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Abstract. In this paper we develop an effective procedure for expressing Stark units in real
quadratic extensions of totally real fields as values of the Barnes multiple Gamma function
at algebraic points. This procedure is used to explicitly generate non-abelian extensions of
Q by special Gamma values. As a main component of our work, we develop an algorithm
to compute Shintani sets in all dimensions.

1. Introduction

1.1. Overview. It is a fundamental problem in number theory to explicitly generate number
fields by values of transcendental functions at algebraic points. To give a basic example of
this, we recall how a real quadratic field can be generated over Q by values of Euler’s Gamma
function

Γ(z) =

! ∞

0

tz−1e−tdt, Re(z) > 0

at rational numbers.
Let K be a real quadratic field of discriminant D > 0. Let χD(n) = (D/n) be the

Kronecker symbol and L(χD, s) be the Dirichlet L–function of χD. Further, let h(D) be the
class number and εD > 1 be the fundamental unit. Then the Dirichlet class number formula
states that

L′(χD, 0) =
h(D)

2
log(εD). (1.1)

Now, the Hurwitz zeta function is defined by

ζ(s, z) :=
∞"

n=0

1

(n+ z)s
, Re(s) > 1, Re(z) > 0.

It has a meromorphic continuation in s to the complex plane C with only a simple pole at
s = 1. We have the decomposition

L(χD, s) = D−s

D"

k=1

χD(k)ζ(s, k/D). (1.2)

Moreover, Lerch [10] evaluated the second term in the Taylor expansion of ζ(s, z) at s = 0
as

ζ ′(0, z) =
∂

∂s
ζ(s, z)

####
s=0

= log

$
Γ(z)√
2π

%
. (1.3)

Differentiating (1.2) and substituting (1.3) yields

L′(χD, 0) = − log(D)L(χD, 0) +
D"

k=1

χD(k) log

$
Γ(k/D)√

2π

%
.

1
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Since χD is even, the functional equation implies that L(χD, 0) = 0. Then using the orthog-
onality relations we get

L′(χD, 0) =
D"

k=1

χD(k) log(Γ(k/D)). (1.4)

Finally, by combining (1.1) and (1.4) we obtain the following identity for the fundamental
unit:

εD =
D&

k=1
(k,D)=1

Γ(k/D)2χD(k)/h(D). (1.5)

Since K/Q is quadratic, we have K = Q(εD) and thus K is generated over Q by products
of special Gamma values.

Example 1.1. The identity (1.5) can be illustrated as follows. Let K = Q(
√
5). Then the

fundamental unit ε5 equals the golden ratio

ε5 =
1 +

√
5

2
,

and a short calculation yields the elegant identity

1 +
√
5

2
=

Γ (1/5)Γ (4/5)

Γ (2/5)Γ (3/5)
.

In particular,

K = Q
$
Γ (1/5)Γ (4/5)

Γ (2/5)Γ (3/5)

%
.

The primary objective of this paper is to extend the identity (1.5) to Stark units in
certain real quadratic extensions of totally real fields and to develop an effective procedure
for computing both sides of this identity. The quadratic extensions K/F we will consider
are determined by the following condition.

Condition 1.2. Assume that (K,F ) is a pair of number fields such that:

• F is a totally real number field of degree n over Q with real embeddings σ1 =
idF , σ2, . . . , σn.

• K = F (
√
∆) is a quadratic extension of F such that σ1(∆) > 0 and σi(∆) < 0 for

i = 2, . . . , n. In other words, K has signature sig(K) = (2, n− 1).

Assume that (K,F ) is a pair of number fields satisfying Condition 1.2.
Let χK/F be the quadratic Hecke character of conductor DK/F associated to K/F by class

field theory where DK/F is the relative discriminant of K/F . Let L(χK/F , s) be the Hecke
L–function of χK/F . Let h(K) be the class number of K and h(F ) be the class number of
F .

Write Gal(K/F ) = 〈σ〉 where σ is the embedding of K defined by

σ :
√
∆ %−→ −

√
∆.
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Let OF be the ring of integers of F and O×
F be the group of units of F . Define

v :=

'
1, if ∆ ∈ O×

F (F
×)2

0, otherwise,

where O×
F (F

×)2 is the set units in F× which can be expressed as the product of a unit in
O×

F and a square in (F×)2. Choose any unit ε ∈ O×
K satisfying [O×

K : 〈O×
F , ε〉] = 2v (see e.g.

Proposition 3.1). Then the Stark unit εK/F,S in K is defined by

εK/F,S := max

'####
ε

σ(ε)

#### ,
####

ε

σ(ε)

####
−1
(

> 1.

In [14, Theorem 2], Stark proved that

L′(χK/F , 0) = 2n−2−vh(K)

h(F )
log(εK/F,S). (1.6)

In particular,

εK/F,S = exp

$
22+v−n h(F )

h(K)
L′(χK/F , 0)

%
. (1.7)

The formula (1.6) is a generalization of the Dirichlet class number formula (1.1).

Remark 1.3. In analogy with cyclotomic fields and their maximal totally real subfields,
Stark [14] proved that K and F are generated over Q by εK/F,S and εK/F,S + ε−1

K/F,S, respec-

tively. Stark also remarked that the same holds for any nonzero integral power of εK/F,S,
that is, for all nonzero integers ℓ ∈ Z we have

K = Q(εℓK/F,S) and F = Q(εℓK/F,S + ε−ℓ
K/F,S). (1.8)

By (1.6) we have

εαK/F,S = exp
)
L′(χK/F , 0)

*
,

where α := 2n−2−vh(K)/h(F ). Since the relative class number h(K)/h(F ) is an integer (see
e.g. [17, Proposition 4.11]), if n ≥ 3 then α is a nonzero integer. Hence it follows from (1.8)
that if n ≥ 3, then

K = Q(exp
)
L′(χK/F , 0)

*
).

Starting with the identity (1.7), we need an algorithm to compute the Stark unit εK/F,S

and an n-dimensional generalization of Lerch’s identity (1.4) for L′(χK/F , 0) in which all
quantities involved can be effectively computed. We will develop an algorithm to compute
the Stark unit εK/F,S. Now, Shintani [12] gave an effective generalization of Lerch’s identity
in dimension 2. He also [13] gave similar (but much more complicated) identities in dimension
n ≥ 3, however, the quantities appearing in these identities are not effectively computable.
Roughly speaking, Shintani’s argument relies on the existence of a fundamental domain for
the action of the group of totally positive units of F on Rn

>0 consisting of polyhedral cones of
varying dimensions, but there is no effective way to construct these cones. Diaz y Diaz and
Friedman [5], and Charollois, Dasgupta, and Greenberg [4] independently (and by different
methods) constructed a “signed” fundamental domain for this group action which is effective.
By building on the works [13, 5, 4], we will give an effective generalization of (1.5). We will
then develop an algorithm to compute the algebraic points at which the Barnes multiple
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Gamma function is evaluated in this identity. These sets of algebraic points, which we call
Shintani sets, have a rich structure which we investigate extensively. In particular, we will
show that there is a strong connection between the combinatorial geometry of these sets and
the algebraicity of special Gamma values.

1.2. The Barnes multiple Gamma function. In this section we define the Barnes mul-
tiple Gamma function [1, 2] and summarize some of its basic properties.

To motivate the definition of the Barnes multiple Gamma function, consider the identity
(1.3). We can reverse things and view (1.3) as defining Euler’s Gamma function,

Γ(z) :=
√
2π exp

$
∂

∂s
ζ(s, z)

####
s=0

%
. (1.9)

Since Γ(z) has a simple pole at z = 0 with residue 1, (1.9) shows that

exp

$
∂

∂s
ζ(s, z)

####
s=0

%

has a simple pole at z = 0 with residue 1/
√
2π.

To define the Barnes multiple Gamma function, we require an n-dimensional generalization
of the Hurwitz zeta function defined by

ζn(s, z,w) :=
"

(r1,r2,...,rn)∈Zn
≥0

1

(z + r1w1 + r2w2 + ...+ rnwn)s
, Re(s) > n, Re(z) > 0

for w = (w1, w2, . . . , wn) ∈ Rn
>0. This function has a meromorphic continuation in s to

the complex plane C with simple poles at s = 1, . . . , n. In particular, since ζn(s, z,w) is
holomorphic at s = 0, the function

exp

$
∂

∂s
ζn(s, z,w)

####
s=0

%
(1.10)

is defined for Re(z) > 0.
The function (1.10) has a meromorphic continuation in z to the whole complex plane

with a simple pole at z = 0. Let ρn(w)−1 denote the residue of (1.10) at z = 0. Then the
n-dimensional Barnes multiple Gamma function is defined by

Γn(z,w) := ρn(w) exp

$
∂

∂s
ζn(s, z,w)

####
s=0

%
.

Observe that when n = 1 and w = (1) ∈ R>0, the identity (1.9) shows that Γ1(z, (1)) =
Γ(z). Hence, Euler’s Gamma function is a special case of the Barnes multiple Gamma
function.

1.3. Shintani sets. In this section we define the special sets of algebraic points at which
the Barnes multiple Gamma function will be evaluated in the identity for the Stark unit
εK/F,S. The following discussion is adapted from the setup in [5].

Let O×,+
F denote the group of totally positive units of F . Since F has signature (n, 0),

Dirichlet’s unit theorem implies that both O×
F and O×,+

F have rank n − 1. Fix a choice of
generators ε1, . . . , εn−1 of O×,+

F .
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Let ι : F ↩→ Rn be the embedding of F in Rn given by ι(x) := (σ1(x), . . . , σn(x)) ∈ Rn for
any x ∈ F . For each 1 ≤ i ≤ n and any permutation τ ∈ Sn−1, define the totally positive
unit

fτ,i := ετ(1)ετ(2) · · · ετ(i−1) =
i−1&

j=1

ετ(j) ∈ O×,+
F . (1.11)

Note that for i = 1 this gives the empty product, so fτ,1 = 1.
For any τ ∈ Sn−1, define the weight

wτ :=
(−1)n−1sgn(τ) · sign(det(σi(fτ,j)))

sign(det(log |σi(εj)|))
∈ {0,±1}.

Note that wτ ∕= 0 if and only if det(σi(fτ,j)) ∕= 0. Thus wτ ∕= 0 if and only if the vectors
ι(fτ,j) ∈ Rn

>0 for j = 1, . . . , n form a basis for Rn. In particular, if wτ ∕= 0, then we can write
the n-th standard basis vector in Rn as

en := (0, 0, . . . , 1) =
n"

i=1

ciι(fτ,i)

for some unique real numbers ci ∈ R. Define the following intervals in terms of the sign of
ci,

Iτ,i :=

'
[0, 1) if ci > 0

(0, 1] otherwise.

Similarly, observe that if wτ ∕= 0, then the algebraic numbers {fτ,i}ni=1 form a Q-basis
for F . In particular, given a nonzero integral ideal f of F , every element z ∈ f−1 can be
expressed as a linear combination of the form

z =
n"

i=1

tz,τ,ifτ,i

for some unique rational numbers tz,τ,i ∈ Q. Let

tz,τ := (tz,τ,1, . . . , tz,τ,n) ∈ Qn

be the coordinate vector of z with respect to the Q-basis {fτ,i}ni=1.
For τ ∈ Sn−1 such that wτ ∕= 0 and for f a nonzero integral ideal of F , we define the

Shintani set associated to f by

Rτ (f) = Rτ (f; ε1, . . . , εn−1) :=
+
z ∈ f−1

## tz,τ ∈ Iτ,1 × · · ·× Iτ,n
,
.

Similarly, we define the restricted Shintani set associated to f by

-Rτ (f) = -Rτ (f; ε1, . . . , εn−1) :=
+
z ∈ f−1

## tz,τ ∈ Iτ,1 × · · ·× Iτ,n, f〈z〉 coprime to f
,
.

The Shintani set Rτ (f) is finite, and embeds via ι as a subset of the F -rational cone

Cτ
F = Cτ

F (ε1, . . . , εn−1) := {x ∈ Rn | x =
n"

i=1

tiι(fτ,i), ti ≥ 0} ⊂ Rn
≥0.

Finally, we define the set of boundary points in the Shintani set by

∂Rτ (f) := {z ∈ Rτ (f)
## at least one entry of tz,τ is 0 or 1}
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and the set of interior points in the Shintani set by

int (Rτ (f)) := Rτ (f) \ ∂Rτ (f).

1.4. Identities for Stark units. Let

A = (aij) ∈ Mn(R>0)

be an n × n matrix with positive real entries. Then for any vector h = (h1, . . . , hn) ∈ Zn
≥0

and any pair of integers j, ℓ ∈ Z with 1 ≤ j, ℓ ≤ n and j ∕= ℓ, define the constants

Ch,j,ℓ(A) :=

! 1

0

.
n&

t=1

(ajt + aℓtu)
ht−1 −

n&

t=1

aht−1
jt

/
du

u

and

Ch(A) :=
"

(j,ℓ)∈Z2

1≤j,ℓ≤n
j ∕=ℓ

Ch,j,ℓ(A).

Define the matrix

Aτ := (σi(fτ,j)) ∈ Mn(R>0), τ ∈ Sn−1

and let

Aτ
i := (σi(fτ,1), . . . , σi(fτ,n))

denote the i-th row of Aτ . Let Bk(x) ∈ Q[x] denote the k-th Bernoulli polynomial. Then
define the constant C(K/F ) = C(K/F ; ε1, . . . , εn−1) by

C(K/F ) :=
(−1)n

n

"

τ∈Sn−1

"

z∈∂ !Rτ (DK/F )

cK/F,τ (z)
"

h=(h1,...,hn)∈Zn
≥0"n

i=1 hi=n

Ch(A
τ )

n&

i=1

Bhi
(tz,τ,i)

hi!
(1.12)

where

cK/F,τ (z) :=
wτχK/F (DK/F 〈z〉)h(F )

2n−v−2h(K)
. (1.13)

Remark 1.4. In Proposition 7.2 we show that the constants Ch(A
τ ) appearing in (1.12)

can be explicitly evaluated when the degree [F : Q] = n is prime.

Finally, we define the product ΓK/F,n of special Gamma values

ΓK/F,n = ΓK/F,n(ε1, . . . , εn−1) :=
&

τ∈Sn−1
wτ ∕=0

&

z∈!Rτ (DK/F )

n&

i=1

Γn(〈tz,τ , Aτ
i 〉, Aτ

i )
cK/F,τ (z) (1.14)

where 〈 , 〉 denotes the standard inner product on Rn.

Theorem 1.5. Let (K,F ) be a pair of number fields satisfying Condition 1.2 and assume
that DK/F is principal with a totally positive generator. Then the Stark unit εK/F,S is given
by

εK/F,S = exp (C(K/F )) · ΓK/F,n, (1.15)
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where C(K/F ) is defined by (1.12) and ΓK/F,n is defined by (1.14). Furthermore, if ∂-Rτ (DK/F ) =
∅, then

εK/F,S = ΓK/F,n

and we have ΓK/F,n ∈ Q and K = Q(ΓK/F,n).

1.5. An example. In this section we give an example which illustrates the type of explicit
identities for Stark units in terms of special Gamma values that the procedure developed in
this paper can yield (see Section 2 for the proof). In particular, this gives the first identity
of this type for a pair of number fields (K,F ) satisfying Condition 1.2 with [K : Q] ≥ 6.
Identities of this type for [K : Q] = 4 were given by Shintani in [12].

Let Γ3 denote the Barnes triple Gamma function (see Section 1.2) and let {x} = x − [x]
denote the fractional part of x ∈ R.

Theorem 1.6. (1) Let r be the root of the irreducible polynomial p(X) = X3−X2− 2X +1

which is approximately equal to −1.2469.... Let F = Q(r) and K = F (
√
∆) where ∆ :=

r2 − 2r − 3 > 0. Then (K,F ) is a pair of number fields satisfying Condition 1.2 where F is
a totally real abelian cubic field with discriminant dF = 49 and narrow class number 1.

(2) The Stark unit εK/F,S is the root of the monic irreducible polynomial

X6 − 2X5 + 2X4 − 3X3 + 2X2 − 2X + 1 (1.16)

which is approximately equal to 1.6355....

(3) We have

εK/F,S = ΓK/F,3 := Γ1
K/F,3 · Γ2

K/F,3 · Γ3
K/F,3 · Γ4

K/F,3,

where

Γ1
K/F,3 :=

3&

i=1

13&

m=1
m ∕=5

Γ3

$0
29

39
(3m− 2)

1
+

1

3
αi +

0
3m− 2

39

1
βi, (1,αi, βi)

% c1(m)
2

Γ2
K/F,3 :=

3&

i=1

13&

m=1
m ∕=5

Γ3

$0
3m− 2

39

1
+

2

3
αi +

0
35

39
(3m− 2)

1
βi, (1,αi, βi)

% c1(m)
2

Γ3
K/F,3 :=

3&

i=1

12&

m=1

Γ3

$2m

13

3
+ αi +

0
9

13
m

1
βi, (1,αi, βi)

% c2(m)
2

Γ4
K/F,3 :=

3&

i=1

12&

m=1

Γ3

$2m

13

3
+

0
9

13
m

1
βi, (1, γi, βi)

% c2(m)
2

with

αi :=

4
56

57

−r2 + r + 3, i = 1

−r + 2, i = 2

r2, i = 3

βi :=

4
56

57

(r + 1)2, i = 1

−3r2 + r + 8, i = 2

2r2 − 3r + 1, i = 3

γi :=

4
56

57

r2 + r, i = 1

−2r2 + r + 5, i = 2

(r − 1)2, i = 3
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and

c1(m) :=

'
1, m ∈ {1, 2, 4, 6, 8, 9}
−1, m ∈ {3, 7, 10, 11, 12, 13}

c2(m) :=

'
1, m ∈ {1, 3, 4, 9, 10, 12}
−1, m ∈ {2, 5, 6, 7, 8, 11}.

(4) We have ΓK/F,3 ∈ Q and K = Q(ΓK/F,3).

Remark 1.7. Part (2) of Theorem 1.6 highlights the fact that any Stark unit lying over a
totally real base field F with [F : Q] ≥ 2 satisfies a monic palindromic polynomial in Z[X].
Also, the only other real root of (1.16) is ε−1

K/F,S, and the four non-real roots of (1.16) all

have absolute value equal to 1. See [15, p. 74].

Remark 1.8. In [18], Yamamoto expressed every Stark unit lying over a totally real field
as a finite product of special values of the multiple sine function.

1.6. Generating non-abelian extensions of Q by special Gamma values. Given a
pair of number fields (K,F ) satisfying Condition 1.2 where DK/F is principal with a totally
positive generator, it would be very desirable to know whether the extensionK/Q can always
be generated by special Gamma values. As we have seen in Theorem 1.5, this is true if the set
of boundary points is empty (which forces the constant C(K/F ) to vanish). An important

feature of our work is an algorithm to compute the restricted Shintani set -Rτ (DK/F ), which
in turn allows us to compute the constant C(K/F ). Based on our computation of C(K/F )
for many pairs (K,F ), we believe there is always a choice of generators ε1, . . . , εn−1 of O×,+

F

such that C(K/F ) = 0. If true, then it is always possible to generate K/Q by special
Gamma values. We observe this theoretically in the proof of Theorem 1.6. In particular, for
the pair (K,F ) in that example we construct a choice of generators ε1, ε2 of O×,+

F such that

∂-Rτ (DK/F ) ∕= ∅ for all τ ∈ S2, but C(K/F ) = 0 (see e.g. Proposition 2.1).
In Table 1 we display a few pairs of number fields (K,F ) satisfying Condition 1.2 with

F = Q(r) cubic of narrow class number 1 and a corresponding choice of generators ε1, ε2 of
O×,+

F such that C(K/F ) = 0.

F r ∆ dF dK ε1 ε2

x3 − x2 − 2x+ 1 1.8019... 4r − 3 49 98441 (r + 1)2 r(r + 1)

x3 − x2 − 2x+ 1 −1.2470... −4r − 3 49 232897 (r + 1)2 r(r + 1)

x3 − 3x− 1 −0.3473... −3r2 + 2r + 5 81 242757 2r2 − 3r − 1 −r + 2

x3 − x2 − 2x+ 1 −1.2470... r2 − 4r − 4 49 271313 (r − 1)2 r(r + 1)

x3 − 3x− 1 −1.5321... −4r − 3 81 347733 2r2 − 3r − 1 −r + 2

x3 − 3x− 1 1.8794... r2 + 2r − 3 81 373977 2r2 − 3r − 1 −r + 2

x3 − x2 − 2x+ 1 1.8019... 5r2 − 12 49 472977 (r − 1)2 r(r + 1)

Table 1. List of pairs (K,F ) satisfying Condition 1.2 with C(K/F ) = 0.

1.7. The combinatorial geometry of Shintani sets. Theorem 1.5 and Section 1.6 re-
flect the strong connection between the combinatorial geometry of Shintani sets and the
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algebraicity of special Gamma values. Accordingly, one of our objectives is to undertake an
extensive study of these sets.

We first explain how the algebraic numbers in the restricted Shintani sets -Rτ (DK/F ) which
determine the special Gamma values ΓK/F,n in Theorem 1.5 are analogous to the rational
numbers

-RD :=

0
k

D
∈ 1

D
Z
#### 1 ≤ k ≤ D, gcd(k,D) = 1

1

at which Euler’s Gamma function is evaluated in (1.5). This analogy can be understood
from the following group-theoretic perspective. The set of rational numbers defined by

RD :=

0
k

D
∈ 1

D
Z
#### 1 ≤ k ≤ D

1

is a complete set of coset representatives for the quotient group

1

D
Z
8

Z

inside the standard fundamental domain (0, 1] for the group R/Z. Similarly, in Proposition
4.1 we will show that the Shintani set Rτ (DK/F ) is a complete set of coset representatives
for the quotient group

Gτ (D
−1
K/F ) := D−1

K/F

9
n:

i=1

Zfτ,i

whose images under the embedding ι : F ↩→ Rn lie inside the standard fundamental paral-
lelotope

P τ
F = P τ

F (ε1, . . . , εn−1) :=

'
x ∈ Rn

##### x =
n"

i=1

tiι(fτ,i), ti ∈ R, ti ∈ Iτ,i

(
⊂ Cτ

F

for the group

ι(Gτ (D
−1
K/F )) = Rn

9
n:

i=1

Z · ι(fτ,i) .

Here we recall that the algebraic numbers fτ,i are the totally positive units in F defined by
(1.11). After removing from the Shintani set Rτ (DK/F ) the numbers z for which

χK/F (DE/F 〈z〉) = 0

by enforcing the condition that DK/F 〈z〉 be coprime to DK/F , we see that -Rτ (DK/F ) is

analogous to -RD.

Now, observe that the size of the set -RD can be expressed geometrically as a ratio of
volumes,

#-RD =
vol(R/Z)
vol(Z)

ϕ(D) =
vol((0, 1]);

dQ
ϕ(D) (1.17)

where ϕ is the Euler totient function.
We will prove the following generalization of (1.17) for the size of the restricted Shintani

set.
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Theorem 1.9. Assume that DK/F is principal. Then

#-Rτ (DK/F ) =
vol(ι(Gτ (D

−1
K/F ))

vol(ι(OF ))
ϕ(DK/F ) =

vol(P τ
F )√

dF
ϕ(DK/F ) =

| det(Aτ )|√
dF

ϕ(DK/F ),

where

ϕ(DK/F ) := NF/Q(DK/F ) ·
&

p|DK/F

<
1− 1

NF/Q(p)

=

is the generalized Euler totient function for number fields.

We will also prove the following orthogonality relations for ray class characters with respect
to Shintani sets. This result will be used in the proof of Theorem 1.5.

Theorem 1.10. Assume that DK/F is principal and generated by a totally positive element
in F . Let χ be a narrow ray class character modulo DK/F . Then for any τ ∈ Sn−1, we have

"

z∈!Rτ (DK/F )

χ(DK/F 〈z〉) =

4
6

7

0, if χ ∕= 1,
| det(Aτ )|√

dF
ϕ(DK/F ), if χ = 1.

The proofs of Theorems 1.9 and 1.10 involve a blend of algebraic number theory and
discrete geometry. Roughly speaking, we first define a binary operation on Rτ (DK/F ) which
makes the Shintani set into a finite abelian group. We then use this group structure to prove
that

#-Rτ (DK/F ) = #(L(P τ
F ) ∩ Zn)ϕ(DK/F ),

where L is a certain linear transformation on Rn. Now, a remarkable theorem of Ehrhart
(see e.g. [3]) asserts that the number of lattice points in the t-dilation of an n-polytope P is
a polynomial

E(P, t) := #(tP ∩ Zn) = cnt
n + cn−1t

n−1 + · · ·+ c0 ∈ Q[t]

of degree n with rational coefficients whose leading coefficient cn is given by

cn = vol(P ).

This polynomial is called the Ehrhart polynomial of P . In particular, the Ehrhart polynomial
of the n-parallelotope L(P τ

F ) takes the form

E(L(P τ
F ), t) = vol(L(P τ

F ))t
n + dn−1t

n−1 + · · ·+ d0

for some rational numbers di with i = 0, . . . , n− 1. On the other hand, we will make crucial
use of the structure of L(P τ

F ) to prove that

E(L(P τ
F ), t) = #(L(P τ

F ) ∩ Zn)tn.

Hence, by comparing leading coefficients we will conclude that

#(L(P τ
F ) ∩ Zn) = vol(L(P τ

F )) =
vol(P τ

F )√
dF

.

Remark 1.11. We emphasize that for computational purposes it is important to have a
formula for the size of the Shintani set. For example, since K/Q is non-abelian for n ≥ 2,
the number of elements in the Shintani set will usually be very large. Our formula can be
used to choose K so as to control the size the corresponding Shintani set and thus make the
computations of examples like Theorem 1.6 more manageable.
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2. Proof of Theorem 1.6

All computations in this section were performed using SageMath [16].
Consider the irreducible polynomial

p(X) = X3 −X2 − 2X + 1 ∈ Z[X].

The polynomial p(X) has three real roots. We choose the root r which is approximately
equal to −1.2469.... Then F = Q(r) is a totally real cubic field with narrow class number 1.
Label the three real embeddings of F by σ1 = idF , σ2, σ3.

Next, define

∆ := r2 − 2r − 3.

Then K := F (
√
∆) is a sextic number field such that σ1(∆) > 0 and σi(∆) < 0 for i = 2, 3.

In particular, the pair of number fields (K,F ) satisfies Condition 1.2.
By Theorem 1.5, we have

εK/F,S = exp(C(K/F )) · ΓK/F,3.

Our objective is to explicitly compute both sides of this identity.
In Section 3 we develop an algorithm to compute the Stark unit εK/F,S (see Algorithm

1). Applying this algorithm to the pair (K,F ), we find that εK/F,S is the root of the monic
irreducible polynomial

X6 − 2X5 + 2X4 − 3X3 + 2X2 − 2X + 1

which is approximately equal to 1.6355....
Next, for a particular choice of generators ε1, ε2 of O×,+

F , we will prove that C(K/F ) = 0
and compute ΓK/F,3.

We have ∆ /∈ O×
F (F

×)2, and thus v = 0.
The class numbers of the two fields are h(K) = h(F ) = 1, the discriminants are dK = 31213

and dF = 49, the relative discriminant DK/F = 〈2r2 − 2r + 1〉 is a prime ideal in OF lying
over 13 of norm 13, and ϕ(DK/F ) = 12. Note that the generator 2r2 − 2r + 1 of the ideal
DK/F is totally positive. Furthermore, we know that K is a ray class field since the narrow

ray class group modulo DK/Fp
(1)
∞ p

(2)
∞ p

(3)
∞ is a group of order 2, where p

(i)
∞ is the infinite prime

of F corresponding to the embedding σi.
A set of generators for the group of totally positive units of F is given by

O×,+
F

∼= 〈−r2 + r + 3〉 × 〈r2 + r〉 =: 〈ε1〉 × 〈ε2〉.
Using the generators ε1, ε2, we compute the weight wτ for τ ∈ S2 = {id, (12)} as

wid = w(12) = 1.

From the preceding data, we find that the constant (1.13) is given by

cK/F,τ (z) =
χK/F (DK/F 〈z〉)

2
. (2.1)
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Next, using the generators ε1, ε2, we compute the matrices

Aid :=

>

?
1 ε1 ε1ε2
1 σ2(ε1) σ2(ε1ε2)
1 σ3(ε1) σ3(ε1ε2)

@

A =

>

?
1 −r2 + r + 3 (r + 1)2

1 −r + 2 −3r2 + r + 8
1 r2 2r2 − 3r + 1

@

A ,

and

A(12) :=

>

?
1 ε2 ε1ε2
1 σ2(ε2) σ2(ε1ε2)
1 σ3(ε2) σ3(ε1ε2)

@

A =

>

?
1 r2 + r (r + 1)2

1 −2r2 + r + 5 −3r2 + r + 8
1 (r − 1)2 2r2 − 3r + 1

@

A .

We have

det(Aid) = 21 and det(A(12)) = −7.

Then by Theorem 1.9, the sizes of the restricted Shintani sets are given by

#BRid(DK/F ) =
|det(Aid)|√

dF
ϕ(DK/F ) =

21

7
· 12 = 36

and

#R̃(12)(DK/F ) =
|det(A(12))|√

dF
ϕ(DK/F ) =

7

7
· 12 = 12.

In Section 5 we develop an algorithm to compute the restricted Shintani set (see Algorithm
2). Applying this algorithm to the field F , the fractional idealDK/F , the permutation τ = id,
and the generators ε1, ε2 yields

int
<
BRid(DK/F )

=
= {z = tz,id,1 · 1 + tz,id,2 · ε1 + tz,id,3 · ε1ε2 | tz,id ∈ Qid}

and

∂BRid(DK/F ) = {z = tz,id,1 · 1 + tz,id,2 · ε1 + tz,id,3 · ε1ε2 | tz,id ∈ ∂Qid},

where

Qid :=

!
""""""""""#

""""""""""$

%
14
39 ,

1
3 ,

22
39

& %
23
39 ,

1
3 ,

25
39

& %
17
39 ,

1
3 ,

10
39

& %
35
39 ,

1
3 ,

16
39

& %
29
39 ,

1
3 ,

1
39

& %
38
39 ,

1
3 ,

4
39

&

%
1
39 ,

2
3 ,

35
39

& %
10
39 ,

2
3 ,

38
39

& %
4
39 ,

2
3 ,

23
39

& %
22
39 ,

2
3 ,

29
39

& %
16
39 ,

2
3 ,

14
39

& %
25
39 ,

2
3 ,

17
39

&

%
2
39 ,

1
3 ,

31
39

& %
11
39 ,

1
3 ,

34
39

& %
20
39 ,

1
3 ,

37
39

& %
5
39 ,

1
3 ,

19
39

& %
32
39 ,

1
3 ,

28
39

& %
8
39 ,

1
3 ,

7
39

&

%
31
39 ,

2
3 ,

32
39

& %
7
39 ,

2
3 ,

11
39

& %
34
39 ,

2
3 ,

20
39

& %
19
39 ,

2
3 ,

2
39

& %
28
39 ,

2
3 ,

5
39

& %
37
39 ,

2
3 ,

8
39

&

'
""""""""""(

"""""""""")

and

∂Qid :=

!
""#

""$

%
1
13 , 1,

9
13

& %
4
13 , 1,

10
13

& %
10
13 , 1,

12
13

& %
3
13 , 1,

1
13

& %
9
13 , 1,

3
13

& %
12
13 , 1,

4
13

&

%
7
13 , 1,

11
13

& %
2
13 , 1,

5
13

& %
5
13 , 1,

6
13

& %
8
13 , 1,

7
13

& %
11
13 , 1,

8
13

& %
6
13 , 1,

2
13

&

'
""(

"")
.
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Similarly, for the permutation τ = (12) we compute

R̃(12)(DK/F ) = ∂R̃(12)(DK/F )

= {z = tz,(12),1 · 1 + tz,(12),2 · ε2 + tz,(12),3 · ε1ε2 | tz,(12) ∈ ∂Q(12)},

where

∂Q(12) :=

!
""#

""$

%
1
13 , 0,

9
13

& %
4
13 , 0,

10
13

& %
10
13 , 0,

12
13

& %
3
13 , 0,

1
13

& %
9
13 , 0,

3
13

& %
12
13 , 0,

4
13

&

%
7
13 , 0,

11
13

& %
2
13 , 0,

5
13

& %
5
13 , 0,

6
13

& %
8
13 , 0,

7
13

& %
11
13 , 0,

8
13

& %
6
13 , 0,

2
13

&

'
""(

"")
.

Proposition 2.1. We have C(K/F ) = 0.

Proof. Using (1.12) and (2.1) we can write

C(K/F ) = −1

6

)
Sid + S(12)

*
,

where the finite sums Sid and S(12) are defined by

Sid :=
"

z∈∂#Rid(DK/F )

"

h=(h1,h2,h3)∈Z3
≥0"3

i=1 hi=3

χK/F (DK/F 〈z〉)Ch(A
id)

3&

i=1

Bhi
(tz,id,i)

hi!

and

S(12) :=
"

z∈∂!R(12)(DK/F )

"

h=(h1,h2,h3)∈Z3
≥0"3

i=1 hi=3

χK/F (DK/F 〈z〉)Ch(A
(12))

3&

i=1

Bhi
(tz,(12),i)

hi!
.

We will prove that Sid + S(12) = 0.
We first prove that

Sid = C(2,1,0)(A
id)B1(1)

"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈z〉)
B2(tz,id,1)

2
. (2.2)

If h = (0, 1, 2), (0, 2, 1) or (1, 1, 1), then a direct calculation shows that

C(0,1,2)(A
id) = C(0,2,1)(A

id) = C(1,1,1)(A
id) = 0.

Now, using our explicit description of the boundary points, one can check that the map

φ : ∂BRid(DK/F ) −→ ∂BRid(DK/F )

defined by

tz,id,1 · 1 + 1 · ε1 + tz,id,3 · ε1ε2 %−→ (1− tz,id,1) · 1 + 1 · ε1 + (1− tz,id,3) · ε1ε2
is an involution. Moreover, this involution φ satisfies the following relation with respect to
certain values of the quadratic Hecke character χK/F .

Lemma 2.2. If z ∈ ∂BRid(DK/F ), then

χK/F (DK/F 〈φ(z)〉) = χK/F (DK/F 〈z〉).
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Proof. Since K/F is quadratic, the conductor-discriminant formula (see e.g. [11, §VII.11,
(11.9)]) implies that χK/F has conductor DK/F . Also, since F is cubic we have χK/F (〈−z〉) =
χK/F (〈z〉) (see (6.5)). Therefore

χK/F (DK/F 〈φ(z)〉) = χK/F (DK/F 〈1− tz,id,1 + ε1 + (1− tz,id,3) · ε1ε2〉)
= χK/F (DK/F 〈−tz,id,1 − ε1 − tz,id,3 · ε1ε2〉+DK/F )

= χK/F (DK/F 〈−(tz,id,1 + ε1 + tz,id,3 · ε1ε2)〉)
= χK/F (DK/F 〈tz,id,1 + ε1 + tz,id,3 · ε1ε2〉)
= χK/F (DK/F 〈z〉).

□

Using the involution φ, Lemma 2.2, and the relation Bk(1− x) = (−1)kBk(x), we have

"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈z〉)
3&

i=1

Bhi
(tz,id,i)

hi!

=
"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈φ(z)〉)
Bh1(1− tz,id,1)Bh2(tz,id,2)Bh3(1− tz,id,3)

h1! h2! h3!

=
"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈z〉) · (−1)h1+h3

3&

i=1

Bhi
(tz,id,i)

hi!
.

Therefore, if h = (1, 0, 2), (2, 0, 1), (1, 2, 0), (0, 0, 3) or (3, 0, 0), so that h1 + h3 is odd, then

"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈z〉)
3&

i=1

Bhi
(tz,id,i)

hi!
= −

"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈z〉)
3&

i=1

Bhi
(tz,id,i)

hi!
,

which implies

"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈z〉)
3&

i=1

Bhi
(tz,id,i)

hi!
= 0.

If h = (0, 3, 0) and z ∈ ∂BRid(DK/F ), then

Bh2(tz,id,2) = B3(1) = 0.

Since B0(x) = 1, by combining the preceding analysis we obtain (2.2).
The preceding argument can be repeated to show that

S(12) = C(2,1,0)(A
(12))B1(0)

"

z∈∂!R(12)(DK/F )

χK/F (DK/F 〈z〉)
B2(tz,(12),1)

2
. (2.3)

If h = (2, 1, 0), then a direct calculation shows that

C(2,1,0)(A
id) = C(2,1,0)(A

(12)).
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Then because B1(0) = −B1(1), by (2.2) and (2.3) we have

Sid + S(12) = C(2,1,0)(A
id)B1(1) ×

>

C?
"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈z〉)
B2(tz,id,1)

2
−

"

z∈∂!R(12)(DK/F )

χK/F (DK/F 〈z〉)
B2(tz,(12),1)

2

@

DA .

Using our explicit description of the boundary points, one can check that the map

ψ : ∂BRid(DK/F ) −→ ∂R̃(12)(DK/F )

defined by

tz,id,1 · 1 + 1 · ε1 + tz,id,3 · ε1ε2 %−→ tz,id,1 · 1 + 0 · ε2 + tz,id,3 · ε1ε2
is a bijection. Then using the bijection ψ, we get

"

z∈∂!R(12)(DK/F )

χK/F (DK/F 〈z〉)
B2(tz,(12),1)

2

=
"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈tz,id,1 · 1 + 0 · ε2 + tz,id,3 · ε1ε2〉)
B2(tz,id,1)

2
.

Now, arguing as in the proof of Lemma 2.2 we have

χK/F (DK/F 〈tz,id,1 + 1 · ε1 + tz,id,3 · ε1ε2〉) = χK/F (DK/F 〈tz,id,1 + tz,id,3 · ε1ε2〉+DK/F 〉)
= χK/F (DK/F 〈tz,id,1 + tz,id,3 · ε1ε2〉)
= χK/F (DK/F 〈tz,(12),1 + 0 · ε2 + tz,(12),3 · ε1ε2〉).

Then substituting this identity in the preceding sum yields

"

z∈∂!R(12)(DK/F )

χK/F (DK/F 〈z〉)
B2(tz,(12),1)

2

=
"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈tz,id,1 + 1 · ε1 + tz,id,3 · ε1ε2〉)
B2(tz,id,1)

2

=
"

z∈∂#Rid(DK/F )

χK/F (DK/F 〈z〉)
B2(tz,id,1)

2
.

We conclude that Sid + S(12) = 0, which completes the proof. □

We now have all of the information we need to compute the special Gamma value ΓK/F,3.
To express this value in a more compact form, we introduce the following notation. Let
{x} = x− [x] denote the fractional part of x ∈ R. Then we can write

Qid =
0$0

29

39
(3m− 2)

1
,
1

3
,

0
3m− 2

39

1%
,

$0
3m− 2

39

1
,
2

3
,

0
35

39
(3m− 2)

1%
: 1 ≤ m ≤ 13, m ∕= 5

1
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and

∂Qid =

0$2m

13

3
, 1,

0
9

13
m

1%
: 1 ≤ m ≤ 12

1
.

Similarly, we can write

Q(12) = ∂Q(12) =

0$2m

13

3
, 0,

0
9

13
m

1%
: 1 ≤ m ≤ 12

1
.

Then by computing the character values χK/F (DK/F 〈z〉) ∈ {±1} for

z ∈ BRid(DK/F ) ∪ R̃(12)(DK/F )

and pairing according to the values which are 1 and −1, we get

ΓK/F,3 = Γ1
K/F,3 · Γ2

K/F,3 · Γ3
K/F,3 · Γ4

K/F,3,

where

Γ1
K/F,3 :=

3&

i=1

13&

m=1
m ∕=5

Γ3

$0
29

39
(3m− 2)

1
+

1

3
σi(ε1) +

0
3m− 2

39

1
σi(ε1ε2), (1, σi(ε1), σi(ε1ε2))

% c1(m)
2

Γ2
K/F,3 :=

3&

i=1

13&

m=1
m ∕=5

Γ3

$0
3m− 2

39

1
+

2

3
σi(ε1) +

0
35

39
(3m− 2)

1
σi(ε1ε2), (1, σi(ε1), σi(ε1ε2))

% c1(m)
2

Γ3
K/F,3 :=

3&

i=1

12&

m=1

Γ3

$2m

13

3
+ σi(ε1) +

0
9

13
m

1
σi(ε1ε2), (1, σi(ε1), σi(ε1ε2))

% c2(m)
2

Γ4
K/F,3 :=

3&

i=1

12&

m=1

Γ3

$2m

13

3
+

0
9

13
m

1
σi(ε1ε2), (1, σi(ε2), σi(ε1ε2))

% c2(m)
2

with

c1(m) :=

'
1, m ∈ {1, 2, 4, 6, 8, 9}
−1, m ∈ {3, 7, 10, 11, 12, 13}

c2(m) :=

'
1, m ∈ {1, 3, 4, 9, 10, 12}
−1, m ∈ {2, 5, 6, 7, 8, 11}.

Finally, define αi := σi(ε1), βi := σi(ε1ε2) and γi := σi(ε2) for i = 1, 2, 3. The values of
these real numbers in terms of r are given in the matrices Aid and A(12) computed above.

In Figures 1 and 2 we display the embeddings of the restricted Shintani sets

BRid(DK/F ) and R̃(12)(DK/F )

into the fundamental parallelotopes P id
F and P

(12)
F contained in the F -rational cones C id

F and

C
(12)
F , respectively. The interior points are plotted in yellow and the boundary points are

plotted in red.
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x

y

z

1

ε1

ε1ε2

(a) The first view

x

y

z

1

ε1

ε1ε2

(b) The second view

Figure 1. The embedding of the restricted Shintani set BRid(DK/F ) into the
parallelotope P id

F ⊂ C id
F .

x

y

z

1
ε2

ε1ε2

(a) The first view
x

y

z

1
ε2

ε1ε2

(b) The second view

Figure 2. The embedding of the restricted Shintani set R̃(12)(DK/F ) into the

parallelotope P
(12)
F ⊂ C

(12)
F .

3. An algorithm for computing the Stark unit εK/F,S

In this section we develop an algorithm to compute the Stark unit εK/F,S.
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Recall that F is a totally real field of degree n over Q with real embeddings σ1 :=
idF , σ2, . . . , σn and K = F (

√
∆) is a quadratic extension of F such that σ1(∆) > 0 and

σi(∆) < 0 for i = 2, . . . , n.
Write Gal(K/F ) = 〈σ〉, where σ is the embedding of K defined by

σ :
√
∆ %−→ −

√
∆.

Our algorithm starts with the existence of a unit as in the following proposition.

Proposition 3.1. There exists a unit ε ∈ O×
K such that

[O×
K : 〈O×

F , ε〉] =
'
2 if ∆ ∈ O×

F · (F×)2,

1 otherwise.

In order to prove Proposition 3.1 we will need the following two lemmas.

Lemma 3.2. Define the subgroup

N := {u ∈ O×
K | NK/F (u) = 1} < O×

K .

Then

N · O×
F
∼= Z/2Z× Zn.

Proof. By Dirichlet’s unit theorem we have rank(O×
K) = n. Also, since K ⊂ R we have

Tor(O×
K) = 〈±1〉. Hence O×

K
∼= Z/2Z × Zn. Therefore, to prove the lemma it suffices to

show that the subgroup N · O×
F < O×

K has rank n.
Define the map

ϕ : O×
K/(N · O×

F ) −→ NK/F (O×
K)/(O×

F )
2

α(N · O×
F ) %−→ NK/F (α)(O×

F )
2.

A short calculation shows that ϕ is a well-defined group homomorphism. The map ϕ is
surjective by definition. To show that ϕ is injective, let α ∈ O×

K be such that α(N · O×
F ) ∈

ker(ϕ). Then NK/F (α) ∈ (O×
F )

2, so there is a unit β ∈ O×
F such that NK/F (α) = β2. This

implies that NK/F (α/β) = 1, and hence α/β ∈ N , or equivalently, α ∈ N · O×
F . This proves

ker(ϕ) is trivial. Thus ϕ is an isomorphism.
From the isomorphism ϕ we have

[O×
K : N · O×

F ] = [NK/F (O×
K) : (O×

F )
2] ≤ [O×

F : (O×
F )

2] < ∞.

It follows that rank(N · O×
F ) = rank(O×

K) = n. □
Lemma 3.3. We have

N ∼= Z/2Z× Z.

Proof. The lemma is equivalent to the statement

N/〈±1〉 ∼= Z.
Observe that

N ∩O×
F = {u ∈ O×

F : u2 = 1} = 〈±1〉.
Then by the Second Isomorphism Theorem, we have

N/〈±1〉 = N/(N ∩O×
F )

∼= (N · O×
F )/O×

F .
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Now, if G is a finitely generated abelian group with rank(G) = n and H < G is a subgroup
with rank(H) = m, then m ≤ n and rank(G/H) = n −m (see e.g. [9, p. 82]). By Lemma
3.2, we have rank(N · O×

F ) = n, and by Dirichlet’s unit theorem we have rank(O×
F ) = n− 1.

Hence rank((N · O×
F )/O×

F ) = 1, so that

N/〈±1〉 ∼= (N · O×
F )/O×

F
∼= Z.

□

Proof of Proposition 3.1. Define the subgroup

M :=

0
u

σ(u)

#### u ∈ O×
K

1
< N.

Let ϕ : O×
K −→ M be the map defined by ϕ(u) = u/σ(u) for u ∈ O×

K . A short calculation
shows that ϕ is a surjective group homomorphism. Now, observe that

u ∈ ker(ϕ) ⇐⇒ u

σ(u)
= 1 ⇐⇒ σ(u) = u ⇐⇒ u ∈ O×

F .

Hence ker(ϕ) = O×
F , so that

O×
K/O×

F
∼= M.

By Lemma 3.3 we have M ≤ N ∼= Z/2Z × Z. Since M is infinite, it follows that M ∼= Z if
−1 ∕∈ M and M ∼= Z/2Z× Z if −1 ∈ M . We have shown that

O×
K/O×

F
∼=

'
Z/2Z× Z if −1 ∈ M,

Z otherwise.

Thus #Tor(O×
K/O×

F ) = 2 if −1 ∈ M and #Tor(O×
K/O×

F ) = 1 otherwise.
Now, let ε ∈ O×

K #O×
F be a unit such that εO×

F generates the free part of O×
K/O×

F , i.e.,

O×
K/O×

F = Tor(O×
K/O×

F )〈εO×
F 〉.

Then by the Third Isomorphism Theorem we have

O×
K/〈O×

F , ε〉 ∼=
)
O×

K/O×
F

*
/
)
〈O×

F , ε〉/O×
F

*

= Tor(O×
K/O×

F )〈εO×
F 〉/

)
〈O×

F , ε〉/O×
F

*

= Tor(O×
K/O×

F )〈εO×
F 〉/〈εO×

F 〉
∼= Tor(O×

K/O×
F ),

where we used that 〈O×
F , ε〉/O×

F = 〈εO×
F 〉. Hence

[O×
K : 〈O×

F , ε〉] =
'
2 if −1 ∈ M,

1 otherwise.

Finally, it remains to prove the following

Claim. −1 ∈ M if and only if ∆ ∈ O×
F · (F×)2.

We will require the following two facts.

(1) −1 ∈ M if and only if there exists u ∈ O×
K such that TrK/F (u) = 0.

(2) If ∆′ ∈ F× satisfies K = F (
√
∆′), then there is a β ∈ F× such that ∆ = β2∆′.
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Fact (1) is true since

−1 ∈ M ⇐⇒ there exists u ∈ O×
K such that

u

σ(u)
= −1

⇐⇒ there exists u ∈ O×
K such that TrK/F (u) = 0.

Fact (2) is true since K = F (
√
∆), and so ∆ and ∆′ must differ by a square in F×.

We now prove the Claim. First, suppose that −1 ∈ M . Then by (1), there is a unit
u ∈ O×

K such that TrK/F (u) = 0. On the other hand, any element α ∈ K satisfies the
equation

α2 − TrK/F (α)α +NK/F (α) = 0.

Hence u2 + NK/F (u) = 0, or equivalently, u = ±
;

|NK/F (u)|. Moreover, this unit is not in
F , hence

K = F (u) = F
<E

|NK/F (u)|
=
.

Define ∆′ := |NK/F (u)| ∈ O×
F . Then by (2), we have ∆ ∈ O×

F · (F×)2.
Next, suppose that ∆ ∈ O×

F · (F×)2. Then there are elements ∆′ ∈ O×
F and β ∈ F× with

∆ = β2∆′. Now, we have K = F (
√
∆′). Moreover, the minimal polynomial of

√
∆′ over F

is x2 −∆′, and so TrK/F (
√
∆′) = 0. Finally, we have

NK/Q(
√
∆′) = NF/Q(NK/F (

√
∆′)) = NF/Q(−∆′) = ±1,

hence
√
∆′ ∈ O×

K . We have produced a unit u :=
√
∆′ ∈ O×

K with TrK/F (u) = 0. Therefore,
by (1) we have −1 ∈ M .

This completes the proof of the Claim, and hence the proposition. □
We can now describe our algorithm to compute the Stark unit. Fix two sets of generators

O×
K/Tor(O×

K) = 〈u1, . . . , un〉 and O×
F /Tor(O×

F ) = 〈η2, . . . , ηn〉.
We will need the following result which can be deduced from [17, Lemma 4.15] and its proof.

Proposition 3.4. Let u ∈ O×
K be such that the units {u, η2, . . . , ηn} are multiplicatively

independent in O×
K. Write

u = ±u
a1(u)
1 · · · uan(u)

n

η2 = ±ua21
1 · · · ua2n

n

...

ηn = ±uan1
1 · · · uann

n

and define the matrix

A(u) :=

>

CC?

a1(u) · · · an(u)
a21 · · · a2n
... · · · ...

an1 · · · ann

@

DDA ∈ Mn(Z).

Then

| det(A(u))| = [O×
K : 〈O×

F , u〉].
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Let ε be a unit as in Proposition 3.1. Since

[O×
K : 〈O×

F , ε〉] < ∞,

the units {ε, η2, . . . ηn} are multiplicatively independent in O×
K . Then applying Proposition

3.4 with u = ε yields

| det(A(ε))| = [O×
K : 〈O×

F , ε〉] = 2v.

Expanding the determinant along the first row, we have

| det(A(ε))| =

#####

n"

j=1

(−1)j+1aj(ε) det(A1j)

#####

where A1j ∈ Mn−1(Z) is the matrix obtained from A(ε) by deleting the first row and the
j-th column. Define

bj := (−1)j+1 det(A1j) ∈ Z for j = 1, . . . , n.

Then | det(A(ε))| = 2v if and only if

|b1a1(ε) + · · ·+ bnan(ε)| = 2v.

In particular, this shows that the linear Diophantine equation

b1x1 + · · ·+ bnxn = 2v (3.1)

has a solution x(ε) := ±(a1(ε), . . . , an(ε)) ∈ Zn.
Since there is at least one solution to (3.1), the Euclidean algorithm provides an effective

way of finding infinitely many solutions c = (c1, . . . , cn) ∈ Zn to (3.1). Choose any solution

c′ = (c′1, . . . , c
′
n)

to (3.1) constructed as above and define the unit

η := u
c′1
1 . . . uc′n

n ∈ O×
K .

Write

η = u
c′1
1 · · · uc′n

n

η2 = ±ua21
1 · · · ua2n

n

...

ηn = ±uan1
1 · · · uann

n

and define the matrix

A′ =

>

CC?

c′1 c′2 · · · c′n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

@

DDA .

Since c′ satisfies (3.1), the calculation with determinants above shows that

| det(A′)| = |b1c′1 + · · ·+ bnc
′
n| = 2v.
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In particular, since det(A′) ∕= 0, the units {η, η2, . . . , ηn} are multiplicatively independent in
O×

K . Then applying Proposition 3.4 with u = η yields

| det(A′)| = [O×
K : 〈O×

F , η〉].

Hence

[O×
K : 〈O×

F , η〉] = 2v.

We have now produced an effectively computable unit

η = u
c′1
1 . . . uc′n

n ∈ O×
K

such that

[O×
K : 〈O×

F , η〉] = 2v.

Hence, we have effectively computed the Stark unit

εK/F,S := max

'####
η

σ(η)

#### ,
####

η

σ(η)

####
−1
(
.

We summarize the preceding discussion in the following algorithm.

Algorithm 1 Computing the Stark unit εK/F,S

INPUT: A pair of number fields (K,F ) satisfying Condition 1.2.
OUTPUT: The Stark unit εK/F,S.

1: Compute a set of generators {u1, . . . , un} of O×
K/Tor(O×

K) and a set of generators
{η2, . . . , ηn} of O×

F /Tor(O×
F ).

2: Compute integers aij ∈ Z such that

η2 = ±ua21
1 . . . ua2n

n

...

ηn = ±uan1
1 . . . uann

n

and form the matrix M = (aij) ∈ M(n−1)×n(Z).
3: Compute the integers

bj = (−1)j+1 det(A1j), j = 1, . . . , n

where A1j ∈ Mn−1(Z) is the matrix obtained by deleting the j-th column of M .
4: Find a solution (c′1, . . . , c

′
n) ∈ Zn to the linear Diophantine equation

b1x1 + · · ·+ bnxn = 2v.

5: Compute the unit

η := u
c′1
1 . . . uc′n

n ∈ O×
K .

6: Compute the Stark unit

εK/F,S = max

'####
η

σ(η)

#### ,
####

η

σ(η)

####
−1
(
.



STARK UNITS AND SPECIAL GAMMA VALUES 23

4. The combinatorial geometry of Shintani sets

In this section, we investigate the combinatorial geometry of Shintani sets. In particular,
we give an explicit formula for the size of Shintani sets, and use this formula to prove that
the narrow ray class characters satisfy certain orthogonality relations when evaluated on
Shintani sets.

First, we define a binary operation on Shintani sets which gives them the structure of
a finite abelian group (see Proposition 4.3). We then use this group structure to define
a group homomorphism which allows us to translate the problem of studying the size of
Shintani sets to a problem in discrete geometry. More precisely, we will be faced with the
problem of counting lattice points inside a lattice polytope in Rn. This problem will be solved
by studying the Ehrhart polynomial of the polytope, allowing us (perhaps surprisingly) to
find a clean explicit formula for the size of Shintani sets (see Theorem 4.9).

For convenience, we recall the notation and assumptions of Section 1.3, which is adapted
from [5]. Let O×,+

F denote the group of totally positive units of F . Since F has signature
(n, 0), Dirichlet’s unit theorem implies that both O×

F and O×,+
F have rank n−1. Fix a choice

of generators ε1, . . . , εn−1 of O×,+
F .

Let ι : F ↩→ Rn be the embedding of F into Rn given by ι(x) := (σ1(x), . . . , σn(x)) ∈ Rn

for any x ∈ F . For each 1 ≤ i ≤ n and any permutation τ ∈ Sn−1, define the totally positive
unit

fτ,i := ετ(1)ετ(2) · · · ετ(i−1) =
i−1&

j=1

ετ(j) ∈ O×,+
F .

Note that for i = 1 this gives the empty product, so fτ,1 = 1.
For any τ ∈ Sn−1, define the weight

wτ :=
(−1)n−1sgn(τ) · sign(det(σi(fτ,j)))

sign(det(log |σi(εj)|)1≤i,j≤n−1)
∈ {0,±1}.

Observe that the matrix appearing in the numerator of wτ is n × n, whereas the ma-
trix appearing in the denominator is (n − 1) × (n − 1). Note that wτ ∕= 0 if and only if
det(σi(fτ,j)) ∕= 0. Thus wτ ∕= 0 if and only if the vectors ι(fτ,j) ∈ Rn

>0 for j = 1, . . . , n form
a basis for Rn. In particular, if wτ ∕= 0, then we can write the n-th standard basis vector in
Rn as

en := (0, 0, . . . , 1) =
n"

i=1

ciι(fτ,i)

for some unique real numbers ci ∈ R. Define the following intervals in terms of the sign of
ci,

Iτ,i :=

'
[0, 1) if ci > 0

(0, 1] otherwise.

Similarly, observe that if wτ ∕= 0, then the algebraic numbers {fτ,i}ni=1 form a Q-basis
for F . In particular, given a nonzero integral ideal f of F , every element z ∈ f−1 can be
expressed as a linear combination of the form

z =
n"

i=1

tz,τ,ifτ,i
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for some unique rational numbers tz,τ,i ∈ Q. Let

tz,τ := (tz,τ,1, . . . , tz,τ,n) ∈ Qn

be the coordinate vector of z with respect to the Q-basis {fτ,i}ni=1.
For τ ∈ Sn−1 such that wτ ∕= 0 and for f a nonzero integral ideal of F , we define the

Shintani set associated to f by

Rτ (f) = Rτ (f; ε1, . . . , εn−1) :=
+
z ∈ f−1

## tz,τ ∈ Iτ,1 × · · ·× Iτ,n
,
.

Similarly, we define the restricted Shintani set associated to f by

-Rτ (f) = -Rτ (f; ε1, . . . , εn−1) :=
+
z ∈ f−1

## tz,τ ∈ Iτ,1 × · · ·× Iτ,n, f〈z〉 coprime to f
,
.

We next introduce the following modified fractional part function for each interval Iτ,i.
For x ∈ R, let {x}Iτ,i be the unique element of Iτ,i such that

x− {x}Iτ,i ∈ Z.

Thus when Iτ,i = [0, 1) we see that {x}Iτ,i is just the ordinary fractional part {x}. On the
other hand, when Iτ,i = (0, 1], we have

{x}Iτ,i =
'
{x} if x ∕∈ Z
1 if x ∈ Z.

We begin with the following proposition which we will use to give the Shintani set the
structure of a finite abelian group.

Proposition 4.1. The Shintani set Rτ (f) is a complete set of coset representatives for the
quotient group

Gτ (f) = Gτ (f; ε1, . . . , εn−1) := f−1

9
n:

i=1

Zfτ,i .

Proof. It suffices to prove that the map

Rτ (f) −→ Gτ (f)

z %−→ [z]

is a bijection. Let z, z̃ ∈ Rτ (f). Then

z =
n"

i=1

tifτ,i and Fz =
n"

i=1

Ftifτ,i

for some rational numbers ti, Fti ∈ Iτ,i ∩Q. If [z] = [z̃], then

z − z̃ =
n"

i=1

(ti − t̃i)fτ,i ∈
n:

i=1

Zfτ,i

so that ti − t̃i ∈ Z. Since −1 < ti − Fti < 1, it follows that ti = Fti for all i = 1, . . . , n, and
hence z = z̃. Next, let [w] ∈ Gτ (f). Since {fτ,i}ni=1 is a Q-basis for F , then

w =
n"

i=1

rifτ,i
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for some rational numbers ri ∈ Q. Define

zw :=
n"

i=1

tifτ,i

where ti := {ri}Iτ,i ∈ Iτ,i ∩Q. Then

zw − w =
n"

i=1

({ri}Iτ,i − ri)fτ,i ∈
n:

i=1

Zfτ,i ⊂ f−1.

It follows that zw ∈ Rτ (f) and [zw] = [w]. □
Remark 4.2. By Proposition 4.1, the Shintani set Rτ (f) ∕= ∅ since Gτ (f) ∕= ∅.

We can now define a binary operation

⊕ : Rτ (f)×Rτ (f) −→ Rτ (f)

by letting z1 ⊕ z2 be the coset representative in Rτ (f) corresponding to the coset

z1 + z2 +
n:

i=1

Zfτ,i.

We immediately obtain the following proposition.

Proposition 4.3. The Shintani set Rτ (f) is a finite abelian group with respect to the binary
operation ⊕.

Assumption. For the remaining part of this section, we assume that the nonzero integral
ideal f is principal with generator α.

Proposition 4.4. Define the map

πα,τ : Rτ (f) −→ OF/f

z %−→ αz + f.

Then πα,τ is a surjective group homomorphism. Moreover, for every coset w + f ∈ OF/f we
have

#π−1
α,τ (w + f) = #ker(πα,τ ).

Proof. If z1, z2 ∈ Rτ (f) then

z1 + z2 − z1 ⊕ z2 =
n"

i=1

mifτ,i

for some integers mi ∈ Z. Hence
πα,τ (z1 ⊕ z2) = α(z1 ⊕ z2) + f

= αz1 + αz2 − α
n"

i=1

mifτ,i + f

= (αz1 + f) + (αz2 + f)

= πα,τ (z1) + πατ (z2)
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where we used

α
n"

i=1

mifτ,i ∈ αOF = f. (4.1)

Next, let w + f ∈ OF/f. Since f−1 =
1

α
OF , then

w

α
∈ f−1. Let z ∈ Rτ (f) be the coset

representative corresponding to the coset

w

α
+

n:

i=1

Zfτ,i.

Then there are integers ni ∈ Z such that

z =
w

α
+

n"

i=1

nifτ,i.

Hence

πα,τ (z) = αz + f = α

.
w

α
+

n"

i=1

nifτ,i

/
+ f = w + α

n"

i=1

nifτ,i + f = w + f

where we again used (4.1). Finally, by the First Isomorphism Theorem we have

Rτ (f)/ ker(πα,τ ) ∼= OF/f.

It follows immediately that

#π−1
α,τ (w + f) = #ker(πα,τ ).

□
We now give an initial formula for the size of the Shintani set Rτ (f) and the restricted

Shintani set -Rτ (f).

Proposition 4.5. We have

#Rτ (f) = #ker(πα,τ ) ·NF/Q(f)

and

#-Rτ (f) = #ker(πα,τ ) · ϕ(f),
where

ϕ(f) := # (OF/f)
× = NF/Q(f) ·

&

p|f

<
1− 1

NF/Q(p)

=

is the generalized Euler totient function for number fields.

Proof. We can write the Shintani set Rτ (f) as a disjoint union of the fibers of πα,τ ,

Rτ (f) =
G

w+f∈OF /f

π−1
α,τ (w + f). (4.2)

Hence by (4.2) and Proposition 4.4 we have

#Rτ (f) =
"

w+f∈OF /f

#π−1
α,τ (w + f) =

"

w+f∈OF /f

#ker(πα,τ ) = #ker(πα,τ ) ·NF/Q(f).
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For the restricted Shintani set -Rτ (f), we simply replace OF/f with (OF/f)
× in the preceding

argument and observe that it is a classical result that

ϕ(f) := #(OF/f)
× = NF/Q(f) ·

&

p|f

<
1− 1

NF/Q(p)

=
.

For example, see Hecke’s book [8, §27], in particular the last sentence on p. 88 and Theorem
80 on p. 89. □

We now proceed to determine #ker(πα,τ ) by first expressing it as the number of lattice
points in a certain lattice parallelotope in Rn and then solving the resulting lattice point
counting problem by employing techniques from discrete geometry. As we will see, the
number #ker(πα,τ ) does not depend on α, but only depends on the totally real number field
F , on the permutation τ ∈ Sn−1, and on the choice of independent totally positive units
ε1, . . . , εn−1.

First, we define

P τ
F = P τ

F (ε1, . . . , εn−1) :=

'
x ∈ Rn

##### x =
n"

i=1

tiι(fτ,i), ti ∈ R, ti ∈ Iτ,i

(
.

The set P τ
F is a fundamental parallelotope for the full rank lattice

n:

i=1

Z · ι(fτ,i) ⊂ Rn.

Observe that the volume of P τ
F is given by

vol(P τ
F ) = | det(Aτ )|,

where Aτ is the matrix defined by

Aτ := (σi(fτ,j)) ∈ Mn(R>0).

Lemma 4.6. We have

ker(πα,τ ) = Rτ (f) ∩OF .

Therefore

#ker(πα,τ ) = #(P τ
F ∩ ι(OF )).

Proof. First recall that f = αOF . Then note that an element z ∈ Rτ (f) satisfies

z ∈ ker(πα,τ ) ⇐⇒ αz + f = f ⇐⇒ αz ∈ f ⇐⇒ αz ∈ αOF ⇐⇒ z ∈ OF .

Thus ker(πα,τ ) = Rτ (f) ∩OF . The second part of the lemma now follows immediately from
the definition of P τ

F and the identity just proved after taking the embedding ι(Rτ (f)) ⊂
Rn. □

In the proof of the following proposition we determine #(P τ
F ∩ ι(OF )) by using techniques

from discrete geometry and thus obtain the final formula for #ker(πα,τ ).

Proposition 4.7. We have

#ker(πα,τ ) =
vol(P τ

F )√
dF

=
| det(Aτ )|√

dF
,
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where

vol(P τ
F ) =

!

Rn

χP τ
F
(x) dx

and χP τ
F
(x) denotes the characteristic function of P τ

F .

Proof. By Lemma 4.6 we have

#ker(πα,τ ) = #(P τ
F ∩ ι(OF )).

Let L : Rn −→ Rn be a linear transformation mapping the full rank lattice ι(OF ) onto Zn.
Since the vertices of the parallelotope P τ

F all lie in ι(OF ), this implies that the transformed
parallelotope L(P τ

F ) is a lattice parallelotope in Zn, i.e., all the vertices of L(P τ
F ) lie in Zn.

Moreover L(P τ
F ) is a fundamental parallelotope for the lattice

Λ :=
n:

i=1

Z · L(ι(fτ,i)) ⊂ Rn.

Since the linear transformation L maps interior (resp. boundary) points to interior (resp.
boundary) points, we see that

#(P τ
F ∩ ι(OF )) = #(L(P τ

F ) ∩ Zn).

Now, for a positive integer t ∈ Z≥1, we let

tL(P τ
F ) = {tx | x ∈ L(P τ

F )}

be the t-dilation of L(P τ
F ). More explicitly, we have

tL(P τ
F ) =

'
x ∈ Rn

##### x =
n"

i=1

siL(ι(fτ,i)), si ∈ R, si ∈ tIτ,i

(
.

Then for each i = 1, . . . , n we can write

tIτ,i =
G

mi∈Z
0≤mi≤t−1

(mi + Iτ,i),

as shown in Figure 3.

0 1 2 t− 1 t

Iτ,i 1 + Iτ,i t− 1 + Iτ,i

Figure 3. The decomposition of tIτ,i into a disjoint union of integer translates
of Iτ,i.

It follows that each si ∈ tIτ,i can be written uniquely as si = mi+ ti for some mi ∈ Z with
0 ≤ mi ≤ t− 1 and some ti ∈ Iτ,i. Hence every element

x =
n"

i=1

siL(ι(fτ,i))



STARK UNITS AND SPECIAL GAMMA VALUES 29

of the t-dilation tL(P τ
F ) can be decomposed in a unique way as

x =
n"

i=1

siL(ι(fτ,i)) =
n"

i=1

miL(ι(fτ,i)) +
n"

i=1

tiL(ι(fτ,i)) (4.3)

where
n"

i=1

miL(ι(fτ,i)) ∈
n:

i=1

Z · L(ι(fτ,i))

and
n"

i=1

tiL(ι(fτ,i)) ∈ L(P τ
F ).

Let

Bτ = Bτ (ε1, . . . , εn−1) := {L(ι(fτ,i)) | i = 1, . . . , n}.
Then Bτ is a basis for Rn, so if we denote the coordinates of a vector x ∈ Rn with respect
to the basis Bτ by [x]Bτ , we find that

'
γ =

n"

i=1

miL(ι(fτ,i))

##### (m1, . . . ,mn) ∈ Zn, 0 ≤ mi ≤ t− 1

(

=

'
γ ∈

n:

i=1

Z · L(ι(fτ,i))

##### [γ]B
τ ∈ [0, t− 1]n

(
. (4.4)

Therefore, combining the decomposition (4.3) with (4.4), we have

tL(P τ
F ) =

G

γ∈
n$

i=1
Z·L(ι(fτ,i))

[γ]Bτ∈[0,t−1]n

(γ + L(P τ
F )) , (4.5)

where the union is disjoint because L(P τ
F ) is a fundamental parallelotope for

n:

i=1

Z · L(ι(fτ,i))

and each set γ + L(P τ
F ) is just a translate of the fundamental parallelotope L(P τ

F ) by an
element of the lattice.

Since
n:

i=1

Z · L(ι(fτ,i)) ⊂ Zn,

it follows that for each

γ ∈
n:

i=1

Z · L(ι(fτ,i))

we have

#(L(P τ
F ) ∩ Zn) = #((γ + L(P τ

F )) ∩ Zn). (4.6)
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Recalling that t ∈ Z≥1, we find that

#

'
γ ∈

n:

i=1

Z · L(ι(fτ,i))

##### [γ]B
τ ∈ [0, t− 1]n

(
= tn,

and thus by (4.5) and (4.6) we obtain that the number of lattice points in the t-dilation
tL(P τ

F ) is given by

#(tL(P τ
F ) ∩ Zn) = tn ·#(L(P τ

F ) ∩ Zn). (4.7)

Finally, we consider the Ehrhart polynomial corresponding to the parallelotope L(P τ
F ),

E(L(P τ
F ), t) := #(tL(P τ

F ) ∩ Zn).

As mentioned in the introduction, Ehrhart proved that E(L(P τ
F ), t) is a polynomial in t of

degree n, and moreover, that the leading coefficient is the volume of L(P τ
F ) (see e.g. [3]),

E(L(P τ
F ), t) = vol(L(P τ

F ))t
n + cn−1t

n−1 + · · ·+ c0.

Then after comparing leading coefficients with (4.7), we find that

#(L(P τ
F ) ∩ Zn) = vol(L(P τ

F )).

If T : Rn → Rn is an invertible linear transformation andX ⊂ Rn is a Lebesgue-measurable
set, then

vol(T (X)) = | detT |vol(X)

(see e.g. [6, Theorem 2.44 b]). Applying this result to the linear transformation L : Rn → Rn,
which satisfies L(ι(OF )) = Zn and hence is invertible, we get

vol(L(P τ
F ))

vol(P τ
F )

=
vol(Rn/L(ι(OF )))

vol(Rn/ι(OF ))
=

vol(Rn/Zn)

vol(Rn/ι(OF ))
=

1

vol(Rn/ι(OF ))
.

Then using that vol(Rn/ι(OF )) =
√
dF (see e.g. [11, §I.5, Proposition 5.2]), we conclude

that

vol(L(P τ
F )) =

vol(P τ
F )√

dF
,

which completes the proof. □
Remark 4.8. By Proposition 4.7 we have

vol(P τ
F )√

dF
∈ Z+.

By combining Proposition 4.5 and Proposition 4.7, we obtain the following result which
immediately implies Theorem 1.9 from the introduction.

Theorem 4.9. We have

#Rτ (f) =
vol(P τ

F )√
dF

NF/Q(f) =
| det(Aτ )|√

dF
NF/Q(f)

and

#-Rτ (f) =
vol(P τ

F )√
dF

ϕ(f) =
| det(Aτ )|√

dF
ϕ(f).
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We next prove the following orthogonality relations for a narrow ray class character modulo
f, which immediately imply Theorem 1.10 from the introduction.

Theorem 4.10. Suppose that the generator α of f is totally positive, and let χ be a narrow
ray class character modulo f. Then for any τ ∈ Sn−1, we have

"

z∈!Rτ (f)

χ(f〈z〉) =

4
6

7

0, if χ ∕= 1,
| det(Aτ )|√

dF
ϕ(f), if χ = 1.

Proof. Write f = 〈α〉 where α ≫ 0 is totally positive. Since χ is a narrow ray class character
modulo f, on nonzero principal integral ideals it factors as

χ(〈β〉) = χf(β)N

$
ι

$
β

|β|

%p%

where p := (pt) ∈ Zn is called an admissible vector, N(x) :=
H

t xt for any vector x =
(xt) ∈ Rn, xp := (xpt

t ), and χf : (OF/f)
× → S1 is a character (see e.g. [11, Chapter 7]). In

particular, note that for any nonzero β ∈ OF we have

N

$
ι

$
β

|β|

%p%
= N

$$
σt

$
β

|β|

%pt%%
=

&

t

sign(σt(β))
pt .

Moreover, since z ∈ -Rτ (f), then the conditions defining -Rτ (f) imply that αz + f ∈ (OF/f)
×

and that αz ≫ 0. Therefore, for any z ∈ -Rτ (f) we have

χ(f〈z〉) = χ(〈αz〉) = χf(αz)
&

t

sign(σt(αz))
pt = χf(αz),

where we used that sign(σt(αz)) = 1 because αz ≫ 0. Hence, by Proposition 4.4, Proposition
4.5, Proposition 4.7, and the previous calculation, we get

"

z∈!Rτ (f)

χ(f〈z〉) =
"

w∈(OF /f)×

"

z∈π−1
α,τ (w)

χf(αz)

=
"

w∈(OF /f)×

#π−1
α,τ (w) · χf(w)

= #ker(πα,τ )
"

w∈(OF /f)×

χf(w)

=

4
6

7

0, if χ ∕= 1,
| det(Aτ )|√

dF
ϕ(f), if χ = 1,

where the last equality follows from the orthogonality relations for characters of the group
(OF/f)

×. □

5. An algorithm to compute Shintani sets

In this section we give an algorithm to compute Shintani sets.
In order to compute the Shintani set

Rτ (f) = Rτ (f; ε1, . . . , εn−1) :=
+
z ∈ f−1

## tz,τ ∈ Iτ,1 × · · ·× Iτ,n
,
,



32 ADRIAN BARQUERO-SANCHEZ, RIAD MASRI, AND WEI-LUN TSAI

we must find those z ∈ f−1 whose coordinate vector tz,τ = [z]Bf
∈ Qn with respect to the

Q-basis {fτ,i}ni=1 for F lies in the half-open hypercube Iτ,1 × · · ·× Iτ,n. We now explain how
to translate this problem to the problem of solving an n × n system of linear inequalities.
This will then be summarized as Algorithm 2 below.

First note that f−1 is a free Z-submodule of F of rank n. Let Bα = {α1, . . . ,αn} be a
Z-basis for f−1. This Z-basis is also a Q-basis for F . Accordingly, let

C = (C1, . . . , Cn) ∈ GLn(Q)

be the change of basis matrix which changes coordinates from the basis Bα to the basis Bf .
Explicitly, the columns C1, . . . , Cn of C are given by

Ci = [αi]Bf
= (c1i, . . . , cni)

T ∈ Qn

for i = 1, . . . , n. Then the equality [z]Bf
= C[z]Bα holds for any z ∈ F .

Now, write z ∈ f−1 as a linear combination of the form

z =
n"

i=1

miαi

for some unique integers m1, . . . ,mn ∈ Z. Then to find all the elements z ∈ f−1 which satisfy
[z]Bf

∈ Iτ,1 × · · · × Iτ,n, it is equivalent to find all vectors m = (m1, . . . ,mn) ∈ Zn which
satisfy

CmT ∈ Iτ,1 × · · ·× Iτ,n,

i.e., the set of all integral solutions m = (m1, . . . ,mn) ∈ Zn to the system of inequalities

c11m1+ · · ·+ c1nmn ∈ Iτ,1

c21m1+ · · ·+ c2nmn ∈ Iτ,2
...

cn1m1+ · · ·+ cnnmn ∈ Iτ,n.

This system of inequalities has a finite number of solutions, and each solutionm = (m1, . . . ,mn) ∈
Zn corresponds to a unique point

zm =
n"

i=1

miαi =
n"

j=1

.
n"

k=1

cjkmk

/
fτ,j =

n"

i=1

tz,τ,ifτ,i

in the Shintani set Rτ (f).
We summarize this discussion in the following algorithm.
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Algorithm 2 Computing Shintani sets for totally real number fields

INPUT: A quadruple (F, f, τ, {ε1, . . . , εn−1}) consisting of a totally real number field F
of degree n, a nonzero integral ideal f ⊂ OF , a permutation τ ∈ Sn−1 such that wτ ∕= 0,
and a system of generators {ε1, . . . , εn−1} of O×,+

F .

OUTPUT: The Shintani set Rτ (f) (resp. the restricted Shintani set -Rτ (f)).

1: Compute the basis Bf = {fτ,1, . . . , fτ,n}.
2: Compute the weight wτ .
3: Determine the half open intervals Iτ,i = [0, 1) or (0, 1] for i = 1, . . . , n.
4: Compute a Z-basis {α1, . . . ,αn} for the fractional ideal f−1.
5: Compute the change of basis matrix C = (C1, . . . , Cn) ∈ GLn(Q) with columns given by

the coordinate vectors

Ci = [αi]Bf
= (c1i, . . . , cni)

T ∈ Qn.

6: Find all integral solutions m = (m1, . . . ,mn) ∈ Zn to the system of inequalities

c11m1+ · · ·+ c1nmn ∈ Iτ,1

c21m1+ · · ·+ c2nmn ∈ Iτ,2
...

cn1m1+ · · ·+ cnnmn ∈ Iτ,n.

7: For each solutionm = (m1, . . . ,mn) ∈ Zn found in Step 6, compute the algebraic number

zm =
n"

i=1

.
n"

j=1

cijmj

/
fτ,i ∈ f−1.

The set of all such numbers zm is the Shintani set Rτ (f).
8: Discard every number zm such that f〈zm〉 is not coprime to f. The remaining set of

numbers is the restricted Shintani set -Rτ (f).

6. Proof of Theorem 1.5

In this section we prove Theorem 1.5. We refer the reader to the introduction for back-
ground and notation.

Given a matrix A = (aij) ∈ Mn(R>0) and a non-zero vector x = (x1, . . . , xn) ∈ Rn
≥0, the

n-dimensional Shintani zeta function is defined by

ζ(s, A, x) :=
∞"

m1,...,mn=0

n&

i=1

'
n"

j=1

aij(mj + xj)

(−s

, Re(s) > 1.

The Shintani zeta function has a meromorphic continuation to C with at most simple poles
at s = 1 − l/n for l ∈ Z≥0 and no poles at s = −k for k ∈ Z≥0 (see e.g. Proposition 2.1 of
[7]).

Now, by [5, Corollary 3] we have

L(χK/F , s) = N(DK/F )
−s

"

τ∈Sn−1
wτ ∕=0

wτ

"

z∈!Rτ (DK/F )

χK/F (DK/F 〈z〉)ζ(s, Aτ , tz,τ ). (6.1)



34 ADRIAN BARQUERO-SANCHEZ, RIAD MASRI, AND WEI-LUN TSAI

Since K and F have signatures (2, n−1) and (n, 0), respectively, the Dedekind zeta functions
ζK(s) and ζF (s) have zeros of order n and n−1 at s = 0, respectively. Hence the factorization
ζK(s) = L(χK/F , s)ζF (s) implies that L(χK/F , s) has a simple zero at s = 0. A calculation
using (6.1) now gives

L′(χK/F , 0) =
"

τ∈Sn−1
wτ ∕=0

wτ

"

z∈!Rτ (DK/F )

χK/F (DK/F 〈z〉)ζ ′(0, Aτ , tz,τ ). (6.2)

On the other hand, by [13, Proposition 1] we have

ζ ′(0, Aτ , tz,τ ) =
n"

i=1

log

$
Γn(〈tz,τ , Aτ

i 〉, Aτ
i )

ρn(Aτ
i )

%
+

(−1)n

n

"

h=(h1,h2,...,hn)∈Zn
≥0"n

i=1 hi=n

Ch(A
τ )

n&

i=1

Bhi
(tz,τ,i)

hi!
.

(6.3)

We evaluate the left hand side of (6.2) using (1.6). We evaluate the right hand side of
(6.2) using (6.3) and apply the orthogonality relations in Theorem 4.10 to cancel the residue
ρn(A

τ
i )

−1. After exponentiating, we obtain the following identity for the Stark unit

εK/F,S = exp (C(K/F )) · ΓK/F,n,

where the constant C(K/F ) is defined by

C(K/F ) :=
(−1)n

n

"

τ∈Sn−1

"

z∈!Rτ (DK/F )

cK/F,τ (z)
"

h=(h1,...,hn)∈Zn
≥0"n

i=1 hi=n

Ch(A
τ )

n&

i=1

Bhi
(tz,τ,i)

hi!
(6.4)

with

cK/F,τ (z) :=
wτχK/F (DK/F 〈z〉)h(F )

2n−v−2h(K)
,

and where the product of special Gamma values is defined by

ΓK/F,n :=
&

τ∈Sn−1
wτ ∕=0

&

z∈!Rτ (DK/F )

n&

i=1

Γn(〈tz,τ , Aτ
i 〉, Aτ

i )
cK/F,τ (z).

We next show that only the boundary points ∂-Rτ (DK/F ) contribute to the sum over z in
(6.4). To do this we will show that for any vector

h = (h1, . . . , hn) ∈ Zn
≥0

such that
In

i=1 hi = n, we have

"

z∈int(!Rτ (DK/F ))

χK/F (DK/F 〈z〉)
n&

i=1

Bhi
(tz,τ,i)

hi!
= 0.

Since (K,F ) is a pair of number fields satisfying Condition 1.2 and F has degree n, we have

χK/F (〈−z〉) = (−1)n−1χK/F (〈z〉). (6.5)
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Also, since Bk(1− x) = (−1)kBk(x) we have
n&

i=1

Bhi
(1− tz,τ,i)

hi!
= (−1)

"n
i=1 hi

n&

i=1

Bhi
(tz,τ,i)

hi!
= (−1)n

n&

i=1

Bhi
(1− tz,τ,i)

hi!
. (6.6)

Next, observe that

z ∈ int(-Rτ (DK/F )) ⇐⇒ 1− z ∈ int(-Rτ (DK/F )), (6.7)

since

z =
n"

i=1

tz,τ,ifτ,i, 1− z =
n"

i=1

(1− tz,τ,i)fτ,i,

and

tz,τ,i /∈ {0, 1} for all i = 1, . . . , n ⇐⇒ 1− tz,τ,i /∈ {0, 1} for all i = 1, . . . , n.

Then we get

"

z∈int(!Rτ (DK/F ))

χK/F (DK/F 〈z〉)
n&

i=1

Bhi
(tz,τ,i)

hi!

=
1

2

"

z∈int(!Rτ (DK/F ))

'
χK/F (DK/F 〈z〉)

n&

i=1

Bhi
(tz,τ,i)

hi!
+ χK/F (DK/F 〈1− z〉)

n&

i=1

Bhi
(1− tz,τ,i)

hi!

(

=
1

2

"

z∈int(!Rτ (DK/F ))

'
χK/F (DK/F 〈z〉)

n&

i=1

Bhi
(tz,τ,i)

hi!
− χK/F (DK/F 〈z〉)

n&

i=1

Bhi
(tz,τ,i)

hi!

(

= 0

where the first equality follows from (6.7) and the second equality follows from (6.5), (6.6),
and the fact that χK/F has conductor DK/F .

Finally, if ∂-Rτ (DK/F ) = ∅ for all τ ∈ Sn−1, then by definition the constant C(K/F ) = 0.
Hence the second statement of the theorem follows immediately from (1.15) and (1.8).

□

7. Explicit evaluation of the constant Ch(A
τ )

Shintani [13, Remark on p. 206] observed that under certain conditions on the matrix A,
the constant Ch(A) can be computed in closed form.

Lemma 7.1. Let A = (aij) ∈ Mn(R>0) and h = (h1, . . . , hn) ∈ Zn
≥0 be a vector such that

n"

i=1

hi = n.

Define the sets

P1(h) := {1 ≤ i ≤ n | hi ≥ 1}
P2(h) := {1 ≤ i ≤ n | hi = 0}.

• If |P2(h)| = 0, then

Ch(A) = 0.
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• If |P2(h)| = 1 and p ∈ P2(h), then

Ch(A) =
"

1≤j<ℓ≤n

1

ajpaℓp

&

i∈P1(h)

(ajiaℓp − ajpaℓi)
hi−1 log

$
ajp
aℓp

%
.

• If |P2(h)| ≥ 2 and for all p, q ∈ P2(h) with p ∕= q we have
&

1≤j<ℓ≤n

(aℓpajq − aℓqajp) ∕= 0, (7.1)

then

Ch(A) =
"

p∈P2(h)

"

1≤j<ℓ≤n

1

ajpaℓp

H
i∈P1(h)

(ajiaℓp − ajpaℓi)
hi−1

H
q∈P2(h),p ∕=q(ajqaℓp − ajpaℓq)

log

$
ajp
aℓp

%
.

Here we will use Lemma 7.1 to prove that if F/Q has prime degree, then Ch(A
τ ) can be

evaluated in closed form.

Proposition 7.2. Let h = (h1, . . . , hn) ∈ Zn
≥0. If F has prime degree [F : Q] = n, then the

constant Ch(A
τ ) is given as follows.

• If |P2(h)| = 0, then

Ch(A
τ ) = 0.

• If |P2(h)| = 1 and p ∈ P2(h), then

Ch(A) =
!

1≤j<ℓ≤n

1

σj(fτ,p)σℓ(fτ,p)

"

i∈P1(h)

(σj(fτ,i)σℓ(fτ,p)− σj(fτ,p)σℓ(fτ,i))
hi−1 log

#
σj(fτ,p)

σℓ(fτ,p)

$
.

• If |P2(h)| ≥ 2, then

Ch(A) =

!

p∈P2(h)

!

1≤j<ℓ≤n

1

σj(fτ,p)σℓ(fτ,p)

%
i∈P1(h)

(σj(fτ,i)σℓ(fτ,p)− σj(fτ,p)σℓ(fτ,i))
hi−1

%
q∈P2(h),p ∕=q(σj(fτ,q)σℓ(fτ,p)− σj(fτ,p)σℓ(fτ,q))

log

#
σj(fτ,p)

σℓ(fτ,p)

$
.

Proposition 7.2 is an immediate consequence of Lemma 7.1 and the following result.

Lemma 7.3. Let h = (h1, . . . , hn) ∈ Zn
≥0 be any vector such that

In
i=1 hi = n and |P2(h)| ≥

2. If F has prime degree [F : Q] = n, then the matrix Aτ = (σi(fτ,j)) ∈ Mn(R>0) satisfies
condition (7.1) of Lemma 7.1 for each τ ∈ Sn−1.

Proof. To verify the condition (7.1) for Aτ , we must show that for all p, q ∈ P2(h) with p ∕= q,
we have

&

1≤j<ℓ≤n

(σℓ(fτ,p)σj(fτ,q)− σℓ(fτ,q)σj(fτ,p)) ∕= 0 (7.2)

where

fτ,i := ετ(1)ετ(2) · · · ετ(i−1) =
i−1&

j=1

ετ(j) ∈ O×,+
F .
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Without loss of generality, we may suppose that p < q. Then (7.2) is equivalent to
&

1≤j<ℓ≤n

(σℓ(fτ,p)σj(fτ,q)− σℓ(fτ,q)σj(fτ,p))

=
&

1≤j<ℓ≤n

σℓ(fτ,p)σj(fτ,p)
)
σj(ετ(p) . . . ετ(q−1))− σℓ(ετ(p) . . . ετ(q−1))

*
∕= 0.

Since σℓ(fτ,p)σj(fτ,p) ∕= 0 for each j, ℓ, it suffices to show that
&

1≤j<ℓ≤n

)
σj(ετ(p) . . . ετ(q−1))− σℓ(ετ(p) . . . ετ(q−1))

*
∕= 0.

However, if

σj(ετ(p) . . . ετ(q−1))− σℓ(ετ(p) . . . ετ(q−1)) = 0

for some j < ℓ, then σj, σℓ are distinct embeddings of F which are equal after restriction
to the subfield Q(ετ(p) . . . ετ(q−1)). It follows that Q(ετ(p) . . . ετ(q−1)) is a proper subfield of F .
However, since F/Q has prime degree, we must have Q(ετ(p) . . . ετ(q−1)) = Q, a contradiction.

□
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