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Abstract
Dengue fever (DF) and dengue hemorrhagic fever (DHF) are growing health concerns
throughout Latin America and the Caribbean. This study focuses on Costa Rica, which
experienced over 100 000 cases of DF/DHF from 2003 to 2007. We utilized data on sea-surface
temperature anomalies related to the El Niño Southern Oscillation (ENSO) and two vegetation
indices derived from the Moderate Resolution Imaging Spectrometer (MODIS) from the Terra
satellite to model the influence of climate and vegetation dynamics on DF/DHF cases in Costa
Rica. Cross-correlations were calculated to evaluate both positive and negative lag effects on
the relationships between independent variables and DF/DHF cases. The model, which utilizes
a sinusoid and non-linear least squares to fit case data, was able to explain 83% of the variance
in weekly DF/DHF cases when independent variables were shifted backwards in time. When
the independent variables were shifted forward in time, consistently with a forecasting
approach, the model explained 64% of the variance. Importantly, when five ENSO and two
vegetation indices were included, the model reproduced a major DF/DHF epidemic of 2005.
The unexplained variance in the model may be due to herd immunity and vector control
measures, although information regarding these aspects of the disease system are generally
lacking. Our analysis suggests that the model may be used to predict DF/DHF outbreaks as
early as 40 weeks in advance and may also provide valuable information on the magnitude of
future epidemics. In its current form it may be used to inform national vector control programs
and policies regarding control measures; it is the first climate-based dengue model developed
for this country and is potentially scalable to the broader region of Latin America and the
Caribbean where dramatic increases in DF/DHF incidence and spread have been observed.
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1. Introduction

Dengue fever (DF) and dengue hemorrhagic fever (DHF)
are the most important vector-borne viral diseases (family
Flaviviridae: genus Flavivirus) globally (WHO 2000).
Approximately 2.5 billion people are at risk and 50–100
million cases occur each year (PAHO 2002, WHO 2002).
About two-thirds of the world’s population resides in areas
infested with dengue vectors (Aedes aegypti and Ae. albopictus
mosquitoes) and all four dengue virus serotypes affect urban
populations (Gubler and Clark 1994, Jetten and Focks 1997).
Dengue transmission is heavily influenced by environmental
conditions, human behavior, and demographic changes. The
main vector, Ae. aegypti, lives in close association with
humans in urban and suburban environments, preferring human
blood meals and laying its eggs in artificial containers such
as drums, buckets, tires, flower pots, and vases (Service
1992, Focks and Chadee 1997, Gubler 1998). The incidence
of DF has increased significantly over the past 25 years
(Gubler 2004), qualifying it as an ‘emerging or uncontrolled
disease’ (TDR 2005). In the Americas, vigorous control
campaigns eliminated Ae. aegypti from most of Central and
South America during the 1950s, but discontinuation of the
program lead to re-infestation during the 1970s and 1980s
and re-emergence of dengue (Gubler 1998). Global trade,
population growth and uncontrolled or unplanned urbanization
(where inadequate housing, water supply, and waste collection
services increase available larval habitats) have all been major
factors influencing the current pandemic (Kuno 1995). These
demographic and social changes, as well as a lack of effective
mosquito control, have facilitated the spread and persistence
of Ae. aegypti and dengue virus in many areas of the world
(Gubler 1998).

Several studies have examined the wave-like behavior of
DF/DHF epidemics in different areas and have demonstrated
an association between DF/DHF incidence or vector popula-
tions and climate variables (Cazales et al 2005, Chadee
et al 2007). Mechanistic models have been developed
to simulate mosquito populations using temperature- and
moisture-dependent epidemiological factors (Focks et al
1993a, 1993b, Cheng et al 1998, Hopp and Foley 2003),
while other studies have analyzed DF/DHF time series using
climatic indices that relate to global teleconnections such as
the El Niño Southern Oscillation (ENSO) (Gagnon et al 2001,
Cazales et al 2005). Climate-based studies have generally
revealed strong relationships between DF/DHF outbreaks and
climate oscillations using data from meteorological stations
and sea-surface temperature observations (SST). Pacific SST
anomalies, which are indicative of ENSO fluctuations, are
often invoked to explain teleconnections that relate weather
patterns over broad areas of the Earth’s surface. Precipitation
and temperature oscillations over large parts of Latin America
and the Caribbean are strongly influenced by changes in Pacific
SST (Glantz 2001) and these in turn can influence vector
competence and survivorship. In endemic areas, DF/DHF
epidemics may also cycle over multiple years, although the
period between epidemics may also be a function of herd
immunity from previous epidemics. While ENSO may play a

role in synchronizing epidemics (Cazales et al 2005), seasonal
vegetation dynamics may also influence vector populations
at relatively local scales (e.g. Gomez-Elipe et al 2007).
Often, there is a close association between vegetation canopy
development, local moisture supply and breeding of mosquito
vectors (Linthicum et al 1999). Fully developed tree canopies
not only provide shade that can reduce evaporation from
containers, but may also decrease sub-canopy wind speed and
increase humidity near the ground, factors that tend to increase
vector competence (Linthicum et al 1999).

A major implication of macro-scale (i.e., ENSO) and
micro-climate effects is that vector-disease dynamics may be
explained using models that incorporate climate and vegetation
data to predict the occurrence and spread of vector-borne
diseases (Patz et al 2005). Such models have been developed
to predict malaria incidence (Thomson et al 2005), but there
has been limited progress in developing early warning systems
for DF/DHF. For example, a dengue early warning model
(based on 5 weeks of climate data) was developed to predict
dengue incidence in San Juan, Puerto Rico, but this model
was not considered reliable as a sole predictor of dengue
in this area (Schreiber 2001). One of the limitations for
developing an early warning system is that detailed multi-
year studies of climate and dengue are generally lacking
and climate data are often limited to few meteorological
stations (Chadee et al 2007), which often contain recording
gaps. Further, the non-stationary behavior of most DF/DHF
time series poses a challenge to predict DF/DHF outbreaks,
although variables such as sea-surface temperature (SST) may
also display a degree of interannual nonstationarity (Mestas-
Nuñez and Enfield 2001). In this paper, we present results
from a new model developed to predict weekly DF/DHF cases
in Costa Rica from 2003 to 2007. The model is based on
weekly ENSO SST indices and interpolated vegetation index
data obtained from polar-orbiting satellite observations. Model
fitting was done using weekly DF/DHF case data aggregated
to the national scale, which provides high temporal resolution
appropriate for prediction of future epidemics.

2. Data and modeling approach

Data on weekly cases of DF/DHF were obtained from the
Costa Rica Ministry of Health (MoH) reports, extracted from
the documents available at http://www.ministeriodesalud.go.
cr/estavigiepi.htm covering the time period from January 2003
through week 48 of 2007, and include a major epidemic in
2005. During this period there were a total 104 288 DF/DHF
cases reported in Costa Rica, 522 of which were diagnosed
as DHF. The MoH DF data are aggregated nationally and
compiled from case reports supplied by regional and local
clinics, and most are diagnosed clinically. DF and DHF cases
are combined in the time series, although the latter constitute
a small fraction (<1%) of total infections. Weekly ENSO
SST index data were obtained from the Australian Bureau
of Meteorology, which compiles time series of NINO1–
NINO4 SST indices on http://www.bom.gov.au/climate/enso/
indices.shtml. These data are defined as the average of
SST anomalies over five Niño regions, which extend across

2

http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.ministeriodesalud.go.cr/estavigiepi.htm
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml
http://www.bom.gov.au/climate/enso/indices.shtml


Environ. Res. Lett. 4 (2009) 014011 D O Fuller et al

the Pacific equatorial belt from 160◦E to 80◦W and include
NINO3.4, an area that overlaps Niño regions 3 and 4 from
120◦W to 170◦W. Niño regions 1 and 2 are closest to
South America where upwelling processes are sensitive to air–
sea interaction in the central and equatorial Pacific (Glantz
2001). Anomalies are variously defined for the different
regions, show a quasi-periodic behavior and are weakly
inter-correlated. Time series of the enhanced vegetation
index (EVI) and the normalized difference vegetation index
(NDVI) averaged for Costa Rica were extracted from 16-
day 500 m MODIS composite imagery downloaded from
Land Processes Distributed Active Archive Center (https://
lpdaac.usgs.gov/lpdaac/get data/). Multitemporal vegetation
indices provide a measurement of photosynthetic activity and
vegetation phenology, and are related positively to rainfall and
moisture availability. EVI also possesses an advantage over
other commonly used vegetation indices in that it incorporates
a blue wave band that reduces the effects of background
reflectance and atmospheric constituents such as aerosols
(Huete et al 2002). EVI is related closely to near infrared
reflectance (i.e., leaf display), while NDVI is more closely
related to red-reflectance (i.e., photosynthesis) (Glenn et al
2008). National-level, one-dimensional NDVI and EVI time
series were constructed from the mean of randomly sampled
points within Costa Rica and the 16-day NDVI and EVI values
were interpolated to weekly values using a cubic spline in order
to match the temporal resolution of the DF/DHF cases and
ENSO indices.

2.1. Model theory and development

Simple additive models of the general form

Xt = St + Vt (1)

provide a common descriptor of time series, where St denotes a
signal and Vt denotes a time series that may be correlated over
time (Shumway and Stoffer 2006). In general, any time series
can be described in terms of three components, a linear trend,
a seasonal component and a random or irregular component,
which are also additive (Janacek and Swift 1993). Further,
we can often say that a time series is dependent on a set of
independent inputs or independent series, zt1, zt2, zt3, . . . , ztq

where the inputs are fixed and known

Xt = β1zt1 + β2zt2 + · · · + βq ztq + ωt (2)

and where β1, . . . , βq are unknown fixed regression coeffi-
cients and ωt random error or noise process (Shumway and
Stoffer 2006). It is natural to estimate the unknown coeffi-
cients by minimizing the residual sum of squares (RSS) with
respect to β1 · · · βq and many implementations are available to
achieve this. Such approaches are often used to obtain accurate
model fits and are generally considered the first step in devel-
oping reliable forecasting models for time series (Montgomery
et al 2008). Further, models to predict vector-borne disease
may include an autoregressive (AR) component (e.g., Gomez-
Elipe et al 2007), which is based on the idea that the current
value of the time series, Xt , can be explained as a function of

past values. For example, Gomez-Elipe et al (2007) used an
autoregressive integrated moving average model (ARIMA) in
conjunction with a sinusoid to forecast malaria incidence using
NDVI, temperature, rainfall and preceding malaria cases with
93% accuracy.

To assess lagged relationships between DF/DHF cases
and ENSO–vegetation dynamics we used the cross-correlation
function (CCF) to calculate the correlation coefficients
between time series over +/−52 weeks. We hypothesized
that such long lags may capture system memory effects over
more than one wet season since the eggs of Ae. aegypti may
survive desiccation for four to six months after oviposition in
containers and survival times may be associated with humidity
levels during the dry season (Sota and Mogi 1992). Therefore,
the moisture conditions during the preceding seasons may
influence the number of cases in the current season. As an
initial step to fit the model, the maximum correlations over
negative (i.e., independent variables shifted backward) and
positive (i.e., independent variables shifted forward) lags were
identified and the ENSO and EVI time series were shifted the
appropriate number of lags to match the maximum correlation
with DF/DHF cases. Thus, the model was fit with the
different independent variables approximately in phase with
the DF/DHF time series. These lagged series were included
as independent variables in a model that contains a set of
sinusoids having the general form

ct = a0 +
∞∑

n=1

(an cos ztn + bn sin ztn) (3)

where ct is the number of cases at time t , ztn are independent
input variables and where an and bn are parameters estimated
using non-linear least squares regression. Equation (3) is the
analog of the discrete Fourier series, which describes Xt in
terms of contributions of different cycling components with
different frequencies and having amplitudes of an and bn .

Models of this general form have been used extensively
in time series analysis and generally explain phenomena that
are periodic or quasi-periodic, which applies to many DF/DHF
time series. We elected not to incorporate an AR component to
the model as this generally requires extensive transformation
of the variables to achieve the assumption of stationarity.
Logically, using weakly stationary or non-stationary time
series as independent input variables in equation (3) presents a
solution to model the non-stationary behavior of most DF/DHF
time series and thus we retained the seasonal component
without any transformations. We then evaluated different
combinations of climate and vegetation index variables in
the model and used non-linear regression to estimate the
coefficients and the per cent explained variance (R2). In this
way, we were able to determine the best combination of input
model parameters for predicting DF/DHF outbreaks.

3. Cross-correlations

Time series plots of each of the independent variables and
dengue cases are shown in figures 1(a)–(f), which reveals
lags between the SST departures in degrees celsius, vegetation
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Figure 1. Time series of weekly DF/DHF cases in Costa Rica and
plots of five sea-surface temperature anomalies (◦C) related to the
El Niño Southern Oscillation: (a) NINO1, (b) NINO2, (c) NINO3,
(d) NINO3.4 and (e) NINO4. (f) shows DF/DHF cases and the two
vegetation indices, with NDVI as the green line and EVI in the
black line.

indices and DF/DHF cases. Figures 1(a)–(e) generally suggest
a negative correlation between the ENSO indices and dengue,
with the former reaching a minimum several weeks after the
major dengue epidemic of 2005. Figure 1(f) shows vegetation
indices plotted against case numbers and reveals a generally
synchronous relationship with small lags between NDVI
maxima, EVI maxima and annual case maxima. The cross-
correlation coefficients for the ENSO SST indices and case
numbers were negative over a range of +/−52 weeks, which
indicates that the ENSO cool phase (La Niña) is more likely to
favor greater numbers of DF/DHF cases in Costa Rica. These
periods tend to be more humid in Central America (Glantz
2001) and may favor survival of greater numbers of Ae. aegypti
eggs and adults (Sota and Mogi 1992). Other studies (e.g.,
Gagnon et al 2001) have shown that the warm phase of
ENSO (El Niño) tends to be associated with increased DF/DHF

incidence especially after the major El Niño events of 1983–
1984 and 1997–1998 in Indonesia, where dengue has been
endemic for several decades (Arcari et al 2007). In contrast, the
MODIS-EVI cross-correlation coefficients were positive from
−6 to +15 lags, which indicates modest synchrony between
canopy greenness and numbers of infections in Costa Rica.
The maximum correlations between ENSO SST indices and
case numbers were −0.42 (lag = −2), −0.18 (lag = −5),
−0.43 (lag = −10), −0.40 (lag = −17) for NINO1–
NINO4, respectively. The maximum correlation coefficient
for NINO3.4 index and cases was found to be −0.45 at lag
−11, which suggests that SST anomalies in this particular Niño
region relate modestly to case numbers. For EVI the maximum
cross-correlation coefficient was 0.36 at lag = −20 and for
NDVI the relationship was strongest (−0.4) at lag = −40.
The different cross-correlation results for the two vegetation
indices suggest that each responds to different aspects of the
vegetated landscape (Glenn et al 2008) and that both may
provide independent inputs to our model.

To assess the model’s forecasting potential, we also
evaluated relationships for forward or positive lags in which
the independent variables were shifted ahead in time. These
relationships were generally weaker than those cited above; for
example, maximum correlation coefficients were 0.20 (lag =
38), 0.24 (lag = 46), 0.21 (lag = 43), 0.28 (lag = 46) for
the NINO1–4 indices and 0.24 (lag = 45). However, for EVI
the cross-correlation coefficient reached a maximum of 0.49 at
lag = 5 and 0.37 for NDVI at lag = 47.

4. Model results

Figure 2 shows the results of a set of different model
simulations in which different combinations of ENSO and
vegetation index data were entered using the negative lags
given above. Note that the model outputs are truncated to
varying degrees in figure 2 owing to the variable shifts of
the independent variables. Figure 2(a) shows how the model
performed when only ENSO indices were included in the
model and figure 3 reveals how the model results improved
as more ENSO variables were added. For example, with all
five ENSO indices included, the model explained 45% of the
variance in the DF/DHF time series (figure 3) and showed
a small peak in phase with the 2005 epidemic. Figure 2(b)
shows how the model performed with only EVI and NDVI as
inputs and the corresponding figure 3 reveals that these two
variables explained 33% of the variance. Interestingly, EVI
and NDVI alone were unable to produce a modeled increase
in predicted cases during the 2005 period. Figure 3 shows an
increase in model performance as more ENSO variables were
added, but that the combination of ENSO and vegetation index
data significantly improved the model’s ability to estimate the
epidemic period of 2005. When EVI and the five ENSO
indices were included, the model explained close to 58% of the
variance but when NDVI was used with the ENSO indices the
R2 improved to 0.75. This suggests that NDVI may be a more
powerful index for predictive purposes, possibly because it is
more closely related to moisture conditions than EVI. When all
variables were included, the model R2 improved to 0.83.
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Figure 2. Modeled and observed cases of DF/DHF from 2003 to
2007 with different combinations of input variables: (a) ENSO 1–4
and ENSO 1–4 and ENSO 3.4; (b) EVI, NDVI and both EVI and
NDVI; (c) EVI and the five ENSO variables, NDVI and the five
ENSO variables; (d) all seven parameters (five ENSO and the two
vegetation indices).

Figure 4 shows how the model performed when the
independent variables were shifted forward in time (positive
lags) and focuses specifically on the epidemic period of
2005. As expected from the analysis of cross-correlation
coefficients, the overall predictive power of the model was
less (64% of variance) when the independent variables were
positively lagged to match the maximum cross-correlation in
this direction. Nonetheless, figure 4(a), which provides the
result for all independent variables, shows that the model
was still able to predict a large increase in DF/DHF cases
during 2005, consistent with the epidemic, although the overall
magnitude was underestimated. When the model was run with
positive lags and parameterized using the first 104 observations
(figure 4(b)), a period that did not include a major epidemic, the
per cent variance explained decreased to 49 and the predicted
peak of the epidemic was shifted to the right by several weeks.
This suggests that the model parameterization may benefit by
further incorporation of one or more past epidemics.

Figure 3. R2 values obtained using different combinations of input
variables.

Figure 4. (a) Model results for independent variables lagged in the
positive direction; (b) model used to forecast the 2005 epidemic
using the preceding two years (104 weeks) of data with positive lags.

5. Implications for development of a regional early
warning system

In order to forecast future DF/DHF epidemics, it will be
necessary to run such a model with independent variables
lagged in the positive direction. With the exception of EVI,
which was fairly synchronous with DF/DHF case fluctuations,
maximum cross-correlations were obtained for NDVI and the
ENSO indices around +40 weeks, which would provide ample

5



Environ. Res. Lett. 4 (2009) 014011 D O Fuller et al

warning for public health authorities to prepare for a potential
outbreak. This result is also consistent with studies that
analyzed egg survival times in Ae. aegypti, which can range
from four to six months (Sota and Mogi 1992) up to a year
(Christophers 1960). Moreover, temperature variations may
also explain some of the variance in dengue cases owing to the
decrease in the extrinsic incubation period (the time between
an infective blood meal and infectivity of the mosquito) when
temperatures range between 32 and 35 ◦C (Schreiber 2001).
This may explain why negative departures in Pacific SST
(the cool phase of ENSO) appear to be inversely related to
DF/DHF cases in our study area. Of course unexplained
variance in DF/DHF cases may also relate to a variety of
factors including herd immunity to the dominant circulating
serotypes, specific health interventions or adoption of vector
control measures. Considerable variation in national-level
control measures and the expansion of circulating serotypes
into highly susceptible populations may have affected the
magnitude of the epidemic in 2005 and account for some of the
unexplained variance in the model, in addition to the possible
misreporting and underreporting of cases, which is a common
problem in endemic areas (Halstead 2008). Nonetheless,
model simulations that incorporate NDVI, EVI and ENSO
indices all produce a notable peak in 2005, which suggests
the model may be used to predict future outbreaks despite
underestimating to varying degrees the recorded cases in 2005.

The model may be improved in a variety of ways, for
example, by incorporating different types of indices relating
to other climate teleconnections (e.g., the Pacific Decadal
Oscillation, Atlantic Multi-decadal Oscillation), use of wavelet
transforms (e.g., Cazales et al 2005) to better characterize
changes in the dominant frequencies that control the non-
stationary nature of dengue time series, inclusion of locally
based climate data (e.g., temperature fields) that are used
in more traditional models of vector population dynamics
(Focks et al 1993a, 1993b), and use of seasonal autoregressive
modeling (Chaves and Pascual 2007).

Both dengue and malaria are among a set of acute vector-
borne diseases that show seasonality and a clear association
with rainfall and temperature (Halstead 2008). However, in
developing countries where meteorological station data tend
to be spatially sparse and often include large temporal gaps,
other climate variables may be substituted for station data when
studying climate–disease patterns. The ability to substitute
ENSO SST data for spatially sparse station data is a particular
strength of our approach as ENSO data are compiled regularly
and consistently at weekly intervals.

The overall success of climate-based models for vector-
borne disease prediction has lead to greater interest in the
development of operational early warning systems (EWS)
(Kelly-Hope and Thomson 2008). The feasibility of malaria
EWS has been established for parts of Africa (e.g., Thomson
et al 2005, Ceccato et al 2007, Jones et al 2007) and these
approaches typically incorporate SST and remotely sensed
vegetation indices (usually NDVI). Depending on the model,
malaria EWS typically show comparable predictive power to
our model for DF/DHF cases in Costa Rica (e.g., Jones et al
2007). According to (Chaves and Pascual 2007), the accuracy

of infectious disease EWS typically ranges from 50–80% for
disease burdens at timescales of one year or less. DF/DHF
is generally considered more difficult to predict using climate
variables than malaria since many malaria vectors (mainly
Anopheles mosquitoes) tend to deposit their eggs in rain-fed
water bodies that are much larger than the container habitats
used by the Ae. aegypti mosquito and the eggs of malaria
vectors do not survive desiccation. Further, container reduction
efforts in urban areas are largely independent of climate, as
are various other control measures such as spraying and use of
larvicides (Halstead 2008).

Further work is needed to develop a spatial dengue EWS
that entails the creation of risk maps showing likely patterns
of disease burden (Kelly-Hope and Thomson 2008). However,
in the case of DF/DHF there may be clear patterns of spatial
variability that may relate to the built environment and tree
cover (Troyo et al 2008, 2009), local climate variability, as
well as differential herd immunity (Halstead 2008). Thus,
more work is needed to develop spatiotemporal models that
predict incidence and spread of dengue and dengue vectors
for endemic urban areas. Fortunately, a range of remotely
sensed data may be used to derive information on Ae. aegypti
habitat suitability and rainfall in the tropics and high-resolution
(10◦ ×10◦) climate surfaces depicting rainfall and temperature
(e.g., New et al 2002) may be used to drive a spatial version of
our model for application at a regional scale to predict dengue
cases. However, much higher-resolution surfaces would be
needed to apply such an approach to small countries such as
Costa Rica.

6. Conclusions

Our analysis shows that a relatively simple structural model
that incorporates lagged SST and MODIS vegetation indices
explained 83% of the variance in weekly DF/DHF cases in
Costa Rica from 2003 to 2007. When run with the independent
variables lagged in the positive direction, the model also
performed reasonably well (R2 = 0.64); i.e., within the range
of accuracies of most climate-based disease EWS (Chaves
and Pascual 2007). Given all the factors that tend to be
associated with DF/DHF, including poor sanitation, inadequate
management of small containers, variable efficacy of vector
control, underreporting of cases and immunity to circulating
serotypes, the results reported here suggest the feasibility of
advancing DF/DHF prediction at national-to-regional scales
using climate-based statistical models that estimate future
outbreaks and quiescence. Moreover, the temporal resolution
of our model is higher than that used in other predictive
tools such as malaria EWS, which typically rely on monthly
data to generate advanced notification of disease risk. This
is significant because the onset of DF/DHF epidemics can
be rapid and weekly data are more appropriate than monthly
observations to capture rapid fluctuations in the independent
variable. Our CCF analysis suggests that the model may be
used to predict DF/DHF outbreaks as early as 40 weeks in
advance and may also provide valuable information on the
magnitude of future epidemics. In its current form we believe
the model may be used to inform national vector control
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programs and policies regarding control measures, including
prevention and planning of medical services for those likely to
be affected during future outbreaks. Our climate-based model
is the first that has been developed for this country (Troyo et al
2006), it is potentially scalable to the broader region of Latin
America and the Caribbean and therefore it may be applied
to other countries that are experiencing dramatic increases in
DF/DHF incidence and spread.
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