xMX

where the modification can even involve new rows and columns of K and M.

1.3 Background

The problem of>analyzing the dynamic response of modified structural
systems has received considerable attention from researchers in several
areas of the engineering profession. A brief review of some of the
available literature is presented in this section.

The study of published work related to the topic of this
investigation may be divided into two categories. The first one may be
called the engineering approach and the second one the mathematical
approach. The intention of the present study is to attempt to bridge
this two approaches in order. to solve the proposed problem.

In the engineering community the solution of modified structural
systems has been addressed in many instances as the study of the dynamic
behavior of the so-called primary-secondary systems. Several methods of
solution have been proposed for these systems. They all pertain to the
intended application: the response to blast and earthquake loads.
Accordingly, the proposed solutions of the problem have been tailored to
fit to the currently used approach in the respective field. That is, the
solutions are based on the availability of the usual parameters for
dynamic loadings: a description of the ground motion either as a time
history of the displacements and accelerations, a ground response
spectrum, or a shock response spectrum, together with some knowledge
of the fixed base modal properties of the primary and secondary

structures.
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It is possible to categorize the different approaches to the
dynamic response of primary-secondary systems in several ways. One of
them would be to look at the methods employed for the solution of the
combined system. Here, the approaches range from closed form solutions
for the dynamic behévior of the combined system (usually by transforming
to the frequency domain) to perturbation analyses‘of the resulting
eigenvalue problem. Another is by the modeling of the combined system as
either a continuous primary system with a discrete secondary system
attached to it, or as a discrete combined system with all the different
possibilities that it yields: SDOF-SDOF, MDOF-SDOF, MDOF-MDOF, and
including either c¢lassical or nonclassical damping as well as the
possibility of tuning.

One of the first solutions bf the problem was to assume that the
secondary system could be uncoupled from the pbimary system. In that
sense, if the dynamic response of a primary-secondary system due to an
earthquake was needed then the ground motion was used to find the
response of the primary structure. Following that, the response of the
secondary system was calculated based on the computation of its fesponse
to the motion of the floor to which it was attached. This gave rise to
the floor response spectrum method. Several authors have done
considerable work in this approach, among them Singh [58,59,60], Singh
and Sharma [61], Singh and Wen [62], Gupta [19,20], Gupta and Tembulkar
[21], Hadjian [23] and others {1,9,16,42,48]. The intention of this
approach is to predict the response of the secondary system to a ground
motion. This is done by predicting a floor response spectra for the

secondary system or by estimating the maximum displacement and



acceleration of such a secondary system. To estimate the response of. the
secondary system an ampiification faotof is applied to the ground
response spectra. The amplificatibn factor is intended to take care of
the response of the secondary system, The principal approximatién in
this group is the uncoupling of the two systems, primary and secondary.

The method has a limited range of applicability because uncoupling
is only feasible when the ratio of the masses of the secondary system to
the pfimary system is very small compared to unity. Another limitation
is that uncoupling may only be used when the natural frequencies of both
the primary and the secondary system are well separated and therefore the
problem of close modes is avoided.

An improvement was provided by Ruzicka and Robinson [52] and Sackman
and Kelly [54,55,56] when they included the possibility of interaction
between primary and secondary systems. They showed that the ‘interaction
is critical when there is tuning between a frequency of the primary
system and a frequency of the secondary system, even for the casesvwhere
their corresponding mass ratio is very small compared to unity. Sackman
and Kelly and Kelly and Sackman [34] modeled the primary system as a
continuous shear beam and the secondary system as a SDOF system connected
to it at one point. They then provided a closed form solution to the
problem. Their proposed method of solution is correct in every sense,
however, it is a very limited result due to the constraints inherent to
the model. For example, for tuning of very high modes, the mass of the
secondary system has to be increasingly lighter in order to obtain a
reasonable solution. Also it only considers one point of connection

between the primary system and the secondary system. Other authors have
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proposed closed form solutions to the problem of dynamic behavior of
combined systems. The systems considered consist of beams or plates with
spring-mass systems attached at discrete points. Dowell [12] studied the
frequencies of a combined beam spring-mass system by using Lagrange's
equations and by including the spring-mass system with the aid of a
Lagrange multiplier. Later, Nicholson and Bergman [43] attacked fhe same
problem by using separation of variables to obtain the frequencies and
natural modes of the combined system in terms of the Green's functions
for the vibrating beam or plate. Neither work gives a thorough
consideration to the problem of tuning.

As mentioned above, the solution to the proposed problem has also
been attempted by the use of perturbation methods. DerKiureghian et
al. [10] and later Sackman et al. [51] used a perturbation approach to
determine the dynamic properties of a MDOF-SDOF combined system.
However, the SDOF secondary system considered has only one point of
attachment to the primary system. In essence, they developed a mode
superposition procedure for the response of very light equipment
including the effect of closely spaced modes. They obtained the
equipment response directly in terms of the dynamic properties of the
primary structure, the dynamic properties of the secondary structure, and
the design response spectrum for the primary structure (termed the ground
response spectrum). The method of analysis employed consists essentially
of a first order perturbation analysis of the combined system. A
correcting scheme for the modes that are somewhat near the equipment
frequency 1is then applied. However, no criteria are given to determine

the closeness of the modes for which the correction is necessary. The
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correction consists in the orthogonalization of the close mode with
respect to the rest of the modes. This requires the knowledge of all the
other modes. Later, Igusa and DerKiureghian [27,28] continued and
expanded the scope of the work previously described. They considered the
more general case of a MDOF-MDOF combined system where the secondary
system may be multiply supported. The limitation of a very small added
system helped them simplify the approach by allowing them to neglect the
corresponding terms on the diagonal of the resulting stiffness matrix for
the combined system. For tuned cases they used a frequency domain
analysis of the approximate equations of motion for the combined system.
Then, they applied a first order perturbation analysis to the determinant
of the resulting complex frequency response matrix.

Other studies have been founded on a similar approach. Hernried and
Sackman [25] and Ingham and Sackman [29] employed a first order
perturbation analysis applied directly to the eigenproblem resulting from
the equations of motion of the combined system.

Use of the perturbation methods for the solution of the eigenvalue
problem is also found in the applied mathematics literature. Most of the
effort has been dedicated to the solution of the standard form of the
eigenvalue problem. See for example, Wilkinson [70, pp. 62-109]. Very
little appears to have been written about the so-called generalized form
of the eigenvalue problem, Ax=ABx. This is probably due to the fact
that, for most applications, such generalized form may be converted to an
equivalent standard form, Cy=Ay. However, this conversion requires that
at least one of the matrices 1in the problem be positive definite.

Several authors, [13,17,18] have treated the generalized eigenvalue
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problems but have not taken on the case of semidefinite operators at
u=0, As will be seen later, in this study both stiffness and mass
matrices of the combined system are positive definite for all values
of u, but are semidefinite for u’=O. .Therefore, the transf‘ormation to the
standard form is far from convenient, if it is, in fact, possible. Only
a few references have been found that treat the generalized eigenvalue
problem under these conditions. Among them, Fix and Heiberger [14]
propose an algorithm for the calculation of a subset of the set of all
eigenvalues on a generalized eigenvalue problem. Those eigenvalues
correspond only to what will later be called the "old" modes. They do
not study the "new" modes, because their interest is in examining the
stability of the "old" modes. Stewart [61] presented a first order
theory for the perturbation of generalized eigenvalue problem. It is
based on the Rayleigh quotient and it essentially deals with the
treatment of separate eigenvalues. The problem of predicting the
behavior of close eigenvalues and its corresponding eigenvectors is not

treated.

1.4 OQutline of Method of Analysis

The method proposed, which has its origin in previous work by
Robinson and Harris [49] and Lee and Robinson [36], aims at the
investigation of a single mode or a set of modes with close frequencies.
The effects of changes of parameters of the system on modes and
frequencies were studied for separate frequencies in [49] and for close

or equal frequencies in [36]. The approach was one of successive
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approximations and did not contemplate the addition of degrees of
freedom.

The present method involves two major modifications of the
approaches of [49] and [36]. First, modifications of the structure that
lead to additional degrees of freedom are considered. Secondly, the
method is cast in the form of a perturbation calculation rather than one
of successive approximations.

Since the added mass and the elastic connection with the primary
structure usually correspond to additional terms in the mass and
stiffness matrices that are very small in comparison to the original
entries, a perturbation procedure is a natural approach. Both the added
mass and stiffness are taken proportional to a single parameter u, unlike
the parametrization in Reference [55] where a constant spring stiffness
is used.

One advantage of the present method lies in the fact that, for
separate frequencies, a single mode may be considered without knowledge
of the other modes. For close frequencies, all modes in the cluster must

be considered at the same time, but no other modes need be known.

1.5 Notation

The symbols used in this study are defined in the text when they
first appear. For convenient reference, the more important symbols are
summarized here in alphabetical order. Some symbols are assigned more
than one meaning; however, in the context Vof their use there are no

ambiguities.



11
A,B = general linearized operators, may be matrices, differential or
integral operators
X. = ith eigenvector
A. = ith eigenvalue of the initial system
§ = increment operator
R = residual quantity
K(u) = stiffness matrix for the augmented system
M(u) = mass matrix for the augmented system
K = stiffness matrix for the initial system (bordered)
M = mass matrix for the initial system (bordered)
K(1> = augmentation stiffness matrix
M = augmentation mass matrix
u = perturbation parameter
Ai(u) = ith eigenvalue of the augmented system
A. = ith eigenvalue of the initial system

= ath coefficient of the expansion series for the ith eigenvalue

of the augmented system

KO = stiffness matrix for the initial system
MO = mass matrix for the initial system
Xi(u) = ith eigenvector of the augmented system
Xia) = agth coefficient of the expansion series for the ith eigenvector
¢§O) = is the eigenvector of order n corresponding to the ith
eigenvalue of the initial system,
¢§k) =for k =1, 2,... 1s a vector of order n
wik) = is a vector of order m

S = number of close or multiple eigenvalues
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is a basis veotdr spanning the space R*
transformation coefficient
space spanned by the s close or multiple eigenvactors
corresponding to the pair (K,M)
s-dimensional space nearly orthogonal to the subspace
complementary to subspace R
Lagrange multiplier
column corresponding to matrix of the B Lagrange multipliers

[Y1 Y2 oo Ys] matrix containing the s Yi vectors
(k)

= incremental value for b,

J
(k)

incremental value for Yj
diagonal matrix containing the s dose or multiple eigenvalues
for the pair (K,M)
: 1/2
perturbation parameter equal to u
Kronecker delta

number of close or multiple eigenvalues coming from the

initial system
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2. DETUNED SYSTEMS

2.1 Introduction

In the previous chapter it was explained that the aim of ;his work
is the presentation of a set of methods for the calculation of the
modified and new eigenpairs that arise from the consideration of
structural modifications to an initial system. The purpose of ¢this
chapter is to explain the proposed method in the simplest case of
structural modification to a given system, the addition of a single-
degree—-of-freedom subsystem to a multiple-degree-of-freedom system. It is
assumed in this chapter the eigenvalues of the resulting system are
widely separated. The means ofv verifying that this 1is the case are
explained in Section 2.4, In other words, the‘initial system does not
have any clusters of eigenvalues and, furthermore, no clusters arise when

the system is augmented. Such a system is said to be detuned.

2.2 The Robinson-Harris Method

The study of the detuned systems presented in this work is based
partially on a generalization of the method proposed by Robinson and
Harris in Reference [49]. Before proceeding with the analysis, a brief
summary of the method is presented.

The Robinson-Harris Method consists of a procedure to Iimprove
approximations to eigenvalues and eigenvectors of a given system by an

application of Newton's Method to the eigenvalue problem equations. The
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method improves an eigenvalue and its corresponding eigenvector at the

same time.

Essentially the method takes the generalized eigenvalue problem
AX = ABX (2.1)

which, in the present context, may be interpreted as taking A and B to be
given operators that are in general dependent on the eigenvalue Ai but
not on the eigenvector Xi' Then an approximate solution to Equation

(2.1) will yield:

- (3) _ 503)
(Axi xiniJ =R ; (2.2)

where the superscript J indicates the jth approximatioh and R 1is a
residual. Equation (2.1) is then expanded about the approximate solution
represented by the jth iteration,

This yields,

(J)

B 3y _ (_ -
[AAXi AiBAXi) = ( DX, + AABX, + A ABX, R) (2.3)
or
- 3) _ _ 9A
[AAXi AiBAXi) - Aki( 5o Xt BX
9B 3y _ @)
R xi] R (2.4)

The unknowns in Equation (2.4) are AX; are AX;. Notice now that in

order to solve Equation (2.4) uniquely, an extra condition is needed
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since there are n + 1 unknowns and only n equations. The extra condition

specified is
T
XiBAXi = 0 ‘ (2.5)

This side condition allows a unique solution . for AXi and AAi by
eliminating the possibility of large changes in the eigenvector 1if the
eigenvalue and approximate eigenvector are nearly correct. That is, any
change of magnitude in the direction of the eigenvector is eliminated.
An alternative statement of the condition is that XTBX is kept constant
up to terms of first order.

Equations (2.4) and (2.5) together now form a system of n + 1

equations and n + 1 unknowns. That is

(2.6)

Provided that the matrix of coefficients is nonsingular, Equation
(2.6) represents an iterative method that converges more rapidly than a
second order process. See References [49] and [371].

A similar approach can now be used to perform a study of the dynamic
properties of modified structural systems. However, there are two major
differences in the approach. First, the method will not be used as a
fixed-point iteration as Robinson and Harris suggest but rather as an
extrapolation method to trace the variation of the eigenvalues and their
corresponding eigenvectors. As mentioned above, this variation will be

effected by a modification to the structural system. A second, and
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perhaps more far~reaching modification, permits consideration of new
degrees of freedom added to the system. That 1s, the Robinson-Harris
method will be modified in order to handle an increase in the order of
the operators. This increase then.translates into an increase ih the
rank of both the stiffness and mass matrices for the case of a discrete

model of a structure;

2.3 Statement of the Problem

When dealing with new degrees of freedom, it is necessary to define
clearly an initial system and an augmented system.

Consider the free vibration of an undamped n-degree-of-freedom
system like the one shown in Figure 2.1. The associated eigenvalue

problem can be stated as

(K - xiM)¢i =0 i=1,...,n (2.7)

where K is the stiffness matrix of the system,
M is the mass matrix of the system,
A. is the ith eigenvalue and

¢, is the corresponding ith eigenvector.

A mass m* is now connected elastically to this structural system at
several points. For example, in Figure 2.2, a system is shown with the
additional mass m* attached to masses 2 and 3.

The question then becomes how to predict the solution to the new
eigenvalue problem that arises when considering the augmented system.

Naturally, one way of doing it is to simply solve the new eigenproblem by



17

the usual methods. This entails two difficulties. First of all, in
large systems, it can be costly to recalculate everything if any slight
changes are made in the new structure. That is, the added mass might be
placed at different locations 1in- the original structure duriné the
process of design and the eigenproblem would have to be solved several
times, one for each change in the configuration. Furthermore, 1if the
magnitudes of the added mass and spring stiffnesses are small compared to
those of the original structure, then accuracy problems can be present
when the usual methods of solution are used. That 1is, there will be
extremely small terms in the diagonal of both the mass and stiffness
matrices of the system. For a complete'reference on these methods, see
Reference [70, pp. 62-109].

To go from the stiffness and mass matrices of the initial system to
the augmented ones, the original matrices must bé bordered with rows and
columns of zeros. So-called augmentation stiffness and mass matrices are
then added to the corresponding bordered matrices, These augmentation
matrices contain all the information related to the interaction between
the new degrees and the oriéinal components of the system. The case in
which the additional springs are present but there is no added mass is a
simple special case. Likewise, another special case arises when the
modification consists of a mere addition of mass to an existing mass in
the system.

The range of cases that can be treated is wide since no particular
characteristics of the initial system are required. However, a fairly
accurate solution of the eigenvalue problem of the initial system is

expected to be available. Indeed, this solution actually constitutes the
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zero-order approximation to the eigensolution of the augmented system, as
will be explained in Section 2.4.
In order to examine the problem from a perturbation standpoint,
augmentation matrices are taken proportional to a single positive
parameter u. For the case considered in this chapter, this parametric

form can be introduced by setting

k = pk (2.8a)

and

m = um ‘ (2.8Db)

where the k and m are of the same order of magnitude as the spring
stiffnesses and masses of the original system.
The eigenvalue problem for the new augmented system can be expressed

as follows:

(K(w) - Ai(u)M(u)]Xi(u) =0 i=1,...,n+1 (2.9a)
where K(u) is the stiffness matrix for the augmented system,

k() = k9 4 k) (2.90)

(0)

K is the bordered stiffness matrix of order n + 1,

O |l (2.9¢)

K(1) is the augmentation stiffness matrix of order n + 1,
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7O ARNR (SN SN JUN - | (2.94)

M(u) is the mass matrix for the augmented system,

(0) (1)

M(u) = M + uM (2.9e)
M(o) is the bordered mass matrix of order n + 1,
o IV
R ] B (2.9f)
0 0]
M(1) is the augmentation mass matrix of order n + 1,

M S SR O S~ (2.9g)

Ai(u) is the new ith eigenvalue,
Xi(u) is the corresponding new ith eigenvector of order n + 1, and

i is the proportionality parameter.

Notice that if the parameter yu is taken equal to zero, then the
structure dces not become an n-degree-of-freedom system, but rather one

in which Xn is indeterminate., However, for the purpose of this study,

+1
u will not be taken equal to zero. Instead, the limiting case when yu
approaches zero through positive values will be studied. In fact, in

practice, the most interesting case occurs when p is small. From the
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point of view of the applications, the smaller y is, the more likely it
is that the additional mass and springs will not be taken into
consideration in the preliminary stages of design. Therefore, a method
to estimate their effect in the structure is especially useful. It 1is
important to notice also that as py goes to zero, both the stiffness and
the mass matrices for the augmented system become ili—conditioned. That
is, their determinant becomes very small, almost zero. It is easy to see
then why the common methods employed for the solution of the eigenvalue
problem for a structural system fail. However, a perturbation analysis

can be performed on the new system to eliminate this difficulty.

2.4 Perturbation Scheme. 0ld Modes.

After a mass is added, therekare n + 1 degrees of freedom instead of
n. It turns out that under certain restrictions, n of these have
eigensolutions close to the original ones for small u, and one of them is
closely related to the characteristics of just the augmentation in
stiffness and mass, see Reference [10]. This process 1is conceptually
illustrated in Figure 2.4, The "old" modes, those close to the
eigensolution of the original system, are considered in this section.

For convenience, the eigenvalues and corresponding eigenvectors are
numbered so that the first n eigenvalues in the augmented system
correspond to the eigenvalues of the initial system and then the (n +
1)th. eigenvalue corresponds to the eigenvalue of the added system when
considered separately. This section deals with the behavior of the modes
of the initial structure. The study of the behavior of the new mode will

be presented in the following section.
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In the case of a detuned system, the eigenvalues are simple roots of
an algebraic equation, that is, the roots of the characteristic equation.
For this reason, it is possible to state that the eigenvalues are
single-valued analytic functions of yu in the neighborhood of y = 0. The
same 1is therefore true of the cOmponentS Xij of the varied eiggnvectors
belonging to the eigenvalues Ai. See Referencé [81]. Thus, it 1is
possible to use the Taylor series expansion about zero in order to
express the eigenvalues of the augmented system. That is,

(0) , (1), (@) 2

i i i + e i=1,...n (2.10)

Ai(u) = A

(0)

where Ai is the ith original eigenvalue of the initial system and
(k)

Ai for k = 1,2,... are the kth coefficients of the expansion

series for the ith eigenvalue.

Up to now, there has not been anything beyond the use of the
perturbation method as explained in standard texts. The difference
arises when 1t becomes necessary to treat the eigenvectors of the
augmented system. Notice that these eigenvectors must now be of order
n+ 1, That is, they have to accounﬁ for the displacement component
corresponding to the new degree of freedom that has been added.

Note that the totality of eigenvectors of a given system is nothing
other than a set of coordinates, a very particular one indeed, that must
completely describe the motion of the system. Hence, for the augmented
system, the eigenvectors must be of order n + 1 so that they define the
location of every mass. In the literature, perturbations applied to a

vibrating system never involve an Iincrement in the number of degrees of



22
freedom of the system in question, Reference [70] contains a good

summary on perturbation methods for the eigenvalue problem.

In the present case, the mere assumpticn that the constant term in
the series expansion for the eigenvector corresponds to the initial
zero-order solution, that is, when there is no perturbation, is obviously
not enough. In viéw of this fact, the use of the fbllowiné series

expansion has been considered:

(0) (1) (2) 2 ‘
Xi(u) = Xi + Xi + Xi VR ‘ (2.11)
¢(k)
where Xik) = -%ES is the kth coefficient of the expansion series for

i
the ith eigenvector,

¢§O) i3 the eigenvector of order n corresponding to the ith

eigenvalue of the initial system,

¢§k) for kK = 1, 2,... is an unknown vector of order n, and

e

1

is an unknown vector of order 1.

(0)

The physical interpretation of the vector wi will emerge from the
analysis. At this point, Equations (2.10) and (2.11) can be substituted
into the equation of the eigenvalue problem, Equation (2.9a),

[K(o)+uK(1)][X§O)+X;1)p+X§2)u2+...] = [AEO)+A§1)u+x§2)u2+...]

O O (D @ (2.12)

The indicated multipiications yield
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(1 (0) _(0),(0), (1)
1 1 1

+

FO)] . [K(O)XF1)
i i

-0y o) AFQ)M(O)X§O)]H » k(O (2D g (1 (D)
1 1 1 1 1 1

. AFO)M(O)X§2) B AFO)M(1)XF1) _ AQ)M(O)X.(T)
1 1 1 1 1 1

-y g0 ng)M(o)Xgo)]uz +...=0 - (2.13)
1 1 1 1

Equations (2.13) represent the complete expansion about u = 0 of the

eigenvalue problem. Because these equations must be satisfied for all

(k) (k)

values of u and, moreover, the quantities Ai and the vectors Xi are

independent of yu, the coefficient of each power of u must be equal to

zero. Thus,

the perturbation equations are,

[k(0) - AiO)M(O)]X£O) -0 (2.14a)
[K(O) _ AFO)M(O)]X§1) . [K(1) _ AFO)M(1)]XFO)
i i i i
-0y 0y (2.14b)
i i
[K(o) _ AFO)M(O)]X§2) . [K(1) _ Ago)M(1)}X§1) _ A§1>M(o)xg1>
i i i i i i
_ AF1)M(1)XFO) _ A{2)M(O)X§O) -0 (2.14¢)
i i i i
This set of equations is now solved recursively. In the present
case, a certain inconvenience seems to arise from the fact that XEO) is

not known entirely. That is, the vector vy

(0)

i must be solved for.
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If the systeﬁ of Equations (2.14) is examined more closely, i; can
be seen that each one of these equations can be partitioned into two
groups, one of order n and the other of order one. Thus, the first of

Equations (2.14) gives,

K 0 () M 0 N
''''''''' - Ai Sl Bl YT (2.15)
0 0 0 0 wi ‘ 0
Equation (2.15) degenerates to two sets of equations
[k - }\i(O)M]¢i(O) =0 (2.16a)
and
0o - v - (2.16b)

It is seen here that the Equation (2.16a) is simply the statement of
the eigenvalue problem for the initial system. Thus, the equation turns
into an identity for each one of the old modes. Equation (2.16b)
provides no information about w;o), which appears still to be arbitrary.

The results from Equation (2.16a) are consistent with the assumption
made that the eigenvalues A§O> of the 1initial system represent the
zero-order approximation to the solution of the problem.

The second of Equations (2.14) is now subjected to the same

partitioning procedure, yielding
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(1) (1) (1)

JR O K ST R DU S N B2 I B A2
(1) (1) i (1) (1) (0)
K21 K22 M21 M22 i
o M 0 ¢£0) 0
R e e I e o S (2.17)
0 0 v 0 ‘

Equation (2.17) can also be separated into two sets of equations,

(0) (1) (1) (0),,(1)7.(0)
[k =g Moy 0w [y T = Ay ey
(1) (0),, (1)7 (0) (1),,,(0)
+ [K12 - M, }wi - Ay Mo, =0 (2.18)
and, the scalar equation
(1) _ ,(0), (1) (0) (1) _ [ (0),(1)y (0) _
[K21 Ao My, ]¢i + [K22 A M, ]wi =0 (2.19)

Notice that Equation (2.19) can be éolved for W§O)

(1) _ o), (1) (1) (1)
Koo AoMy, Koo' and My,

provided that the

scalar [ } is not zero. are the spring and
mass respectively of the single-degree-of-freedom system being added to

the initial configuration. For a detuned system,

i=1,...,n (2.20)
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Thus, the solution of Equation (2.19) gives

(1) (0),, (1)
kKPP .
(0) 2l 21 (0 (2.21)

i ° EENCOMORE
K22 Xi M22

(0) (0)

It is seen from this equation that the term wi depends on ¢i ,
the eigenvector corresponding to the ith mode of the initial system.
Equation (2.21) states that, for the zero—ordér approximation, the
response of the added mass is due to a forced vibration. That is, the
motion of the added mass is due to the excitati&n of its supports. This
becomes evident when one realizes that, in the special case of Figure
2.2, all but two terms of the row vector Ké]) are zero. The two non-zero
terms correspond to the points of support of the added mass. " The result

is neither surprising nor new; it is the basis of the so-called "floor

response spectrum method." See References [1,59,60,61,62].

The perturbation process is now continued by substituting Equation

(2.21) into Equation (2.18) and rearranging the resulting terms

[k - AiO)M}¢£T) - A£1)M¢§O) = P£1) (2.22)

where
(1) o (1) (0) (1)7.(0) _ (1) (0) (1)q,(0)
Pyt = - Ky, A My ey [Kypw = Ay M, Juy (2.23)
Notice that the unknowns in Equation (2.22) are the vector ¢§1) and
the scalar A§1). Hence, Equation (2.22) cannot be solved for the
unknowns, since the vector ¢§1) is of order n. An extra condition is

needed then in order to make this equation solvable.
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The extra conditions that will Dbe used are the condition of
orthonormality of the eigenvectors with respect to the mass matrix.
These are the same side conditions used by Robinson and Harris in their
work. That is, the4eigenvector is nqt allowed to have any changes in its
magnitude. More specifically, only its direction is allowed.to'change,

Let us consider the orthonormality conditions for the augmented
system. In general we have,

T
Xi(u)M(u)Xj(u) = 6ij (2.24)

Substituting Equations (2.9e) and (2.11) into Equation (2.24)
yields, for i = j
T T T
[X£O) M(O)XEO)] . [2X§1) M(O)XEO) . X§O) M(T)Xi(o)]u

T T T
. [X§1) M(O)Xf1) N 2X§1) M(1)X£O) . 2Xi(Z) M<O)X§O)]u2 . (2.25)

Equation (2.25) must be satisfied for all values of u. Therefore,
the coefficient of the zero power of yu in Equation (2.25) must be equal

to one while the rest of the coefficients must be equal to zero. Thus,

T
L0, 0 (0 _ (2.262)
1 1
o (1 (00 (0) L (0D, (1), (0) _ (2.260)
i i i 1

XF1)M(O)X§1) + X§1)M(1)XFO) + 2XF2>M(O)XFO) =0 (2.26c)
1 1 1 1 1 1
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A procedure similar to the one used for equations (2.14) can now be

followed. That is, each of the Equations (2.26) can be partitioned and

red ced to terms of initial system. For instance, Equation (2.26a)

yields
T
v (0)
T M 0 ¢,
d)io) w]fo) ————— | ————— ——}(-65‘— = ] (2027)
0 0 L
which reduces to
T
(0) (0) _ .
6{9 wp{0) - (2.28)

Equation (2.28) is obviously a statement of the normality condition
for the "old" modes, and it 1s merely saying that the normality
conditions for the augmented system is satisfied up to the zero-order

(0)

approximation regardless of what the values of wi may be.

Also, Equation (2.26b) yields

T
(0)
PRI SO I L T D I S
2 ¢ by 5 0 (0
i
™ T
P ENED (0)
P R C DL IR O I s G - N 2 S S (2.29)
i i M(1) M(H (0) ’
21 22 by

which reduces to
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T T
(1) (0) (0) (1) (0) (0) (1) (0)
20 C Moy o My ey T M Ty

T
(0) (1) (0) (0), (1) (0) _

A re-examination of Equation (2.22) shows that the additional

(1) (1)

imposition of Equation (2.30) permits unique solution for 95 and Xi
That is,
AECI ICE oL SN
——————— e R IR e SRR CEL e (2.31)
_¢§O) M 0 X§1) Qi1)
where
(1) 1 (1) (0), (1)q. (0) _ (1) _ ,(0) (1)1 (0)
Pp =l Ty ey R L N 2 (2.23)
and
() 1 @F (1) (0) . ) (1) (0 . (0T (1) (0)
Q= gleg T My ey ey My e e e My
(0),, (1) (0)
fy Moy ey ] - (2.32)
(1) _ .(0), (1)
L0 o far T M M 5(0) (5.21)
i K(1) _ A(O)M(1) i )
22 i Moo

Indeed, Equation (2.31) constitutes a matrix equation of order n +

(1)

1. This equation 1is solvable for ¢i and A§1>, The matrix of

coefficients is the same as the one obtained in Robinson and Harris [49],
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where it is proved that-this matrix of coefficients 1is non—singular if
there are no multiple roots.

The solution of Equation (2.31) gives the values needed to calculate
A(u) up to the first order perturbation. However, X(u) is only known to
the zero-order pertﬁrbation since the equations do not provide the value
of W£1)-

The second-order perturbation, Equations (2.14c), may now be
analyzed by introducing the same type of partitioning used for the

first-order perturbation Equations (2.14b). As in the previous case,

Equations (2.1U4c) can be separated into two sets of equations,

o 0)7.(2) (1) (0),(1)7.(1)
e N L e [
(1) (), (1)1 (1) (1 (1)
s LK g g oMy
_o () o)y _ (1), (1) (o) _ (2), (0)
MooMy Ty oM T A e = 0 (2.33)
and
(1) _ o), (1) (1) (1) _ ,(0), (1)q (1)
x5, oMy e e (KT - ATy ey
(1), (1) (0) _ (1) (1) (0)
-y g 90 - % <o (2.34)
since [Ké;) - AEO)ME;)] # 0, we have
e o) (1) (1) (1)..(1) (0) (1) (1) (0)
< S P SO R N LAY Oy T A Myt (2.35)
vy o= ) ). (1) ‘
[ - ML

22 1 22
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Equation (2.35) can now be substituted into Equation (2.33) to yield

0 2 2 0 2
(K - Ai )M]¢£ ) Af )M¢£ ) Pf ) (2.36)
where
(2) (1) (0 (1. (1) (1) (0), (1) (1)
P = =[xy, oMy ey [y, 7 =gy, ey
(1), (1) (1), (1) (0) (1), (1) (0)
* Ay Moy v M11 R N ) (2.37)

Equation (2.36) is of the. same form of Equation (2.22). Equation
(2.26c¢) can be used as the extra condition needed for the solution of the

Equations (2.36). But first notice that it can be reduced to

T T T
(0) M¢§2) (0)", (1) (1) (0) (), () (07, (1) (1)

2[0g 3o T Moy Tt My e e T My ST,
0).(1) (1) (T
P My s Tl e Me T = 0 | (2.38)

Now Equation (2.38) is used in conjunction with Equations (2.36) to

yield an equation of the same type of Equations (2.31), that is

€ -3 O | ©) o2 P (2)
——————— B I e (2.39)
—¢§0) M 0 AiZ) QEZ)
where

(2)  _r (1) _ (0), (1) (1) _ (1) _ ,0), (1) (1)

R I TR A T R N S R
(1), (1) (1), (1) . (0) (1), (1) (0)
A Mo oAy M e A M Ty (2.37)



32
and

T T
(2) (0) . (1) (1) 0). (1) (1) ) (1) (1)
Qi T o= oy T Myge oy M Tes T e Moty

T . .
(0), (1) (1) 1 (1) (1)
MY s e Moy (2.40)

(2) (2)
i and ¢i .

The solution of Equation (2.39) gives the values of 2\
Hence, the eigenvalue A(p) can be calculated up to ﬂhe second-order terms
in y. The eigenvector Xi(u) can now also be approximated up to the first
order by using Equation (2.35).

It is very important to point out the similarity of Equations (2.31)
and (2.39). Both equations have the same matrix of coefficients. This
means that in order to sélve the two sets of equations numerically, the
matrix would have to be triangularized only once. This represents
considerable savings in computational effort. Furthermore, it is easy to

see that perturbations of third or higher order will be of the same type

as (2.31) and (2.39). That is,

K - AEO)M —M¢£O> ¢§k) P§k)
——————— il i il R I k=1, 2, ... (2.41)
_. (o) (k) (k)
¢; M 0 Ay Qi
where P(k) is a function of wik—1) and Q(k) and w§k_1) are known

i i
scalars. Therefore, the eigenvalues and eigenvectors corresponding to
the "old" modes of the initial system can be approximated to the desired

order by using Equations (2.41) in conjunction with Equations (2.10) and

(2.11).
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2.5 Perturbation Scheme. New Mode.
This section deals with the behavior of the new mode that arises
when a mass is added to the initial system. The same type of expansion
series about py = 0 that was used for the "o0ld" modes can now be used for

the "new" mode. That is, Equations (2.10) and (2.11) can be used for

i =n + 1. Hence,

(0) + oy A(1) A A(z) e (2.42)

An+1(u) B An+1 n+1 H n+1

where Aé?i is the eigenvalue of the added single-degree-of-freedom system

Aéi% for k = 1,2,... is the kth coefficient of the expansion series

for the (n+1)th eigenvalue,

and,
(k) (0) (1) 2 (2 _
Xn+1( ) Xn+1 + Xn+1 +u ani + e (2.43)
¢(k)
(k) n+1 ) - ) )
where Xn+1 = —EES is the kth coefficient of the expansion series
Lpn+1 .
for the (n+1)th eigenvector,
¢(k3 for k = 0,1,2,... 18 an unknown vector of order n, and
wéf? for kK = 0,1,2,... 13 an unknown scalar.
Thus, the perturbation equations developed for the "old" modes
continue to have validity for the '"new" mode. However, some

simplifications will arise as will be seen below.

The above equations are now examined in detail. For the new mode,

Equation (2.16) is now
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(0)

(0) _
e =0 (2.44)

[k = 2,0 M) ey

It will be recalled that this equation 1is the zero-order

(0) (0)
An+1 ;nd ) are

perturbation equation for the augmented system. If N+

considered as unknowns, this equation also represents the eigenvalue

problem equation for the initial system. The only way that the

determinant |K - A(O)M] can equal zero is if the quantity Aé?i

n+ is equal

to any of the eigenvalues of the initial system. In that case we would

have the so-called tuned problem, which will be discussed in detail in

Chapter 3. In the case when Aégz is not equal to any of the eigenvalues

of the initial system, the determinant [K - Aé?iM] is different from

Zero, Hence, the only possible way in which Equation (2.44) can be

(0)

satisfied is for the vector ¢n+1 to be zero. This result implies that
for the zero-order perturbation the 'mew" mode is completely uncoupled
from the "old" modes.

The main simplification to the equations obtained in the previous
section comes from the result that ¢;Si is zero. Under that condition,

the first-order perturbation equations, i.e., Equations (2.18) and (2.19)

become

(1) _ . 0) (1)7 . (0) _
A LSPIRR SS APE AR R (2.45)

(0)

n+1

(1)

(K - a0 Moo,

(0) _

[K(1) _ (o) M(1) -0 (2.46)

25" " Anap Mo 1 ns

For a lumped mass system like the one shown in Figure 2.2, the first of

the above equations can be written as
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(0)
- An+1

1] o£1) < (D (0 (2.47)

[K n+1 12

(1)

The vector ¢n+1 is nothing other than the motion of the original

system caused by the dynamic reaction forces present when the systém in
(0)

nett It is also

Figure 2.3 is vibrating freely with an amplitude g
evident here that such free vibration causes only a higher-order effect
on the initial system. This fact corresponds to the assumptions of the
floor response spectra method for very small added systems. See
References [1,58,59,60,61,62].

The second equation, (2.46) is actually the eigenvalue problem for
the system mentioned above, where the mass m¥* is attached to a fixed base
by the spring Zk?. The solution to this problem will yield the
zero-order approximation for the (n+1)th eigenvalue of the augmented
System. However, it 1is also necessary to add an "orthonormality"
condition in order to determine what wé?i can be. In other words, it is
necessary to use an extra condition in order to solve this eigenvalue
problem.

At this point, it is useful to consider Equation (2.24) again. This
equation can be modified for the new mode in the following way by letting

the size of the vector Xn depend on the parameter u, i.e.

+1

XF () M () X_

e (W) = u (2.48)

+1

The object of this modification is to avoid extremely large values of the

entries in the "new" modal vector. Then Equations (2.26) will now become

T v
X(o) M(O) X(o) -0 (2.49a)
n+1 n+1
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T T
x (00 (o) (1) (00" (1) o (0) _ | (2.49b)

2 n+1 n+1 n+1 n+1

T T, T
(0) (0) ., (2) (0) (1) (N (1 (0) (1)
2000 M B e T ot e 1w a0 (2.ug0)

(0)

is zero.
n+1

Equation (2.49a) is satisfied automatically because ¢

Furthermore, Equation (2.49b) now reduces to

(o) (1) (0)

Ve Mosm by =] (2.50)

It 1is interesting to remark now that Equation (2.50) represents the
condition of orthonormality for a single-degree-of-freedom system like
the one shown in Figure 2.3.

Combining Equations (2.46) and (2.50) it is possible to obtain a
unique solution for the eigenvalue problem of the added system.

The second-order perturbation equations are now considered.

Equations (2.33) and (2.34) become

(0) (2) (1) (0) (1) (1) (1
[k = Moty « [k -y g ey (K
_ ) ) (1) () (1) _ () (1) (0) _
Met My Tony T ey T A My = 0 (2.51)
and
(1) (0) (1) (1) (1) 0y (1) (1)
O e o I R L S ST ST I A
_ A(1) (1) (0) -0 (2.52)

n+1 22 ¥ne
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Equation (2.52) has two unknowns, however, we can take this equation

(1) g (D

together with an appropriate side condition and solve for wn+1 n+l”

This side condition comes from the next higher order in the perturbation
expansion for the orthogonality condition, i.e., Equation (2.49c). Such

equation can be rewritten as

(0)

(1) (1) (0) (r)y (1) (1) (1)
2wn+1 M21 ¢n+1 * 2w1’1+1 M22 I1)1'14-1 * ¢n+1 M cpn+1 =0 (2.53)
The resulting system of equations is then
(1y _ ) (1) _,(1)  (0) (1) (1)
Koo' 7 Aaer My Myn Vi Ve Phs
———————————————————————————————————— = {--B2.- (2.54)
_(0) M(1) 0 )\(1) Q(1)
l’Jr1+1 22 n+1 n+1
where
() (1) () (1) | |
Prar = TlKa T g My ] ey, (2.55)
T
(r)y (o) (1) (1) 1 (1) (1)
Quer = Vet Mo Opey * 37000 Moy (2.56)

The system of Equations (2.54) has a nonzero determinant just like
the system (2.41). Hence, it is possible to solve Equations (2.54) for

wéli and x;li. Substituting these values into Equations (2.51) will then
(2) ‘

N+t That is,

yield the value for ¢

(1)
12

(0) (g G e ) () (1) (O)} (2.57)

- An+1 12 ] wn+1 Xn+1 ¢n+1 n+l 12 11)n+1

(2)

0 =1 1 0 1
o2 C 800 gmT (1) L (e) ()

(1)
n+1 A

11 ne Mg ) gLy ¢ K

‘[K
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For ‘higher orders of perturbation it is seen that equations (2.54)

and (2.57) become

k(00 y(1) (1) (0) (k)

i WO B 515 D e 2 QD S5 0 QR P
_ o) (1) (k) (k)
Ynay Mo 0 A+t ( “ne1
and
(k+1) _ _, (0) -1 (k)
3 [k - a0 MR (2.59)
where R(k) is a function of w(k) and A(k) as well as ¢(k). Thus , the
n+t n+1 n+t n+1

eigenvalue and the corresponding eigenvector for the "new" mode of the
augmented system can be approximated to any desired order by using

Equations (2.58) and (2.59).

2.6 Addition of Several Degrees of Freedom

The modeling of the secondary system as a single degree of freedom
system is very limited when considering the dynamic behavior of flexible
non-structural components [50]. Some examples of such components are
piping systems, cable tray assemblages or perhaps internal elements of a
large piece of equipment. A better model may then be obtained by adding
of a system of several degrees of freedom to the initial system.

In this section, an extension is made to the case where an m
degree-of-freedom system is added to an n degree-of-freedom system. The
changes that will occur to the formulations presented in Sections 2.4 and

2.5 are small.
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One of the most obvious changes will be in the augmentation
matrices. They will now ‘have to contain not only the information related
to the interaction between the new masses and the original system but
they will also describe any coupling within the added system. For the
case of a lumped mass system, the augmentation stiffness matrix turns out
to be equivalent to the stiffness matrix of a system.that has riéid body
modes. The number of rigid body modes is equal to the number of degrees
of freedom of the initial system. For example, consider a combined
structure composed of a four degree-of-freedom. system to which a two
degree-of-freedom system is added.  Such a system is represented in

Figure 2.5. For that system the augmentation stiffness matrix is equal

to the stiffness matrix that would result from considering ki = 0 for
i = 1,...,4. It is possible then to introduce a single parameter u to
vary the sizes of the augmentation matrices K(1) and M(1) in much the

same way that was done in Section 2.3. Also, it may be remarked that the

(1) (1)
5 and M22

represent the structural properties of the added system when considered

(1)
22

submatrices K will now be matrices of order mxm which will

separately. In fact, for the example mentioned above, the matrices K

(1)
22

shown in Figure 2.6,

and M would represent the structural characteristics of the system

The results expressed in Sections 2.4 and 2.5 for the case of
addition of a single-degree-of-freedom system to an initial one only
requires a change from scalar notation to vector notation. Then Equation
(2.41), which states the perturbation equation for order k, can be used

without any modifications.
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Another important result is éiven by a restatement of Equation

(2.44), i.e,
fx - AéO) M] ¢§O> =0 | j = n+',...,n+m (2.60)

(0)

i is equal to zero for each j. Thus the

This equation implies that ¢
uncoupling between the "new'" modes and the "old"™ ones for the zero-order
perturbation is still present provided that there'is no tuning. Also,
the orthogonality condition presented in Section 2.5 can be used as
stated without any difficulties.

For the previous reasons, it is possible to say that the Equations

(2.58) and (2.59) can also be used without any inconveniences in the

present case.
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3. TUNED SYSTEMS

3.1 Introduction

The purpose of this chapter is to explain the proposed method as it
pertains to the case where the structural modification introduced causes
a more complicated result than in Chapter 2. In this chapter the eigen-
values of interest correspond to the addition of an m-degree-of -freedom
system to an n-degree-of-freedom system where some of the eigenvalues are
very close or equal.

The most general case of multiplicity of eigenvalues considered here
is the one where the added system has a repeated eigenvalue of multi-
plicity q that is equal to a certain eigenvalue of multiplicity r in
the initial system. The situation is then one of q + r tuned modes. An
example of the general system studied may be taken as an augmented system
like the one shown in Figure 3.71. This system consists of an initial
2-degree-of -freedom to which a 2-degree-of-freedom subsystem has been
added. The solution of this problem has been attempted befoﬁe, but it
has not been done by using the perturbation approach. In Section 3.2 a
method proposed by Lee and Robinson in Reference [36] is explained.
Then, in Section 3.3, the perturbation approach is presented and it is

compared to the method discussed in Section 3.2.

3.2 The Lee-Robinson Method
The Robinson-Harris Method presented in the previous chapter was

extended to equal eigenvalues (see Reference [49]) but was carried out in
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an ad ggg method where the equations used lost their sparse character and
suffered a deterioration of conditioning. Later, Lee and Robinson [36]
addressed the problem of developing a better approximate method for close
or repeated eigenvalues. However, their method is an iterétive scheme,
which is successful if the eigenvalues are equal or very cloée. As in
the method of Chapter 2, very small masses call for a perturbation
approach rather than an iterative one, The basic idea of the Lee-
Robinson Method will be presented as a perturbation technique in Section
3.3. A brief summary of the original method is given here as a necessary
introduction.

The Lee-Robinson Method finds all eigenvectors corresponding to
multiple or close eigenvalues at the same time. The method finds the
close eigenvalues for any cluster, together with the corresponding
eigenvectors in a two-step procedure. The éssenée of the method consists
first in finding the subspace spanned by the eigenvectors corresponding
to the multiple or close eigenvalues. The subspace 1is found by
minimizing a quadratic form subject to the constraint that the result is
a new set that is also orthonormal with respect to the mass matrix M.
After this step is completed for all the equal or close eigenvalues, the
improved eigenvalues and eigenvectors are determined from the solution of
a small eigenvalue problem.

The method considers the eigenvalue problem for the system:

KX; = A MX, i=1,....,0 (3.1)

where K and M are symmetric matrices of order n,

M is positive definite,
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Xi is an eigenvector, and

Ai is an eigenvalue such that XAy £ Ao & ... S Ap

The set of all eigenvalues is then separated into two sets, one of
them containing the s close or multiple eigenvalues. The s-dimensional
subspace spanned by the Xj corresponding to close or multiple eigenvalues
is denoted by R. A set of s vectors, Yj, in the neighborhood of R is
then selected so that they are orthonormal with respect to M. Figure 3.2
shows a schematic representation of the two frames X; and Yj, where
i=1,2,...,n and j=1,2,...,5. Each vector Yj of the basis can be expanded

as a series of the true eigenvectors X;. Thus
n ,
Y. = ) ¢, .X, jes = {1,...,s} (3.2)

For close or equal eigenvalues, the coefficients fall into two groups of

different order of magnitude,

) cfj ) cfj (3.3)
iés ies
for sufficiently good approximations.

Equation (3.3) can be interpreted as the summation of the Euclidean
norms of the projections of vectors of Yj (j & 8) onto the two
complementary subspaces. This means that the vectors Yj are nearly
orthogonal to the set of n - s eigenvectors corresponding to the simple
eigenvalues. However, a vector YJ needs not be close to any one of the

Xj (j & 8) in particular. A constrained stationary-value problem is set

up to find the stationary values of



Ly

W= ) vTky . (3.4)
Jes 3

subject to

T ' . ‘ |
YiMYj = 6ij (i,j € 8) : (3.5)

The fact that this stationary-value problem characterizes the
subspace R of the eigenvectors Xj (J E'S) is proved in Reference [36].
Lagrange multipliers are introduced to solve the constrained stationary
value problem. The Lagrangian resulting from Equations (3.4) and (3.5)

can be written as

T LT
L= ) Y,KY - § 7B, .(YMY_ =6 ) , (3.6)
ieS ol ieS jeS ot H

where the Bij's form an sxs matrix of Lagrange multipliers.

The minimization yields

oL .
~— = 0; KY, = ) B, .MX, (jes) (3.7)
an J ies ijg i
AL T .
aBij = 0; YiMYj = 513 (i,jes) (3.8)

The first equation resembles an eigenvalue problem for matrices K

and M, In matrix form, the equations are

K Yj =M [Y] bj (j € 8) (3.9)
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where bg = (B.., B B_.), (jes), or

1J 23’°°'f sJ
K[Y] = M[YIB ‘ (3.10)
where B = (b1, Boyeees bs)’ and
[Y1'MCy] = 1 | (3.11)
where [Y] = [Yq Yo ... Yg].

Thus, the subspace R of the desired eigenvectors can be found by
solving Equations (3.9) and (3.11).

The Newton-Raphson technique is then applied to the above
equations. The initial values for B and [Y] are assumed to be
available. They are denoted by B(0) and [Y(O)]. As mentioned above, it
is assumed that the basis vectors forming [Y(O)] are in the neighborhood

of the subspace of the eigenvectors
[x] = [Xq Xo ... Xg] (3.12)

and that they satisfy the orthonormality condition with respect to M,

that is

Y(O) T (0)

C ITMiy "1 =1 (3.13)

S

For the general kth iteration step, Lee and Robinson use

(k+1) . (K) (k)
bj = bj + Abj (3.14)
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(k+1) (k) (k)
Y. =Y, + AY (3.15
J J J 3 )
where Abék) and Ang) are unknown incremental values for bék) and Yék).
. . (k+1) (k+1) . ) .
By substituting bj and Yj into the above equations, and arrive at

(k) )4 (k) (k) (k) 4, (k)

' (k
- = - + b
KAYJ MLY ]Abj KYj MEY 7] 3
+ M[AY(k)]bék) (3.16)
and
ry K Ty g 4 oy ) Tray (g 2 I (3.17)

The matrix B has zero off-diagonal terms for multiple roots. Thus,
one starts with a certain matrix B(0) and a number of iterations later,
when approaching convergence one should find that B(k) has either zero

off-diagonal terms or that they are very small compared to the diagonal

ones. For this reason the term M[Y(k)]bj may be approximated by
ng)MAng), yielding
JJ
(k) (k) (k) (k) (k) (k) 4, (k)
K-g.. 'M)aY " - M[Y b, = =KY . MLY b, .
( B3 A ; ( 1a j 3t ( ] j (3.18)

Equation (3.18) represents a set of n equations in n + s unknowns that
combined with the set of s equations in n unknowns in (3.17) yield a
system of n + s equations in n + s unknowns.

Taking

[YUOIT M [y(K)] = 1g | (3.19)



b7

Equation (3.17) becomes

IV SR (3.20)

(k)T
Y ] j

C

Finally, combining Equations (3.18) and (3.20) yields
(k). ! _
JJ ; J J

ln = e mam = | == = = - -- (JES) (3-21)

K-8

that is, a system of n + s equations in n + s unknowns.

When the roots are not exactly equal, the terms neglected in (3.18)
lare dropped as an approximation and the calculation is carried out as if
the roots where multiple. When the roots are fairly far apart, the

convergence of the procedure 1is adversely affected by this

Uy ()
JJ
made, all s systems of the type (3.21) would be coupled by the extra

approximation. If the approximation of M[Y(k)]bj by B is not
terms. This would be a computationally unacceptable procedure. It
should be noted that the closer the eigenvalues turn out to be the more
rapid the convergence of the method will be.

A second step is needed to complete the problem. The matrix B of
the Lagrangian coefficients has to be diagonalized (rotated) so that the
Y vectors associated with B become the true eigenvectors of the
subspace. This system of s eigenvectors and corresponding eigenvalues

may be written as

K [X] =M [X] A (3.22)

University of Illinois
Metz Reference Room
B106 NCEL
208 ¥. Romine Street
Urbana, Illinols 61801
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where A = diag ( A1, A2, «.. Ag ).

If the rotation is expressed by a square matrix [Z] of order s,

[x] = [yl CzZ] , (3.23)
and (3.10)
K (Y] =M [Y]B (3.10)

is taken into account, one has
K [Y] [z] =M [Y][Z] A =MT[Y]B [Z] (3.24)
Then, premultiplying by [Y]T
[¥1T m [Y] (2] A = [¥IT ™ [Y] B [Z] | (3.25)
and use of the orthonormality condition results in
B [Z] = [Z] & (3.26)

Thus the second stage of the problem is reduced to the solution of an

eigenvalue problem of order s.

3.3 Perturbation Scheme. Multiple Roots.

The method of solution that was presented in Chapter 2 breaks down
for the case of systems that have either repeated or very close
eigenvalues. It is for this reason that the approach to be followed in
the solution of the problem has to be different. The work presented in
this section uses the basic idea behind the method developed by Lee and

Robinson [36] and explained in the previous section.
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The Lee-Robinson Method 1is now implemented by means of series
expansions for the Lagrangian coefficients B8 as well as for the Y
vectors. Consider the eigenvalue problem for the augmented system
represented by Equation (2.9a). In the detuned case, the solution for
such a system 1is obtained one mode at a time. Moreovér,'the side
condition is chosen as a normality condition for the old modés, thus
Equations (2.26) are used. However, when considering a new mode, the
scale could be left undetermined because normality is not an essential
condition in the method. This approach leads to the side condition
for the modes of the added system represented by Equation (2.48). By
contrast, in the tuned case the solution must be obtained by dealing with
the entire subspace of repeated modes. As explained in Section 3.2, the
Lee-Robinson Method requires orthonormality among all the Y vectors.
This normality condition forces the introduction of a u‘1/2 term in the
expansion series for the Y vectors. In this way, the normality condition
is satisfied for all the basis Véctors Y regardless of whether they
originate from the old eigenvectors or the new ones.
u1/2;

Taking e = the expansion utilized for the Lagrangian

coefficients B is the following

) (1) (2) 2 ..
Bij = Bij + Sij g + Bij g™+ (i,j € 8) (3.27)
and for the vector Y
v =y L0 oy @) e (jes) (3.28)

J J J J J
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Accordingly, it 1s convenient to choose the following formulation

for the stiffness and mass matrices of the augmented system,

K(e) = K(0) + ¢2 g(2) ; (3.29)

and

M(e) = M(0) &+ g2 M(2) ' (3.30)

where the matrices K(0) and M(0) are the bordered stiffness and mass
matrices of the 1initial system and K(2) and M(2) are the same
augmentation matrices defined in the previous chapter.

Equations (3.27), (3.28), (3.29) and (3.30) can now be substituted
into Equations (3.9)

(K(O)+€2K(2) )(Y§‘1 )8_1 +Y§O)+Y§1 >e+Y§2)€2+- ..

(M(O>+52M(2))[Y1 ... Ys]bj (jes) (3.31)

where bj represents the jth column of the matrix B of Lagrangian
coefficients.

Equation (3.31) is now expanded for a certain j = r such that 1 = r

£ s. Rearranging the terms by increasing order of exponent in the

parameter e, Equation (3.31) becomes, for order g = -1,
S
(1) § (0D (0) (3.32)
q=1 q qr

for order o = 0,
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(0),00) 3 (0),,(0),(0) (-1) (1)
KUY = qZ]M (xq qu + Yq qu ) (3.33)
for order o 2 1,
s a+l
K(O)Y(?) . K(Z)Yia~2) _ M(O) g ) Y(a—k)s(i)
q=1 k=0 1 d
s a1 4

q=1 k=0 1 ar

In addition, Equations (3.28) and (3.30) can be substituted into
equation (3.11)

= =

YT [M(O) + ezm(Z)] [y ...Y .,.Ys] =1 (3.35)

YT
LS
for any q and r,

Yz[M(O> . EZM(z)]Yr = Sgr | (3.36)

Substituting Equation (3.28) for j = q and for j = r into Equation (3.36)
yields
T T T
(Y(q1) s YéO) N Yé1) e+ ...) [M(O) . EZM(Z)]

(Y£—1)€-1 . YéO) . Y£1) R (3.37)
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performing the indicated multiplications and grouping by powers of e,

(=170, (-1)

q r =0 o (3.38)

Y

T T
(=1)7,(0)4(0) (0)74(0)y (=1)

-0 - (3.39)

Y + Y
q r q r
T T T
Y(~1) M(O)Y(1) . Y(—1) M(Z)Y(-1) . Y(O) M(O)Y(O)
q r q r q r
S LN( M EIP I | a0
q r ~ gr ’

and for o 2 1

-7 -
lamk=1)", (@) (k=1)

at2 _ T _
) Y(a k+1) M(O)Y(k v,
04 .

k=0 4 r K

=0 (3.41)

I ~R

Equations (3.38), (3.39), (3.40) can be satisfied identically by
making the proper choice of matrices [Y(‘1)] and [Y(O)].

The choice 1s the following: & of the s vectors Y will be of the

form
(-1
Y, = {o}
and
(0)
(O by
R
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where ¢é0) corresponds to one of the eigenvectors of the repeated
eigenvalue when considered for the initial system. The remaining s-%

vectors Y will be of the form

0 )0
-5 (-1)
wl—s
and
(0)
Yl-s - {O}

where w;:;) corresponds to one of the eigenvectors of the repeated

eigenvalue for the added system alone. Thus,

[Y(_1)] _ n-‘.-.;_—:_,-_(:1:)‘___(_:1_) (3.42)
0 ... 0., ¢ cos Y ’
v+ S
and
(0)  (0)!
o) ¢1 e ¢l : 0 ... 0
e N R (3.43)
0 ... 0 0 ... 0

Also B(O), the initial approximation to the matrix of Lagrangian
coefficients, can be chosen as a diagonal matrix containing the repeated

eigenvalues. That is,

g0 Ay (3.141)
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Using the above representations, Equations (3.32) and (3.33) can be
satisfied identically.

Rearranging Equation (3.34) yields,

s - i
(K@) - 4@y (@ _ (0§ (0) @) (2)y(a-2)

rr r q=1 q qr r

at+1 _ a*t s N

. M(O) Z YISQ k)Bii) + Z z Yéa k)Béi)
k=1 k=0 g=1
K=o k=a q=r
s a1 Al

cn(@ ] % ylam2m g0 (3.48)
q=1 k=0 ¢ q

From Equation (3.41),

a+2 T oy a LT )

P ylemke D @)y ken) o § (amke) y(2)y (k=1)
k=0 9 r k=0 9 T
K=o+ 1 kea=1

(07,0 (@) , (7, (@) (a2)

+ Yq n q N =0 (3.49)
or
T T at+2 T
Y(O) M(O)Y(a) . Y(O) M(2)Y(a—2) - Z Y(a—k+1) M(O)Y(k—1)
q r q r koo @ r
kza+1
o 43T _
. z Y(a k=1) M(Z)Yﬁk 1) (3.50)
k=0 ¢
kK=zg—1

- (0)T _
Notice that the term ¥ M(z) Y(a 2) is always zero because of Equation

(3.43).
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Equation (3.50) represents a set of s independent equations.

that by using Equations (2.9¢) and (2.9f),

Equation (3.50) together with Equation (3.48)
equations in n + s unknowns,
[ (0)__(0),(0)y 1 _ (01 (0),(0) (0] [ ()
(x By M ) : M [Y1 | .ifys‘ ] Y,
T )
'Y§O) M(O) : 0 ng)
i
T
_,(0)",(0) ' (a)
Y2 M : ’O BZP
| .
:
T |
_(0) " ,(0) ' . (a)
S | 0 ] 8o
where
ot _ atl s _
P;a)= M(O) ) Y;a k)BE:) . ) .Y(a k)B(i)
k=1 k=0 g=1 1 d
k=q K=o Q=r
s a-1
_ K(Z)Y(Q‘Z) + M<2) Z z Y(G'2‘k)8(|:)
r q=1 k=0 q 4
ol@) - O ylamken 0y (ko))
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The coefficient matrix in Equation (3.51) can be further reduced.

Thus,

form a set of n + s

(3.51)

(3.52)

(3.53)

Notice
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Substituting Egquation (3.43) and Equation (3.54)
yields the following two equations,
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into Equation (3.51)
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and
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21 22 r q=1 k=0 q qr

uS2? Iy wé“ & k>ec(1:f) -0 | (3.58)
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Equation (3.55) is of order n + & and it is solvable because the matrix
of coefficients is non-singular (see the Appendix of Reference [34]).

In solving the proposed perturbation problem, a definite sequence of
calculations is required. Equation (3.55) is used first to find some of
the parameters of the oth order perturbation and only then is Equation
(3.58) used to complete the calculation,

A specific example is useful to illustrate the proposed method.
Consider an augmented system like the one shown in Figure 3.1, consisting
of an iﬁitial 2-degree-of -freedom system with two repeated eigenvalues to
which a 2-degree-of -freedom subsystém has been added. Consider then the
case when the added subsystem has also two repeated eigenvalues equal to
those of the initial system; hence the combined system has only one

eigenvalue of multiplicity four. Fpr such a system, substituting

Equation (3.42) intoc Equation (3.55) and taking a=1 yields
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and for a=2, Equation (3.58) gives
)

(2) ), M(2) ) w(-1)8(1)

¢ 7 =20 (3.60)
o1 22 Ya Car

Equations (3.59) and (3.60) can be solved for each mocde r of.the subspace
R. Notice then that the solution must be carried out a definite
sequence, first for the ath perturbation and then for the (a+1)th
perturbation. Also the remaining s-{ orthonormality conditions that are
not needed in Equation (3.55) are instead used to find the values for the
y's for the corresponding (a-1)th perturbation. Once the solution for
each of the modes r is obtained, it is possible to continue to the next

order by taking a=2 in Equation (3.55),
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and for o=3 in Equation (3.58),

(), (1) @ (1) @) § (e )

-K + M B =0 (3.62)
q=1 k=0 4

21 % o2 Y 22 qr
Higher order perturbations may be obtained in a similar way.

The above procedure can be simplified considerably by developing a
computer program that can automatically generate the right-hand sides for
uations (3.55) and (3.58) for each order of perturbation. In Chapter
4, such a computer implementation is explained.

It should be noted that the perturbation calculations given here and
in Chapter 2 are, at this point, just formal expansions. That the
perturbation series converge for small enough values of the parameter ¢
(or uy in the detuned case) has not been demonstrated here.

It might be pointed out here that the perturbation procedure
developed in this Chapter differs considerably from the one presented by
DerKiureghian et al. [10]. In fact, thebmethod employed in [28] and [29]
might be more properly called a correction procedure. It does not give
the entire first perturbation but does arrive at the same frequencies for
the modes of tuned system obtained by the first perturbation in the
method presented here. The procedure [10] cannot easily be extended to

higher perturbations, especially in view of the neglect of part of the

diagonal terms of the stiffness matrix.
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4, NUMERICAL APPLICATIONS OF THE PERTURBATION PROCEDURES

4.1 Computer Implementation of the Perturbation Method

The difficult part of any perturbatiqn problem is the determination
of the successive right-hand sides of the sets of perturbation eéuations
in terms of the results of perturbation solutions already carried out.
In a program havingkthe capability of}calculating perturbations to a
fairly high order, the number Qf terms on the right sides can become
quite large for the higher-order perturbations.

A natural way to proceed would be to determine which terms occur on
the right in exactly the same way as would be done in analytical
calculation, and then to program the result. However, 1t has been found
much more convenient to have the computer determine which terms occur and
which do not. Then all that must be provided in the program is the
general nonlinear operator that occurs in the problem. Simple logical
calculations determine which terms in the sums of products of
perturbation expansions arise for the stage of the perturbation under
consideration. Those terms, and only those, are then calculated. Such a
course of computation is not only more generally useful in perturbation
calculations, but also requires much less programming than any specific
case.,

To carry out this method of calculation, the scalars, vectors, and
matrices that contain the perturbation parameters are expressed as what

will be termed "perturbation arrays." For instance, if six perturbations
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are desired, an eigenvalue will be expressed in terms of six constants,

the coefficients of the series

V) = § | (.1
i=0 : ’

Similarly, eigenvectors will be expressed as an array‘of six vectors. It
turns out that in the problems studied here, only two matrices are needed
to form the perturbation array for K and M. The members of each array
are marked by counters. In the example just given, the counters for the
eigenvalues and eigenvectors will range from zero to five, and for the
matrices from zero to one. (In the case of multiple eigenvalues, the
counters for the matrices assume the values zero and ;wo.) As will De
shown, it is important to set all'the unknown arrays equal to zero before
the perturbation solution is started.

Detailed flow diagrams are giyen ih the succeeding sections first

for the case of separated eigenvalues and then for the repeated ones.

4,2 Separate Roots

The initial data necessary>to run the program consist of the dynamic
properties of each one of the separate structural systems that constitute
the augmented system. That 1is, the stiffness and mass matriées

corresponding to each system as well as their corresponding eigenvalues

and eigenvectors. Thus, following the notation of Chapter 2, the
starting values consist of K(O), K(1), M(O), M(1), ¢§O), oo ¢;O), ng),
(0) 0 0
e oy wn+m , and A§ ), . xn+é ) and also
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where p is the desired order of expansioh.

The program assigns one counter to each of ﬁhe terms involved in the
expansion of Equation (2.9a) in the following way: K{(u) and M(p) are
assigned one counter, X(u) is assigned another counter and finally A(n)
is assigned a third counter.

Consider now how to evaluate a term in a product, say, AMX, that
occurs in the solution. The sums of all possible counters for the three
terms are found. Those for which the sum is a certain integer a; ae {1,

..,p}, the order of perturbation being studied, are calculated and
accumulated. The others, for which the sum of the counters 1s not equal
to a, are not calculated. When all possibilities for the values of the
counters have been exhausted, the contribution of the right-hand side for
that product has been correctly calculated.

One point remains to be clarified. What happens to the term
containing the unknown scalar or vector being calculated in the ath
perturbation (where the other counters would usually be zero)? These
products when calculated for the right-hand side are all zero because the
values in question have not yet been substituted into the corresponding

perturbation array. The initialization of the arrays to zero guarantees
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that terms that are on the left-hand side of the perturbation equations
do not also occur on ‘the right. It is easier to perform a few
unnecessary computations than to complicate the program by omitting those
that really belong on the left. Since the forms of the leftAsides of the
perturbation equations never change, it is only the perturbatibn number o
that indicates which order of perturbation is being calculated and,
therefore, where in the arrays the answers should be substituted once

found. After this process is finished, the next perturbation can be

started.

4,2.1 01d Modes

The procedure for the automatic calculation of the perturbation
coefficients is different according to whether the modes of vibration of
the augmented system belong to the initial structure, in which case they
are called "old" modes, or to the added system, the "new" modes. This
classification is the same as presented in Section 2.4 of Chapter 2 where
the modes are separated into modes that are very close to the ones from
the initial structure as opposed to those that are very close to the ones
from the added system. The case of the "old" modes will be treated in
this section. The flow diagram for the calculation of the right-hand
side of the perturbation expansions represented by Equation (2.41) is
presented in Figure 4.1. As the program advances progressively through
every order of perturbation in the way explained above, every counter is
varied from an initial value to a final value. An important point that

must be mentioned is that the solution for each order of expansion must

(a-1)

be accomplished in a staggered sequence. First one solves for wi



64
vector of order m, and then updating the current values, redo the
calculation for the right-hand side of Equation (2.41). This time the

result are the values Pi(a) (a)

and Qi that correspond to the proper
right-hand side for Equation (2.1417). More specifically, first the
perturbation expansion of first order for the Equatién (2.9a) is
calculated. The result of this calculation is a vectoh of order n+m,
whose lower portion (a vector of order m) 1is th»e right-hand side of
Equation (2.19). Thus it is possible to solve Equation (2.19) for wi(o).
The resulting value can be stored in the corresponding member of the
perturbation array for the eigenvector. Now, redo the calculation of
the perturbation expansion of the first order for Equation (2.9a).
Again, the result will be a vector of order n+m, however, this time its
upper portion (a vector of order n) is selected and saved. Concurrently
with the calculation performed for equation (2.9a) the expansion of
Equation (2.24) for i=j, is also performed (see Figure 4.1). Now the
above mentioned vector of order n that corresponds to the upper portion
of the vector containing the expansion for the right-hand side of
Equation (2.9a) together with the result of the expansion of Equation
(2.24) can be assembled into an n+l vector that corresponds to the
right hand side of Equation (2.41) for a perturbation of first order,
i.e., Pi(T) and Qi(”" Finally, this new equation is solved and thus the
calculation for the first-order perturbation is completed. This same
procedure is repeated for each order of perturbation up until the desired
perturbation number is reached.

It is 1important to mention at this point that the matrix of

coefficients of Equation (2.41) 1is indefinite (i.e., not positive
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definite). Thus, the algorithm to be employed for the solution of the
equations must be special in order to avoid problems of stability. The
algorithm proposed by Bunch and Parlett [6] and used in this work
emphasizes the preservation of the symmetry of the matrix of coefficients

and it represents a stable solution to the problem.

4,2.2 New Modes

In the case of the new modes the procedure is slightly different.
However, the solution is still attained in staggered calculations. The
difference comes from the fact that there is an initial step that must
take place before the general algorithm is initiated.

The procedure for the calculation is performed as follows, The
expansion of the perturbation equation for the first order is carried out
and then the "tob" part of the resulting vector is selected and saved.

This is really the negative of the right-hand side of Equation (2.47),
(1)
J

in the corresponding perturbation array. Once this first step is done, a

thus Equation (2.47) can be solved for ¢ and the result can be stored
somewhat different algorithm 1s followed for the higher orders. It is
now necessary to perform the expansionvfor a second order. This time the
"pottom" part of the resulting vector is taken and used in conjunction
with the expansion of the orthonormality condition to build up the
right-hand side of Equation (2.58) for a=2. Then the solution for
Equation (2.58) is found and the resulting values are stored in the
corresponding perturbation arrays. The process can be summarized as

follows: find wé“), Aéa) and then ¢§“+1) at this point proceed to a next

order. Notice that for the new modes, in contrast to the case of old
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(1
J
and higher order perturbations are needed to find ¢

and then the second

(a) (a-1)
j o+ vy 0 and

Thus, the expansion must be carried to one order higher for the

modes, the first-order perturbation yields only ¢

p a1
J

new modes than for the old modes. Then the perturbation arrays will be
complete to a certain predefined level for both the old and the new
modes. This extra éaloulation does increase the number of calculations

somewhat, but as explained above, it insures that the expansion for all

the modes can be carried out to the same predetermined order.

4,3 Repeated Roots

The necessary data to run the program is the same as required for
the case of separate roots. In this case however, the augmentation mass
and stiffness matrices are proportional to the parameter squared, not to
the first power. That is, the notation expressed‘in Equations (3.29) and
(3.30) is followed.

The terms involved in the perturbation expansion are assigned one
counter each. The equations involved this time are Equations (3.31).
That is, for each one of the repeated modes, an expansion must be made,
(a mode coming from either the "primary" or '"secondary" system). Thus,
the same subroutine for the calculation of the right hand side of the
perturbation expansion presented for the case of separate roots can be
used for the case of multiple roots. See Figure 4.1. The procedure used
is the same, for each product of the terms, the sum of the counters for
the terms is found and if the sum is equal to o, the corresponding
product is taken into account. Inspection of Equations (3.32), (3.33)

and (3.34) shows that sum of the counters can be performed in the same
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way as for the separate roots. Also the term containing the unknown
scalar or vector being calculated in the ath perturbation'are again zero
simply because they have not been substituted intoc the corresponding
perturbation array. As it is seen, the mechanisms for the calculation of
the right-hand side of Equation (3.55) for the ath perturbation are
essentially the same as for the case of separate roots. The exbressions
in Equation (3.55) and (3.58) do not have to be programmed as such but
are rather calculated internally in the machine, which simplifies the
proposed perturbation approach. The calculation of the perturbation
coefficients once the right-hand side is obtained is also performed in
staggered fashion.

The two step procedure consists of first solving Equation (3.55) for
a and then solving Equation (3.58) for a+1 to complete the calculation of
the Lagrange multipliers B for each mode. Notice that the solution for
the order of perturbation o must be obtained for each one of the modes in
the subspace R before the solution for the next perturbation (a+1)th may

(a)

be attempted. The values for are obtained form the s-{ remaining

equations for the orthogonality condition.

4.4 Some Numerical Examples

The proposed method was tested by using it to solve the eigenvalue
problem for four different structural systems. The first two are systems
whose eigenvalues are all separated and the last two have close
eigenvalues,

The structural system considered in Example 1 1is shown in Figure

4,2. The primary system consists of a two-degree-of-freedom system to
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which a single-degree-of-freedom secondary system is added. The dynamic
characteristics of the system are given in the figure. The initial

frequencies for the augmented system, i.e., when u=0, are x1=1/2, AL =2,

2

for the primary system and A_=1 for the secondary system. The values for

3
all three eigenvalues were calculated using the proposed method for the
interval 0.05ug0.4 ahd using five different orders of perturbation (from
first order to fifth order). The results for this calculation are
presented in Tables 1 and 2 and are shown in Figures 4.3, 4.4 and 4.5,
Figure 4.6 represents log-log plots of the errors in eigenvalues versus
the parameter u for the results carried through the first perturbation.
Figure 4.7 corresponds to the results through the fifth perturbation.
The slope of the curves in Figure 4.6 is essentially 2.0; in Figure 4.7
the slopes are 6.0. This provides an interesting verification of
the correctness of the perturbation approach, since the major part of the
error in the first perturbation is of the order of the second
perturbation. Similarly the errors in the fifth perturbation are terms
of the order u6

Several comparisons are made to give some indication of the accuracy

of the proposed method. One measure of error that will be shown to be

convenient is what is here termed relative error. This is defined as

A (w) - A (w)
% relative error = exact approx * 100 (h.2)
Aexact(u) - 2 (0)
where A(0) is the initial eigenvalue for the system and

Aexaot(u) is the eigenvalue calculated using a standard

eigenvalue solver package (IMSL).
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Figure 4.8 shows the relative error for all of the eigenvalues of the
augmented structure in Example 1. It is worth noticing that the error is
very small for values of up to u=0.25, less than 10%, when the
perturbation approximation is carried out up to the fifth order. The
improvement in the use of higher order perturbations is repfesented in
Figure 4.9, where the relative errors for first and fifth order expansion
are given for the lowest eigenvalue. It is evident from Figure 4.3 that
the perturbations are growing beyond the third one for the value u=0.4.

The second example consists of a combined system formed by a
four~degree-of~freedom primary system and a two-degree-of-freedom
secondary system. Figure 4.10 shows the structural properties of the
system under consideration. Figures U4.11 through #4.16 show the values
for all six eigenvalues as-calculated by the proposed method for the
interval 0.0Spus0.4 énd, again, using five different orders of
perturbation (from first to fifth order). In each figure the proposed
method is compared to the exact solution. Figures 4.17 and 4.18 show
that the perturbation series used is appropriate, since the slopes in the
graphs are 2 and U4 respectively.

The reason for choosing the relative error as a measure of accuracy
can be illustrated in Figure U4.11. Here the change in the eigenvalue is
a small peréentage of the eigenvalue even for a large value of yu.
However, if the question is whether the perturbation process is accurate
or not, it is the closeness of the calculated deviation from A(0) to the
actual deviation that is of significance. In this case, the first

perturbation is in fact going in the wrong direction for p20.05. Note
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that since the denominator can be zero here, the curve in Figure 4,19 is
not very meaningful for g<0.1.

This same example illustrates another interesting fact. It is well

known (see Gantmacher [15]) that adding a single degree-of-freedom system
to a spring-mass chain system'will-causekthe old freQuencies to shift
outward from the new one. In the systém of Figure 4.10, the augmentation
is not simply the addition of a single degree of freedom system with a
single point of attachment. Thus the resulting system is not a
spring-mass chain system.
It is found here that the shift in frequency actually changes sign as u
increases, The theorem stated earlier_ in this paragraph really does
require the limitation on type of primary and secondary system. It is
also interesting to point out that even though the structural system
under consideration has very well separated frequeﬁcies, the use of a
first-order perturbation may indeed give erroneous answers..For higher
frequencies, though, the first pérturbation is all that seems to be
needed (as seen in Figures 4.12 through 4.16).

The last two examples treat the case of structural systems that
start out with repeated eigenvalues. Example 3 represents a structural
system similar to the one used in Example 1. The frequency of the
secondary system is tuned to one of the frequencies of the primary
system. The properties of the resulting structural system are presented
in Figure L4.21, Tables 5 through 7 present the results of the
calculation of the eigenvalues of the combined system using a third order
perturbation expansion. Figure 4.22 presents a comparison of the

solution obtained using the proposed method with the solution obtained
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using a standard eigenvalue solver (IMSL), and denoted as the exact
solution. It may be noticed that the slope of the curves in Figure 4,23
reflect the order of the error between the two results.
For Example 3, the usefulness of higher order perturbations when the
parameter 1s not very small can be 1illustrated by the following
(1) (2)

calculation. The values of A2 and AZ are 0.433014 and 0.20833. For

u=0.2, the exact result for A2 is 0.739495. The results up to the first
perturbationkgive a relative error for u=0.2 of about 19%. When the
second perturbation is taken into account as well, the relative error
falls to less than 1.8%.

Example 4 considers a combined system consisting in a primary system
and two secondary systems. Both secondary systems are édded to the
primary system in the way shown in Figure U4.24., The frequencies of
vibration of both secondary systems are tuned to a particular frequency
of the primary system. Tables 8 through 11 present the results of the
calculation of the eigenvalues of the combined system using a third order
perturbation expansion. Figure U4.25 presents a comparison of the
solution obtained using the proposed method with the exact solution.
Also, similar to the case in Example 3, the slope of the curves in Figure
4,26 reflect the order of the error between ﬁhe two results,

When the values of y are so large that the perturbation process does
not seem to converge, the results might most profitably be considered as
an asymptotic representation. It 1s recommended that in this case the
process terminate with the smallest change due to addition of the next

perturbation, which will depend on the numerical value u. The error is

usually less than the first term neglected [32].
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5. SUMMARY AND CONCLUSIONS

5.1 Summary

The subject of this study is the development of a set of methods for
the calculation of the changes in the frequency of vibfation and mode
shape of a structure due to changes in the physical system. Such changes
may consist of variations of the structural properties of a given system
or even of the addition of new degrees of freedom.

One family of iterative methods that has been used effectively for
improvement of modes and frequencies is based on an application of the
Newton-Raphson technique to the equations defining modes and
frequencies. The method is applicable to cases with multiple or close
frequencies as well as to cases where they are widely ‘separated.
However, in their original statements, these methods are not capabie of
handling additional degrees of freedom arising from changes in the
structural system. The current work extends these techniques to the
cases of added degrees of freedom and, moreover, allows for considerable
reduction in computational effort even when there are no additional
degrees of freedom.

The original vibrating system is replaced by an augmented system,
which may have more degrees of freedom than the original one, The
augmentation is described by mass and stiffness matrices, and the
original matrix expression of the system may have to be rewritten with
suitable rows and columns of zeros to make the two sets of matrices

conformable for addition. The augmentation mass and stiffness matrices
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are taken proportional to a single parameter which can vary from Jjust
larger than zero to sizable positive values. A perturbation analysis is
then performed on this augmented system.

The iterative character of the basic method for improving
frequencies and modés is modified so that each step now corﬁesponds to a
calculation of the next order of perturbation.‘ This modification
eliminates the difficulty of dealing with very light additional masses
and results in successive solutions of linear matrix equations all having
the same coefficient matrix. Unlike in the original method, which
requires a new triangularization at each step, the expensive repeated
triangularizations are not needed in the perturbation scheme.

One important application of the perturbation method is to determine
the modes and frequencies of a structure to which a light secondary
system is added - say the piping in a power plant. In situations where a
frequency of the added system is close to one or more frequencies of the
original system, the so-called tuned case, the method is quite effective
and general.

The additional system may also correspond to a large value of the
parameter multiplying the augmentation matrices. Here the difficulties
in adding degrees of freedom and separating initially close frequencies
are resolved by the perturbation technique, and the larger values of the
parameter are handled by applying the scheme to reduce the number of

steps in the original iterative methods.

5.2 Conclusions

The method presented in this study has been shown to give the

eigenvalues and eigenvectors for a general combined system. The method
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covers cases of simple as well as multiple roots. The secondary system,
tuned or untuned, may be attached to the primary system at several
points. A considerable advantage of the method is that it can be applied
to each eigenpair separately for the case of simple roots and to a small
subspace in the case of close or multiple roots. It might be noted that
although multiple roots do not occur in the priméry system for most
framed structures, they are clearly possible in slabs.

The mechanization of the perturbation process explained in Section
4.2 and 4.3 allows for the rapiq and relatively . inexpensive calculation
of the approximate solution to the eigenvalue problem to any desired
order of perturbation. Carrying out more than a simple perturbation is
needed to predict the behavior at all accurately even for_some systems
with simple eigenvalues. As was éeen in Section 4.4, it is important to
be able to calculate more than just first order perturbations in order to
find out how good the results really aré. There seems to be no way to
determine whether higher order perturbations are needed without

calculating them.

5.3 Recommendations for Further Study

Several possible areas of further study to extend the proposed
method may be suggested. The first is the extension of the mechanization
of the perturbation process to all cases of repeated roots.

Another topic that deserves treatment is the examination of the
convergence of the perturbation process at least for some nonzero u.
Actually, some progress has been made on this question that will be

reported elsewhere,
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Also, for large values of yu, the method presented might be
considered an alternative to substructure methods [41]. In this case the
identification of the primary and secondary system may be arbitrary. A
further exploration of this topic in the context of perturbation methods
may be useful.

A further possible area of improvement is the inolusion of several
parameters in the formulation of the method. This would make possible
the application of the proposed method to nonlinear systems approximated
by bilinear ones. An important application of the use of several
parameters is found in the optimization of design used in the aerospace
industry. In fact, some partially successful attempts have been made in
the past by authors using much less convenient perturbation techniques

than the ones developed here [51].
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TABLES
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Table 4.1 Comparison of Exact Solution to Approximate
Solution for First and Fifth Order
Expansions for Example 1

M 4 RELATIVE % RELATIVE

ERROR FOR ERROR FOR
1ST ORDER 5TH ORDER 1ST ORDER 5TH ORDER
U EXACT EXPANSION EXPANSION EXPANSION EXPANSION

0.00 0.500000 0.500000 0.500000

0.05 0.u484442 0.483333 0.484442 7.128017 0.002203
0.10 0.470726 0.466667 0.470707 13.866731 0.065801
0.15 0.458438 0.450000 0.458242 20.300810 0.470840
0.20 0.447294 0.433333 O.NU6302 26.,488300 1.883423
0.25 0.437093 0.416667 0.433641 32.471025 5.487993
0.30 0.427683 0.400000 0.418209 38.280286 13.100732
0.35 0.418948 0.383333 0.396844 43.940226 27.271649

0.40 0.410796 0.366667 0.364963 49.469922 51.379273

Aexact(“>—kapprox(“)

Go-ao) X 1e0

% Relative Error = -
exact
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Table 4.2 Logarithm of the Difference Between the Exact
and the Calculated Eigenvalues for Example 1

A
1ST ORDER 5TH ORDER
" EXPANSION EXPANSION
0.05 6.804336 14.886267
0.10 5.506734 10.857354
0.15 4.775067 8.538961
0.20 4,271497 6.91510
0.25 3.890922 5.668708
0.30 3.586933 4.659200
0.35 3.335002 3.811985
0.40 3.120633 3.08276
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Table 4.3 Comparison of Exact Solution to Approximate
Solution for First and Fifth Order
Expansions for Example 2

M % RELATIVE % RELATIVE
ERROR FOR ERROR FOR
1ST ORDER 5TH ORDER 1ST ORDER 5TH ORDER
u EXACT EXPANSION EXPANSION EXPANSION EXPANSION
0.00 0.120615 0.120615 0.120615
0.05 0.120581 0.120697 0.120581 342.075258  0.005736
0.10 0.120346 0.120780 0.120346 161.377258  0.044334
0.15 0.119952 0.120862 0.119953 137.300965  0.195226
0.20 0.119430 0.120944 0.119437 127.824097  0.586640
0.25 0.118806 0.121027 0.118831 122.780526 1.403669
0.30 0.118100 0.121109 0.118173 119.664577 2.892037
0.35 0.117329 0.121192 0.117505 117.559395 5.362183
0.40 0.116507 0.121274 0.116884 116.049957  9.193259
% Relative Error = Aexact(“)-kapprox(“) X 100

Aexact

(w)-a(0)
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Table 4.4 Logarithm of the Difference Between the Exact
and the Calculated Eigenvalues for Example 2

A1

1ST ORDER 5TH ORDER

EXPANSION EXPANSION
.05 9.057932 20.053899
.10 7.743861 15.943605
15 7.001945 13.557718
.20 6.492667 11.876665
.25 6.109783 10.581093
.30 5.806080 9.528812
.35 5.556449 8.644021
.bo 5.345957 7.881508
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Table 4.5 Comparison of Exact Solution to Approximate Solution
for Third Order Expansion for Example 3

M % RELATIVE
ERROR FOR
3RD ORDER 3RD ORDER
u EXACT EXPANSION EXPANSION
0.00 0.500000 | 0.500000
0.04 0.419571 40;419578 0.011271
1 0.08 0.391891 0.391916 0.027657
0.120 - 0.371999 0.372051 . - 0.04T7400
0.16 0.356141 0.356227 | 0.069624
0.20 0. 342840 '0.342970 - 0.093810
0. 24 0.331338 0.331517 - 0.119603
0.28 0.321183 . 0.321417 0.146743
0.32 0.312081 0.312377 - 0.175026
0.36 0.303830. }O.304192 0.204289
0.40 . 0.296281. 0.296715 0.234399
4 Relative Error = AeXTCt(u);zﬁggzgﬁcu):leoo"M
exact ' S

University of Illinois
Metz Reference Room
B106 NCEL
208 ¥. Romine Street
Utbana, Illincls 61801
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Table 4.6 Comparison of Exact Solution to Approximate Solution
for Third Order Expansion for Example 3

‘2 % RELATIVE
ERROR FOR
3RD ORDER 3RD ORDER
u EXACT EXPANSION EXPANSION
0.00 0.500000 0.500000
0.04 0.597912 0.597921 0.012158
0.08 0.642212 0.642250 0.031290
0.12 0.678693 0.678782 0.055660
0.16 0.711110 0.711272 0.084394
0.20 0.740937 0.741196 0.116967
0.2 0.768931 0.769315 0.153019
0.28 0.795551 0.796082 0.192279
0.32 0.821082 0.821789 0.234536
0.36 0.845729 10.846641 0.279615
0.40 0.869639 0.870784 0.327373
% Relative Error = AeXiCt(U)Eiﬁeiigi(u) x 100

exact
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Table 4.7 Logarithm of the Difference Between the Exact
and the Calculated Eigenvalues for Example 3

THIRD ORDER EXPANSION

A1 Ao
.0l 11.879731 11.564324
.08 10.610412 10.169843
.12 9.870265 - 9.333078
.16 9.350005 8.731212
.20 8.950659 8.259938
.24 8.627806 7.872068
.28 8.357672 7.542177
.32 8.1260&8 7.254975
.36 7.923765 7.000539
.bo 7.744565 6.772064
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Table 4.8 Comparison of Exact Solution to Approximate Solution
for Third Order Expansion for Ay in Example U

% RELATIVE
ERROR FOR
3RD ORDER 3RD ORDER
u EXACT EXPANSION EXPANSION
0.00 1.000000 1.000000
0.04 0.953234 0.953405 0.496100
0.08 0.939907 0.940472 1.179991
0.12 0.930786 0.931871 1.906097
0.16 0.923572 0.925239 2.597862
0.20 0.917433 0.919694 3.215379
0.24 0.911976 0.914809 3.739264
0.28 0.906989 0.910350 4.162050
0.32 0.902346 0.906174 4.483105
0.36 0.897968 0.902193 4.705580
0.40 0.893804 0.898346 4.834583
% Relative Error = Xexict(u)ziﬁgi?8§(“) x 100

exact
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Table 4.9 Comparison of Exact Solution to Approximate Solution
for Third Order Expansion for A, in Example 4

‘2 % RELATIVE
ERROR FOR
3RD ORDER 3RD ORDER
U EXACT EXPANSION EXPANSION
0.00 1.000000 1.000000
0.04 1.011224 S 1.011067 1.465051
0.08 1.023101 1.022589 2.267886
0.12 1.035932 1.034966 2.726921
0.16 1.049552 1.048109 2.942715
0.20 1.063827 1.061937 2.98u4927
0.24 1.078649 1.076381 2.901761
0.28 1.093930 1.091382 2.726815
0.32 1.109597 1.106887 2.483715
0.36 1.125592 71.12285“ 2.189223
0.40 1.141865 1.139242 1.855318
% Relative Error = AQXTCt(U);:?giigi(u) x 100
exact
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Table U4.10 Comparison of Exact Solution for Approximate Solution
for Third Order Expansion for A3 in Example 4

'3 % RELATIVE

ERROR FOR

3RD ORDER 3RD ORDER

" EXACT EX PANSION EXPANSION

0.00 1.000000 1.000000
0.04 1.073803 1.074026 0.371692
0.08 1.111246 1.112105 0.878972
0.12 1.143092 - 1.144994 1468598
0.16 1.171800 1.175150 2.117290
0.20 1.198337 1.203534 2.812983
0.24 1.223204 1.230641 3.548219
0.28 1.246701 1.256767 4.317842
0.32 1.269030 1.282104 5.117962
0.36 1.290332 1.306785 5.945436
0.40 1.310713 1.330911 6.797560
% Relative Error = Aexict(u);i?gizgﬁ(u) x 100

exact
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Table U4.11 Logarithm of the Difference Between the Exact
and the Calculated Eigenvalues for Example 4

THIRD ORDER EXPANSION

u A Ao A3
0.04 8.672675 8.758666 - 8.4014680
0.08 7479641 7.576127 7.060441
0.12 6.825559 6.942160 6.264892
0.16 6.396684 6.540728 5.698842
0.20 6.002065 6.271052 5.259674
0.24 5.866370 6.089005 4.901197
0.28 5.695501 _ 5.972596 | 4.598639
0.32 5.565292 5.910943 4.337168
0.36 5.466870 5.900338 4,107205

0.40 5.394481 5.943533 3.902203
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FIGURES
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Fig. 1.1 Local Modification to Structural System Produced
by Elastic Connector Between Masses i and j

Fig. 1.2 Local Modification to Structural System Produced
by Addition of Mass u at Level i
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Fig. 2.1 Undamped n Degree-of-Freedom System

Fig. 2.2 Augmented Structural System Consisting of a
Four-Degree-of-Freedom Initial System and a
Single-Degree-of-Freedom Added System
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Fig. 2.3 Fixed-Base Model of Single-Degree-of-Freedom
’ Added System
H
s x x % 3¢
Al A2 An+l | A3 Ag
S
Al Ao Ap+] Az An A

Fig. 2.4 Schematic Representation of the Variation
of the Eigenvalues '
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Fig. 2.5

Augmented Structural System Consisting of a
Four-Degree-of ~-Freedom Initial System and a
Two-Degree-of~Freedom Added System

AA— m ¥

77777

777777

Fig. 2.6 Fixed-Based Model of Two-Degree-of-Freedom

Added System
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Fig. 3.1 Four-Degree-of-Freedom Tuned Structural System
} %3
Pl = - - xz
bl -7 Y| -7
- 2 __— idz _-""a
{ —————— T i;;’ I
Ve

Fig. 3.2 Schematic Representation of Frames of
Reference Xj and Y
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