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Abstract

The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly
Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007
(and in some cases up to 2012). Wide variations in community total biomass (285 to .2000 g dry m22) and annual foliar
productivity of the dominant seagrass T. testudinum (,200 and .2000 g dry m22) were found among sites. Solar-cycle
related intra-annual variations in T. testudinum leaf productivity were detected at latitudes . 16uN. Hurricanes had little to
no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by
burial below ,1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-
urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring
program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring
stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental
deterioration.
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Introduction

Seagrass beds are among the most extensive shallow marine

coastal habitats worldwide [1]. Their ecosystem services include

sustaining diverse faunal communities [1], supporting fisheries [2],

providing coastal protection through stabilization of sediments [3],

cycling of nutrients [4] and carbon sequestration [5,6]. In the

Caribbean, seagrasses are associated with marine/brackish pro-

tected bays and estuaries or reef systems (reef lagoons between the

coastlines and the coral reefs). In reef systems, seagrass commu-

nities fulfil the above-mentioned services, and additionally provide

important ecological linkages with the adjacent coral reefs and/or

mangroves. Seagrass communities support the existence of coral

reefs through the export of organic materials [7] and provide

grazing grounds and/or nurseries for coral reef fishes and other

reef fauna [8–10]. In addition, associated calcareous macro-algae

and epiphytes (algae and invertebrates) on seagrass leaves are

major providers of calcium carbonate sediments [11–13].

In places where funding resources are particularly limited such

as developing countries in the Caribbean, bio-indicators can

provide warning of changes in the biological condition of a coastal

system and are thereby valuable to natural resource managers

[14]. Despite such relevance, comprehensive spatio-temporal

analyses of bio-indicators in tropical countries are scarce because

of the lack of long-term monitoring data. Seagrasses are widely

distributed, rooted in the substrate and respond to changes in the

environment in terms of morphology and population character-

istics; thus they can serve as biological indicators (or bio-indicators)

for assessing changes in the status of coastal systems [15]. Retreat

of seagrass beds to shallower areas, with a consequent reduction in
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coverage or biomass has been used as an indicator of decreasing

water clarity [16,17]. Seagrasses respond to nutrient enrichment

physiologically by increasing N or P content [18,19], changing

morphology such as leaf width [20,21] and changing biomass

distribution between above- and below-ground plant parts [22,23].

Changes in water quality (clarity, salinity or nutrients) result in

changes in species composition [22–24] and density of the foliar

shoots of the seagrasses [25].

This study presents the results of a long-term (1993–2007, with

some continuing to the present) Caribbean-wide seagrass moni-

toring initiative: the Caribbean Coastal Marine Productivity

(CARICOMP) program. The program was established in 1992

to study land-sea interaction processes and to monitor changes

through time in the productivity and structure of the three

principal tropical coastal ecosystems: mangroves, seagrasses and

coral reefs, with the ultimate goal of providing scientific

information for management of coastal resources [26]. The

CARICOMP program has generated a Caribbean-wide dataset

using a simple, low-cost but standardized sampling protocol,

consistent among sites over time. While the Caribbean region

corresponds to the ‘‘Tropical Atlantic’’ seagrass bioregion [27]

which has relatively high species diversity (10 species, [28]), most

CARICOMP seagrass study areas were shallow reef lagoons

dominated by two species (Thalassia testudinum and Syringodium

filiforme, [29]). The present work aims to document changes within

seagrass communities at unprecedented spatial and temporal

(more than a decade) scales. We demonstrate that the low-cost

standardized CARICOMP sampling protocol (consistent among

sites and over time) can provide, in addition to the responses of

seagrass communities to season and climate, evidence of deteri-

oration of the environment along Caribbean coastlines.

Materials and Methods

Ethics Statement
Sample permits were issued by Florida Keys National Marine

Sanctuary for USA-Florida Keys (site 2), SAGARPA for Mexico-

Puerto Morelos (site 5, since 2003), Ministerio del Ambiente de

Costa Rica for Costa Rica (site 21, since 2000); specific

permissions were not required for any other site or date, and the

field studies did not involve endangered or protected species.

The sampling protocols and organization of the monitoring

network are described in CARICOMP [26,29]. Seagrass moni-

toring was conducted at 22 sites with 52 sampling stations (Fig 1)

from 1993 until 2012, although many concluded the monitoring

program before 2007 (Table S1). At each site, generally two

Thalassia testudinum-dominated stations were selected by the

participants; one station representing the most developed T.

testudinum bed (‘‘high productivity’’) and the second an average or

typical bed. However, some sites had only one station, whereas

others had up to six stations (Table S1). Bi-annual sampling

intervals were specified in the protocol, but participation in the

program was voluntary, and sampling frequencies and periods

varied among sites (Table S1).

Growth and productivity of the seagrass T. testudinum were

determined in 4–6 haphazardly placed quadrats (10620 cm) per

station. The leaves were marked just above the colorless basal

sheath (or at the level of the quadrats) by punching one or two

holes with a syringe needle and left to grow for 7–14 days. After

this time, the foliar shoots were counted and the leaves were cut at

the levels of the previous basal marks. Alternatively, the leaves

were marked again at the base, and the entire foliar shoots

(including sheaths) were retrieved from the sediments, and the

foliar shoots were counted in the laboratory. In the laboratory, leaf

tissues were separated into new growth (newly emerged leaves and

leaf sections below the mark of old leaves) and old fractions. The

epiphytes were removed by rinsing the blades in a 10% acid

solution and/or scraping with a razorblade. The leaf fractions

were dried and dry weight was determined. The dry weights of

new growth fractions represented the production (g m22 d21) and

the combined weight of both fractions corresponded with leaf

biomass (g m22). Based on expected changes in growth due to the

solar cycle, sampling was planned twice a year: once in the high-

growth season (March through August) and once during the low-

growth season (September through February). Annual productivity

rates were determined by averaging the daily productivity rates

(per m22) of all samples collected during the low- and high growth

seasons for each year and multiplying by 365.

Biomass of the seagrass community was determined by taking

two to four core samples at each station with a PVC or steel corer

15–20 cm in diameter (depending on site). The seagrasses (T.

testudinum and ‘‘other grasses’’, mostly Syringodium filiforme) were

separated into above- and below-ground fractions. Above-ground

fractions were also separated and analyzed for the rooted

calcareous and fleshy algae (below-ground parts were excluded

from the analysis). The fractions were cleaned and dried before the

weight was determined. The calcareous algae were decalcified in a

10% acid solution before being dried and weighed to determine

their somatic weight. Annual biomass (per m22) was determined as

the means of all samples collected during a year.

Possible spatial patterns for mean daily productivity rates of T.

testudinum related to latitude or Physical Environments of the

Caribbean Sea (PECS) defined by Chollet et al. [30] were

explored using a Random Forest analysis [31]. The standard

setting for the analysis defined by R v. 2.15.3 (creation of 500

randomly selected decision trees) and overall mean values (Table

S2) for the stations were used for this analysis. The same analyses

were applied to total (above-and below-ground) biomass of the

seagrass community (data in table S3). Posteriorly, the terms

latitude, depth and Secchi reading (table S2) were combined

(latitude*depth*Secchi reading) to discern whether a combination

of these terms could explain T. testudinum productivity or total

community biomass.

Intra-annual variation in productivity of T. testudinum was

determined for twenty-four stations at eleven sites that had ten or

more sampling events. General mean productivity was computed

for each of the twenty-four stations as the average of all

measurements of productivity at that station. Intra-annual

variation (DP) was determined by calculating the deviation from

the general mean productivity for each sampling event (per

station), expressed as the percentage of the general mean

productivity. DP was plotted separately for high- and low- growth

season at each station. For each degree of latitude, a One-sample

t-test was applied to test whether DP differed from zero. At Long

Key, Florida (Site 2), and Bon Accord Lagoon, Tobago (Site 18),

sampling was conducted more than twice a year. Correlations

between mean monthly Sea Surface Temperatures, (SST), hours

of daylight and growth rates per shoot (g dry shoot21d21) were

determined for each station at these two sites.

An interim report of the CARICOMP program identified

increased terrestrial run-off (sewage, fertilizers and/or sediments)

as the major and most prevalent anthropogenic influence in the

monitoring region [29]. Consequences of increased terrestrial run-

off into coastal waters are mainly increasing nutrients loads and/or

decreasing water clarity. The following indicators of long-term

changes in community and seagrass parameters were used as

indicators of potential changes in coastal conditions: 1) Total

(above-, and below ground) community biomass (seagrasses and
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algae), 2) Relative dominance (above-ground biomass seagrass/

above-ground community biomass) of faster-growing seagrasses

(classified as ‘‘other seagrasses’’ in the CARICOMP protocol, but

mainly consisting of S. filiforme), 3) Relative dominance of faster

growing fleshy algae, 4) Above-ground biomass relative to total

biomass of the seagrasses (the most abundant seagrass T. testudinum

was used for this assessment), 5) Productivity of T. testudinum and 6)

Foliar shoot density of T. testudinum. Responses to changes in the

environment depend on local settings [14], but combinations of

consistent trends in two or more of the above-mentioned

parameters may indicate environmental degradation. Both

decrease in water clarity and increase in nutrients were expected

to increase the dominance of faster growing seagrasses (parameter

2) or algae (parameter 3), and/or increase the relative investment

in above-ground biomass (parameter 4). Total community biomass

(parameter 1) and productivity of T. testudinum (parameter 5) are

expected to decrease at increasing turbidity and to increase at

increasing nutrient input into oligotrophic or mesotrophic systems.

Foliar shoot density of T. testudinum (parameter 6) is expected to

decrease with increasing turbidity. Significant slopes of linear

regressions for each of these parameters versus year were

considered to indicate a consistent pattern of change over the

sampling period. These long-term trends were determined only

when sampling covered at least five years (although intermittent at

some stations) sampling effort with at least six sampling events, and

included 35 stations at 17 sites.

Results

Annual productivity of leaves of Thalassia testudinum varied by an

order of magnitude among the stations: lowest productivity was

registered at Long Key, Florida Keys, USA (site 2-station 4, ,

200 g dry m22 y21) whereas highest leaf productivity (. 2000 g

dry m22 y21) was attained at Puerto Rico (site 10-stations 21 and

22) and Tobago (site 18-station 45, Fig. 2, Table S2). Community

above-ground biomass varied over 20-fold among stations (Table

S3), from 16 g dry m22 at a mono-specific T. testudinum bed at

Bermuda to 325 g dry m22 at a coastal fringe in Puerto Morelos,

Mexico, where 59% of biomass was accounted for by the large

fleshy algae Avrainvillea spp. (Fig. 3, Table S3). The highest total

(above-, and below ground) biomass of T. testudinum was registered

at Twin Cays, Belize (1960 g dry m22, Fig 3). Inter-annual

variations in both productivity and total biomass were consider-

able at all sampling stations (Figs. 2, 3). Of the 52 stations included

in the analysis of biomass, only five (,10%) were monospecific

beds of T. testudinum (without other seagrasses or macro-algae apart

from epiphytes, Fig. 3, Table S3), indicating that the seagrass

vegetative communities in the tropical Atlantic reef systems are

typically multi-species associations.

No clear classification trees could be constructed relative to

latitude for T. testudinum leaf productivity and total (above-and

below-ground) community (seagrass and macro-algae) biomass.

The Random Forests only explained 32.5% (productivity) or

57.9% (biomass) of the variance in the data. When depth and

Secchi readings were added as terms, the fits of the models

increased for productivity (52.8% of variance explained) and for

Figure 1. Map of CARICOMP seagrass sites, ordered according to latitude. 1. Bermuda, 2. USA-Long Key, 3. Bahamas-San Salvador, 4. Cuba-
Cayo Coco, 5. Mexico-Puerto Morelos, 6. Mexico-Celestun, 7. Cayman Islands-Grand Cayman, 8. Jamaica-Discovery Bay, 9. Dominican Republic-Parque
Nacional Este, 10. Puerto Rico-La Parguera, 11. Belize-Turneffe Island, 12. Belize-Twin Cays/Carrie Bow Cay, 13. Colombia-Isla Providencia, 14.
Barbados-St. Lawrence, 15. Colombia-Isla San Andres, 16. Curaçao-Spaanse Water, 17. Colombia-Chengue Bay, 18. Tobago-Bon Accord Lagoon, 19.
Venezuela-Isla de Margarita, 20. Venezuela-Morrocoy, 21. Costa Rica-Cahuita, 22. Panama-Isla de Colon.
doi:10.1371/journal.pone.0090600.g001
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biomass (59.8% of variance explained). The CARICOMP seagrass

sites were in 10 of the 16 physicochemical provinces in the

Caribbean defined by Chollett et al. [30], and the models

constructed for productivity and PECS did not result in a precise

fit either for productivity (34.8% of the variance was explained) or

total community biomass (35.1% of the variance).

Intra-annual variation in leaf productivity was evident at

latitude 16u489 (Belize) and higher (Fig. 4, Table S4). At Long

Key, Florida (site 2) correlations among mean monthly shoot

growth rates of T. testudinum, mean monthly SST and median

hours of daylight were significant (Figure S1, Table S5). None of

these correlations was significant at the more southern Bon Accord

Lagoon in Tobago (site 18).

The seagrass communities at the majority (25) of the 35 stations

included in the analysis for longer-term trends in the community

showed changes in at least one of the six selected parameters

(Table 1, Table S6). At six stations the seagrass beds collapsed: in

Bermuda (3 stations) the decline was due to excessive grazing by

sea turtles; in Barbados (2 stations) poor water quality followed by

a population explosion of sea urchins and subsequent storms were

responsible; and in Mexico, a coastal bed (1 station) was buried by

sediments during a hurricane. Most monitoring stations (46 out of

52) were exposed at least once to a major meteorological event

(hurricane or tropical storm, Table S1) during the study period,

but apart from the above-mentioned collapse of communities in

Mexico and Barbados (where the storms were not the main cause

of collapse), minor impacts of storms were registered only at

Belize-station 26 and Venezuela-stations 47 and 48 (Table 1). At

15 (43%) out of 35 studied stations (Table 1, Fig. 5), changes in the

seagrass beds were consistent with hypothesized change scenarios

of increased turbidity (Site 4-Stations 8 & 9 and Site 21-Station 49)

or increased nutrient input (Site 2-Station 5; Site 5-Stations 10

thru13; Site 8-Station17; Site 10-Station 21; Site 12-Station 25;

Site 14-Stations 33 & 34 Site 20-Stations 47 & 48). Most stations

that showed shifts in community structure consistent with

environmental degradation were reported to have received little

or only moderate human-induced impacts at the onset of the study

(Fig. 6).

Discussion

The CARICOMP monitoring program shows wide variation in

seagrass productivity and biomass across the Caribbean, reflecting

the different environmental settings among the sampling sites,

although most were associated with coral reef systems. This study

included a broad spectrum of seagrass community types domi-

nated by Thalassia testudinum, from highly productive almost mono-

specific beds to multi-species communities with several seagrass

species and benthic macro-algae. The physicochemical provinces

(PECS) defined by Chollett et al. [30] could not reliably predict the

mean leaf productivity of T. testudinum or total biomass of the

community. The 16 PECS were defined based on sea surface

temperature, water clarity (from satellite images), salinity, wind-

driven exposure and exposure to hurricanes. The criteria for the

classification into these 16 provinces (PECS) likely did not include

all relevant parameters that determine seagrass development. For

example, Zieman et al. [32] suggested that in the Caribbean

higher standing crops may be expected at sites with relief and

considerable rainfall that supply nutrients for the development of

larger plants, such as Jamaica, Puerto Rico, Belize, Venezuela

(Morrocoy) and Panama. Latitude determines water temperatures

and light regimes, and it was a better predictor for community

biomass (but not productivity of T. testudinum) than the PECS.

Combining latitude with local depth and mean Secchi reading

(indicator for water transparency) resulted in more precise

predictions; but less than 60% of the variances in mean leaf

productivity of T. testudinum or total community biomass were

explained by these combined predictors, suggesting that other

factors also influence the leaf dynamics of T. testudinum and status

of the seagrass communities.

Intra-annual changes in the growth of T. testudinum were

registered at latitude 16u489N (Site 12-Belize) and higher, and they

appeared to be mainly driven by the seasonal solar-cycle. Also, at

the northerly Florida Keys site, the initiation of the ‘high-growth

season’ shows a lag of 1–2 months in comparison with more

southerly sites (Figure S1), most likely in response to relatively low

Figure 2. Annual leaf productivity of Thalassia testudinum per sampling station. The stations are grouped per site (underlined, 1–6 stations
per site), and stations only sampled during one season are excluded. The boxes and vertical bars represent inter-annual variation. The horizontal lines
correspond with the median values, 50% of the cases are within the box limits and the vertical bars indicate the smallest or largest values that are not
outliers, N represent values more than 1.5 box lengths from lower/upper box limit, and * represent values more than 3 box-lengths from lower/upper
box limit. The digits above the bars indicate N (the number of sampling years). Grey bars represent stations that were not included in the long-term
analysis.
doi:10.1371/journal.pone.0090600.g002
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temperatures with corresponding reduced growth rates of T.

testudinum until May (Table S5).

Most seagrass beds in this study have been exposed to

hurricanes or major storms during the monitoring period (Table

S1, Figure S2), but they were strikingly resilient. The seagrasses at

a few stations were negatively affected (see Table 1), but recovery

was rapid (within 1 to several years). Eradication only occurred at

one station in a narrow (20–50 m wide) coastal fringe in Puerto

Morelos, Mexico, during Hurricane Wilma (2005) by burial below

,1 m of sand [33]. However, recovery of this seagrass bed is now

in progress (Van Tussenbroek, unpublished data). The vegetation

at most stations consisted of T. testudinum dominated beds in sub-

tidal reef-systems, where T. testudinum is a large and persistent

seagrass that invests much of its biomass in below-ground tissue,

which aids in firm anchorage of the plants [34] and stabilization of

the sediments. Seagrass beds in the tropical or sub-tropical

Atlantic that are not associated with reefs are often dominated by

less robust seagrass species, such as those in the Gulf of Mexico,

may be much more susceptible to damage or destruction by

hurricanes or storms [Heck et al., 1996 (in [35]), [36–38], although

there are exceptions [35].

Forty-three percent of the seagrass communities at the 35 long-

term study stations at nine sites show changes that potentially

indicate degradation of the environment between 1993 and 2007

(2012 for some stations, Table 1, Fig. 5). These changes over a

relatively short time-span (6–18 years) across many sites is a

worrying trend, particularly because most of these sites were only

moderately disturbed by humans at the outset of the study (Fig. 6).

Only two originally undisturbed sites, Colombia-Isla Providencia

(site 13, Stations 29–31), and Colombia-Chengue Bay (site 17,

stations 41 and 42) remained in ‘pristine’ condition up to the end

of the monitoring period (2007 and 2005 respectively, Table 1).

Several sites, such as Bahamas-San Salvador (site 3), Colombia-

Isla San Andres (site 15), Tobago-Bon Accord lagoon (site 18),

Panama-Isla de Colon (site 22), have been impacted by human

development for decades or more than a century [39], but we did

not detect indications of further degradation during the study

period.

The consequences of these changes in seagrass communities

across the Caribbean are difficult to assess at this point because

baseline information concerning the structure, processes and

drivers of Caribbean seagrass beds is deficient. However, it is likely

that the ecosystem services offered by the seagrass communities

Figure 3. Total (above- and below-ground) biomass of the principal components of the community per sampling station grouped
per site. Other grass: species of seagrass other than Thalassia testudinum, mostly Syringodium filiforme. Somatic (decalcified) above-ground weight of
the calcareous algae is considered. The boxes and bars represent inter-annual variation, and stations with only one sampling event are excluded. The
digits above the bars in the bottom graph indicate N (the number of sampling years). M median of fleshy algae at site 5-station 13. See legend of Fig.
2 for further explanation.
doi:10.1371/journal.pone.0090600.g003
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will be compromised by changes in their productivity and

composition of the seagrass community. For example, a commu-

nity shift from T. testudinum to faster-growing seagrass and/or algal

species (observed at 7 stations, Fig. 5) will result in a change in the

overall structure of the seagrass canopy, and possibly a change in

associated fauna. Sediment retention is likely to be compromised

as seagrass communities shift away from broad-bladed and deeply-

rooted T. testudinum. Faster-growing seagrass species have a less

Figure 4. Deviations from general mean leaf productivity (DP) of Thalassia testudinum per station during High growth season (May-
September at site 1 and 2, March –August at all other sites) and Low growth season (October-April at sites 1 and 2, September-
February at all other sites). See Table S4 for significance differences of DP. Only stations with at least 10 sampling events were included. Numbers
above the X-axis indicate site number, and the minor ticks indicate the different sampling stations at those sites.
doi:10.1371/journal.pone.0090600.g004
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developed below-ground rhizome-root system [40] which could

also have negative consequences for below-ground carbon

sequestration [41], or resistance of seagrass beds to hurricanes.

Impacts of hurricanes are most deleterious in already disturbed

beds [42], and the faster growing S. filiforme is much more

susceptible to dislodgement than T. testudinum [34,43]. The fate of

the seagrass beds at Barbados-St. Lawrence lagoon (site 14) is a

good example of how long-term (chronic) anthropogenic stress can

act synergistically with acute extreme disturbance events [over-

grazing by an exceptionally strong recruitment of sea urchins,

Hurricane Ivan (2004) and Tropical Storm Emily (2005)] to cause

collapse of an ecosystem. Even after 7 years, this lagoon has shown

only minimal recovery, with just a few impoverished T. testudinum

plants in areas of coral rubble and a very sparse vegetation of

Halodule wrightii appearing in the sand areas (H. Oxenford,

unpublished data).

Interpretation of the long-term shifts in the seagrass commu-

nities is not unequivocal, because responses of individual

communities depend on local conditions and the state of the

community when monitoring began. For example, productivity

and biomass were expected to decrease with decreasing water

clarity, a relationship reported for Cuba (site 4) and Costa Rica

(site 20-station 49). At Belize (site 12), conflicting trends at the two

stations (25 and 26) resulted from differing environmental contexts

and initial states of the two seagrass meadows. At station 25, a

relatively low energy site inside the lagoon, increased productivity

is more likely a response to nutrient enrichment associated with

the well-documented increases in turbidity [44] than to the

declining light levels at this shallow (1 m) depth. Further evidence

for this is that shoot density of T. testudinum declined by 50% from

1993 to 2012 (Fig. 5F) while the relative abundance of S. filiforme

increased (Fig. 5B), both typical responses to declining light levels

and/or nutrient enrichment. By contrast, station 26, established in

1997 in a higher-energy zone adjacent to a cut in the barrier reef-

line, was scoured by Hurricane Mitch in 1998. Trends at this

station largely reflect recovery of the seagrass meadow over the

first 8-10 years of monitoring (Table 1).

The area of seagrass sampled by the CARICOMP protocol

(0.08–0.12 m2 for foliar productivity and 0.04–0.09 m2 for

biomass) is smaller than that of more recently established

monitoring programs such as Seagrass Watch [45], Seagrass

Monitoring in the Florida Keys National Marine Sanctuary [46],

or Seagrass Net [25], that employ cover estimates of the vegetation

in 5–11 quadrats (0.25–1.0 m2) along one to three 50m-long

transects (supplemented with small samples of leaves, complete

plants, sediments or seeds). Small sample size assumes a relatively

homogeneous distribution of the species (or species groups). Long-

living seagrasses (such as T. testudinum) in continuous beds, without

obvious environmental gradients, may fulfil this assumption;

however, a larger scale-sampling scheme (such as that of Seagrass

Watch or Seagrass Net) may be necessary for less-abundant and

more irregular distributed species such as the more ephemeral

Figure 5. Significant long-term trends in seagrass attributes and community parameters at CARICOMP monitoring stations across
the nine sites that showed changes consistent with deterioration of the environmental conditions. The broken smoothed lines connect
annual average values and serve to illustrate the inter-annual variability in the data. Data from all samples per year (N = 4-9, Table S3) were used to
determine the regression lines (Table S6). D. For Site14, the relationship was determined for the more persistent Syringodium filiforme.
doi:10.1371/journal.pone.0090600.g005
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seagrasses (e.g Halodule spp. or Halophila spp.) or rooted macro-

algae. The CARICOMP measures of foliar productivity and total

plant biomass are destructive and therefore cannot be employed

on a large scale (and also because sample processing is labor-

intensive), but these measures are less subjective than cover

estimates. In addition, they may be more sensitive to small shifts in

plant abundance or biomass distribution and detect responses to

environmental change sooner than monitoring programs based on

less precise estimates of abundance such as vegetation cover.

However, cover estimates are useful to assess loss of seagrasses over

large areas under regimes of relatively severe (human-induced)

stress (e.g.[25]). Thus, optimal design of a monitoring protocol

depends on its goals, site- and plant characteristics and logistics.

Regardless of the protocol, it is paramount for determining trends

in seagrass communities that consistent observations be made over

long periods (5-10 y at least). The CARICOMP program

depended on voluntary participation and local resources, which

resulted in large differences in sampling frequency and periods

among sites. Only 17 of the 22 sites obtained sufficient data for

analysis of long term trends in the seagrass communities; and even

among these sites the sampling period (5–15 y, Table 1) and

frequency (24–124 biomass samples, 30–202 productivity samples,

Table S6) varied considerably. We may therefore, have missed

possible changes at stations which were sampled infrequently or

for shorter periods (5 or 6 y).

CARICOMP was a pioneering monitoring program, and this

study has shown that the simple and low-cost methods used were

sufficient to discern long-term trends in the seagrass communities.

We suggest that changes across various parameters are consistent

with deterioration of the coastal environment, thereby indicating

sites that would benefit from further studies and management

efforts. We recognize that drivers of change were poorly covered in

this program, and suggest that future monitoring of the long-term

trends should include relevant environmental measures, such as

nutrient availability (C, N, P contents in plant tissues) and

sediment (anoxia, organic matter) conditions, in addition to (pulse

fluctuations in) water transparency, temperature and salinity.

Environmental degradation often involves multiple interacting

stressors, and long-term monitoring programs such as CARI-

COMP can only determine causal factors of change when

ecological data are viewed together with supplemental data on

environmental conditions.

Supporting Information

Figure S1 Plots of the mean monthly shoot growth
rates. Vertical bars represent 95% confidence limits. Horizontal

bar above X-axis represents periods of High (black) and Low (grey)

growth season. See legend Table S5 for further information. Note

differences in ordinate scales for growth. +: Mean monthly SST.

(DOCX)

Figure S2 Passage of hurricanes and storms. Tracks of

named storms or hurricanes that passed within 1 degree (60 nm or

111 km) of any CARICOMP seagrass site (indicated by the

numbered circles) during the observation periods reported in

Table S1. The size of the event when passing the site was not

considered, thus the atmospheric and hydrological impacts at the

locations may have varied from weak to severe, and other events of

impact (e.g surge or excessive rains) may not be included. Servicio

Académico de Monitoreo Meteorológico y Oceanográfico, Uni-

dad Académica de Sistemas Arrecifales, Instituto de Ciencias del

Mar y Limnologı́a, Universidad Nacional Autónoma de México).

(DOCX)

Table S1 CARICOMP seagrass monitoring sites. Gener-

al information on the sites and stations (ordered from North to

South), together with sampling periods (as mm/yy) for Thalassia

testudinum leaf productivity (Table S2) and community biomass

(Table S3). Hurricanes/Storms: year of passage (9yy) and max.

strength when passing the affected location (T Tropical Storm, H

hurricane) in parenthesis (see Figure S2). nd not determined.

British OT: British Overseas Territory.

(DOCX)

Table S2 Thalassia testudinum leaf dynamics. Depths

(below MTL) at the stations and average values (6 SE) for

parameters of T. testudinum leaf productivity, biomass and density.

N: number of samples (10620 cm, see S1 for period). N for foliar

shoot density is less at some sites because this measure was

introduced later in the protocol. Secchi: mean Secchi readings

from 1993-1995 (from CARICOMP, 1998).*Celestun is in the

Gulf of Mexico, na: not available, nd: not determined.

(DOCX)

Table S3 Community biomass. Average values (6 SE) of

the biomass of the community by vegetation group. N: number of

(core) samples (see S1 for period). Core diam: Diameter of the core

samples. Total: biomass of above- and belowground live tissues.

AB: above-ground biomass. Biomass of calcareous algae expressed

Figure 6. State of the long-term monitoring stations at the beginning (1993) and end (2007–2012) of the CARICOMP program.
Pristine: Relatively undisturbed stations at the start of the program. Intermediate: Stations moderately disturbed by human-impact at the beginning
of the program. Disturbed: Stations which had undergone chronic human-induced impacts before the initiation of the monitoring program.
doi:10.1371/journal.pone.0090600.g006
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as somatic (decalcified) weight, ,85% of the calcified dry weight is

CaCO3. Below-ground tissues of the algae were not considered.

Biomass cores were not taken at Site 2 (Florida). ‘‘Other grass’’:

mostly Syringodium filiforme but includes Halodule wrightii at Station 7.

* Celestun is in the Gulf of Mexico. na: not applicable.

(DOCX)

Table S4 Intra-annual variability in Thalassia testudi-
num leaf productivity. Results of One-sample t-test for

significant differences of DP (deviations from general mean leaf

productivity) during High- and Low-growth season at different

latitudes. H0: Average DP = 0, a= 0.05.

(DOCX)

Table S5 Correlations between temperature, light and
Thalassia testudinum leaf growth. Correlations between

mean monthly SST (Sea Surface temperature, uC), H daylight

(Hours of daylight) and shoot growth rates of Thalassia testudinum at

USA-Florida Keys (Site 2, 1996–2003), Mexico-Puerto Morelos

(Site 5, 1990–1991: from Van Tussenbroek BI [1995] Thalassia

testudinum leaf dynamics in a Mexican Caribbean reef lagoon. Mar

Biol 122: 33–40) and Tobago-Bon Accord Lagoon (Site 18, 1997–

2007), N number of months, ns: not significant. Hours daylight

were obtained from http://astro.unl.edu/classaction/animations/

coordsmotion/daylighthoursexplorer.html. Mean monthly SST

were from: NOAA Coral Reef Watch, Coral Bleaching Virtual

Stations (http://www.osdpd.noaa.gov/ml/ocean/cb/virtual_stations.

html)-Sombrero Reef, Florida (Site 2), Rodrı́guez-Martı́nez RE, Ruı́z-

Renterı́a F, Van Tussenbroek BI, Barba-Santos G, Escalante-

Mancera E et al. [2010] State and environmental tendencies of the

Puerto Morelos CARICOMP site, Mexico. Rev Biol Trop 58: 23–43

(Site 5), and R. Juman, J. Gomez [unpublished data] (Site 18).

(DOCX)

Table S6 Regression lines of trends. Results for the linear

regressions of selected parameters vs year to indicate possible

trends Regressions were computed for those stations and

parameters when the sampling covered at least 5 y with at least

six sampling events and at least 50% of the samples had values .0.

*: not determined, ns: not significant, negative t indicated a

negative slope. The significance level (a) is 0.05, but a Bonferroni

correction is applied to this level of significance, because the

parameters are derived from the same cores (Total above-ground

biomass. Relative abundance of faster-growing seagrass, Relative

abundance of faster growing fleshy algae, % Above-ground/total

biomass for Thalassia testudinum) or quadrats (Productivity, Foliar

shoot density of T. testudinum). The results of the regressions of

foliar weight per shoot of T. testudinum is also given, to facilitate

interpretations of the results, although this was not a parameter for

potential degradation of the coastal environment.

(DOCX)
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