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Abstract 

Urban ecology has been an understudied topic in myxomycete research. For that reason, the 

present investigation aimed to generate data related to myxomycetes in urban areas of the 

Neotropical region. With an approach of two discrete experiments, one centered on ground-based 

information and one on air-based data, results showed that myxomycetes can be valuable organisms 

for microbial ecology assessments in urban centers. Data from these experiments showed that, 

using a simple and classical laboratory-based method of detection, the number of records seemed to 

be affected by the degree of urbanization, which also had an effect on pH values, but the number of 

species seemed to be more associated with site-specific characteristics. Airborne propagules of 

myxomycete dispersion, captured using substrates exposed to outdoor conditions, indicated that air 

currents may play a role on the distribution of myxomycetes in urban conditions, potentially 

affecting the process of ecological data generation. The results obtained herein are useful to 

demonstrate that myxomycetes can be studied in urban centers and that more systematic approaches 

could generate relevant data in the context of climate change, green cities, and urban biodiversity 

monitoring. 
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Introduction  

Urban ecology is an active topic of research that has been considered in multiple international 

agendas in recent years (see IPCC 2019). Since living organisms respond to the pressures created 

by urban environments, ecological patterns associated with them are incredibly useful for 

monitoring purposes. As such, ecological quantification and integrated analyses have been used to 

study pollution patterns (Yuan et al. 2020), hydrology (Holder & Gibbes 2017) and socio-historical 

anthropogenic transformations (Colding & Barthel 2017).  

As part of this movement, scientists have coined new terms to refer to species associations 

with urban centers (see Grant et al. 2011), studied scale-dependent patterns (Egerer et al. 2017) and 

integrated temporal variables in their analyses (Schröder et al. 2018). It has been said that urban 

ecology is the single topic that will have the greatest impact on the development of theoretical and 

applied ecology in the years to come (Barot et al. 2019). Urban ecology has become a true 

multidisciplinary field and cannot be ignored for reaching the complex goals needed to sustain the 

modern lifestyle. 

Myxomycetes have been recorded in cities before (i.e. Ya-Fen et al. 2005) and recent studies  
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have shown that urban centers can be interesting spaces to test ecological hypotheses on these 

organisms (Hosokawa et al. 2019). Attempts to study the effect of air pollution on myxomycete 

assemblages (Wrigley de Basanta 2000) and fragmentation-dependent biodiversity (Rojas et al. 

2016) have demonstrated that myxomycete responses to urban pressures can be quantified for 

hypothesis testing. However, these investigations have really been designed for purposes other than 

urban ecology assessments and have provided data indirectly. 

Even though myxomycete information based on the reproductive stage (i.e. sporocarps) 

provides an incomplete scenario for biodiversity purposes (Schnittler et al. 2017), it does represent 

direct evidence of myxomycete presence. As such, for ecological studies attempting to address 

simple methodologies to monitor urban dynamics, myxomycete sporocarps are extremely useful for 

quantification. Moreover, being these the main structures of the reproductive stage, some of their 

morphological characters can be used for functional characterization (see Rojas & Valverde 2015), 

which allows long-term evaluation of the stimulus-response dynamics. 

The present study has been designed to address the potential that myxomycete data can have 

for functional interpretation of microbial dynamics in urban centers. Based on two cities located in 

the Neotropical region and two main experimental approaches, the data contained herein is relevant 

to demonstrate that myxomycetes can be integrated in the urban ecology movement. Since these are 

microscopical organisms, we also attempt to demonstrate that urban microbial ecology has 

relevance for monitoring purposes in a rapidly changing world.  

 

Materials & Methods  

The present study consisted of two experiments conducted between 2017 and 2019. The first 

experiment was carried out in the Great Metropolitan Area of San José, an urbanized region within a 

northwest-southeast long tectonic depression surrounded by mountains in Central Costa Rica. This 

area occupies about 6% of the territory but is inhabited by more than 70% of the people in that 

country and it has a population density close to 1800 individuals/km2. For this experiment, the two 

urban centers of San José (abbreviated as SJO) and Cartago (CTG) were chosen based on their size 

and geographical location (Fig. 1). These cities are part of an urban continuum, but they are 

separated by the continental divide at the Ochomogo mountain saddle and represent the Pacific and 

Caribbean slopes, respectively.  

In each city, a central sampling point (defined either as SJO C or CTG C) was selected based 

on topography and elevation. From this point, the distance to the urban border was calculated in 

different directions and averaged. Then, other six sampling points were defined in three main 

directions (abbreviated as 1, 2 and 3) at similar elevations to the central point. These six points were 

divided in two zones, located at 2.5 times and 5 times (abbreviated as A and B) the respective 

average distance between the central point and the urban border. As such, each city was represented 

by seven sampling points where a series of 20 samples of ground litter were collected for a total of 

140 samples in each case. In all instances, the material was obtained during the same day, and 

collected at the edge (between 1-2 m) of public roads. For contextual purposes, the ecological 

condition of the environment where samples were collected was considered as “heavily disturbed”; 

however, the Normalized Difference Vegetation Index (NDVI) and the percentage of both green 

areas (quantification of forest cover) and constructions (quantification of urbanization) within a 1 

km radius around each sampling point were calculated from Landsat satellite imagery (USGS). 

This experiment was set up to evaluate the effect of two types of urban centers on 

myxomycetes associated with ground substrates. Beyond potential differences in the 

presence/absence of species and their relative frequencies, the focus of this experiment was the 

evaluation of general patterns of data recovery using a standard recording methodology and the 

spatial design explained earlier. For this, all 20 samples from each sampling point were used to 

generate the same number of moist chamber cultures using the methodology of Stephenson & 

Stempen (1994). With this method, the material was placed on petri dishes previously lined with 

filter paper and water was added. After 24 h, the excess water was poured off the plate, pH values 

were obtained and myxomycetes were recorded within the first three months, although no other pH 
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values were recorded. All moist chambers were studied simultaneously. Myxomycete fruiting bodies 

were extracted, identified, and deposited in the Herbarium of the University of Costa Rica (USJ). 

For the second experiment, we aimed to evaluate data recovery from myxomycetes in urban 

air, and the Metropolitan Area of the Aburrá Valley in Colombia was selected. This area is very 

similar to the studied region in Costa Rica in terms of elevation and climate, but it has a northeast-

southwest configuration. The area is also located within a tectonic depression surrounded by 

mountains and it is home to approximately 4 million people, making its population density close to 

3400 individuals/km2. In this area, a determination of the predominant wind directions was made 

using data from the Olaya Herrera and José María Córdoba airports and two sampling points were 

established in residential neighbourhoods in both a windward location (Copacabana, abbreviated as 

COP) and a leeward position (Envigado, ENV). Two more sampling points were established in 

Rionegro (RIO), a windward location on a higher elevation plateau, east of the Aburrá Valley, with 

typically higher wind speed; and in Medellín Sur (MDE), a leeward location in a heavily 

industrialized section of the metropolitan area, with taller buildings and more traffic than the 

residential locations (Fig. 1). The estimation of NDVI values as well as percentage of constructions 

and forested areas within a 1 km radius around each sampling point was also carried out in this case. 

In all four sampling points, a series of six sterile mesh bags (HDPE, 0.27 mm pore size) 

containing autoclaved ground litter were set up on the four fronts of residential buildings aligned 

with the four different cardinal directions. These 24 bags per sampling point were placed within the 

first 20 m of vertical distance from the ground and left in the same position for three months. In a 

similar manner to Stephenson & Rojas (2020), these bags containing dead plant material served as 

natural traps for airborne spores of myxomycetes (referred to herein as spore traps). All bags were 

recollected after being exposed to the air and used to make one moist chamber culture per sample. 

All cultures were maintained at room conditions for four months and checked constantly for 

myxomycetes. After extracting and identifying the specimens, they were deposited in the Herbarium 

of the University of Antioquia (HUA). 

In the case of both experiments, results were based on the presence data obtained with moist 

chamber techniques using the morphological species concept. As such, the nomenclatural system of 

Lado (2005-2020) was used. To analyze the data, in the software PAST, v4.01 (Hammer et al. 

2001), an alpha value of 0.05 was used on all occasions for the evaluation of the respective null 

hypothesis. After the determination of normality, different tests such as ANOVA or t-test were used 

in the case of continuous variables depending on the number of groups to be evaluated. Parametric 

correlations were established using Pearson’s r value and the respective coefficient of determination. 

Finally, the calculation of both the Simpson´s and the Shannon’s diversity indices was carried out 

for ecological comparisons. 

 

Results 

Both experiments yielded positive results showing the presence of myxomycete activity in 

the studied urban centers. In the case of the experiment in Costa Rica, a total of 347 records in 32 

species were made. From these, 289 records in 29 species were observed in the sampling points 

associated with San José and 58 records in 12 species were obtained from material associated with 

Cartago (Table 1). In both urban centers, forest coverage and urbanization showed an opposite 

pattern (r = -0.89 in average) and the latter demonstrated to be negatively correlated with the 

number of records (see Fig. 2). Interestingly, urbanization showed a strong positive correlation with 

the number of species in San José, but a weak correlation in Cartago.  

No differences in the diversity indices were observed between the respective urban centers 

and the two outward zones, except for the calculation of the Shannon Index between SJO C and 

SJO A (t = -2.4, d.f = 45.4, P = 0.02, see Fig. 3). However, diversity profiles were all different 

between zones across cities. Species such as Physarum compressum and Diderma hemisphaericum 

were observed in all urban zones of both cities, but species such as Physarum cinereum and 

Perichaena chrysosperma were only recorded in the outer zones.  
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Fig. 1 – Satellite images of the two areas where the experiments were carried out. Top, experiment 

one in “Central Valley” – Costa Rica; radial arrangement of sampling points in both San José (SJO) 

and Cartago (CTG). The inner radius has been abbreviated as A, whereas the outer radius as B 

referring to the relation of the distance between the urban centroids and the urban borders as 

explained in Material & Methods. Bottom, experiment two in Valle de Aburrá – Colombia; location 

of sampling points in relation with the configuration of the urban area and indication of the 

predominant direction of winds in the general area. 
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Table 1 Number of records per species observed in the three main urban zones associated with San 

José and Cartago – Costa Rica, along with ecological summary values and quantification of 

urbanization. For abbreviations see Materials & Methods 

 

Species 
San José (SJO) Cartago (CTG) 

SJO C SJO A SJO B CTG C CTG A CTG B 

Arcyria afroalpina  3 3    

Arcyria cinerea 5 10 12 1 1  

Arcyria denudata  1     

Comatricha nigra   1    

Comatricha pulchella  2 1    

Comatricha tenerrima      1 

Didymium bahiense 3 12 7  1 9 

Didymium clavus 1 2 3    

Didymium difforme 5 19 18  1  

Didymium dubium  2     

Didymium iridis 1 3 4    

Didymium minus 2 10 6  1  

Didymium squamulosum  11 25    

Diachea leucopodia 1 2     

Diderma hemisphaericum 2 5 36 2 1 2 

Fuligo intermedia     1  

Hemitrichia pardina 1 1 1    

Lamproderma scintillans  3 10    

Perichaena chrysosperma  2 3  1 2 

Perichaena depressa  3 1    

Perichaena pedata 1  3    

Perichaena vermicularis  1 1    

Physarum auriscalpium  1     

Physarum bivalve  1     

Physarum cinereum  1 2  2 1 

Physarum citrinum 1  1    

Physarum compressum 3 10 11 1 14 14 

Physarum didermoides  2    1 

Physareum melleum   1    

Physarum pusillum   5    

Physarum spectabile      1 

Stemonitis fusca   1    

Number of records (avg/sampling point) 
26 

107 

(35.7) 

156 

(52) 
4 

23 

(7.7) 

31 

(10.3) 

Number of species (avg/sampling point) 
12 

23 

(7.7) 

23 

(7.7) 
3 

9 

(3.0) 

8 

(2.7) 

NDVI 0.30 0.40 0.49 0.35 0.38 0.45 

Average forest cover (%) 5 18 45 15 26 48 

Average urbanization cover (%) 53 24 11 75 25 15 

Simpson’s Diversity Index 0.89 0.90 0.87 0.63 0.63 0.71 

Shannon’s Diversity Index 2.44 2.60 2.54 1.21 1.26 1.50 

 

In contrast, no species were recorded in the urban centers only. The pH values recorded in 

urban centers were the lowest (6.28±0.71) and the increasing progression towards the outermost 

zones (6.42±0.65 for A, 6.92±0.36 for B) was significant (F (2,207) = 37.6, P<0.0001). The 

number of records was found to be highly correlated with pH values (r2 = 0.97). In San José, route 

2 (heading southwest) was associated with the highest number of species and records, whereas 

route 3 (heading northwest) was the poorest and did not show any differences with the urban center. 

In Cartago, route 2 (heading southeast) showed an increment in the number of records and was 

associated with the highest number of species. 
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Fig. 2 – Patterns associated with the number of species (top) and records (bottom) in relation with 

urbanization (by means of spatial quantification of buildings) for San José (left) and Cartago 

(right). The values of the coefficient of determination and the variability associated with the urban 

zones are shown.  

 

 
Fig. 3 – Average values of the Shannon’s Diversity Index and associated range for the three 

sampling zones in the two evaluated cities in Costa Rica. The gray square shows the only 

significantly different combination. For abbreviations and coding see Material & Methods.  

 

In the case of the second experiment, 51 (53.1%) of the total number of substrate samples 

evaluated in the laboratory showed myxomycete activity, but only 18 of them (18.8%) yielded 

fruiting bodies. In the latter, a total of seven species were identified in three of the four sampling 

points (Table 2). The number of non-fruiting plasmodia associated with the moist chambers was 

high in comparison with the number of records from fruiting bodies. Interestingly, when both 

values were considered, Rionegro showed the lowest incidence of myxomycete activity, whereas 
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both Envigado and Medellín Sur were associated with the highest values. The percentage of 

positive moist chambers relative to the total number of samples per location showed the same 

pattern. Not more than one myxomycete or plasmodium was observed per sample. 

When the cardinal directions associated with the spore traps were analyzed, the highest 

myxomycete activity was observed in the samples exposed to both the east and north directions, 

with 17 (33% of all positive samples) and 15 (29%) positive ones. Samples exposed to the south 

and west directions accounted for 21% and 15% of all positive samples, respectively. No difference 

in the number of positive samples per cardinal direction was observed. However, when the data was 

analyzed in each sampling location, clearer patterns were observed. In Copacabana, 76% (10 of 13) 

of the samples exposed to east and north showed activity, a similar value to 64% (11 of 17) and 

43% (7 of 16) for Envigado and Medellín Sur, respectively. In Rionegro, four out of the five 

positive samples were exposed to the north and east, with three of them (60%) belonging to the east 

facing group (Table 3).  

 

Table 2 Number of records per species observed in the four sampling points in the Valle de Aburrá 

– Colombia, along with the number of plasmodia and relative positive activity observed in 24 moist 

chambers. A summary of urbanization characteristics of each place is also provided. For 

abbreviations see Materials & Methods. 

 

Species 
Sampling point 

COP ENV MDE RIO 

Arcyria cinerea  4 2  

Comatricha nigra   2  

Comatricha tenerrima   1  

Didymium bahiense   2  

Perichaena depressa   1  

Stemonitis axifera 1    

Stemonitis fusca  2   

Plasmodia 10 10 8 5 

Percentage of positive moist 

chambers (out of 24) 

54 71 67 21 

Number of species 1 2 5 0 

Number of records 1 6 8 0 

NDVI 0.02 0.17 -0.02 0.32 

Average forest cover (%) 15 30 5 30 

Average urbanization cover (%) 75 40 85 10 

 

Table 3 Number of records (including plasmodia) of myxomycetes associated with samples 

exposed to the four cardinal directions in all sampling points in the Valle de Aburrá – Colombia. 

 

Sampling point 
Cardinal direction of exposure 

East North South West 

Copacabana (COP) 4 6 0 3 

Envigado (ENV) 5 6 4 2 

Medellín Sur (MDE) 5 2 6 3 

Rionegro (RIO) 3 1 1 0 

 

Discussion 

Myxomycetes are clearly present in urban environments. From a distributional point of view, 

this is not surprising since such observation has been previously made in both plant material and in 

aerial conditions (see Wrigley de Basanta 2000, Hosokawa et al. 2019, Oh et al. 1998, Surratt & 

Levetin 2005). However, this is the first focused study on myxomycetes in Latin American cities, 

and, as such, it is a relevant contribution to the ecology of these microorganisms in the Neotropics, 

and to the potential of this type of information for environmental monitoring. Previous studies have 

already demonstrated that myxomycetes are present in a wide range of ecological situations 
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(Rollins & Stephenson 2011) and that they are resilient to aspects of city environments such as 

heavy metal pollution (Setälä & Nuorteva 1989); but pattern recognition in urbanized settings is 

largely absent in most studies on myxomycetes, and by default, their urban ecology is still poorly 

documented. 

In the case of the experiment in Costa Rica, it is interesting to note that the degree of 

urbanization influenced the number of records but not the number of species. As such, results 

suggested that the presence/absence of species is site-specific and closely linked to landscape-level 

aspects. A similar observation had been previously made in the Costa Rican Central Valley (see 

Rojas et al. 2016), where most differences in the species composition of floricolous myxomycete 

assemblages had been associated with the structure of the vegetation within a study site, regardless 

of its location within the urban context. Interestingly, also supported by previous research, the 

number of records of myxomycetes using the moist chamber technique was heavily influenced by 

the availability of suitable substrates (see Stephenson et al. 2020), which in the case of the urban 

environments studied herein, likely increased with vegetation complexity in the outer zones of the 

studied cities. 

It was interesting to note that substrate pH also increased from the urban centers to the outer 

zones, presumably linked to vehicle density and emissions (see Shi et al. 2017), but the degree of 

change was small and did not seem enough to affect ecological patterns. Most myxomycete species 

associated with ground litter in Costa Rica can form fruiting bodies in wider ranges of pH values 

(see Schnittler & Stephenson 2000, Lado & Rojas 2018), although it is known that bark species are 

more susceptible to pH changes (Wrigley de Basanta 2004). In this sense, pH could have been a 

secondary factor accounting for differences in the results observed herein, but the degree of 

urbanization was much likely the primary driver of differences. This effect could be explained by 

limited substrate availability and simpler habitat complexity within cities (see a review on the topic 

from Liu et al. 2016). As such, it would be valuable to assess this hypothesis in a future project 

focusing on urban settings. 

Interestingly, even though the experiment in Costa Rica was carried out using ground 

substrates, the fact that two southern sampling point routes (SW bound in San José and SE bound in 

Cartago) showed the highest values of the ecological estimators evaluated, suggested that wind 

could also play a role in the distribution of potential propagules (i.e. myxomycete spores). In that 

valley, the wind comes from the northeast and normally has a southwest/south direction. With the 

data from the second experiment in Colombia, it seemed that such observation was not completely 

illogical. After all, suspended particles in the Aburrá Valley, spores included presumably, are 

pushed away from windward (north) to leeward (south) areas (Rave et al. 2008). As observed in the 

results, the two windward sampling points of Copacabana and Rionegro were the ones with 1) the 

lowest number of observations, 2) the lowest number of positive moist chamber cultures and 3) the 

lowest values of recorded species. In contrast, the two leeward sampling points in Envigado and 

Medellín Sur, showed the highest values for all these parameters. It is clear that wind is not the only 

factor that can be related with the distribution of data in the present study but playing such an 

important role in the distribution of organisms, it is likely the primary driver of results. 

However, it seemed that the difference in outcomes between Envigado and Medellín Sur 

could be related with two separate factors that also differ between these two locations. Both 

industrialization and convective currents have been shown to be higher in the Guayabal area, where 

the Medellín Sur sampling point was located, than in Envigado (see Rave et al. 2008, García et al. 

2008). Industrialization is linked with taller and hotter buildings (i.e. industrial chimneys), higher 

albedo and warmer surfaces, which create constant convective currents moving the air vertically, 

which in contrast, are buffered by the higher percentage of forested areas in Envigado. As such, 

even though higher values of species richness and record abundance could be expected in these two 

southern locations, site-specific turbulence primarily caused by constant air mixing in Medellín Sur 

could partially explain the more even distribution of records in all four cardinal directions in this 

sampling point [presumably in a similar manner to the study of Policina & dela Cruz (2020)]. Data 

from the two windward sampling points seemed to support such observation, since in both 
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locations those samples exposed to the cardinal direction opposite to the direct influence of the 

wind, yielded zero myxomycete activity.  

Our results are very limited to make strong conclusions, but certainly suggested potential 

effects of urban landscape settings on myxomycete data. The importance of the present study is to 

bring back the topics of urban ecology and myxomycetes together in a moment where urban 

assessments are important for climate change and green city design. It would be valuable to plan 

future studies with higher density of sampling points and quantification of other parameters such as 

the temporality and speed of wind direction. However, the experiments presented herein 

demonstrated that the use of simple techniques such as the spore trap in urban contexts could be 

valuable for monitoring purposes. Recent studies (i.e. Stephenson & Rojas 2020) have found that 

mosses could be more suitable than leaves as the primary substrate to capture airborne spores, and 

this simple modification of the protocol used in the present investigation could generate improved 

results. 
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