
UNIVERSIDAD DE COSTA RICA

SISTEMA DE ESTUDIOS DE POSGRADO

EVALUATING AN AUTOMATED PROCEDURE OF MACHINE

LEARNING PARAMETER TUNING FOR SOFTWARE EFFORT

ESTIMATION

Tesis sometido a la consideración de la Comisión del
Programa de Estudios de Posgrado en Computación

e Informática para optar al grado y título de
Maestría Académica en Computación e Informática

LEONARDO VILLALOBOS ARIAS

Ciudad Universitaria Rodrigo Facio, Costa Rica

2021

Dedicatoria

A mi madre, quien a través de todos estos años me ha brindado su amor y apoyo

incondicional, y me ha motivado a buscar la excelencia.

A mi padre, quien me ha enseñado sobre las cosas más importantes de la vida, y

siempre ha estado ahí para escuchar mis problemas y darme consejo en los tiempos

más difíciles.

A mi hermano menor, quien ha sido mi compañero en los buenos y los malos

momentos, y quien ha trabajado como la voz de la razón que muchas veces me hace

falta.

ii

Agradecimientos

Un agradecimiento sincero a todos los que han contribuido, directa o indirectamente,

a este trabajo.

Agradezco de manera especial a mi tutor, el Dr. Christian Quesada López, por su

increíble dedicación a este proyecto y su guía en el mundo académico. Deseo agrade-

cer también a mis asesores de tesis, el Dr. José Guevara Coto, la Dra. Alexandra

Martínez Porras y el Dr. Marcelo Jenkins Coronas, por su ayuda durante la elabo-

ración de esta investigación.

Esta investigación fue desarrollada en el marco del proyecto de investigación No.

834-B8-A27, “Evaluación empírica de una metodología para la automatización de la
medición del tamaño funcional del software”, que fue apoyado conjuntamente por el

Centro de Investigaciones en Tecnologías de la Información y Comunicación (CITIC) y

la Escuela de Ciencias de la Computación e Informática (ECCI) y de la Universidad de

Costa Rica (UCR).

iii

iv

Table of contents

Dedicatoria . ii

Agradecimientos . iii

Hoja de aprobación . iv

Table of contents . ix

Resumen . x

Abstract . xi

List of tables . xiii

List of figures . xv

List of acronyms . xvi

1 Introduction 1

1.1 Objectives . 4

1.2 Methodology . 5

1.3 Contributions and products . 6

1.4 Document structure . 7

2 Background 9

2.1 Data science in software engineering 9

2.2 Search based software engineering . 10

2.3 Software effort estimation . 12

2.3.1 SEE process . 13

2.3.2 SEE datasets . 14

2.4 SEE evaluation frameworks . 17

2.4.1 Baseline SEE frameworks . 21

2.5 Machine learning . 23

v

2.5.1 Data transformation techniques 27

2.5.2 Feature selection techniques . 29

2.5.3 Clustering techniques . 32

2.5.4 Validation approaches . 33

2.5.5 Machine learning algorithms 35

2.5.6 Hyper-parameter tuning approaches 38

2.6 Empirical methodologies in software engineering 44

2.6.1 Design science methodology for information systems and soft-

ware engineering . 44

2.6.2 Empirical software engineering 46

2.6.3 Systematic mapping studies . 47

2.6.4 Controlled experiments . 49

2.7 Software engineering methodologies 52

3 Hyper-parameter tuning for machine learning software effort estimation:

a systematic literature mapping 54

3.1 Study design . 54

3.1.1 Research questions . 55

3.1.2 Control studies . 55

3.1.3 Search strategy . 55

3.1.4 Inclusion and exclusion criteria 56

3.1.5 Selection process . 57

3.1.6 Quality assessment . 57

3.1.7 Data extraction and analysis . 58

3.2 Results . 60

3.2.1 RQ1: Hyper-parameter tuning approaches used in machine learn-

ing SEE . 61

3.2.2 RQ2: Datasets used in hyper-parameter tuning machine learn-

ing SEE . 75

3.2.3 RQ3: Performance metrics of hyper-parameter tuning approaches

used in machine learning SEE 80

3.2.4 Discussion . 87

vi

3.2.5 Conclusions of the mapping study 96

4 ChimeraHPT: an automated machine learning hyper-parameter tuning

framework 98

4.1 Pre-processing . 99

4.2 Model training and evaluation . 102

4.2.1 Framework configuration . 102

4.2.2 Evaluation loop . 106

4.2.3 Machine learning techniques 110

4.3 Statistical analysis . 113

4.3.1 Model evaluation . 115

4.3.2 Model verification . 116

4.4 Summary . 116

5 Evaluation of the effectiveness of the automated hyper-parameter tuning

procedure: a series of quasi experiments 118

5.1 Quasi experiment 1: Evaluation of grid and random search for support

vector regression . 119

5.1.1 Study summary . 119

5.1.2 Main results . 120

5.2 Quasi experiment 2: Hyper-Parameter Tuning of Classification and Re-

gression Trees for Software Effort Estimation 121

5.2.1 Study summary . 121

5.2.2 Main results . 122

5.3 Quasi experiment 3: Hyper-parameter Tuning using Genetic Algorithms

for Software Effort Estimation . 123

5.3.1 Study summary . 123

5.3.2 Main results . 123

5.4 Quasi experiment 4: Multi-objective Hyper-parameter Tuning for Soft-

ware Effort Estimation . 124

5.4.1 Study summary . 124

5.4.2 Main results . 125

vii

5.5 Quasi experiment 5: Comparative study of Random Search Hyper-

Parameter Tuning for Software Effort Estimation 126

5.5.1 Study summary . 126

5.5.2 Main results . 127

5.6 General findings and discussion . 128

6 Conclusion 131

6.1 Summary of results . 131

6.1.1 SO1: Characterization of hyper-parameter tuning approaches

for machine learning . 131

6.1.2 SO2: Automation of a hyper-parameter tuning procedure for

machine learning . 133

6.1.3 SO3: Evaluation of the effectiveness of the automated hyper-

parameter tuning procedure for machine learning 135

6.2 Contributions . 139

6.3 Future work . 139

A Hyper-parameter tuning techniques in SEE 142

B ChimeraHPT list of technique and parameters 157

C Paper 1: Técnicas de ajuste de hiperparámetros de algoritmos de apren-

dizaje automático para la estimación de esfuerzo: un mapeo de literatura163

D Paper 2: Evaluation of Grid and Random Search for Support Vector Re-

gression 180

E Paper 3: Hyper-Parameter Tuning of Classification and Regression Trees

for Software Effort Estimation 192

F Paper 4: Hyper-parameter Tuning using Genetic Algorithms for Software

Effort Estimation 204

G Paper 5: Multi-objective Hyper-parameter Tuning for Software Effort Es-

timation 212

viii

H Paper 6: Comparative study of Random Search Hyper-Parameter Tuning

for Software Effort Estimation 227

Bibliography 236

ix

Resumen

Los algoritmos de aprendizaje automático han sido utilizados para crear modelos

con mayor precisión para la estimación del esfuerzo del desarrollo de software. Sin

embargo, estos algoritmos son sensibles a factores, incluyendo la selección de hiper

parámetros. Para reducir esto, se han investigado recientemente algoritmos de ajuste

automático de hiper parámetros. Es necesario evaluar la efectividad de estos algorit-

mos en el contexto de estimación de esfuerzo. Estas evaluaciones podrían ayudar a

entender qué hiper parámetros se pueden ajustar para mejorar los modelos, y en qué

contextos esto ayuda el rendimiento de los modelos.

El objetivo de este trabajo es desarrollar un procedimiento automatizado para el

ajuste de hiper parámetros para algoritmos de aprendizaje automático aplicados a la

estimación de esfuerzo del desarrollo de software. La metodología seguida en este

trabajo consta de realizar un estudio de mapeo sistemático para caracterizar los al-

goritmos de ajuste existentes, desarrollar el procedimiento automatizado, y conducir

cuasi experimentos controlados para evaluar este procedimiento.

Mediante el mapeo sistemático descubrimos que la literatura en estimación de es-

fuerzo ha favorecido el uso de la búsqueda en cuadrícula. Los resultados obtenidos en

nuestros cuasi experimentos demostraron que algoritmos de estimación no-exhaustivos

son viables para la estimación de esfuerzo. Estos resultados indican que evaluar

aleatoriamente 60 hiper parámetros puede ser tan efectivo como la búsqueda en

cuadrícula, y que muchos de los métodos usados en el estado del arte son solo más

efectivos que esta búsqueda aleatoria en 6% de los escenarios. Recomendamos el

uso de la búsqueda aleatoria, algoritmos genéticos y similares, y la búsqueda tabú y

harmónica.

x

Abstract

Software effort estimation requires accurate prediction models. Machine learning

algorithms have been used to create more accurate estimation models. However,

these algorithms are sensitive to factors such as the choice of hyper-parameters. To

reduce this sensitivity, automated approaches for hyper-parameter tuning have been

recently investigated. There is a need for further research on the effectiveness of

such approaches in the context of software effort estimation. These evaluations could

help understand which hyper-parameter settings can be adjusted to improve model

accuracy, and in which specific contexts tuning can benefit model performance.

The goal of this work is to develop an automated procedure for machine learning

hyper-parameter tuning in the context of software effort estimation. The automated

procedure builds and evaluates software effort estimation models to determine the

most accurate evaluation schemes. The methodology followed in this work consists of

first performing a systematic mapping study to characterize existing hyper-parameter

tuning approaches in software effort estimation, developing the procedure to auto-

mate the evaluation of hyper-parameter tuning, and conducting controlled quasi ex-

periments to evaluate the automated procedure.

From the systematic literature mapping we discovered that effort estimation lit-

erature has favored the use of grid search. The results we obtained in our quasi ex-

periments demonstrated that fast, less exhaustive tuners were viable in place of grid

search. These results indicate that randomly evaluating 60 hyper-parameters can be

as good as grid search, and that multiple state-of-the-art tuners were only more ef-

fective than this random search in 6% of the evaluated dataset-model combinations.

We endorse random search, genetic algorithms, flash, differential evolution, and tabu

and harmony search as effective tuners.

xi

List of Tables

1 List of acronyms . xvi

2.1 SEE datasets and their qualities. 16

2.2 SEE frameworks. 19

3.1 PICO clusters and search string. 56

3.2 Data extraction fields. 58

3.3 Hyper-parameter tuning approaches and related SEE studies. 62

3.4 Study focus and related SEE studies. 64

5 Machine learning algorithms and related SEE studies. 65

3.6 Cross-validation approaches and related SEE studies. 70

3.7 Data transformations and related SEE studies. 72

3.8 Feature selection and related SEE studies. 74

9 SEE datasets and related SEE studies. 75

10 Evaluation metrics and related SEE studies. 81

11 Analysis techniques and related SEE studies. 85

12 Challenge categories and related SEE studies. 88

4.1 Categories, techniques, parameters and possible values for the FW file. 103

4.2 Parameters and possible values for the DS file. 104

4.3 Parameters and possible values for the DT file. 104

4.4 Libraries used in for the construction of ChimeraHPT. 110

4.5 Machine learning algorithms supported in ChimeraHPT. 111

4.6 Hyper-parameter tuners supported in ChimeraHPT. 112

4.7 Cross-validation approaches supported in ChimeraHPT. 112

xii

4.8 Data transformations supported in ChimeraHPT. 112

4.9 Feature selectors supported in ChimeraHPT. 113

4.10 Evaluation metrics supported in ChimeraHPT. 114

4.11 Baseline estimators supported in ChimeraHPT. 114

5.1 Quasi experiments of the third specific objective. 119

1 List of selected studies. 142

2 Quality assessment per paper. 148

3 Machine learning techniques by sub-type and related SEE studies. . . . 152

1 Categories, techniques, parameters and possible values for the AS file. 157

2 Categories, techniques, parameters and possible values for the LA file. 158

3 Categories, techniques, parameters and possible values for the PT file. 160

xiii

List of Figures

1.1 Design of the research project. 5

1.2 Summary of research methodology. 7

2.1 Software effort estimation process phases. 13

2.2 Simple machine learning framework. 25

2.3 Summary of the design science approach. 45

2.4 Systematic literature review and mapping process. 48

2.5 Complete empirical experiment process. 51

2.6 Incremental development process. 53

3.1 Systematic mapping study steps and results. 57

3.2 Classification scheme for extracted fields. 59

3.3 Hyper-parameter tuning approaches and usage through time. 63

3.4 Categorization of techniques of the evaluation scheme and usage through

time. 65

3.5 Machine learning algorithms and usage through time. 67

3.6 Cross-validation approaches and usage through time. 71

3.7 Data transformation approaches and usage through time. 73

3.8 Feature selection approaches and usage through time. 74

3.9 Dataset origins and usage through time. 78

3.10 PROMISE and ISBSG datasets and usage through time. 79

3.11 Evaluation metrics and usage through time. 83

3.12 Reported challenges through time. 90

4.1 Tasks of the ChimeraHTP procedure. 99

xiv

4.2 Tasks and activities of the ChimeraHTP procedure. 100

4.3 Hyper-parameter tuning in ChimeraHPT. 109

xv

List of acronyms

Table 1: List of acronyms

1+1: One plus one genetic algorithm

ANN: Artificial neural network

ANOVA: Analysis of Variance

BL: Baseline

BO: Bayesian optimization

CART: Classification and regression trees

CC: Cross-company

CGA: Compact genetic algorithm

CV: Cross-validation

DC: Design cycle

DE: Differential Evolution

DQ: Design questions

DS: Dataset

DT: Data transformation

EC: Empirical cycle

EM: Evaluation metrics

ESE: Empirical software engineering

FP: Function points

FS: Feature selection

GA: Genetic algorithm

Continued on next page

xvi

Table 1: List of acronyms (Continued)

GS: Grid search

HS: Harmony search

ISBSG: International Software Benchmarking Standards Group

KNN: K-nearest neighbors

KLOC: Kilo lines of code

KQ: Knowledge questions

LA : (Machine) Learning algorithm

LOC: Lines of code

MAE: Mean absolute error

MAR: Mean absolute residual

MBRE: Mean balanced relative error

MdAE: Median absolute error

MdAR: Median absolute residual

MLP: Multi-layer perceptron

ML: Machine learning

MLSEE: Machine learning software effort estimation

MdMRE: Median Magnitude of Relative Error

MMRE: Mean Magnitude of Relative Error

MSE: Mean squared error

PICO: Population, Intervention, Comparison, Outcome

PROMISE: Predictive Models in Software Engineering

PSO: Particle swarm optimization

RQ: Research question

RS: Random search

SA: Standardized accuracy

SBSE: Search based software engineering

SE: Software Engineering

Continued on next page

xvii

Table 1: List of acronyms (Continued)

SEE: Software effort estimation

SLR: Systematic literature review

SMS: Systematic mapping study

SO: Specific objective

SVM: Support vector machines

SVR: Support vector regression

WC: Within-company

xviii

1

Chapter 1

Introduction

Software development deals with limited resources [1], and must carefully allocate

assets such as development personnel and budget to ensure the success of a project.

For this reason, a key problem in software engineering is the estimation of software

cost and effort [1], which is known as software effort estimation (SEE). Software

effort estimation techniques have practical applications in budgeting, risk analysis,

project planning, and improvement analysis [2]. Hence, the accuracy of software ef-

fort estimates is of vital importance. Overestimating the effort could lead to rejecting

a potentially beneficial project, and the loss of a strategic opportunity. Underestimat-

ing the effort, on the other hand, could result in accepting a project that would fail to

achieve its expected payoff [3].

There are two main approaches for software effort estimation: expert judgment

and engineering [2, 4, 5]. Expert judgment provides estimates based on practitioners’

expertise [2]. While this approach is useful in the absence of empirical data, it is diffi-

cult to evaluate due to its normally informal and undocumented nature [5]. The engi-

neering approach builds estimation models using information from past projects [5].

Traditionally, Software effort estimation has employed parametric models (those ex-

pressed as a mathematical equation) such as COCOMO, SLIM, and PRICE_S [2]. How-

ever, these models have been reported to yield poor estimations as size or complexity

of software grows [2, 6].

The use of machine learning (ML) algorithms in software effort estimation has

been an active research area from the late 1970s to date [7, 6, 8, 9, 10]. Based

on historical project data, machine learning algorithms generate and adjust (train)

an estimation model [11]. A model is constructed from an evaluation scheme, i.e.,

combination of dataset, validation approach, data pre-processing, feature selection

2

technique, machine learning algorithm, and hyper-parameter tuning approach. This

model is then trained to minimize the prediction error on existing data, while re-

maining general enough to predict new, unseen data [11]. The main application of

such models is to aid experts in performing or revising their effort estimations, thus

improving the decision-making process of software projects [12].

The use of ML algorithms in SEE comes with the challenge of sensitivity to multiple

factors: input data, data transformation, feature selection, validation approach, and

hyper-parameter values [13, 14]. The impact of factors on the prediction accuracy

of effort estimation models has been extensively studied, with somewhat contradic-

tory results [15, 16, 17, 18, 19, 13]. Many of these studies grant no access to their

experimental artifacts (source code), and lack reporting detail on their experimental

design, especially on the factors that affect the estimation models [13]. Because of

this, the results obtained by one study may be impossible to replicate in another. This

phenomenon is known as conclusion instability [13]. This instability can be measured

through the prediction stability: the variance in the prediction accuracy [20].

One key factor that can affect software effort estimation models is the hyper-

parameter configuration of the machine learning algorithm [14, 21]. These Hyper-

parameters are values that must be set before the model is trained, as they affect its

construction [12, 21]. Examples of hyper-parameters include the amount of hid-

den layers a in a multilayer perceptron, and the kernel type in a support vector

machine. Software effort estimation literature uses the term parameter instead of

hyper-parameter when referring to selection or tuning (i.e., parameter tuning instead

of hyper-parameter tuning) [8, 14, 22, 23, 24, 25]. Many studies of ML in SEE do not

report the hyper-parameter settings, or do not use a hyper-parameter tuning proce-

dure [13, 26]. Generally, hyper-parameters are set to their default values, or deter-

mined through an iterative, manual process [21].

Hyper-parameter tuning approaches (also known as parameter optimization) are

search algorithms that seek the hyper-parameter settings for a ML model that mini-

mize the estimation or prediction error [27]. These approaches can automate man-

ual tuning and achieve similar performance [21]. Previous works have reported

that hyper-parameter tuning improves the accuracy of effort estimation [14]. More-

over, tuning can reduce conclusion instability by improving the prediction stability

with respect to default parameter models [28]. Examples of tuning approaches are

grid search, random search [29], particle swarm optimization [30] and genetic algo-

rithms [31]. These tuners train and evaluate models with different hyper-parameter

configurations, and choose the one with highest accuracy [27]. This requires signif-

3

icant time and processing power [21], thus in practice, an organization would use

only the best tuning approach to improve their estimations [27, 21].

A software effort estimation procedure is necessary to determine the best hyper-

parameter tuning approach for a particular dataset and model. A SEE procedure is

a detailed series of tasks and sub-activities used in accordance with a measurement

method, to obtain an effort estimate [32]. A framework is required to automate the

otherwise manual activities of this procedure. A SEE framework is the implemen-

tation of a procedure, automating the process of building and evaluating machine

learning models [33].

The software engineering literature has defined multiple procedures and frame-

works. The first studies proposed the use of data statistics, such as the mean or

median, as a comparison baseline against estimation models [34, 16]. Afterwards,

the first notion of an evaluation framework was proposed [35, 36, 37]: a method

that allows the comparison of two different ML algorithms, favoring the use of pub-

lic datasets, validation techniques, and configuration evaluation techniques. Later,

this notion was extended by adding comparisons for each evaluation scheme, and

introducing a training-testing-validation split of the datasets [38]. These ideas were

brought into the SEE field [39] and better analysis techniques were introduced to

increment the conclusion stability of SEE studies [40].

As SEE frameworks were being developed, baseline frameworks emerged. These

frameworks included baseline techniques or metrics that allow comparison of results

from different studies, even when using different procedures. Examples of these

are the p0 predictor and the standardized accuracy metric [41, 42], the minimum

interval of equivalence metric [43], and the individual absolute residuals [44]. With

the advent of these baselines, usage of biased metrics such as the mean magnitude of

relative error (MMRE) [45] was discouraged [46, 47, 48].

Lately, empirical studies have begun to include hyper-parameter tuning as part

of their frameworks. Previous research has evaluated the impact of hyper-parameter

tuning in the accuracy of effort estimation models, and suggested that tuning should

be included in future frameworks [14]. More recent studies in software effort es-

timation have employed hyper-parameter tuning for online estimation [12], evalu-

ated tabu search [49] and bee’s algorithm for tuning [50], and proposed fast and

efficient approaches such as dodge [51, 52], flash [53, 54], and differential evolu-

tion [55, 56]. However, only a few studies in software effort estimation have com-

pared hyper-parameter tuning approaches for machine learning [57, 58, 24]. This

4

thesis thus evaluates the effectiveness of some of the existing hyper-parameter tuning

approaches for machine learning algorithms to estimate software effort.

1.1 Objectives

The main goal of the thesis was to develop an automated procedure for machine learn-
ing hyper-parameter tuning in the context of software effort estimation. To meet this

general objective, three specific objectives were proposed in the context of software

effort estimation:

SO1. To characterize hyper-parameter tuning approaches for machine learning.

SO2. To automate a hyper-parameter tuning procedure for machine learning.

SO3. To evaluate the effectiveness of the automated hyper-parameter tuning proce-

dure for machine learning.

The automated procedure supports the selection of techniques that comprise the

evaluation scheme: data sets (DS), validation approaches (CV), data pre-processing

transformations (DT), feature selections (FS), machine learning algorithms (LA), and

hyper-parameter tuning (PT). The set of evaluation schemes to evaluate was con-

structed as every possible combination of all selected techniques. Each scheme was

evaluated by constructing, training, and evaluating an effort estimation model. In

this process, the hyper-parameter tuning algorithm adjusted and selected the hyper-

parameter values of the machine learning model.

To evaluate the automated procedure, we employed 9 benchmark datasets from

the software effort estimation literature [59] and 4 subsets from the ISBSG 2018

release 1 repository [60]. Such datasets included information about past software

engineering projects, and contained data of the company and the project size. The

procedure conducted a fair comparison of each hyper-parameter tuning approach

with respect to their effectiveness to improve the prediction accuracy and stability

of machine learning algorithms. Our automated procedure is potentially useful for

software engineering stakeholders. With its use, such professionals can determine

the best tuners and models for their company data, regardless of the characteristics

of their projects.

5

Figure 1.1: Design of the research project.

1.2 Methodology

The development of this research and thesis document followed the design science

methodology for information systems and software engineering [61]. Design science

proposes a framework of design and investigation of research artifacts in the context

of software engineering. Design science uses a combination of design and empirical

cycles to propose design or research questions. Each question was answered at the

end of the completion of its respective cycle [61]. In the context of this research, the

research artifact was the automated procedure of machine learning hyper-parameter

tuning for software effort estimation.

The design of this research was composed by a set of design cycles (DC) and

empirical cycles (EC), as shown in figure 1.1. A main design cycle covered the main

objective of the thesis. The cycle consisted of three phases, each consisting of a sub-

cycle and covering a specific objective of the thesis.

To guide this research, the following design questions (DQ) and knowledge ques-

tions (KQ) were defined:

KQ1: What are the characteristics of machine learning hyper-parameter tuning ap-

proaches for software effort estimation?

DQ2: How to design an automated parameter tuning procedure for machine learning

software effort estimation?

6

KQ3: What is the effectiveness of the automated parameter tuning procedure for

machine learning software effort estimation?

The first phase covered knowledge question 1 and the first specific objective (SO1),

in which machine learning hyper-parameter tuning approaches in SEE were charac-

terized. To accomplish this, an empirical cycle was executed to conduct a systematic

mapping study [62].

The second phase covered design question 2 and the second specific objective (SO2),

in which the automated hyper-parameter tuning procedure for machine learning was

designed, implemented and validated To accomplish this, a design cycle was executed

using the iterative development methodology [63].

The third phase covered knowledge question 3 and the third specific objective (SO3),

in which effectiveness of the automated hyper-parameter tuning procedure was evalu-

ated. In this evaluation, the procedure determined the impact of the hyper-parameter

tuning approaches on the estimation accuracy of effort estimation models. To accom-

plish this, an empirical cycle, consisting of controlled quasi experiments, was exe-

cuted [64].

The completion of the activities related to these three phases resulted in different

products that comprise this thesis document. Figure 1.2 summarizes the objectives,

method, and products of each phase of the research.

The methodology followed in each of the three phases is covered on its specific

chapter of the thesis document. Chapter 3 presents the methodology for phase one to

conduct a systematic mapping study. Chapter 5 contains the methodology for phase

three, presenting a design for each of the conducted controlled quasi experiments.

1.3 Contributions and products

The following are the contributions and products of this research:

• The report of a systematic mapping study of the existing hyper-parameter tuning

approaches; additionally covering the machine learning algorithms, datasets,

data pre-processing, feature selection, and validation approaches used in con-

junction with hyper-parameter tuning.

• The design and implementation of an automated hyper-parameter tuning ma-

chine learning procedure for software effort estimation.

7

Figure 1.2: Summary of research methodology.

• An empirical evaluation of the hyper-parameter tuning procedure in terms of

accuracy and stability, and a set of the hyper-parameter tuning approaches that

provide the best improvement of prediction accuracy for each particular dataset

and machine learning algorithm.

1.4 Document structure

This thesis document is structured as follows: Chapter 2 introduces the concepts of

software effort estimation, hyper-parameter tuning and machine learning, and em-

pirical research methodologies. Chapter 3 presents the mapping study on hyper-

parameter tuning approaches in SEE, showing the reported hyper-parameter tuners,

machine learning algorithms, datasets, evaluation metrics and challenges. Chapter 4

details the automated hyper-parameter tuning procedure for machine learning, as

well as the implemented framework to support this procedure. Chapter 5 presents

the design and results of the series of quasi experiments that evaluated the automated

hyper-parameter tuning procedure. These studies covered the following areas: effect

of tuning on the accuracy and stability of SEE models, genetic and bio-inspired tun-

ing, multi-objective hyper-parameter tuning, and random search vs. state-of-the-art

8

tuning. Lastly, chapter 6 summarizes the results of this research and shows possible

venues for future work.

9

Chapter 2

Background

This chapter presents the background concepts related to software effort estimation

and machine learning. Section 2.1 contains the foundation and role of data science

in software engineering. Section 2.2 contains a basic explanation of the search-based

software engineering research field. Section 2.3 contains the foundations of software

effort estimation. Section 2.4 contains the general process of machine learning eval-

uation frameworks for software effort estimation. Section 2.5 contains the principles

of machine learning. Sections 2.6 and 2.7 respectively contain the foundations of the

empirical methodologies and software engineering methodologies that will be used

in the thesis.

2.1 Data science in software engineering

The software engineering process naturally produces a large amount of data, in the

form of source code, bug reports, test cases, and user stories, among others. Research

in software engineering attempts to build new knowledge, based on this informa-

tion [65]. Software engineering data can come from different sources, collected using

different methods, be structured or unstructured, have varying degrees of noise, and

be objective or subjective. This variability introduces the need for data analysis for

software engineering [65].

Software analytics uses data-driven approaches to enable software practitioners to

perform data exploration and analysis, in order to obtain insightful and actionable in-

formation for completing various tasks around software systems, software users, and

the software development process [66, 67, 65]. Data analysis in software engineering

should provide a solution to a recurrent problem in the field, while being accessible

10

(automatable, re-usable, and actionable) to software engineering practitioners [65].

Software analytics is relevant and used in many research areas of software en-

gineering. Some of these include repository mining, software testing and fault de-

tection, defect prediction, software analytics, service analysis, security analysis, and

software effort estimation. In the case of software effort estimation, data science

techniques—such as machine learning—are used to perform predictive analysis of

project effort. In order to minimize project costs, a practitioner could use historical

project data to predict costs of future development projects. In this scenario, predic-

tion techniques such as machine learning aid the data analysis tasks, which would

ultimately to a quantifiable benefit to the practitioner—the reduction development

costs due to minimization of estimation risk [65, 68]. In addition, search-based soft-

ware engineering techniques can be combined with data science approaches. For

instance, a machine learning technique can be combined with a search-based hyper-

parameter tuning approach [51].

2.2 Search based software engineering

Search based software engineering (SBSE) is a research field inside software engi-

neering, which applies search based optimization techniques to SE problems. In

other words, SBSE reformulates SE problems to search problems [69, 68, 70, 71].

Search problems in this contexts are problems in which an optimal (or near-optimal)

solution is sought in a search space composed of candidate solutions [71]. A search

function guides this process, differentiating which is best between two candidate so-

lutions. In addition, SBSE techniques work with limited resources—i.e. computation

time—, and thus usually do not search within the entirety of this sub-space [70].

Techniques such as random search, hill climbing, simulated annealing, nature-based

search algorithms (such as cuckoo search, artificial bee colonies, and particle swarm

optimization), and genetic algorithms comprise the field of SBSE [70, 72].

The search-based software engineering approach and its techniques can be ap-

plied to software effort estimation—particularly modeling [73] and hyper-parameter

tuning [51]. SBSE approaches can be used to estimate effort, select relevant features

for a dataset, and adapt models to new data, and select hyper-parameter values for

models. For effort estimation, genetic programming approaches can be used to esti-

mate software effort. One of the first authors [73] to do so is Dolado [74, 75], who

employed genetic algorithms to find accurate functions to predict effort. SBSE can

11

aid in online effort estimation, which considers the change of data over time. Effort

estimation is a changing problem, as the company that performs the estimation will

change over time. An approach such as Bayesian evolutionary algorithms may aid

in this task [73]. For feature selection, SBSE approaches this as a multi-objective

optimization problem, in which the amount of features of the input data is minimal,

while maximizing estimation accuracy. Other factors, such as the cost of collecting

a particular feature, can be considered in a multi-objective feature selection [73].

Kirsopp et al. [76] used a hill climbing approach to select features for Case Based

Reasoning systems to estimate software effort. Lastly, for hyper-parameter tuning,

SBSE algorithms can be used to search for good hyper-parameter values for machine

learning algorithms applied to effort estimation, using approaches such as genetic

algorithms [31] or particle swarm optimization [77].

One of the main barriers for search based algorithms (or machine learning in

the context of this proposal) is tuning. Search algorithms have a series of hyper-

parameters that need to be set before execution, and the value of these impact the

performance of the approach [78]. The use of hyper-parameter tuning is a trade-

off problem in itself. On one hand, default hyper-parameter values from the litera-

ture can function adequately well in some cases, but not quite for larger amounts of

data [79]. Thus, it would be beneficial to perform a hyper-parameter tuning process.

On the other hand, hyper-parameter tuning may become very expensive, but the im-

provements that are produced by it may not be so good [78]. Based on this, it is

important that hyper-parameter tuning approaches act based on the allocated search

budget [79, 78].

Recently, a novel field of empirical software engineering has emerged: DUO (Data

mining Using/Used-by Optimizers) [51]. These research field combines the strength

of data mining approaches and optimization algorithms, which function as an “ad-

visor” that aids the tasks of a data analyst, and that can aid construction of better

predictive models. Similarly, data mining and optimization approaches complement

each other. Optimization—such as hyper-parameter tuning—can be used to improve

predictive accuracy of data miners. In turn, data mining approaches can be used

to mitigate the problem of diminishing returns that optimization approaches face—

dividing work using clustering, for instance. Because of this, data mining approaches

that employ no optimization have been considered deprecated [51], and previous

work should be revisited and reevaluated.

12

2.3 Software effort estimation

Software effort estimation (SEE) can be defined as the process of predicting or es-

timating, from base characteristics of a software development project, the effort re-

quired for its completion, usually measured in man-hours [1, 2, 5]. Estimation is

not a process of coming up with a number that a team must commit to, but rather a

process to aid decision making [5].

Two approaches exist for effort estimation: the expert judgment approach and

the engineering approach [2, 4, 5]. The expert approach is the most used process in

industry, even though it is more subjective and is less measurable (and thus, is more

difficult to evaluate) than the engineering or model approach. Expert judgment is

highly dependent on the expertise on the people that participate on the process [5].

In addition, it is difficult to measure how effective this type of evaluation really is.

While a successful project may seem to respect its allocated budget, it is possible that

said project may do so at stake of not meeting all requirements [5].

The second approach to software effort estimation is the engineering approach [5],

also referred to as the model or mathematical approach [2, 4]. Instead of relying in

expert knowledge, this estimation method is based on information on past projects

and careful management and usage of this information. One of the most important

characteristics of this approach is understanding that not all existing models apply

to every situation, but rather it is imperative to understand the context and con-

straints of the available information and select one or more applicable models based

on these [5]. One analysis technique is to look at the existing historical data, one

variable at a time, and proposing a potential model that explains its relation with

effort [5]. The engineering approach can employ two types of prediction technique:

parametric models, and learning models [2]. Parametric models are based on math-

ematical functions, and learning models include regression methods and machine

learning algorithms [2].

Software effort estimation is a process that is performed through the life cycle of

a project, instead of only at the project planning. At the beginning of a software de-

velopment project, most information available is either obtained on past projects, or

documentation from the current project. As development progresses, more empirical

information on the project—such as time and requirement completion—is known.

This is a phenomenon in effort estimation known as the cone of uncertainty [5].

Accuracy of the effort estimation of a protect could improve along time, as new infor-

13

Figure 2.1: Software effort estimation process phases. Adapted from [5].

mation is available as time goes on. Some uncertainty remains in the prediction, as

the interaction between variables is not fully known.

2.3.1 SEE process

The general effort estimation process has 5 phases [5], as shown in figure 2.1: (1) col-

lection of input data, (2) productivity model prediction, (3) model adjustment, (4) bud-

get decision, and (5) re-estimation.

The first phase of the estimation process deals with the collection of input data.

These often deal with those resources, processes, and products associated with the

project that could potentially drive the cost of the project.

The second phase of the estimation process relates to the productivity model. A

productivity model simulates the development process, based on the input data, and

generates an estimate of the required effort or resources. This estimate may be either

a single value, or an estimation interval with certain degree of confidence.

The third phase of the estimation process is the adjustment process. This refers

adjustment of the model, and the entire effort estimation process, to accommodate

for novel information. Through the early estimation process, new information and

constraints—originally not in the historical data—are discovered.

The fourth phase of the estimation process is the budget decision. This refers to

selecting a value or set of values from the estimation process, so that the project is (or

is not) carried out based on this estimate. This process is performed manually, with

expert judgment.

The fifth phase of the estimation process is the re-estimation. The software effort

estimation process is, by nature, iterative, as new and more pertinent information is

through time. The re-estimation process is similar to the adjustment process, as it

comprises the incorporation of new estimation into the productivity model to gener-

ate a more accurate estimation.

14

This thesis focuses on the second step of the estimation process: the productivity

model. Through this work, it will be referred as a prediction model. While tradition-

ally productivity models were often mathematical equations, more recent research

has shifted into machine learning models. Section 2.5 covers the bases of machine

learning and its process.

2.3.2 SEE datasets

Data is the cornerstone of empirical software engineering research and practice [80].

Data drives the estimation process, as it is used to produce effort prediction mod-

els. Software effort estimation datasets contain metrics about completed software

engineering projects, such as size, effort, duration, programming language, type of

business, and so forth [80]. Software development companies often use their own

project data to perform SEE, but often do not share or publish their own datasets.

Because of this, a small amount of datasets are available for research, and of which

some are widely used in software effort estimation research.

There are several datasets that are commonly used in software effort estima-

tion [81, 82, 83, 84, 85, 80]. These datasets are available in either the PROMISE

repository1, or the International Software Benchmarking Standards Group (ISBSG)2.

Table 2.1 shows the names, timeliness, amount of projects and features, and some

of the units of important features of these datasets. The timeliness column shows

the completion dates of the projects in the dataset. Datasets with an asterisk (*)

in their timeliness denote that no date information is available, and instead dataset

publication date is used. The Proj. and Feat. columns show the amount of software

projects (rows) and the metrics recorded for each project (columns), respectively.

The FP approach column shows the type of function points used to estimate software

size. The size unit columns shows estimated or delivered size of the final product,

measured in either lines of code (LOC), thousand lines of code (KLOC), or amount of

files. The effort unit column shows the amount of time required (in either hours or

months of work). The type columns shows whether the dataset contains information

belonging to a single company (WC, within-company), or multiple companies (CC,

cross-company).

While unique, all datasets share some common features. All datasets share the

target variable, effort, which is also the feature that is most frequented in primary

1http://promise.site.uottawa.ca/SERepository/
2https://www.isbsg.org/

http://promise.site.uottawa.ca/SERepository/
https://www.isbsg.org/

15

studies [86]. The other dataset variables are then used to perform estimation of

the target feature. Other important variables for effort estimation include (adjusted)

functional size, development type, language type, development platform, team size,

organization type, programming language, among others [87]. These variables de-

scribe the amount of work required to complete the software project, and play an

important role in estimation problems. Other types of variables cover information

about the company or developing team.

There are some limitations regarding these datasets. Some are comprised of

projects of multiple companies (cross-company, CC), as opposed to one company

(Within-company, WC; or single company, SC). These have the problem of having

more outliers, and the data is more heterogeneous, as projects with similar charac-

teristics may have completely different effort values. Some solutions to this problem

include partitioning of the data into sub-datasets, or elimination of extreme values

altogether [86]. Because of these limitations, datasets are seldom used as they are,

and instead transformations or selection of data is performed.

Studies have reached conflicting results on the effect of CC studies against WC

studies [88, 16, 19]. In some cases, prediction is worse for CC studies. For other

cases, there is benefit—or it is indifferent—in using CC data instead of only WC data.

In general terms, usage of CC data for estimation is a trade-off between number of

data instances, and heterogeneity of the data points. Thus, research on the amount of

CC projects to use in software effort estimation is an ongoing research area [89, 12].

The most important advantage of these public datasets is that they diminish data

collection costs, which are expensive process for organizations [86]. These benefits

however, do not come with a series of challenges. The main problem of these can be

generally described as the variance within different projects, which generates vari-

ance bias and conclusion instability [13]. For instance, CC datasets have two main

problems: heterogeneity of data (as it is provided from multiple, different sources),

and the amount of missing values [86]. A traditional effort estimation approach—

such as a formula-based estimation model—may become too inaccurate given these

conditions. Machine learning approaches are able to work around these problems

(for instance, clustering and missing value imputations can address CC issues), and

provide more accurate estimations of effort.

16

Table 2.1: SEE datasets and their qualities. Based on Bosu and Macdonnel [80], and
Shepperd and Schofield[82].

Dataset Timeliness Proj. Feat. FP approach Size
unit

Effort
unit Type

Albrecht 1974–1979 24 8 Albrecht FP No Hours WC
China 2011* 499 19 Albrecht FP No Hours ?
Cocomo81 1981* 63 19 No LOC Months ?
Desharnais 1982–1988 81 12 FP No Hours WC
Finnish 1997* 38 9 FP No Hours CC
ISBSG10 2010 37 94 IFPUG 4+,

NESMA
LOC Hours CC

ISBSG16 1989–2015 7518 264 IFPUG, NESMA,
MARK II, COS-
MIC

LOC Hours CC

ISBSG18 1989–2016 8261 252 IFPUG, NESMA,
MARK II, COS-
MIC, others

LOC Hours CC

Kemerer 1981–1985 15 8 No KLOC Months WC
Kitchenham 1994–1988 145 10 FP No Hours WC
Maxwell 1993 62 27 FP No Hours WC
Miyazaki94 1994* 48 9 No KLOC Months CC
NASA93 1971–1987 93 24 No LOC Months CC
SDR 2000 12 25 No LOC Months CC
Telecom 1997* 18 4 No Files Months WC

17

2.4 SEE evaluation frameworks

In software effort estimation, many factors affect the accuracy of a prediction model—

as well as conclusion stability of studies—, which can be generalized into two larger

factors: bias and variance [13]. Variance refers to the dispersion or distance of the

different model predictions, which would in turn cause conclusion instability across

studies. Bias refers to the distance from the predicted values to the real effort values,

which would also cause conclusion instability across studies.

Conclusion stability due to variance is mainly related to two possible sources:

variance from sampling, and variance from the validation scheme [13]. Variance from

sampling is related to the origin of the model input data, particularly when dealing

with the same model across two or more different datasets. An effort estimation

dataset is a non-random sample from a population of software projects, usually tied

to a specific organization and using the same collection method. Variance from the

validation scheme comes to the noise that has its origin in randomly splitting a dataset

for training and validation. If all data is used for training, it is possible that the model

accuracy is overestimated. Using different data for training the model and assessing

its accuracy lessen this overestimation. However, randomly splitting the dataset into

training and validation could assign «good» cases into one group and «bad» cases into

the other, affecting the accuracy.

Conclusion stability due to bias is mostly related to human or experimental factors,

such as the experimenter, language, sampling, and verification [13]. For instance,

a particular researcher that proposes a novel estimation model could be biased to

showcase its model as the best model of all studied. Another instance of a source of

bias could be introduced by the accuracy metric.

In order to reduce both bias and variance, multiple machine learning evaluation

frameworks have been proposed in effort estimation [35, 36, 37, 38, 39, 41, 40,

26, 43, 42, 89, 44, 90, 33, 12]. The general objective of the frameworks presented

by these studies is to reduce conclusion instability and guarantee replicability of the

study. In the case of instability by variance, these frameworks apply different com-

binations of data pre-processing and use validation schemes to mitigate effects of

randomness and high data set variance. For instability by bias, these frameworks

propose comparison of multiple techniques across different datasets. SEE evaluation

frameworks use multiple machine learning processes to build and evaluate models

under different conditions. In general terms, these machine learning processes can

18

be summarized in 6 elements: datasets, validation approach, data pre-processing

(which covers transformation, clustering, and missing value imputation), feature (or

attribute) selection, machine learning algorithms (and their hyper-parameters), and

hyper-parameter tuning approach for these algorithms. In the beginning, these frame-

works were proposed for defect prediction, the same principles were applied in effort

estimation.

Table 2.2 shows some the existing SEE evaluation frameworks in the literature. For

each framework, the parts of the machine learning process are shown: datasets (DS),

data transformation (DT), clustering (CL), missing value imputation (MV), attribute

selection (AS), and machine learning algorithm (LA). The amount of studied tech-

niques are shown for each of these categories. Sub-partitions or sub-techniques are

not counted. For the validation approach (CV), the table shows if the study uses

train-test split, train-test-validation split, Leave-one-out cross-validation, k-Fold cross-

validation, M ×N -way cross-validation, or an online learning scheme. For parameter

tuning (PT), the table shows if no tuning is done, if tuning is done manually, or if an

automated hyper-parameter tuning approach is used. For baseline techniques (BL),

the table shows whether a study uses or not one such technique. For evaluation met-

rics (EM), the table shows whether a study uses classification metrics—such as recall,

precision, or area under a ROC curve—, relative error based metrics, or absolute error

based metrics. In the case of usage of more than one type of metrics, the main type

of metric is denoted (i.e. the metrics used for tuning or comparison of techniques).

One of the first proposals of a framework was done by Menzies et al. [35], in the

area of defect prediction. This study presents the notion of a baseline experiment—a

way to make two different studies comparable, by using the same data set. In their

proposed framework, they employ M×N -cross validation, all the combinations of two

data transformation (filter) techniques, one attribute selection, and three learning

algorithms. In addition, they employ as metrics probability of error detection (pd)

and probability of false alarm (pf).

Zhang and Zhang [36] commented on the framework by Menzies et al., addressing

that the metrics they used in their proposal—probability of detection, and probability

of false alarm—are not satisfactory enough metrics. Instead, they recommend to use

the precision and recall metrics for defect prediction, as pd and pf are influenced by

class imbalance. Menzies et al. responded to Zhang and Zhang’s comment [37] by

“agreeing to disagree” with their assessment. They present scenarios in which high

precision and recall do not necessarily result in good predictions. In general terms,

their argument is that precision and recall can be inversely proportional—increasing

19

Table 2.2: SEE frameworks.

Framework DS CV DT CL MV AS LA PT BL EM

Menzies
et al.,
2006[35]

10 M ×N 2 0 0 1 3 No No Classification

Song et al.,
2010[38]

2 Train-test-
validation

2 0 0 2 3 No No Classification

Mittas and
Angelis,
2012[39]

6 K-fold 0 0 0 0 11 No No Absolute
error

Keung et al.,
2013[40]

11 Leave-one-
out

7 0 0 3 9 No No Relative
error

Song et al.,
2013[14]

3 Online
learning

0 0 0 0 4 Auto No Absolute
error

Minku et al.,
2015[91]

1 Train-test 0 0 0 0 3 Manual Yes Absolute
error

Minku et al.,
2017[89]

3 K-fold 0 3 0 0 2 Auto Yes Absolute
error

Murillo-
Morera
et al.,
2017[90]

1 M ×N 8 0 0 5 15 No Yes Absolute
error

Minku,
2019[12]

1 Online
learning

0 6 0 0 10 Auto Yes Absolute
error

Quesada-
López et al.,
2019[33]

1 M ×N 3 0 0 5 15 Manual Yes Absolute
error

one decreases the other—and in some cases it is better to sacrifice precision to achieve

high recall.

An extension to the benchmark framework by Menzies et al. is presented by Song

et al. [38]. Their contribution is twofold: (1) their framework draws conclusions

for each machine learning scheme (combination of data transformation, attribute

selection, and learning algorithm) instead of individually for each learning algorithm,

and (2) their framework uses a two-step process to measure the “true”, unbiased

performance of the best model. The two-step process of the proposed framework

involves splitting data into a training and a validation set. The first step is the same

as the framework by Menzies et al., using only the training set. The second step is the

validation of the best model. This step re-trains the best model using all of the training

set, and predicts the data of the validation set, measuring model performance. The

20

idea is to simulate a real situation, in which the selected scheme is used against new,

unseen data. One important conclusion of the study was that there was no best

universal scheme that overshadows all the others, but rather different schemes work

on different data.

An evaluation framework for software cost (effort) estimation was proposed by

Mittas and Angelis [39]. Their framework is different from Menzies et al. in two

main aspects: (1) they only consider learning algorithms, and (2) they perform k-

fold cross validation instead of M × N -cross validation. Their main contribution is

not in the framework steps, but rather in the analysis of the results of the obtained

framework. In their work, they employ clustering of techniques, using Tukey tests

and the Scott-Knott algorithm. Their results suggest that it may be better to search

for a set of best estimation models, instead of a single best model.

Keung et al. [40] apply their previous knowledge of machine learning in defect

prediction [35] for effort estimation. They propose an evaluation framework for ef-

fort estimation to try to reach conclusion stability. In their framework, they evaluate

combinations of data transformation techniques and learning algorithms across dif-

ferent datasets. In a manner similar to Mittas and Angelis, they use Wilcoxon-signed

rank and the win, tie, loss algorithm to rank the different combinations. The study

concludes that stability can be reached.

Song et al. [14] perform a study on the impact of hyper-parameter tuning of differ-

ent machine learning algorithms. In their study, they train and evaluate four different

machine learning algorithms using all possible combinations of hyper-parameter val-

ues defined across a range. This technique would be later known as grid search. To

measure the impact of tuning these hyper-parameter values, the study compares the

best setting against the worst and default settings. One of the main conclusions of

the study is that the value of tuning depends on the technique, as some algorithms

are more sensitive to hyper-parameter values than others.

Minku et al. approach SEE research from an application perspective. On 2015,

Minku et al. [91] used the Dycom approach to adapt cross-company data to make

within-company predictions. The objective of this approach is to minimize the amount

of WC data necessary to build a model, as this data is expensive to gather for most

organizations. In 2017, Minku et al. [89] continue this research trend by adapting

the Dycom model to use an online learning approach, and to include data clustering

to focus on CC data that is most similar to the WC data. In 2019, Minku [12] incorpo-

rates automated hyper-parameter tuning into the Dycom approach, which is the first

21

proposal of hyper-parameter tuning procedure for online models in software effort

estimation.

Murillo-Morera et al. [90] employ a genetic algorithm to automatically find the

best machine learning schemes: combinations of data pre-processing, attribute se-

lection, and learning algorithms. This genetic approach is compared against an

exhaustive framework, and the proposal outperforms this baseline. Based on this

study, Quesada-López et al. [33] perform an exhaustive evaluation of these previous

schemes on the ISBSG dataset, using different models for projects measured in IF-

PUG FPA and COSMIC FFP, and performing manual hyper-parameter tuning for the

learning algorithms. In their study, they compare complete models against simplified

models using functional size in terms of their accuracy. Both studies reach similar re-

sults regarding the learning algorithms: regression-based techniques tend to perform

well for the majority of scenarios.

Optimally, results obtained by these frameworks should be comparable. To achieve

this, baseline metrics can be incorporated into these frameworks, allowing comparis-

son across different studies.

2.4.1 Baseline SEE frameworks

A recurring problem in SEE literature using machine learning is that—across all SEE

studies—there is no optimal technique, but rather each study obtains different con-

clusions; even ones that are contradictory with previous studies, depending in the

dataset that is used [18]. Thus, a fair, unbiased way to compare different prediction

systems for SEE was necessary, even across different machine learning processes [41].

Several studies have proposed evaluation frameworks that employ a baseline, which

allows the comparison of results across different SEE studies.

Initially, effort estimation studies that used baselines employed statistical metrics

of the predicted variable. For instance, Jørgensen [34] employed as a baseline the

mean productivity multiplied by estimated size. In other study, Mendes and Kitchen-

ham employ the sample median as a baseline [16].

On of the first SEE frameworks to propose a baseline based on an estimation

technique was done by Shepperd and MacDonnel [41]. In their proposal, they suggest

using random guessing—from all of the target metrics, taking one value randomly—

as a baseline estimator p0. For all of the evaluated schemes pi, an accuracy metric such

as the mean absolute residual (MAR, also known as mean absolute error or MAE) is

22

collected. This accuracy metric will depend on the data set that was used, and could

vary between studies. Shepperd and MacDonnel suggest using the same accuracy

metric on the baseline predictor p0 to create a baseline metric. The study proposes

two baseline metrics: standardized accuracy (SA) and an adaptation of Glass’s effect

size (∆). Standardized accuracy is a ratio of how much any estimator pi is better

than randomly guessing values of the dataset. Because an obtained SA value could be

due to factors other than the estimators, Shepperd and MacDonnel suggest using the

effect size ∆ as a metric of how significant is the relationship (difference) between

the estimator pi and the baseline estimator p0.

Based on Shepperd and MacDonnel, Langdon et al. [42] propose an extension

to the baseline estimation metric MARp0, used to calculate SA. In their work, they

argument that the baseline estimator p0 is biased, as it has a tendency of randomly

encountering the right answer by chance and thus overestimates. While this would

be no problem in large data sets, as MARp0 would converge into the mean value,

effort estimation data sets are often small. Langdon et al. propose using a determin-

istic version of MARp0 when the data set has less than these 2000 observations (to

produce an unbiased, denoised baseline), and Shepperd and MacDonnel’s proposed

MARp0 when the data set has enough observations. This version of the Standardized

Accuracy would become one of the most used metrics in the later SEE framework

proposals, and the basis for following baseline proposals. For example, since the year

2015 this metric has been employed by Minku et al. [91, 89, 12], Murillo-Morera et

al. [90], Quesada-López et al. [33], among others.

Dolado et al. [43] propose another baseline metric, based on Shepperd and Mac-

Donnel’s SA. The novel metric is based on the concept of hypothesis testing, particu-

larly intervals of equivalence. They define the minimum interval of equivalence (MIE)

as the interval in which difference of the values of a metric (such as SA) of two pre-

dictors would need to fall into, such that they can be considered equal (i.e. having

the same accuracy). Based on this, they propose the MIEratio: a metric that measures

how far apart is an estimator from the baseline prediction p0. While SA measures how

many times is the predictor better than the baseline, the MIEratio measures how close

is the prediction to the real values.

Lavazza and Morasca [44] propose their own baseline metric, based on Shepperd

and MacDonnel [41] and on Langdon et al. [42] In contrast to the standarized ac-

curacy, which is calculated from the average errors of two estimators, the individual

absolute residuals (IARA) is a metric that compares paired predictions, such as those

between the prediction model and the baseline model, and measures the probability

23

of them having different performance.

Usage of these metrics would allow two independent studies to be compared,

assuming they employ the same data and baseline. This is an improvement over the

previous state of the art, in which the way to compare two models was through a

replication study. In addition, currently there are baseline metrics for both single

point estimates and interval estimates.

2.5 Machine learning

This section introduces the concept and theoretical foundations of machine learning,

ending with some of the open problems and considerations.

Machine learning is, in essence, programming computers so that they are able

to “learn” from data inputted to them [11]. In the context of ML, learning refers to

converting experience-based information into knowledge, a process called generaliza-

tion [92]. There are two machine learning approaches for generalization: instance-

based learning and model-based learning [92]. Instance-based learning functions by

memorization of the data, and generalizes this data to new cases by using a similarity

measure. Model-based learning builds an intermediate representation of the data: a

model. This model is used in conjunction with a set of prediction rules to generalize

to new instances. Machine learning algorithms cannot purely rely on information;

and instead a balance between domain knowledge and information is necessary to

construct a learner that generalizes to both known and unseen data [11].

Learning problems cover a wide domain, but can be generally classified by 4 di-

mensions: interaction, role, teaching, and protocol [11]. The interaction dimen-

sion refers to the interaction between the learner and the environment from which

it learns. There are two types of interaction: supervised learning and unsupervised

learning. Supervised learning is performed with a specific goal or task, while un-

supervised learning is performed in an exploratory manner to summarize or group

data.

The role dimension refers to the role played by the learner in the process [11].

Similarly, there are two roles: active and passive. An active learner directly interacts

with the environment at the time of training. Particularly, active participation involves

altering factors in the environment and measuring changes in the relevant variables.

As such, active learners are closer in process to an experimental design. In contrast, a

passive learner does not influence the environment, and limits itself to only observing.

24

In empirical research, passive learning is closer to a case study.

The teaching dimension refers to the entity that oversees or guides the learning

process [11]. In general terms, there are two types of teaching: passive teacher, and

adversarial teacher. A passive teacher presents data as-is, without any alterations. In

the case of machine learning, such data is usually obtained from a random process.

An adversarial teacher follows an iterative process, in which the teacher adds noise

in order to “mislead” the learner. The objective of this type of teacher is to perform

in a worst-case scenario basis, so that the learner is able to differentiate even in the

most difficult cases.

The protocol dimension refers to the timing of the learning [11]. Again, two types

of learning protocols exist: online and batch. Online learning can be better described

as a ‘real-time’ exercise, in which the learner is presented information, and has only a

limited amount of time to process it and generate knowledge. This knowledge is then

validated and the cycle repeats itself. A batch learner, in contrast, has a larger amount

of training data, as well as more time to process it before generating knowledge.

While machine learning can cover any combination of these four learning dimen-

sions, it favors itself more closely to passive role learning using a batch learning

protocol [11]. So, in general, most machine learning problems are either classified

as supervised learning or unsupervised learning. Supervised learning is the main

approach in the context of software effort estimation.

Most machine learning process can be described with a simple learning frame-

work. Four elements comprise this framework [11]: input, output, model, and mea-

sures (or metrics). Figure 2.2 shows an example of this framework. The learning

process starts with training the learner with the input data so that it is able to gen-

erate an output that describes the data correctly. This description is usually referred

to as a rule that maps the input data to a specific feature or value: a prediction. To

assess the effectiveness of this description, measures of success are used to determine

the degree of errors in the prediction.

The input of the learning model refers to the data that the model has available to

make its prediction [11]. The training data is comprised by a set of instances: cases

of the problem at hand being studied. Each instance is defined as a vector of fea-

tures. Each feature represents a characteristic or attribute of the instance. In general

terms, there are two types of features: numerical and categorical. Numerical features

correspond to a numerical value, either discrete or finite and optionally within a de-

fined range. Categorical features correspond to non-numerical labels that function

25

Figure 2.2: Simple machine learning framework [11].

to group data. The input data is often seen as a matrix, in which rows correspond

to the instances and columns to the features. In supervised learning, one or more

such features are chosen as the target feature(s), which the model aims to describe

or predict in terms of the rest.

The output of the learning model refers to a prediction or classification rule that

is the result of the model training [11]. The goal of the training process is to obtain

this output, so that it be used to predict the target features for new data. Usually, the

predicted features are hard to obtain, or can only be obtained at the end of a process.

The learning model proper is a representation or hypothesis on how does the

studied phenomena functions, particularly how the features explain or relate to the

target features [11]. At the beginning of the learning process, the model starts as an

empty or with a random hypothesis. The learning process modifies and refines this

model so it better explains the relation between features. Because the data obtained

is subject to some degree of randomness (or noise), it can be represented using a

statistical model. A learning model thus attempts to infer or represent this statistical

model.

The measures of success are a metric of how effective is the prediction produced

by the trained model [11]. The error of a classifier is the probability that it does not

predict the correct value (either categorical or numerical) of a new instance.

A machine learning model produces as its output a prediction of one or more tar-

get features, based on input information [11]. Depending on the type of the target

feature, a machine learning problem may be classified as either a classification prob-

lem or a regression problem. The type of the task limits the applicable problems, as

there are classification and regression models.

A classification task deals with determining a categorical feature of a new instance.

26

As its name implies, classification tasks deals with problems such as categorizing or

labeling new data. A regression task deals with predicting a numerical feature of a

new instance. The machine learning model creates a pattern or function that related

the input variables with the target variable.

Insufficient quantity of training data Training a machine learning algorithm re-

quires a large amount of instances. Many real world problems, such as natural lan-

guage processing, are subject to complex and intricate interactions of factors. As

such, these phenomena can only be explained with complex models or rules. How-

ever, the data used to train a model may not be representative enough of the real-

world problem [93]. No matter how powerful the machine learning algorithm is, it

will not generalize well enough to unseen cases if the amount of data is too small

with respect to the complexity of the real-problem. Thus, it is important to balance

the amount of resources used to develop a machine learning approach against the

amount of resources used to gather new data [93, 92].

Overfitting and underfitting A machine learning model may acquire an excellent

performance in the training data, but it also might be unsuitable to new data. This

phenomenon is called overfitting, and it happens when the model is overly trained

with a noisy or small dataset [92]. For instance, a model trained with noisy data may

detect patterns on uninformative features; thus drawing relations or conclusions that

do not generalize well to real, unseen data. Some solutions to this problem include

reducing the amount of features used to train, increasing the amount of training data,

or correcting the noise in the training data. Another approach is to select a simpler

model; for example using a linear regression instead of a polynomial regression.

Similarly, underfitting is a phenomenon that happens when the model is too sim-

ple to explain the underlying structure of the data [92]. Solutions to this problem in-

clude selecting a more complex model, or by “releasing” the constraints of the model,

such as increasing the value of a hyper-parameter.

Testing and validation The only way to ‘truly’ evaluate a ML model is to try to

generalize unseen cases, using this model to predict new data. However, releasing

a model with unknown performance is a risk. Instead, the model should be first

evaluated (and adjusted, if necessary). One approach to do this is to split the data

into two sets: training and validation [92]. As its name implies, the data is trained

using the training set. The validation set functions as this unseen, novel data that

27

can be used to evaluate the model. This approach emulates the release of the model

into the world to evaluate its performance, but without the risk of using an untested

model in a real environment. This can be used to detect overfitting: when training

error is low, but testing error is high. Similarly, underfitting can be detected when

model performance is bad in the training set.

The no-free-lunch theorem The no-free-lunch theorem states that there is no uni-

versal learning model that fits all problems or scenarios [11]. Formally, the theorem

states that, for each learner, there is at least one task in which that learner fails. That

task can be, however, accomplished by another learner. Thus, different learning mod-

els function for different problems or different contexts. The no-free-lunch theorem is

related to another issue named the bias-complexity tradeoff [11]. This tradeoff deals

with the benefits of using no prior knowledge against using prior knowledge. Using

too much domain knowledge in a machine learning problem biases the learner (as it

potentially misses important feature relationships) and could result in underfitting.

Using no domain knowledge would make the learner find any explanation for the

target feature, which could result in overfitting.

The following subsections introduce each of the components used in the appli-

cation of machine learning. Section 2.5.1 contains data transformations that are

commonly applied to datasets. Section 2.5.2 introduces attribute (feature) selection

techniques. Section 2.5.3 shows the concept clustering and how can it be applied to

machine learning. Section 2.5.4 covers some of the validation approaches used to

maintain conclusion stability. Section 2.5.5 details some of the most used machine

learning algorithms in the literature.

2.5.1 Data transformation techniques

Data transformation (also known as feature manipulation or normalization) are sim-

ple transformations applied to each one of the features of a dataset, with the objective

of decreasing approximation errors of a particular model [11]. Data transformations

are also applied so that the data satisfies requisites of learners, most notably the

constraint of following a normal distribution. Another reason for applying data trans-

formation is to transform each feature to the same scale. However, in some cases

transformation might actually decrease performance. Thus, the transformation that

should be applied to the data will depend on the context and the model being used.

Examples of data transformations are centering, unit range, standardization, clipping,

28

sigmiodal, and logarithmic.

Centering: Centering transforms each feature so its mean is 0, which is achieved by

subtracting the mean to each value: yi = yi − ȳ, being ȳ the mean of feature y.

Unit range: The unit range transformation, also known as normalization or min-

maxing, bounds a feature to a numeric interval. For example, the unit range

0 to 1, and unit range -1 to 1 changes each feature to either of the ranges

[0, 1] or [−1, 1]. The first transformation is achieved with the formula yi =

(yi − ymin)/(ymax − ymin), while the second one is achieved with yi = 2 ∗ (yi −
ymin)/(ymax − ymin)− 1.

Standardization: Standardization converts each feature into a standard normal dis-

tribution by applying the transformation yi = (yi − ȳ)/sy, being ȳ the mean of

feature y and sy the standard deviation of feature y.

Clipping: Clipping functions similarly to the minimum or maximum feature. For

each feature, the user specifies a maximum value b. Each instance with a value

higher than b is set to b: yi = max(yi, b). The same transformation can be

applied for a minimum value c: yi = min(yi, c).

Sigmoidal: The sigmoidal transformation applies the sigmoid function to each fea-

ture, which functions as a “soft” version of clipping: yi = (1+exp(byi))
−1, having

b as an user hyper-parameter.

Logarithmic: The logarithmic transformation applies the natural logarithm function

to each feature: yi = log(b + yi), being b an user hyper-parameter. This trans-

formation is used to transform data that has an exponential pattern to instead

resemble a normal distribution. Moreover, the logarithm spreads out data points

that are too close together.

One-hot encoding: Also known as one-of encoding, this transformation converts a

categorical feature with n unique values into n binary (numerical) features,

each unique value associated with a column. For each project, the column cor-

responding to the original value is set to 1 and the rest to 0.

Binary encoding: Similarly to one-hot encoding, the binary encoding transformation

converts a categorical feature into a set of binary features. However, binary

encoding reduces the amount of new columns by encoding each unique value

29

into a binary number. A categorical feature with n unique values is converted

into ⌈log2(n)⌉ binary features.

Binning: The binning transformation converts a numerical feature into a category,

by dividing the feature in ranges and assigning values. For example, features

above certain threshold can be classified as “high”, and those below as “low”.

Box Cox: The Box Cox transformation shapes numerical features to resemble a nor-

mal distribution. The features are transformed using the function y′ = (yλ −
1)/λ, where λ is an adjustment factor that has to be found for each feature.

Values of λ can range from -5 to 5. If λ = 0, then the transformation y′ = ln(y)

is used.

K-means clustering: The K-means clustering algorithm is presented and explained

in section 2.5.3. While clustering algorithms can be used to divide a dataset,

they can also function to generate a new feature. In the case of using K-means

clustering as a data transformation, each project is assigned a number or iden-

tified of the cluster they belong to.

2.5.2 Feature selection techniques

Not all features on a dataset are relevant or informative to the machine learning

task. Using a dataset with only a minimal subset of features brings benefits such as a

reduction in the required training time and memory, and reducing the possibility of

overfitting. Because less information is used to build the model, there is some impact

to the accuracy of the model.

Feature (or attribute) selection is an optimization problem that attempts to find a

minimal subset of features that have good performance compared to a model using

the full dataset [11]. Moreover, reducing or removing the non-informative features

can make it easier for the machine learning algorithm to identify the underlying pat-

tern in the data [92]. One approach for feature selection is to try all possible subsets

of features, train the model, and evaluate which one has the best performance. How-

ever, this exhaustive search is often not computable in reasonable time. Thus, feature

selection methods have been developed to search for a good (although not optimal)

feature subset.

There are three general approaches for attribute selection: filters, wrappers, and

embedded [94, 95]. Filter methods select a subset of all features, based only on

30

properties of the data. In most cases, each feature is evaluated using a score, and

only those features with high scores are selected. Advantages of filter methods include

their computational speed and simplicity, and good scaling to higher-dimensionality

datasets. In addition, filter methods need only to be performed once, and then the

new dataset can be used in multiple models.

In contrast, wrapper methods work in conjunction with the learning model. Wrap-

per techniques rely on the selection of a subset of data, training the model with said

subset, and evaluating the model; repeating with different subsets until a solution is

found. In other words, wrappers are filters that use the model accuracy as their train-

ing function. Wrappers methods have the advantage of taking into consideration the

interactions of the data and the model, as well as interaction between features. Thus,

wrappers could potentially achieve a subset that fits better for each individual model,

rather that one that fits “good” for all models. However, wrappers require more

computational resources and have the problem of overfitting. Examples of attribute

selection techniques include Pearson’s correlation, forward selection, and backward

elimination.

Embedded methods combine the advantages of both filters and wrappers by per-

forming feature selection in conjunction with training of the model [94]. Embedded

methods retain the benefits of being able to find the best feature set for the machine

learning algorithm of wrappers, while also retaining the higher speeds of filters. Ex-

amples of embedded methods are tree-based machine learning models like Classifica-

tion and Regression Trees (CART), as these models perform feature discrimination as

part of their training process.

Exhaustive Search: The most basic approach to feature selection is exhaustive search,

in which every possible combination of features (i.e. power set) is tried. A

model is built using each combination, and the one that maximizes a metric (or

minimizes a loss function) is selected. The approach is exhaustive, as there are

2n combinations for n features.

Variance threshold: Variance thresholding is a basic feature selection approach, based

on the idea that low variance features could be less useful than high variance

features [96]. A feature with a single value (univariate) is not useful to predict

effort, while a feature with a wider variety of values may aid in the identification

of cases in which effort may be high, low, or in between. The variance threshold

method calculates the variance of each feature, and then drops all those whose

variance is under the threshold.

31

Pearson’s correlation: An example of a filter technique is the Pearson’s correlation

coefficient [11]. This metric assigns a score to each feature based on how well

it fits a linear relationship with the target feature. Most features would, how-

ever, not follow a linear relationship with the target variable alone; but could

potentially do so in conjunction with other features. The technique can take this

into consideration and also evaluates how well each feature along with other

features fit a linear relationship with the target variable.

Forward selection: One example of a wrapper technique is forward selection [11].

Forward selection starts having a set with no features. Then, for each not in-

cluded feature, it builds a model with the current set and that feature, and

evaluates its performance. The feature which improves the performance the

most is added to the set. This process is then repeated until a stop condition is

reached—usually number of features.

Backward elimination: Another example of a wrapper technique is backward elim-

ination, which is a greedy search algorithm [11]. Backward elimination func-

tions by having the entire subset as the starting point, and removing one feature

at a time. The subset with the best performance is then selected, and the algo-

rithm repeats itself recursively, until a stop condition is reached.

Genetic algorithm: Genetic algorithms can be adapted for feature selection. In such

cases, a chromosome contains a binary digit for each feature, which represents

if the feature is included or excluded. The genetic algorithm then finds the

feature combinations that maximize some function (i.e. accuracy).

RReliefF: Relief for regression, known as RReliefF, is a feature selection algorithm

that identifies and considers the interaction between features. To accomplish

this, the algorithm randomly selects data instances and determines the “closest”

neighbors through a similarity function. For each feature, the values of the

instance and their neighbors are compared. If the values are similar, the weight

of the feature increases, and the weight decreases if they are similar. Only those

features with their final weight above a threshold are selected.

Particle Swarm Optimization: The particle swarm optimization is presented and ex-

plained in section 2.5.6. Similar to clustering approaches, a set of features can

be represented using binary encoding and PSO can be used to find an optimal

set of features.

32

Principal Component Analysis: More than a feature selection algorithm, principal

component analysis functions as a way to represent the data using less features.

The technique works by transforming the data to a new coordinate system. The

most meaningful “vector” (the one in which data varies the most) is used as the

first dimension. The second and further dimensions are similarly obtained by

“removing” the previous dimensions from the data and determining the vector

for which the data has the most variance. This can be repeated an amount of

times equal to the number of features. In general terms, the first features hold

more information (variance) than the last ones, and thus less PCA features can

be used.

2.5.3 Clustering techniques

Exploratory data analysis is an exercise performed previous to any machine learning

application. The objective of such analysis is to become better acquainted with the

data and its properties, in order to take better decisions on how to approach this

data. One method of exploratory analysis is clustering, which consists of grouping a

set of data instances—projects, in SEE—such that similar instances are in the same

group, and different instances in different groups [11]. Most clustering algorithms

are based on the concept of ‘distance’ between data points. This distance represents

the notion that similar projects are ‘closer together’ and different projects are ‘farther

away’. These distances can be defined mathematically, using functions. Examples of

these are the Euclidean, Manhattan, and Minkowsky distance.

Clustering can be used as a part of the machine learning process, post exploratory

analysis. One such utility of clustering is to approach the problem of heterogeneity

in the data. In the case of effort estimation, data heterogeneity can come from differ-

ences between project instances. For example, if project data is taken from two differ-

ent companies, A and B, they may follow certain patterns or tendencies. It is possible

that the new company for which the estimation is being performed, C, has conditions

more similar to A. A prediction model built using both data from companies A and

B would induce prediction errors due to the differences between companies B andC;

and it would be possible that a model using only data from company A would have

better performance. A solution to this issue consist of employing clustering to split

data into two separate sub sets, train two separate models with each sub set, and test

which model offers better accuracy [89]. Some examples of clustering techniques are

linkage-based clustering, k-means clustering, and spectral clustering.

33

Linkage-based clustering: Linkage-based algorithms are the intuitive approach of

clustering. Each data point starts as its own cluster, and iteratively the closest

clusters are joined together. Each round the amount of clusters decreases, and

the amount of data points per cluster increases. If the algorithm continued

unbounded, it would reach one cluster which contains all of the data points. To

avoid this, a condition to stop the algorithm (such as number of clusters) must

be determined.

K-means clustering: K-means clustering is an approach to split a set of data into k
different groups, so that some cost (i.e. distance) is minimized. Given that this

problem is NP-hard, there are several algorithms that approximate a solution.

One such algorithm consists of creating k cluster centroids randomly in the data

space, and cyclically repeat 1) assigning each data point to the closest cluster

and 2) re-setting each centroid as the mean of all data points in the cluster. This

is repeated until a certain number of iterations, or until no changes occur.

Spectral clustering: Another approach for clustering problems is using a graph no-

tation: each vertex representing a data point, and each edge containing the

distance between a pair of vertices. With this representation, a clustering prob-

lem is reduced into finding a partition of the graph that minimizes within-group

weights and maximizes between-group weights. A similarity graph—higher

weights indicating more similar instances—can be used for the same purpose,

reversing the goals of the partition algorithm. This approach is known as spec-

tral clustering.

2.5.4 Validation approaches

A machine learning task can result in multiple models, all of which can have very

similar performance metrics. Nonetheless, we are interested in selecting the one that

consistently has the highest generalization capabilities. In addition, we can increase

the generalization and performance of the model, as well as reducing overfitting, by

adjusting the hyper-parameters of the algorithm [14, 21]. However, tuning of these

hyper-parameters results in selecting the best values for the particular data, and may

not generalize well to unseen data.

A solution to this problem is through use of a validation approach. The validation

approach—also known as cross-validation—relies on evaluating the trained model

using new, unseen data. Because we are working with a bounded dataset, the vali-

34

dation approach splits the dataset into two sets: the training set and the validation

set. After defining these subsets, all models are trained using the training set, and

their performance is measured using the validation set. Some examples of validation

techniques are hold-out set, k-fold cross validation, and train-validation-test split.

One additional problem may rise when training a machine learning model. The

data used to train the model may not be representative of the real world: a problem

known as data mismatch [92]. This problem can be detected by using data that

is as representative as possible for the validation set. However, there are now two

possible explanations for high accuracy on the training set and low on the validation

set: either overfitting or data mismatch. A solution to this problem is to use another

split of the training set, called the development set [92]. If the model does not fit

to the development set, the problem is due to overfitting, as both the training and

development set have the same data origin. If the model does not fit to the validation

set, the problem is due to data mismatch, as the validation set uses real-world data.

Hold-out set: The hold-out set validation scheme, also known as hold-out validation,

is he simplest way to perform validation. This is the same scheme described in

general for validation: the dataset is randomly partitioned into two parts: train-

ing and validation. The training set inputted to the model, while the validation

set is held out of the learning process. The model is then used to predict, using

the information in the validation set. The predicted values are then compared to

the true values in the dataset. The validation set can also referred to as training

set.

K-fold cross validation: The k-fold cross validation approach is used to make a more

“efficient” use of the available data. The original dataset is split into k subsets

(folds) of similar size. One fold is taken as the validation set, and the remainders

are taken as the training set. The same training and evaluation process as hold-

out set is then applied, resulting in one set accuracy metrics. This process is then

repeated with the remaining k − 1 folds, each acting as the validation set once.

This would result in k sets of accuracy metrics, which are averaged to obtain

the final accuracy metrics. The special case in which k equals the number of

instances in the dataset is called leave-one-out cross validation.

Train-development-validation split: The train-validation-test split approach, as its

name suggest, splits the data into three sets with those names. The first two sets,

training and development, are used to train and select the best model among

35

all possible options while avoiding the problem of over and underfitting. Once

the best model is selected, its ‘true’ accuracy is evaluated using the validation

set. This final evaluation mitigates the risk of data mismatch, as well as offering

an estimate of its performance in unseen data.

Bootstrapping: Bootstrapping is a cross-validation approach that consists of re-sampling

the dataset with replacement [97]. For a dataset with n projects, out-of-sample

bootstraping samples n projects with replacement, meaning that a project can

be selected more than once. The sampled projects are then assigned to the

training set, and those projects that were not sampled conform the testing set.

On average, the test set will contain 36.8% of the total projects. This procedure

can be repeated multiple times, each time with a different sample of training

projects. Repeated bootstraping has the advantage of determining confidence

intervals of an estimator, as well as being more stable and least biased than

other cross-validation methods [98].

Online: While not strictly a cross-validation approach, online effort estimation can

be viewed and treated as such. Online effort estimation works by simulating a

real estimation environment, in which a development entity has an initial set

of projects which are used to predict effort for a new project. When this new

project is completed, it can join the project database and work to predict future

projects.

2.5.5 Machine learning algorithms

The central part of the machine learning process is the machine learning algorithm or

model. A machine learning model has a base algorithm, which has a base hypothesis

or formula to estimate effort, and an adjustment or training algorithm. The specific

model instance is a set of weights or model parameters related to this formula. Es-

timation of effort is produced by combining the input data and model parameters

into this formula. The training process of the model uses the algorithm to perform

predictions on the training data, and adjusts the model parameters of the model to

minimize the prediction error [11]. Machine learning algorithms can be customized

further by setting values known as hyper-parameters, which adjust the process of

training the model [21]. Examples of machine learning models are linear models,

k-nearest neighbors, decision trees, support vector machines, and neural networks.

Linear models: Linear models—also known as linear predictors—are one of the most

36

useful families of hypothesis classes [11]. Many of the most complex learning

algorithms are based on linear models, or use linear models as a part of them-

selves. Linear models assume there is a function that maps the features to the

target feature. Such function can be linear, polynomial, exponential/logarith-

mic, or take any form. For this reason, multiple linear models exist. These

techniques, based on the input data, try to determine the optimal values for the

underlying function that best predict the target variable. For example, in the

case of a linear regression, the technique models the problem as a linear func-

tion: yi = β0 + β1x1i + ...+ βnxni, being x1, ..., xn the features of the data. The

linear regression model will find the values for the variables β0, β1, ..., βn that

minimize the prediction error. Other types of linear models include polynomial

regression and logistic regressions.

K-nearest neighbors: The k-nearest neighbors (kNN) model functions on the basis

that “things that look alike must be alike” [11]. This algorithm forms a dimen-

sional feature space, each instance of the dataset being a point inside this space.

When a new instance is given to the model, the model searchers for one or more

points in space that are the closest to the new point. The model then predicts the

value of the new instance by combining the values of the existing points, usually

using an average, median, or other function. A kNN model can be built using

different definitions of distance, the most common being euclidean distance—

the distance between two points in space. The number of instances k that the

model uses to create the estimation can also be configured.

Decision trees: The decision tree model functions by the divide-and-conquer strat-

egy [11]. A tree model functions by recursively splitting a dataset, so that

homogeneous—in terms of the target feature—groups are formed. A tree model

starts at its root node with the base dataset. The learner algorithms finds the

feature that best splits the dataset according to the target feature—for instance,

if the value to predict is a category, the split will try to make a group for each

value. Two new subsets are formed: each becoming a child node of the cur-

rent node. This definition is applied recursively until either all nodes become

homogeneous, or some stopping criteria is reached.

Support vector machines: Support vector machines (SVM) are a type of model use-

ful in high dimensional feature spaces [11]. This technique searches for a

boundary that splits the data based on the target feature. In the case of cate-

gories, for example, the support vector machine will try to adjust this boundary

37

so it splits data by their category. The technique obtains its name because it

searches for a set of vectors, the support vectors, that separate the data. Be-

cause not all problems are linearly separable, modern SVM implement a higher

dimension transformation known as the kernel method, to have additional di-

mensions to find this separation margin.

Neural networks: The artificial neural network model is a machine learning tech-

nique inspired by the neurons of the brain [11]. A neural network is a graph

whose edges correspond to neurons, and edges to connections between neu-

rons. Each neuron has multiple inputs and one output. As an input, the neuron

receives the output of other neurons, and outputs a signal. In addition, the neu-

ron has a weight for each of its inputs, and a threshold value for its output. This

signal is often computed as the weighted sum of the inputs of the neuron. If

this signal exceeds the threshold value, the signal is sent; and if not, no signal

is sent. Neural networks are trained by adjusting this set of weights, using an

algorithm known as the backpropagation algorithm.

Case Based Reasoning: Case Based Reasoning is a family of techniques that deter-

mine the effort value of a project based on similarities with past projects. One

such approach is analogy based estimation, in which the project(s) most similar

(using a distance function) to the current are selected, and their effort value is

combined (by averaging or using other function) to give an estimate.

Naive Bayes: A Bayesian model or Naive Bayes model is a probabilistic approach for

machine learning. The model functions by determining the probability of the

predicted value based on the value of the features.

Ensembles: Each machine learning technique has advantages and disadvantages,

and functions differently depending on the characteristics of the dataset. En-

semble approaches try to offset this by using multiple machine learning mod-

els and combining their resulting effort values. An ensemble may be hetero-

geneous, in which each of their inner models are different, or homogeneous,

meaning the ensemble uses the same model, but with different input data or

hyper-parameters.

Bagging: Bootstrap aggregating is a specific type of homogeneous ensemble that

tries to improve the stability of a base machine learning model. Bagging per-

forms n bootstrap samplings of the original dataset and trains a models for each

of them.

38

Stacking: Stacking is a specific type of ensemble that uses an additional machine

learning algorithm as an aggregation function. After training the members of

the ensemble, the second model is trained based on the predictions of these

ensembles to predict the actual effort. Thus, the prediction method usually

assigns weights to each of the models, depending on how accurate their results

are.

2.5.6 Hyper-parameter tuning approaches

A machine learning model is given a set of data to train. This training consists of ad-

justing the internal values (parameters) of a machine learning model so that a metric,

usually prediction error, is minimized. In contrast, hyper-parameters are values of the

training algorithm (not the model) that must be set before the training begins, and

remain constant through the training process [21, 92]. In a typical machine learn-

ing process, the researcher manually determines the value of these hyper-parameters,

trains the model, and verifies that the prediction accuracy is satisfactory. If it is not,

the process is repeated using a different set of hyper-parameters. When performed

manually, this process is labor intensive and can take hundreds of iterations [21].

Examples of hyper-parameters include the amount of instances k for the k-Nearest

Neighbors algorithm, the amount of layers in an Artificial Neural Network, and the

kernel in a Support Vector Machine.

Researchers have proposed automatic selection methods for hyper-parameter val-

ues, to make machine learning algorithms more accessible [21]. These methods—also

known as (hyper-)parameter tuning approaches—have the goal of quickly finding an

effective combination of hyper-parameter values that maximizes accuracy or other

metric. Hyper-parameter tuning approaches automatize the iterative process while

requiring no skill set in machine learning, and can achieve equally good or better

results than manual tuning [27, 99, 100].

Luo classifies hyper-parameter tuning approaches into two categories: indepen-

dent of previous machine learning problems, and dependent on expert knowledge [21].

Independent methods iterate over a series of possible hyper-parameter configurations

and selects the one which results in better accuracy. This involves building and train-

ing a model using these hyper-parameters. Dependent methods instead use informa-

tion on previous machine learning problems (including algorithm, hyper-parameter

values, data properties, and accuracy) to predict the best hyper-parameter configu-

ration. This, in turn, is a machine learning problem of its own; but doesn’t require

39

repeatedly training models with different settings.

Model parameters are adjusted in the training process automatically, but hyper-

parameters can be manually adjusted or automatically tuned. As such, this thesis will

use the terms hyper-parameters and parameters interchangeably, referring always to

the hyper-parameters of the model. In addition, this thesis focuses solely on inde-

pendent methods, to make the proposed methodology more accessible to software

engineering practitioners, requiring less knowledge of machine learning. Examples

of hyper-parameter tuning approaches used in SEE literature include grid search,

random search, particle swarm optimization [21], genetic algorithms, Tabu search,

supervised online tuning, Caret tuning, and Dodge.

Grid search: The grid search technique is an exhaustive approach of hyper-parameter

tuning [29]. This technique requires the definition of a series of values for each

hyper-parameter. Based on this, the method forms the search space by assem-

bling each combination of values of these hyper-parameters.

Random search: Random search is a method based on grid search, which searches

on a subset of the search space instead of all possible combinations. This tech-

nique provides a level of accuracy improvement similar to grid search, with the

benefit of not being as computationally costly [29].

Particle swarm optimization: Particle swarm optimization (PSO) is an algorithm

that simulates the behavior of birds flocking to find food in an area [77]. In

PSO, each single solution (hyper-parameter values) is a particle in the search

space. A fitness function is calculated for all of these particles, to determine

which is closest to the optimal solution. After determining which is the clos-

est, the remainder particles “fly” closer to the optimal solution. This process

is repeated until a stop condition is reached, either quality of the solution, or

number of iterations.

Genetic algorithms: Genetic algorithms (GA) are a global optimization method based

on the theory of natural selection. GA generates an initial set of random individ-

uals, called chromosomes. The ‘fitness’ of each individual is evaluated—usually

by a metric or fitness function. A percentage of the most apt individuals is kept,

and the remainder is discarded. A process of reproduction is then applied to

the surviving individuals. A set of new individuals is generated by applying

crossover and mutation operators to the current population. This process is re-

peated for several generations, or until a satisfactory solution is found [101].

40

In SEE research, Oliviera et al. [102] employ genetic algorithms to perform si-

multaneous feature selection and hyper-parameter tuning for machine learning

algorithms. Their chromosome design is divided into two parts: the hyper-

parameter values of the machine learning technique (as numerical or text val-

ues), and the input features of the dataset that will be used (as binary values).

Compact genetic algorithm: The compact genetic algorithm (CGA) was proposed

as a less memory-intensive variation of the traditional GA [103]. Instead of

storing all individuals of a population, the population itself is represented as a

probabilistic vector from which the new individuals are sampled. In return, the

best individuals of each generation modify the population vector, making the

distribution more likely to contain similar individuals. While CGA offers less

usage of memory, traditional GA can achieve better results when the user has

knowledge of the problem space.

1+1 Genetic algorithm: One of the potential problems when employing a genetic

algorithm approach is setting its parameter values [104]. In the case of tuning

this goes twofold, as it would be necessary to configure the parameters of the

optimizer, as well as the base model hyper-parameters. The one plus one (1+1)

genetic algorithm simulates a chain of individuals, starting from a single value.

The first individual generates a mutant offspring, and the best of the two values

is conserved. This process is repeated, one individual at a time (hence its name).

1+1 is a self-adaptive method: instead of relying on a set value for mutation

rate, the mutation rate used in each iteration is randomized, sampled from a

distribution [105].

Bayesian optimization: Bayesian optimization (BO) is an iterative algorithm that

determines the next point to be explored using the information obtained by

previous hyper-parameters [99]. As an optimization method, BO finds a set of

values that minimize an error function. BO employs a probabilistic model to pre-

dict the performance of future values using all available information. Advanced

BO models balance the choice between exploration and exploitation when valu-

ing the next point, where exploration refers to evaluating points away from the

visited space, and exploitation to visit the most promising values as predicted

by the model [106, 107].

Tabu search: Tabu search is a search algorithm proposed by Glover in order to over-

come shortcomings of local search [108]. Tabu search requires four precon-

41

ditions: 1) the representation of possible solutions, 2) the definition of local

transformations (i.e. moves) to explore neighbor solutions, 3) an objective func-

tion, and 4) the definition of the Tabu list size, and aspiration and termination

criteria. The algorithm starts by exploring an initial solution and neighboring

solutions, using the transformations. The current solutions are evaluated and

the best of these is used in the next iteration to search for promising neighbor-

ing solutions. To avoid repetition and encourage diversity of solutions, recently

visited solutions are marked as ‘taboo’ and are stored in a Tabu list. This is

repeated until a stop condition is found, which usually is a certain amount of

iterations. In software effort estimation, Coraza et al. have performed two

studies [49, 22] on the impact of Tabu search for support vector regression.

Harmony search: Harmony search (HS) is a nature-based heuristic algorithm that

mimics the search for musical harmony [109]. HS works in “improvisation

sessions”, in which the algorithms determines a random set of hyper-parameters

and evaluates their performance. A harmony memory keeps track of the best

sessions encountered, and uses their values for future improvisations. To avoid

local optima, a pitch adjustment mechanism may be introduced. Similar to the

mutation rate of a genetic algorithm, the pitch adjustment rate determines with

some probability if each selected value is shifted up or down.

Supervised online tuning: Minku [12] proposed the first hyper-parameter tuning

procedure for online software effort estimation. The procedure accounts for

changes in the project data as new project information is recorded. The online

tuning approach uses a technique similar in essence to grid search: all pos-

sible hyper-parameter settings are used to build and evaluate an initial set of

models. However, instead of keeping the best solution, all model instances are

maintained. When new within-company projects are added to the database, all

models are retrained with the new data, and the model with the best predictive

performance for the new WC projects is chosen to estimate new projects. This

instance is used to estimate effort of new projects, until new training data is

received and the process is repeated.

Dodge: Agrawal et al. [52] propose the DODGE approach to as a simple approach

that generates learners with accurate predictions, lowering the order of mag-

nitude of runtime by avoiding redundant hyper-parameter settings. The al-

gorithm is based on the concept of avoiding hyper-parameter settings whose

performance score falls within ϵ of previously explored tuners. Dodge employs

42

a weighted tree to store the explored hyper-parameters. This tree is initialized

with N1 randomly sampled hyper-parameter values. These are evaluated, and

those which fall within ϵ of other settings are deprecated (their weight low-

ers) while the others are endorsed (their weight increases). For N2 iterations,

the algorithm then explores mutations of those settings with higher weights.

These mutations are basic operations on the existing hyper-parameters, such

as increasing or decreasing a numerical parameter using a random value, or

selecting the best categorical value of previously explored settings.

Flash: Flash is a sequential model-based optimization algorithm, similar to Bayesian

optimization [54]. Such approaches are useful when a problem is unknown in

nature, and consists of (1) analyzing the known information about the problem,

and (2) selecting the next step using that information. Flash employs machine

learning techniques, a classification and regression tree, to (1) model the behav-

ior of the explored hyper-parameter space as well as to predict the values of new

points. To determine which points are worth exploring next, Flash employs (2)

random sampling of possible points in the search space, predicting their perfor-

mance with the behavior model. Flash learns about the optimization problem

and nature of the search space as it explores more values.

Differential Evolution: Differential evolution (DE) is a simple, yet effective evolu-

tionary algorithm [110]. Initially, the algorithm evaluates random individuals

from a population, and determines a “frontier” that includes the most fit individ-

uals. Each iteration, DE generates a new individual from three randomly sam-

pled members of the frontier, by mutating and combining their hyper-parameter

values. The new individual is added to the frontier if its fitness is better than at

least one of the individuals of the frontier.

Hyperband: The hyper-bandit (hyperband) algorithm balances fine- and coarse-grained

exploration of a space. Hyperband is based on the concept of “halving a space”,

exploring a set amount of evenly-distanced values and discarding the worst

half [111]. The method divides the allocated exploration budget B into n

pieces, evenly allocating the budget (B/n). As there is a trade off of using a

larger n (many configurations with less training) or a small n (few configura-

tions with more training), hyperband uses successive halving to select the most

promising n values.

Beam search: Beam search is originally an graph search algorithm that can be used

43

to prune nodes [112]. Based on the current position, the algorithm determines

the most promising vertex by using breadth-first search, with a limited amount

of explored edges per iteration. This technique has been adapted for hyper-

parameter tuning by representing each possible model as a vertex in a graph,

and each edge as a transformation [113].

Bees algorithm: The bees algorithm is a bio-inspired method that simulates the be-

havior of foraging bees. The algorithm uses a number of scout bees in the

search space, and selects a subset of sizes (space around the scouts) to send

additional bees to explore, which may find better or worse conditions. A subset

of these bees is selected, and again additional bees are sent to explore nearby

places. This process is repeated for an amount of iterations, a search budget is

exhausted, or a threshold fitness is achieved.

Hill climbing: Hill climbing is a term for optimization techniques that start from an

initial solution, and perform changes to that solution that improve fitness, until

the solution cannot be improved. One such example in hyper-parameter tuning

is Expectation-Maximization [114], which tunes a single hyper-parameter by

starting from the lowest possible value. A model is constructed using the fol-

lowing value, and if the fitness increases, this process is repeated. The algorithm

ends when increasing the value does not cause an increase in fitness.

Immune algorithm: The immune algorithm for hyper-parameter tuning [115] is a

bio-inspired algorithm that represents candidate solutions as antibodies. An ini-

tial random set of antibodies is generated, and their affinity (similarity) is calcu-

lated against other antibodies and the antigen (target function). The antibodies

with the highest affinity with other antibodies are removed to avoid duplicate

solutions. Lastly, the antigens with the highest affinity with the antigens are

proliferated with mutation. This process is then repeated for a set number of

iterations.

Satin bowerbird optimizer: The satin bowerbird optimizer is a hyper-parameter tun-

ing algorithm proposed for SEE [116], and it was designed for adaptive neuro-

fuzzy inference system models. The algorithm is based on the way male satin

bower birds attract females. An initial population of male birds is generated as

random hyper-parameter values. The probability (fitness) of each male is calcu-

lated, and one is selected as the elite. The algorithm then performs a series of

cycles until a stop condition is met. Inside the cycles, a new individual is created

44

for the population by combining them with other members. Every new and old

individual is then mutated, and their fitness is re-calculated. At the end of each

cycle, the best half of the population is kept, the remainders are discarded, and

the elite solution is updated.

2.6 Empirical methodologies in software engineering

This section presents the design science methodology (section 2.6.1) and the two em-

pirical methodologies that will be used in this thesis: systematic mapping study (sec-

tion 2.6.3), and controlled experiments (section 2.6.4).

2.6.1 Design science methodology for information systems and

software engineering

The design science methodology for information systems and software engineering

was followed for the development of this thesis. Design science is a research method-

ology that focuses on the design and investigation of artifacts in a particular con-

text [61]. Design science is composed of two parts, design and investigation, which

correspond to the two research problems of design science, design problems and

knowledge questions. Design problems are the necessity of a change in the real world,

which require a design that satisfies some stakeholder goals. Knowledge questions are

the necessity of knowledge of the current state of the world. A research problem on

software engineering is a set of both design problems and knowledge questions.

To solve a research problem, design science employs two types of cycle: design

cycles and empirical cycles. Design cycles propose artifacts that satisfy design prob-

lems, and empirical cycles propose answers that satisfy the knowledge questions. The

design cycle is composed of three parts: problem investigation, treatment design and

treatment validation. The procedure of such cycle is to find a potential point of im-

provement, propose a solution artifact, and evaluate how does it aid the problem.

In contrast, the empirical cycle is composed of five parts: research problem analy-

sis, research and inference design, validation of design, and data analysis. The typical

execution is to find and define the knowledge problem, propose how will this prob-

lem be solved, validate this solution, execute the proposed solution, and evaluate the

knowledge obtained.

Figure 2.3 summarizes the design science approach and its general framework.

45

Figure 2.3: Summary of the design science approach. Adapted from Wieringa [61].

46

When a research problem is defined (Part I), the design problems are approached

using the design cycle (Part II), and the knowledge questions are approached using

the empirical cycle (Part IV). Both cycles are aided by background theories, and in

turn both cycles can add to these theories (Part III).

In this thesis, we will approach the design problem of an implementation of a

hyper-parameter tuning framework, and the knowledge problem of the efficacy as-

sessment of the existing hyper-parameter tuning approaches. We will thus employ

design cycles to implement this framework, and empirical cycles to evaluate the

hyper-parameter tuning approaches using this framework.

2.6.2 Empirical software engineering

Research in software engineering can be performed by taking four methodical ap-

proaches: scientific, engineering, empirical, and analytical [117]. Empirical software

engineering can be defined as a research method in which a model is proposed and

evaluated through empirical studies—studies based on evidence.

Empirical software engineering divides research into primary studies and sec-

ondary studies. Primary studies are empirical studies that aggregate evidence to soft-

ware engineering literature, while secondary studies compile the evidence of primary

studies [64].

Secondary studies can be divided into systematic literature reviews and system-

atic literature mappings [64]. A systematic literature review is a study that collects

and synthesises empirical evidence, guided by research questions that are focused on

the outcomes of the primary studies. Systematic literature mappings are secondary

studies that are similar in form to literature reviews, but the scope of the research

questions is more general and oriented to determine the state of the art. We select

the systematic literature mapping as the strategy for a study that is part of this thesis,

as our objective is to unveil the state of the art in the existing hyper-parameter tuning

approaches and other machine learning techniques.

Primary studies can be further divided into surveys, case studies, and experiments;

depending on their level of control [64]. Surveys are an empirical study that is used

to take a snapshot of a situation, and can be used, for example, to determine the

effects of a new technique or tool. Case studies are conducted in a real environment

to investigate a particular phenomenon, and is usually applied in industrial contexts.

Experiments are an empirical strategy that is used when control over a situation is

47

desired, at the expense of some degree of realism. We select the experiment as the

strategy of a study that is part of this thesis, as our objective is to compare hyper-

parameter tuning approaches under different circumstances. Such study requires

high degree of control over the factors that affect the performance of these methods.

2.6.3 Systematic mapping studies

Systematic mapping studies are empirical studies that are designed to give an overview

of a research area through classification and counting of research contributions [62].

They involve searching the literature in order to know what topics have been covered

in the literature, and where the literature has been published.

Petersen et al.’s guidelines for conducting systematic literature mappings describe

how to conduct a mapping process for empirical software engineering—covering the

search, study selection, analysis, presentation of data, and validity evaluation, among

others. While systematic literature reviews are intended to synthesize evidence for

a specific research area, systematic literature mappings aim for structuring and sum-

mary of a broader research area [62]. Literature surveys and mapping overlap in

protocol, but differ in the reach of their objectives and conclusions.

Kitchenham et al.’s guidelines for systematic literature reviews are the predecessor

to Petersen et al.’s guidelines, and specify how to conduct a more in-depth review. In

terms of steps and parts of the protocol, both guidelines offer the same content, but

differ in depth of this content. Petersen et al.’s guidelines are built into the foundation

of Kitchenham et al.’s guidelines, and thus we reference them in the mapping process.

The systematic study guidelines follow a three step process: (1) planning, (2) con-

ducting, and (3) reporting the mapping process. Figure 2.4 summarizes this process.

Planning The mapping planning comprises the election of all decisions relevant for

conducting the mapping, and results in a mapping protocol. The process starts

with identifying a need—an open question or topic about a research area—and

selecting an adequate scope to approach this need. After this identification, one

or more pertinent research questions are presented. These questions will drive

the mapping process, and the aim of the process should culminate in answer-

ing these questions. Following this, a strategy or protocol defines the strategy

for identifying the relevant studies, assessing their quality, extracting relevant

information, synthesizing the results, and evaluating potential threats to valid-

ity. Lastly, the protocol is validated among peers—to asses that the process is

48

Figure 2.4: Systematic literature review and mapping process. Adapted from Kitchen-
ham et al. [118].

49

unbiased and answers properly to the research questions.

Conducting The conduction of the mapping follows the process specified in the pro-

tocol to obtain the results that should satisfy the need for the mapping. Fol-

lowing the strategy defined in the protocol, the first step is the identification of

those studies relevant to answer the research questions. The identified studies

are then evaluated and ranked according to their quality and relevance regard-

ing the mapping. A researcher may opt to exclude studies based on this criteria.

Once identified and selected, the information that is relevant to the mapping is

extracted from the studies. As this information should be described in a synthe-

sized form, an analysis and presentation process is performed—usually with the

aid of visualization. The mapping process is iterative: newfound information in

the conduction may require changes in the planning, which would then require

another iteration of the process.

Reporting The mapping reporting deals with the presentation of the mapping pro-

tocol and results in an orderly manner. This process culminates in a mapping

report or research paper. One such way of presenting the results of a mapping

would be: introduction, related work, research method, results, and discussion.

Lastly, the report is evaluated among peers, usually aided with a checklist of all

the content that the review should cover.

2.6.4 Controlled experiments

A controlled experiment in software engineering is an empirical enquiry that manip-

ulates one factor or variable of the studied setting. Based in randomization, differ-

ent treatments are applied to or by different subjects, while keeping other variables

constant, and measuring the effects on outcome variables. In human-oriented exper-

iments, humans apply different treatments to objects, while in technology-oriented

experiments, different technical treatments are applied to different objects [64].

Wohlin et al.’s [64] book on software experimentation describes how to conduct

experiments (and quasi-experiments) for empirical software engineering. Compared

to other types of empirical study, experiments are performed in controlled environ-

ments to compare the effect of different factors—or combinations of those—have an

effect on a measurable outcome. Experiments have more control on both the execu-

tion and measurement of the experiment when compared to other types of empirical

study, albeit they demand a higher investigation cost. A quasi experiment is an exper-

50

imental process in which subjects cannot be randomly assigned treatments. Empirical

experiments describe how does a set of variables influence a particular phenomenon.

A series of hypotheses on the influence of these variables is established at the begin-

ning of the experiment, and the purpose of the experiment is to gather evidence to

support or reject these hypotheses.

The experimental process consists of five activities: (1) scoping, (2) planning,

(3) orientation, (4) analysis and interpretation, and (5) presentation and package.

Similarly to iterative development, the experimental process is not a one-pass pro-

cess. Rather, its nature is iterative, as newfound evidence may go against or require

changes in the experimental design. Figure 2.5 shows the empirical experiment pro-

cess.

Scoping The scoping activity defines the objectives and goals that will drive the ex-

periment. The objective of this activity is defining a framework that defines:

what is studied (objective), the intention of the study (purpose), which effect is

studied (quality focus), from whose view is it studied (perspective), and where

is the study conducted (purpose). In addition, a set of hypothesis may be pro-

posed at this point.

Planning The planning activity lays out the foundation of the experiment. This ac-

tivity produces an experimental design: a document that defines the details of

what will be studied, how will the study be performed, and how does the ex-

periment reduce bias or undesired effects in order to produce solid, conclusive

evidence. A typical experimental design covers: context selection, hypothesis

formulation, variables selection, selection of subjects, choice of design type, in-

strumentation, and validity evaluation.

Operation The operation activity consists in carrying out the experiment, particularly

the process up to the recollection of data. It consists of three parts: prepara-

tion, execution, and data validation. The preparation step consists of preparing

everything needed for the collection of data, including study subjects and instru-

ments. The execution step deals with the collection of the data, and generally

follows the design of the experiment. The data validation step ensures that the

collected data is correct and provides a valid picture of the experiment.

Analysis and interpretation The analysis and interpretation activity has two objec-

tives: describing the collected data, and drawing conclusions from said data.

The activity is similarly comprised by descriptive statistics, data set reduction,

51

Figure 2.5: Complete empirical experiment process. Adapted from Wohlin et al. [64].

52

and hypothesis testing. A general overview and visualization of the data is first

performed by using descriptive statistics, so the researcher can better under-

stand the nature of this information and what can be concluded. After this

process, it is usually concluded that only a subset of information is relevant

for the hypothesis testing. Thus, a data set reduction process is performed, in

which either features or data points are removed from the data set. Once this

is performed, hypothesis testing can be performed. In this process, inferential

statistics are used to test a series of hypotheses, mostly those described in the

experimental design. One important aspect of this process is interpretation and

reasoning on the results of this hypothesis testing, and how do these results

impact future research.

Presentation and package The presentation and package activity of the process deals

with presenting the results of the experiments, either in a publication paper, a

report, presentation, or other medium. In addition to the results of the experi-

ment, a report should also clearly present the experimental design to aid future

replication.

2.7 Software engineering methodologies

A software process is a set of detailed activities that lead to the production of a soft-

ware system [63]. All software processes contain four fundamental activities: speci-

fication, development, validation, and evolution. Because there are different types of

software, there is no universal software process. Instead, multiple software processes

are defined, and one should be selected accordingly to the nature of the software to

be produced [63].

Sommerville’s definition of incremental software development explain the process

of a software development project that is performed in multiple iterations that are

comprised by a waterfall-like process [63]. Each incremental iteration is comprised of

specification, development and validation activities; with the goal of delivering a new

version of the system. The incremental model is better for software with constantly

changing requirements, which is apt for development parallel with the execution of

the systematic literature mapping.

There are three activities performed in the incremental software engineering pro-

cess: (1) specification, (2) design and implementation, and (3) validation. Figure 2.6

shows the incremental development process and its relation to these three activities.

53

Figure 2.6: Incremental development process. Adapted from Sommerville [63].

Specification Software specification—also known as requirements engineering—is

the process of understanding and defining what new functionality or character-

istics are required from the system. The general procedure for a specification

activity is to collect, document and validate a set of requirements.

Design and implementation Software design and implementation is an activity that

consists of two sub-activities: design and implementation. The software design

is a description of the structure of the software to be implemented. The software

implementation process converts this design into an usable system. These two

activities may be preformed sequentially or interleaved.

Validation Software verification and validation is the process that demonstrates that

the system both conforms its specification, and meets he expectations of the

stakeholders. Software validation can be applied to both product and process.

Systems should be tested on different levels: unit, integration, system, and ac-

ceptance. In the case of incremental development, new functionality should be

tested as it is implemented.

54

Chapter 3

Hyper-parameter tuning for machine
learning software effort estimation: a

systematic literature mapping

This chapter presents the results of a systematic mapping study to address the first

specific objective of this thesis: to characterize the existing machine learning hyper-

parameter tuning approaches in the context of software effort estimation.

3.1 Study design

The systematic mapping study was conducted using the guidelines by Petersen et

al. [62] and Kitchenham and Charters [119], as described in section 2.6.3. The ob-

jective of the mapping study was to characterize machine learning hyper-parameter

tuning approaches for software effort estimation. We analyze them in terms of cross-

validation approaches, data transformations, feature selectors, machine learning al-

gorithms, parameter tuning approaches, datasets, evaluation metrics, and analysis

techniques.

A preliminary version of this study [120] was published as a paper at the 4th In-

ternational Conference on Information Technology & Systems (ICITS’21). This article

is available on full text form on appendix C.

55

3.1.1 Research questions

Research questions of a mapping study aim to structure the current knowledge in the

research area, and show the distribution of research papers [62]. These questions are

answered by classifying the selected primary studies [62]. We proposed the following

research questions:

RQ1 Which approaches are used in machine learning hyper-parameter tuning for

SEE?

To answer this question, we characterized the most used cross-validation ap-

proaches, data transformations, feature selectors, machine learning algorithms,

and hyper-parameter tuning approaches in hyper-parameter tuning machine

learning SEE.

RQ2 What datasets are used in machine learning hyper-parameter tuning for SEE?

To answer this question, we identified the datasets that were used to evaluate

hyper-parameter tuning machine learning SEE approaches.

RQ3 What performance metrics are used in machine learning hyper-parameter tun-

ing approaches for SEE?

To answer this question, we identified the most used evaluation metrics and

analysis procedures to evaluate the performance of SEE approaches and deter-

mine the impact of hyper-parameter tuning.

3.1.2 Control studies

We defined a set of 15 control papers [8, 12, 14, 22, 24, 49, 50, 57, 102, 121, 122,

123, 124, 125, 126] to construct and validate the study design, as well as the results

of the search process. These studies comprise primary evaluations of SEE that use

one or more hyper-parameter tuning approaches. The studies were used to perform

a preliminary version of the study design, aiding in the creation and validation of the

current protocol.

3.1.3 Search strategy

The search strategy of a systematic literature mapping is a group of activities that al-

lows selection of research that is relevant to answer the proposed research questions.

56

In our case, this strategy was built based on the research questions and the control

studies. This study used an automated search process and inclusion and exclusion

criteria to find the relevant primary articles.

To guide the automated search process, a PICO analysis was performed based on

the keywords of the control studies [119]. Based on this analysis, we proposed a

search string for the automated search. Table 3.1, shows the four PICO clusters and

the search string.

Table 3.1: PICO clusters and search string.

Population Software effort estimation, software cost estimation
Intervention Machine learning, machine learning schemes, parameter tuning, parameter opti-

mization
Comparison –
Outcome Data sets, cross-validation approaches, data transformation, feature selection, ma-

chine learning algorithms, parameter tuning approaches, evaluation metrics, re-
sults, challenges

Search string (“software” AND (“effort estimation” OR “effort prediction” OR “cost estimation”
OR “cost prediction”)) AND (“tuning” OR “optim*” OR “setting*” OR “combinat*”
OR “ensemble*” OR “scheme*”)

The automated search was performed in the following databases: Scopus, IEEE

Xplore, Web of Science, and ScienceDirect. The string was adapted to the format of

each database. Furthermore, results for Scopus were limited to those belonging to

computer science or engineering.

3.1.4 Inclusion and exclusion criteria

The inclusion and exclusion (I/E) criteria determined which of the studies identified

by the automated search process were relevant for this study. The I/E process evalu-

ated each of the identified papers based on their title, abstract and keywords. If these

elements did not provide enough information to decide whether to include or exclude

a paper, this process was performed on the full paper text.

To be included in the mapping study, a paper must have met all of the inclusion

criteria and none of the exclusion criteria. We defined four inclusion criteria: The

paper is a primary study (I1), in the field of SEE (I2), that uses machine learning for

SEE (I3), and uses hyper-parameter tuning (I4). We decided to exclude those papers

that are not in English (E1), and whose full text is not available (E2).

The inclusion and exclusion criteria resulted in a total of 79 papers. The main

57

Figure 3.1: Systematic mapping study steps and results.

reason for the exclusion of studies in the process was the (I4) criterion, as the majority

of papers did not use hyper-parameter tuning approaches; using default or hand-

picked parameters, or not reporting how were hyper-parameters were selected.

3.1.5 Selection process

Figure 3.1 shows the steps and results of the systematic mapping process. The auto-

mated search process retrieved a total of 1,310 papers from the four databases. After

performing an automated removal of duplicates (based on author, title, and year),

the amount of studies was reduced to 978. The inclusion and exclusion criteria fur-

ther dwindled this number to a total of 79 papers. Table A.1 in appendix A shows

the complete list of articles, including their year, title, authors and publication venue.

Each paper was assigned an ID consisting of the letter S plus a number (e.x. paper

S1).

3.1.6 Quality assessment

As part of the recommended systematic literature mapping process, we evaluated the

quality of the selected articles to determine their level of detail in reporting. We set

five quality criteria in the form of questions: (Q1) Does the study report its goal or

main objective? (Q2) Does the study report research questions? (Q3) Does the study

report the datasets that were used? (Q4) Did the study measure accuracy with an un-

biased metric? (Q5) Did the study analyze the obtained results? Each question was

answered with using a Yes, Partial, or No scale; which granted 1, 0.5, and 0 points

respectively. The total score was the sum of the scores of the five criteria, for a max-

imum possible score of 5 points. We did not use the quality score to exclude studies

but it is a reference for researchers interested in the reporting quality of studies in

SEE.

58

The distribution of the quality scores for the 79 papers ranged from 2 to 5, with

a median score of 3.0, a mean score of 3.3, and a standard deviation of 0.94. This

indicates that the studies have an acceptable level of quality to answer the research

questions. The average lowest scores were on Q2 and Q4, which indicates that many

studies did not report their research questions nor used unbiased metrics. Table A.2

in appendix A shows the individual and total scores per paper.

3.1.7 Data extraction and analysis

For each research question, the relevant information to answer it was manually ex-

tracted from the selected articles. Table 3.2 shows the categories and fields that were

extracted from each paper, mapped to each research question. The data we obtained

from each extraction field was numerical or categorical. Numerical data corresponds

mainly to the results obtained per study, and the parameter values for the machine

learning techniques. Categorical data corresponds to the names of the obtained tech-

niques, datasets, evaluation metrics, and challenges. Figure 3.2 shows a classification

scheme for the cross-validation approach, data transformation, feature selection, pa-

rameter tuning, dataset and evaluation metrics. These scheme was built using the

keywording technique described by Petersen et al. [62] applied to the control studies.

The studies were extracted in chronological order, from most recent to least recent.

Table 3.2: Data extraction fields.

RQ Fields

General Study type, main objective, research questions, study focus, online/offline estimation,
type of estimation (CC/WC), experimental design, threats to validity, future work, main
results

RQ1 Cross-validation approach, data transformations, feature selectors, machine learn-
ing algorithms, parameter tuning approaches; for each: sub-types, parameters, sub-
techniques

RQ2 Datasets, origin, CC
RQ3 Evaluation metrics (category and sub-category), data analysis techniques

The following strategies were applied for analysis and synthesis of the extracted

information. The information of each extracted element was tabulated into the data

extraction form. An analysis process was performed on each category on elements to

respond each research question.

To answer research question 1, we classified, grouped, and counted the techniques

of the machine learning parameter tuning process that we encountered for each pa-

59

Figure 3.2: Classification scheme for extracted fields.

per, based on the keywording technique [62]. These techniques were clustered into

families (i.e. multilayer perceptrons and recurrent neural networks both count as a

neural network) so that we could present a general overview of machine learning

techniques on SEE. We performed a descriptive analysis of the techniques found and

the frequency of their use in the included papers. In addition, complemented this

analysis with bubble and other types of frequency plots.

60

To answer research question 2, we counted the datasets that each paper used to

build and evaluate models to estimate software effort. We counted splits or partitions

of datasets as their original set. We performed a descriptive analysis of the datasets

found and the frequency of their use in the included papers and complemented this

analysis with bubble and other types of frequency plots.

To answer research question 3, we grouped and counted the evaluation or perfor-

mance metrics used to assess effort estimation models. We grouped these techniques

by their base formulas. For example, the metrics mean absolute error (MAR) and

median absolute error (MdAR) were categorized as absolute error metrics. Moreover,

we grouped and counted the analysis techniques used to process the metrics collected

by SEE studies. Such techniques comprised descriptive analysis and statistical tests.

We performed a descriptive analysis of the evaluation metrics and analysis techniques

that were found, and their frequency in the included papers, complimenting this anal-

ysis with bubble and other types of frequency plots.

Potential threats to validity include the threat of missing relevant studies due to

the automated search process, researcher bias in the inclusion/exclusion and data

extraction process, and the generalizability of results to the broad machine learning

SEE literature.

3.2 Results

Next we present the results of the systematic mapping study. Section 3.2.1 presents

the hyper-parameter tuning and machine learning techniques reported in the studies.

Section 3.2.2 shows the SEE datasets. Section 3.2.3 presents the evaluation metrics

and analysis techniques reported in the studies. Appendix A contains tables with

additional information than those shown in this chapter. The extraction form and

results of this literature mapping can be found online1.

1http://tiny.cc/hpt-slm

http://tiny.cc/hpt-slm

61

3.2.1 RQ1: Hyper-parameter tuning approaches used in machine

learning SEE

3.2.1.1 Hyper-parameter tuning

We encountered 12 different hyper-parameter tuning approaches in machine learn-

ing SEE literature. Table 3.3 shows the hyper-parameter tuning approaches and their

related studies, and figure 3.3 shows the use of these approaches through the years.

The most used technique was grid search, with a total of 60 studies. Many of these

studies did not explicitly report usage of this technique, but instead reported using

all possible parameter combinations. Thus, we counted such cases as using the grid

search technique. The second most used technique was genetic algorithms, with a

total of 14 studies. Particle swarm optimization (PSO) was the third most used tech-

nique, with 6 studies. The tabu search approach was researched in three studies, and

random search was covered in two papers. Lastly, the beam search, bee’s algorithm,

hill climbing, immune algorithm, online supervised tuning, and satin bowerbird op-

timization approaches were studied in only one paper. One study reported utilizing

k-fold as a hyper-parameter tuning approach. even though this technique was usually

employed for cross-validation.

This distribution shows that SEE studies favor exhaustive approaches such as grid

search. Grid search is an effective method that can find the optimal hyper-parameter

combination from a pre-defined grid. Grid search has two limitations: 1) it relies on

a pre-defined search grid, and 2) it can be computationally expensive depending on

the size of the grid. This is not a problem for models like analogy-based estimation

which often relied on three categorical parameters. On the other hand, a model like

neural network may not be viable to be grid-searched, as it relies on a combination of

categorical an numerical attributes. Thus, one possible explanation for the increased

use of grid search could be a relative simplicity of the hyper-parameter search space.

Moreover, many hyper-parameter tuning studies may employ the approach as a base-

line for comparison with other heuristic tuners. From figure 3.3 we see that, while

grid search and genetic algorithms were predominantly used up until the year 2012,

from there onward SEE studies have started to explore alternative tuners.

We analyzed the “study focus” of the 79 studies in order to determine how are

these tuners used. We categorized the studies under two dimensions regarding their

focus: object focus and evaluation focus. The object focus dimension determines

which part of the machine learning process is being evaluated. For instance, one

62

Table 3.3: Hyper-parameter tuning approaches and related SEE studies.

Type N Studies

Grid Search 60 S12, S20, S30, S33, S51, S41, S40, S44, S55,
S66, S1, S3, S4, S5, S6, S8, S10, S11, S14, S15,

S17, S18, S19, S22, S23, S24, S26, S27, S28,
S29, S31, S32, S34, S35, S36, S39, S38, S42,
S43, S46, S47, S48, S49, S50, S52, S56, S57,
S58, S59, S60, S62, S63, S65, S68, S69, S70,

S73, S75, S78, S79
Genetic Algorithm 14 S37, S53, S66, S18, S42, S45, S54, S67, S70,

S71, S72, S74, S76, S77
Particle Swarm
Optimization

6 S12, S37, S2, S13, S25, S31

Tabu Search 3 S40, S64, S2
Random Search 2 S40, S21
Beam Search 1 S79
Bee’s Algorithm 1 S61
Hill Climbing 1 S7
Immune Algorithm 1 S68
K-Fold Cross-Validation 1 S16
Online Supervised Tuning
Procedure

1 S7

Satin Bowerbird
Optimization

1 S25

63

Figure 3.3: Hyper-parameter tuning approaches and usage through time.

study may focus on the comparison of a tuned against an untuned model, while

another may compare two models that use tuning. We considered the first study to be

tuning focused, and the second to be machine learning focused. The evaluation focus

dimension determines whether the study is performing a benchmark (evaluation of

multiple state-of-the-art) or a proposal (evaluation of a novel technique against some

state-of-the-art). Table 3.4 shows the 10 unique focus combinations we identified and

papers with that focus.

The majority (67 out of 79, or 85%) of the selected studies research on two ob-

jects: machine learning algorithms and hyper-parameter tuning. Only 10 studies had

other types of technique as an object focus, including feature selection, data pre-

procesing, and clustering. Two studies undertook a multi-technique approach and

tried to determine the best combination of learning algorithms, parameter tuning,

pre-processing, and feature selection. Out of the 79 studies, 53 (67%) performed

benchmarks of existing techniques and 26 (33%) proposed and evaluated novel tech-

niques.

Regarding the use of tuning in SEE, the distribution of study focuses has several

implications. First, SEE studies primarily utilize tuning to evaluate other parts of

the machine learning process (often learning algorithms). This indicates that hyper-

parameter tuning has been considered as part of the machine learning process, and

these studies compared their techniques on their optimal configurations. However,

64

Table 3.4: Study focus and related SEE studies.

Focus N Studies

Learning algorithm - Benchmark 28 S1, S3, S6, S8, S9, S12, S14, S17, S24,
S27, S28, S30, S36, S41, S42, S43, S47,
S48, S49, S52, S55, S56, S58, S61, S62,

S63, S67, S73
Parameter tuning - Benchmark 18 S11, S18, S23, S26, S29, S31, S33, S37,

S38, S39, S40, S44, S45, S46, S51, S64,
S65, S66

Learning algorithm - Proposal 17 S2, S10, S16, S19, S22, S25, S32, S35,
S53, S57, S59, S60, S70, S71, S76, S77,

S78
Parameter tuning - Proposal 4 S7, S68, S72, S74
Feature selection - Benchmark 3 S4, S5, S20
Data pre-processing - Benchmark 2 S34, S50
Data pre-processing - Proposal 2 S13, S75
Feature selection - Proposal 2 S69, S79
Multiple - Benchmark 2 S15, S54
Clustering - Proposal 1 S21

this also shows that relatively few studies (22 out of 79, 28%) have evaluated the

impact of hyper-parameter tuning in SEE. Moreover, out of the 22 tuning-focused

studies, 10 use only grid search (S11, S23, S26, S29, S33, S38, S39, S46, S51, S65

), 5 use grid search and at least one other tuner (S18, S31, S40, S44, S66), and 7

use non-grid search tuners (S7, S37, S45, S64, S68, S72, S74). Thus, only a small

fraction of studies have compared the effect of a particular tuning against an exhaus-

tive baseline like grid search. We recommend future SEE researchers to evaluate their

proposed tuning approaches against a baseline tuner, as well as to utilize other tuning

approaches besides grid search.

In addition to hyper-parameter tuning approaches, SEE studies employed other

techniques of the evaluation scheme: machine learning algorithms, feature selection,

data pre-processing, and cross-validation approaches. Figure 3.4 shows the distribu-

tion of usage of these approaches through the years. All papers used at least one

machine learning algorithm, and cross-validation approach. Only one paper did not

employ hyper-parameter tuning, but they reported that it will be done in a follow-up

study. For data pre-processing, we encountered a total of 44 studies reported using at

least one pre-processing method. Only 24 papers used feature selection methods.

65

Figure 3.4: Categorization of techniques of the evaluation scheme and usage through
time.

3.2.1.2 Machine learning algorithms

Table 3.5 shows the machine learning algorithms used across the studies, and fig-

ure 3.5 shows the use of these techniques through the years. In total, 21 differ-

ent types of machine learning algorithm were encountered. These techniques were

categorized by their general type of algorithm. For example, linear regression and

ridge regression both count as a regression-type technique. The complete detail of

techniques by sub-type, including supporting studies and counts, is available on Ap-

pendix A, in table A.3.

Table 3.5: Machine learning algorithms and related SEE studies.

Type N Studies

Neural Network

48 S3, S5, S6, S8, S9, S10, S11, S12, S15, S17, S18,

S19, S20, S22, S23, S25, S27, S29, S30, S32,

S33, S34, S36, S41, S42, S46, S47, S49, S51,

S53, S54, S55, S58, S59, S60, S61, S63, S66,

S67, S69, S70, S71, S72, S74, S76, S77, S78,

S79

Continued on next page

66

Table 3.5: Machine learning algorithms and related SEE studies. (Continued)

Regression Tree 38 S1, S3, S5, S6, S7, S8, S10, S11, S12, S14, S15,

S18, S19, S20, S22, S23, S25, S28, S29, S30,

S32, S34, S35, S41, S43, S46, S47, S51, S55,

S57, S59, S60, S61, S62, S63, S66, S69, S74

Regression 36 S2, S3, S6, S7, S8, S9, S10, S11, S14, S15, S17,

S19, S22, S23, S25, S28, S29, S32, S35, S40,

S41, S43, S49, S50, S55, S58, S59, S60, S61,

S64, S65, S71, S74, S75, S78, S79

Support Vector

Regression

33 S3, S5, S6, S8, S9, S10, S11, S12, S15, S16, S17,

S18, S19, S20, S22, S28, S30, S31, S38, S39,

S40, S42, S53, S54, S55, S60, S64, S66, S67,

S68, S69, S71, S72

Case Based Reasoning 32 S4, S8, S13, S18, S21, S22, S24, S26, S28, S29,

S32, S34, S35, S37, S40, S43, S44, S45, S47,

S48, S50, S52, S55, S56, S59, S61, S62, S64,

S65, S69, S74, S79

Ensemble 17 S4, S5, S6, S12, S14, S20, S22, S30, S41, S42,

S46, S47, S49, S52, S57, S59, S63

K Nearest Neighbors 17 S3, S5, S6, S9, S10, S12, S14, S15, S20, S22,

S23, S28, S30, S41, S46, S51, S73

Bagging 12 S7, S8, S10, S22, S46, S47, S51, S53, S63, S67,

S71, S72

Random Forest 8 S1, S3, S6, S8, S11, S18, S22, S28

Boosting 6 S3, S6, S8, S11, S22, S60

Stacking 4 S6, S8, S28, S62

Bayesian Model 3 S6, S22, S28

Mean 3 S22, S40, S64

Median 3 S7, S40, S64

Rule Based Estimation 2 S22, S46

Gaussian Process 1 S22

Continued on next page

67

Figure 3.5: Machine learning algorithms and usage through time.

Table 3.5: Machine learning algorithms and related SEE studies. (Continued)

Genetic Algorithm 1 S2

K-Means Clustering 1 S28

Learning Automata 1 S2

Particle Swarm

Optimization

1 S2

Relevance Vector

Machines

1 S10

The most used technique were neural networks, with a total of 48 studies. Of

these, the most used type of network were multi-layer perceptrons with 21 stud-

ies (S3, S5, S8, S9, S10, S12, S18, S19, S20, S22, S29, S30, S42, S46, S47, S51,

S54, S55, S61, S63, S66). Other reported types of neural networks were radial ba-

sis function networks (13 studies, S15, S19, S22, S29, S46, S47, S54, S55, S60,

S63, S69, S71, S72), general regression neural networks (S11), GMDH polynomial

neural network (4 studies, S11, S76, S77, S78), morphological-rank-linear percep-

trons (3 studies, S19, S53, S67), self-organized neuro-fuzzy networks (3 studies,

S76, S77, S78), adaptative neuro-fuzzy interface system (2 studies, S25, S42), neuro-

fuzzy networks (2 studies, S76, S77), particle swarm optimization neural network (2

68

studies, S23, S27), probabilistic neural networks (S11), cascade-correlation neural

network (S11), general regression neural network (S11), genetic algorithm particle

swarm optimization neural network (S27), genetic algorithm neural network (S36),

multilayer dilation-erosion-linear perceptron (S19), recurrent neural network (S54),

and error back propagation networks (S33). Neural network models have been pop-

ular through all the years of SEE research. The second most used technique were

regression trees, with a total of 38 studies. The regression tree category covers tech-

niques such as classification and regression trees (16 studies, S3, S8, S15, S23, S25,

S29, S32, S34, S35, S41, S43, S55, S59, S60, S69, S74), M5P trees (4 studies, S18,

S22, S30, S55, S61, S66), M5 trees (2 studies, S22, S55), REP trees (4 studies, S22,

S46, S57, S63), C4.5 (S28), chaid decision tree (S28), J48 (S22), M5Prime (S30),

and J48 trees (S22). While regression trees were not used in the first years of SEE

tuning research, their use has seen an increase in the latest years, with a maximum

of 7 studies in 2019. Regression approaches were employed in 36 studies, in many

cases as a base for comparison, and were the third most used technique. The regres-

sion algorithms that used in more than one study were ordinary least-squares regres-

sion (15 studies, S2, S3, S6, S8, S9, S14, S15, S19, S22, S35, S41, S50, S55, S60,

S71), step-wise regression (12 studies, S23, S25, S29, S32, S35, S41, S43, S59, S61,

S64, S65, S74), multiple regression (10 studies, S17, S23, S25, S29, S32, S43, S49,

S58, S59, S75), ridge regression (4 studies, S3, S6, S8, S55), logistic regression (3

studies, S19, S22, S28), least median squares regression (2 studies, S22, S55), and

morphological-rank-linear filter regression (2 studies, S60, S71). Similar to neural

networks, regression models have been frequently used in SEE.

Regarding the remaining single-model techniques, support vector regression (SVR)

was used in 33 studies, making it the fourth most used model. Similar to CART, SVR

models were not used in the initial tuning studies, but rose in popularity through the

years. Case-based reasoning was employed in 32 studies, of which 21 cases were vari-

ants of analogy-based estimation (S4, S8, S13, S18, S21, S24, S26, S29, S32, S35,

S43, S44, S45, S47, S48, S50, S56, S59, S62, S69, S74). The peak use of case based

reasoning was in 2013, and it has not been as used as other techniques in the more

recent years. The k nearest neighbors technique was used in a total of 17 studies, with

varying values of the parameter k, mainly used from the year 2013 onward. Three

studies used the Bayesian model, and 2 employed rule-based estimation. Techniques

that were only used in one study are Gaussian process, genetic algorithms, k-means

clustering, learning automata, particle swarm optimization, and relevance vector ma-

chines. Lastly, 4 studies employed statistics of the dataset, such as mean an median,

69

as baseline estimators.

Different types of combination models were studied in SEE literature. Of these,

ensemble methods were the most researched, with a total of 17 studies. Of these,

10 studies employed heterogeneous ensembles (S5, S6, S12, S14, S20, S22, S30,

S41, S42, S46), 3 used homogeneous ensembles (S4, S42, S49), and 8 studies used

one or more types of specialized ensemble (S6, S14, S22, S46, S47, S59, S57, S63).

Ensembles saw peak use in 2013, but have been used ever since. Other combina-

tion techniques include bagging (12 studies), random forests (8 studies), boosting (6

studies), and stacking (4 studies). One noteworthy observation of these techniques is

that hyper-parameter tuning has to account for the parameters of the individual tech-

niques. This was often performed in a two-step process: a first of hyper-parameter

tuning was performed to select the best parameters for the base models, and after-

wards the combined techniques were built using models with these parameters. If the

combined technique had parameters, such as the aggregation function in ensembles,

a second iteration of hyper-parameter tuning was performed.

With the exception of regression-type techniques, the most used techniques in

SEE share one common trait: they have more than three hyper-parameters that could

require tuning. This applies two-fold for combination techniques, as they must con-

figure both the parameters of the “inner” techniques as well as the “outer” parame-

ters of the ensemble itself. Moreover, the most used technique was neural networks,

which has many hyper-parameters, including: learning rate, momentum, amount

of hidden layers, activation functions (per layer), amount of hidden neurons (per

layer), batch size, training epochs, solver. Assuming a study configures all of these

hyper-parameters and using only 5 values (using a fixed size for the per-layer ones),

an exhaustive tuner like grid search would explore 58 = 390, 625 hyper-parameter

combinations. Assuming each model requires 1 minute to train, grid search would

require 6,510 hours, or 271 days (almost three quarters of a year) to find an op-

timal hyper-parameter combination. Thus, future research could evaluate non-grid

search methods to explore if they are viable (equally or near-equally efficient) as a

less time-consuming alternative.

3.2.1.3 Cross-validation

Table 3.6 shows the cross-validation approaches used across the studies, and fig-

ure 3.6 shows the use of these techniques through the years. In total, 5 different

types of approaches were encountered. In some cases, studies employed different

70

Table 3.6: Cross-validation approaches and related SEE studies.

Type N Studies

Leave-One-Out
Cross-Validation

38 S4, S5, S8, S11, S12, S13, S18, S19, S20, S21,
S22, S23, S24, S26, S27, S29, S30, S35, S36,
S37, S40, S41, S44, S49, S50, S53, S55, S56,
S60, S62, S64, S66, S71, S72, S73, S76, S77,

S78
K-Fold Cross-Validation 28 S1, S3, S10, S11, S13, S14, S15, S16, S17, S18,

S19, S25, S27, S28, S31, S32, S38, S39, S40,
S43, S50, S54, S59, S61, S62, S65, S66, S74

Hold-out split 27 S1, S2, S3, S9, S17, S18, S33, S34, S38, S42,
S45, S46, S47, S52, S54, S55, S58, S63, S64,

S66, S67, S68, S69, S70, S72, S75, S79
Online 4 S7, S45, S51, S57
Blocked Cross-Validation 1 S6

validation approaches for different datasets. For example, S4 used leave-one-out

for datasets under 60 observations, and 10-fold cross validation otherwise. Cross-

validation approaches are only applicable to offline effort estimation. Online esti-

mation studies instead simulate a real estimation scenario by ordering the available

projects by date. We have labeled this technique as “online”.

The most used cross-validation was the leave-one-out approach, with a total of 38

studies. Leave-one-out has been consistently used through the years in SEE research.

The second most used approach was k-fold cross-validation, used in 28 studies. Of

these, 15 studies used 10-fold or repeated 10-fold (S1, S3, S10, S13, S14, S15, S17,

S18, S19, S28, S31, S32, S40, S50, S66), 8 studies used 3-fold (S18, S19, S43,

S59, S61, S62, S65, S74), and 5 studies used 5-fold (S11, S38, S39). While not

used in the very first years, studies have constantly employed k-fold as an alterna-

tive to leave-one-out. The hold-out split approach was used in 27 studies. Of these

10 employed a train-test split (S1, S2, S3, S9, S17, S18, S33, S64, S68, S79), 8

used a repeated train-test split (S45, S46, S47, S55, S63, S66, S72, S75), 5 used a

train-validation-test split (S34, S52, S67, S69, S70), and one used repeated train-

validation-test split (S58). In all cases, the amount of projects used for the test set

varied between 10% and 50%, except in S69 where the test set encompassed 80% of

the dataset. The amount of projects used for the validation set varied between 10%

and 33%. Similar to k-fold, hold out split has been employed constantly in SEE lit-

erature, surpassing both leave-one-out and k-fold in several years. Lastly, 4 studies

71

Figure 3.6: Cross-validation approaches and usage through time.

used the online approach for effort estimation, and one study employed the blocked

cross-validation approach.

There is no predominant cross-validation approach from this distribution. There is

a trend in the amount of cross-validation iterations, as many of these studies employ

techniques with multiple iterations. Leave-one-out, k-fold, repeated hold-outs, and

online cross-validations all have at least two iterations, and as many as the size of

the dataset. This trend shows that SEE has shifted to searching for stability in their

results: instead of gathering results from one train-test round, these studies measured

the effectiveness of their models under different circumstances.

3.2.1.4 Data transformation

Table 3.8 shows the data transformation approaches used across the studies, and

figure 3.7 shows the use of these techniques through the years. In total, 10 different

techniques were encountered.

The most used data transformation was the unit range [0, 1] transformation, used

by 25 studies. This technique was often reported as normalization. We have chosen

the unit range [0, 1] name to avoid confusion with the standardization technique.

Unit range [0, 1] saw predominant use in the earlier SEE research years, but more re-

cent studies have employed alternative approaches. The second most used technique

72

Table 3.7: Data transformations and related SEE studies.

Type N Studies

Unit Range [0,1] 25 S8, S15, S17, S19, S25, S26, S31, S32, S33, S34,
S37, S38, S39, S41, S43, S45, S46, S53, S60,

S62, S67, S69, S71, S74, S75
Logarithm 13 S8, S14, S15, S17, S35, S40, S41, S47, S50, S55,

S58, S61, S64
Principal Component
Analysis

5 S3, S8, S27, S41, S42

Standardization 5 S3, S10, S14, S15, S49
One-hot Encoding 4 S3, S10, S35, S55
Binning 2 S3, S66
BoxCox 2 S15, S55
Unit Range [-1,1] 2 S34, S58
Binary Encoding 1 S49
K-Means Clustering 1 S55

was the logarithmic transformation with a total of 13 papers. Logarithm transfor-

mation saw peak use between 2010 and 2013. After that, it was relative unused

until 2018. The third most used technique was a tie between principal component

analysis and standardization, with 5 studies each. Both are techniques that were not

employed before 2013 in tuning SEE studies. Standardization has been mostly used

in 2018 and 2019, and it indicates that the technique may be rising in popularity.

One-hot encoding (also called one-of-k representation) was applied in 4 studies. The

BoxCox, binning, and unit range [-1, 1] techniques were used in 2 studies. Lastly,

binary encoding and k-means clustering were used in one study each.

The trend in data transformations for SEE focuses mainly on numerical features,

as unit range [0, 1], unit range [-1, 1], BoxCox, and logarithm apply only to numbers.

Moreover, principal component analysis, one-hot encoding allow and binary encoding

allow the conversion of categorical features into numerical. This could imply that, for

SEE, numerical features are better predictors of effort.

3.2.1.5 Feature selection

Table ?? shows the feature selection approaches used across the studies, and figure 3.8

shows the use of these techniques through the years. In total, 10 different techniques

were encountered.

73

Figure 3.7: Data transformation approaches and usage through time.

The most used technique were correlation based feature selections, with a total of

10 studies. Correlation based feature selection encompasses techniques as sequential

forward selection (S15, S24, S34, S41, S58), sequential backward selection (S15,

S34, S58), best-first (S4, S5), k best univariate (S6), greedy stepwise search (S63),

stepwise variable selection (S24). The trend in use in correlation-based FS started

from 2011, and has increased since 2017. Genetic algorithm feature selection was

used in 7 studies. Conversely, genetic algorithms were mainly used in the earlier years

of the covered studies. Feature selection based on Pearson correlation was employed

in 4 studies, 3 of which were in 2019. Similarly, RReliefF based feature selection

was used in 3 studies, 2 of which were also in 2019. Lastly, 2 studies used (filter)

backward feature elimination. Techniques used in only one study were case set selec-

tion, exhaustive search, particle swarm optimization, principal component analysis,

and regression. Feature selection techniques can be employed as filters or wrappers.

Eleven studies employed filter approaches (S4, S5, S6, S9, S15, S20, S24, S35, S40,

S41, S63), and eight used the more computationally expensive wrappers (S8, S15,

S18, S34, S53, S55, S66, S67).

Feature selection is often not used in conjunction with hyper-parameter tuning,

as 24 out of the 78 studies that use tuning. This could be due to the higher com-

putational requirements for some of these feature selectors, especially wrapper-type

techniques. Another possible explanation for the relatively low amount of feature

74

Table 3.8: Feature selection and related SEE studies.

Type N Studies

Correlation Based Feature
Selection

10 S4, S5, S6, S15, S20, S24, S34, S41, S58, S63

Genetic Algorithm 7 S18, S42, S53, S66, S67, S69, S72
Pearson correlation 4 S4, S5, S9, S40
RReliefF Based Feature
Selection

3 S4, S5, S20

Backward Feature
Elimination

2 S8, S55

Case Set Selection 1 S79
Exhaustive Search 1 S35
Particle Swarm
Optimization

1 S31

Principal Component
Analysis

1 S24

Regression 1 S41

Figure 3.8: Feature selection approaches and usage through time.

75

selection studies is that some of the most used machine learning algorithms, such

as neural networks and regression trees, innately perform feature selection. Feature

selection remains an useful technique for some algorithms, like regression and case-

based reasoning. In addition, the use of feature selection saw a spike on 2019. This

could indicate that future studies could start considering using feature selectors.

3.2.2 RQ2: Datasets used in hyper-parameter tuning machine learn-

ing SEE

We identified 47 unique datasets that have been used in the literature of software ef-

fort estimation. We grouped these datasets into eight categories in accordance to their

availability or repository: PROMISE, ISBSG, open, Tukutuku, unidentified, artificial,

private, and IBM. Figure 3.9 shows the use of these dataset origins over the years.

The PROMISE category refers to the datasets publicly available in the PROMISE data

repository. Since 2008, datasets from the PROMISE repository have seen dominant

use in SEE studies. The ISBSG category refers to the dataset distributed by the In-

ternational Software Benchmarking Standards Group. Although this dataset is not

publicly available for free, there were some free versions of the dataset available in

the PROMISE repository, and has had a similar use trend to PROMISE. Similarly, the

Tukutuku category refers to the dataset of the same name that was publicly available.

The open category refers to other datasets that are publicly available, but not on the

PROMISE or Tukutuku repositories. Tukutuku has had two visible use periods: 2010–

2013, and 2018–2019. The private category refers to other datasets that are not

publicly available, or are not available for free. Lastly, IBM datasets refer to private

datasets that belong to the IBM company. The unidentified category refers to datasets

of which the authors do not give sufficient information to trace back to an origin. The

artificial datasets refer to datasets artificially generated, generally through probability

distributions. Table 3.9 shows the datasets grouped by their origin and their related

studies. Figure 3.10 shows the trend of usage of the PROMISE and ISBSG datasets,

the two most used origins, through the years.

Table 3.9: SEE datasets and related SEE studies.

Origin Dataset N Studies

Continued on next page

76

Table 3.9: SEE datasets and related SEE studies. (Continued)

PROMISE Desharnais 47 S12, S20, S40, S44, S53, S55, S61, S66, S2,

S4, S5, S8, S9, S13, S14, S18, S19, S21, S22,

S23, S24, S26, S27, S29, S31, S34, S35, S42,

S45, S46, S47, S48, S50, S52, S56, S58, S59,

S62, S63, S65, S67, S68, S69, S70, S72, S73,

S74

Cocomo81 35 S12, S20, S37, S44, S53, S55, S61, S66, S1,

S2, S4, S5, S8, S10, S13, S14, S16, S18, S19,

S21, S23, S24, S26, S27, S35, S36, S42, S46,

S47, S48, S57, S62, S63, S67, S70

Albrecht 26 S12, S20, S30, S37, S40, S44, S53, S61, S66,

S4, S5, S8, S13, S18, S19, S22, S24, S25,

S26, S27, S35, S42, S48, S62, S69, S70

Kemerer 22 S12, S20, S37, S40, S44, S53, S61, S66, S8,

S13, S14, S16, S18, S19, S21, S24, S25, S26,

S35, S48, S62, S70

Maxwell 20 S33, S37, S40, S44, S51, S55, S61, S8, S10,

S14, S21, S22, S23, S24, S26, S35, S42, S48,

S59, S62

CocomoNasa2 15 S37, S44, S61, S2, S8, S10, S17, S21, S22,

S24, S46, S47, S48, S57, S63

China 14 S12, S20, S33, S37, S40, S4, S5, S13, S21,

S24, S26, S35, S48, S62

Miyazaki94 14 S12, S20, S30, S40, S44, S4, S5, S8, S13,

S14, S24, S42, S48, S52

Telecom 8 S37, S40, S44, S61, S14, S26, S35, S48

CocomoSDR 7 S44, S8, S22, S24, S46, S47, S63

CocomoNasa 4 S55, S2, S22, S57

Kitchenham 4 S51, S10, S34, S48

USP05 3 S55, S34, S48

Continued on next page

77

Table 3.9: SEE datasets and related SEE studies. (Continued)

ISBSG ISBSG R10 13 S7, S51, S61, S10, S26, S34, S35, S45, S46,

S47, S57, S62, S63

ISBSG R8 7 S12, S1, S4, S5, S13, S18, S50

ISBSG R11 6 S55, S3, S25, S29, S32, S43

ISBSG R? 2 S22, S54

ISBSG R9 2 S58, S70

Open NasaBailey 14 S53, S66, S19, S26, S27, S35, S60, S63, S65,

S71, S72, S76, S77, S78

Finnish 4 S40, S44, S8, S24

KotenGray 4 S53, S66, S8, S19

CF 2 S43, S56

Costagliola05 1 S39

Jodpimai18 1 S15

OUTS 1 S74

QUES 1 S74

Ziauddin12 1 S38

Tukutuku Tukutuku 5 S40, S41, S64, S1, S18

Unidentified Unidentified 2 S16, S75

Bank 1 S50

JunLee01 1 S79

Stock 1 S50

Zakrani18 1 S11

Artificial Moderate 2 S29, S69

Severe 2 S29, S69

CoKem 1 S70

DeshRand0 1 S73

DeshRand1 1 S73

Private ESA 1 S55

Continued on next page

78

Figure 3.9: Dataset origins and usage through time.

Table 3.9: SEE datasets and related SEE studies. (Continued)

Euroclear 1 S55

Experience 1 S55

IT University 1 S6

IVR 1 S16

Pai13 1 S49

IBM DPS 1 S43

RQM 1 S28

RTC 1 S28

We identified a total of 13 PROMISE datasets, and a total of 58 studies that use

them. The most used dataset was Desharnais, with a total of 47 studies, and saw

peak use in 2019. The second most used dataset is Cocomo81 with a total of 35

studies. The Albrecht dataset was used in 26 studies, and the Kemerer dataset in 22

studies. Both sets were not widely used in the first years, but saw an upward trend

starting from the year 2013. The Maxwell dataset is used in 20 different SEE studies,

following an use pattern similar to Albrecht and Kemerer. Other PROMISE datasets

employed in SEE include CocomoNasa2, China, Miyazaki94, Telecom, CocomoSDR,

79

Figure 3.10: PROMISE and ISBSG datasets and usage through time.

CocomoNasa, Kitchenham, and USP05. The CocomoNasa2, China, Cocomo91, and

Miyazaki94 sets have seen frequent use through the years of SEE research. On the

other hand, CocomoNasa, Telecom, CocomoSDR, Kitchenham, USP05 have fallen in

relative disuse, although recent studies (>2017) have covered all of them but USP05.

Four different versions of the ISBSG dataset were identified in the literature, which

were used in 30 different studies. The most used version is the ISBSG release 10

dataset, being used in 13 studies. The ISBSG release 8 was used in 7 studies, the

release 11 was used in 2 studies, and the release 9 was used in 2 studies as well.

Lastly, two studies reported they used the ISBSG dataset, although they do not report

the release number, nor traits that allowed its identification. Somewhat counter in-

tuitively, the oldest ISBSG dataset (R8) has seen more use in recent years than the

ISBSG R10 and R11, perhaps due to availability. The ISBSG R10 still remains the

most used overall, but saw the peak of its use in the 2011–2016 period.

Nine different studies used open datasets not belonging to the PROMISE repos-

itory. These correspond to the NasaBailey, Finnish, KotenGray, CF, Costagliola05,

Jodpimai18, OUTS, QUES, and Ziauddin12 datasets. Similarly, the Tukutuku dataset

has seen use in 5 different studies. Artificial datasets were generated and used in

4 studies (S29, S69, S70, S73): Modarate and Severe, which were generated using

arbitrary random distributions; and CoKek, DeshRand0 and DeshRand1, which were

generated using the feature distributions from the Cocomo and Kemerer, Desharnais,

80

and Desharnais datasets respectively. Regarding private datasets, four studies (S6,

S16, S49, S55) employed six different private datasets: ESA, Experience, Euroclear,

IT University, IVR, and Pai13. One study employed a dataset obtained from IT projects

of an university (S6), and one study reported used a dataset named IVR (S16). Two

studies employed private datasets which originate from the IBM company. Lastly, five

datasets of unknown origin were encountered.

The literature in SEE favors datasets from two particular repositories: PROMISE

and ISBSG. Moreover, the four most used dataset origins, PROMISE, ISBSG, Open

and Tukutuku, have publicly available datasets. While this is positive for purposes of

open data and replicability of studies, these datasets contain data from old develop-

ment projects. As shown in figure 3.10, the “most recent” datasets were introduced

in 2013. It is also possible these datasets were used in even older studies, as this

mapping contemplates only hyper-parameter tuning. Software development practices

have changed in this 8 year (at minimum) period, and it is possible that estimations

produced with these datasets may not be as accurate for newer development projects.

3.2.3 RQ3: Performance metrics of hyper-parameter tuning ap-

proaches used in machine learning SEE

We identified 41 unique evaluation metrics that have been used in SEE literature.

These have been grouped into categories, in accordance with their base metric. We

have identified 10 different base metrics: relative error, absolute error, log error,

square error, prediction error, error, correlation, accuracy, interval, and meta metric.

The metrics were classified into a taxonomy of three levels. The first level is the base

metric. The second level is used to differentiate functions that are aggregated on the

base metric. For example, one relative error metric may use the relative error, while

another may use the magnitude of the relative error. Lastly, the third level adds the

statistical function used to calculate the concrete value for a metric. For example, the

MdIBRE metric employs a base metric of relative error, an aggregate metric of inverse

balance relative error, and a statistical function of median. Table 3.10 shows the

taxonomy of the existing metrics, as well as the studies that employ them. Figure 3.11

shows the trend of usage of the base metrics through the years.

81

Table 3.10: Evaluation metrics and related SEE studies.

Level 1 Level 2 Metric N Studies

Relative

Error

Balanced

Relative Error

MBRE 13 S12, S20, S37, S41, S4, S5, S6, S8,

S15, S26, S34, S48, S50

MdBRE 3 S5, S15, S34

Estimate

Magnitude of

Relative Error

MEMRE 6 S40, S41, S64, S8, S48, S50

MdEMRE 2 S64, S50

Inverse Balanced

Relative Error

MIBRE 9 S12, S20, S37, S41, S4, S5, S15,

S26, S48

MdIBRE 3 S20, S5, S15

Magnitude of

Relative Error

MMRE 50 S40, S41, S53, S61, S64, S66, S1,

S2, S11, S14, S16, S18, S19, S21,

S22, S25, S27, S29, S32, S35, S36,

S39, S38, S42, S43, S45, S46, S47,

S48, S49, S50, S52, S56, S58, S59,

S60, S62, S63, S65, S67, S68, S69,

S71, S72, S73, S74, S76, S77, S78,

S79

PRED(L) 43 S12, S20, S30, S40, S41, S44, S53,

S55, S61, S64, S66, S1, S4, S5,

S11, S14, S17, S18, S19, S23, S25,

S27, S29, S32, S34, S35, S36, S42,

S45, S46, S47, S50, S52, S58, S59,

S60, S62, S63, S65, S67, S68, S69,

S72

MdMRE 21 S41, S44, S55, S61, S64, S1, S11,

S14, S18, S23, S29, S45, S47, S49,

S50, S52, S62, S63, S65, S69, S74

EF 4 S42, S60, S67, S71

Epsilon 1 S73

Continued on next page

82

Table 3.10: Evaluation metrics and related SEE studies. (Continued)

Rratio 1 S75

Relative Error MRE 4 S29, S58, S70, S75

RSD 2 S8, S24

VRE 1 S75

Absolute

Error

Absolute Error MAE 24 S12, S20, S33, S40, S41, S44, S51,

S3, S4, S5, S6, S8, S10, S24, S32,

S34, S35, S47, S48, S56, S57, S62,

S65, S75

SA 13 S7, S12, S20, S30, S37, S4, S5, S8,

S10, S13, S26, S46, S57

Delta 11 S12, S20, S30, S37, S4, S5, S13,

S26, S46, S47, S57

MdAE 7 S20, S40, S66, S5, S10, S24, S47

PRED 5 S39, S38, S43, S71, S74

D 1 S51

SdAE 1 S66

SumAE 1 S66

VAE 1 S75

Absolute

Percentage Error

MAPE 2 S33, S31

Log Error Log Error LSD 10 S12, S20, S37, S4, S5, S8, S10,

S24, S26, S47

Square

Error

Square Error RMSE 4 S33, S6, S16, S39

NRMS 3 S39, S58, S70

MSE 2 S33, S39

Prediction

Error

Prediction Error AIC 1 S54

MDL 1 S54

Continued on next page

83

Figure 3.11: Evaluation metrics and usage through time.

Table 3.10: Evaluation metrics and related SEE studies. (Continued)

Error Error ME 1 S3

SD 1 S24

Error Tendency Sign 1 S70

Correlation Correlation R2 5 S9, S35, S39, S38, S50

R 4 S54, S58, S63, S70

Spearman 2 S55, S56

Accuracy Accuracy Acc 1 S28

Interval Hit Rate Hit Rate 1 S10

Interval Width rWidth 1 S10

Meta

Metric

Improvement imp_ratio 5 S10, S34, S43, S52, S59

Of the 41 discovered metrics, 34 are based on the prediction error: the difference

between the predicted and actual effort values. Metrics based on relative error (RE)

were used in 68 studies, making them by far the most used type of metric. Relative

error metrics comprise metric that use the difference between predicted and actual

84

effort values divided by an adjustment factor (usually either effort value). Five aggre-

gate metrics were encountered for the base metric: magnitude of relative error (MRE)

with 61 studies; balanced relative error (BRE) with 13 studies; inverse balanced rel-

ative error (IBRE) with 9 studies; estimate magnitude of relative error (EBRE) with 6

studies, and relative error with 6 study. Of these, the most used metric was the mean

MRE (MMRE), followed by the PRED(L) metric and the median MRE (MdMRE). Rel-

ative error metrics have seen healthy use through the years on SEE tuning research,

and still are the predilection of many SEE researchers.

Metrics based on absolute error (AE, also known as absolute residual) were used

in 37 studies. Two aggregate metrics were encountered for the base metric: abso-

lute error (AE) with 36 studies and absolute percentage error (APE) with 2 studies.

Similar with RE metrics, the most used metric was the mean absolute error (MAE).

Absolute error metrics were not popular in the 2001–2012 range, but they saw a boost

in their use since 2013 and onward. Many SEE researchers have chosen to report us-

ing both relative error and absolute error metrics. Metrics based on the logarithmic

error were used in 10 studies, with the only metric being the logarithmic standard

deviation (LSD). Log error metrics were introduced in 2013, and have seen steady

use until recently. Square error metrics were used in 6 studies. One study employed

“prediction error”, a combination of training error plus a complexity factor related to

neural network models. Lastly, 3 studies employed metrics based on the “pure” error:

mean error, standard deviation of the error, and the direction or sign of the error.

Seven metrics do not use the prediction error as base, but instead rely on other

properties of the predicted and actual values. Of these, three are metrics based on

correlation coefficients, and were used in 11 studies. Accuracy metrics apply only

when the target feature was categorical, which was the case in one study. Instead

of providing a single “point” data about the effectivity of a model, interval metrics

determine a reliable interval in for the predicted values. Lastly, meta metrics refer to

a metric which is built on another metric. We encountered only one meta metric: the

improvement ratio.

In addition to reporting results in terms of evaluation metrics, SEE studies used

analysis techniques to draw conclusions from the results. We identified three broad

types of analysis techniques in the surveyed papers: descriptive analysis, statistical

tests, and ranking methods. Table 3.11 shows the existing analysis techniques in SEE

literature and the studies that employ them.

85

Table 3.11: Analysis techniques and related SEE studies.

Type Technique N Studies

Descriptive

Analysis

Descriptive

Analysis

77 S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13, S14, S15, S16, S17, S18, S19, S20,

S21, S22, S30, S33, S37, S40, S41, S44, S51,

S53, S55, S61, S64, S66, S24, S25, S26, S27,

S28, S29, S31, S32, S34, S35, S39, S38, S42,

S43, S45, S46, S47, S48, S49, S50, S52, S54,

S56, S57, S58, S59, S60, S62, S63, S65, S67,

S68, S69, S70, S71, S72, S73, S74, S75, S76,

S77, S78, S79

Statistical

Tests

Wilcoxon

sign-rank test

24 S6, S10, S13, S14, S15, S17, S21, S40, S51,

S55, S64, S25, S26, S32, S34, S35, S46, S47,

S50, S57, S58, S62, S63, S65

Friedman’s test 9 S6, S10, S19, S22, S55, S46, S47, S50, S57

Mann-Whitney U

test

5 S1, S18, S61, S66, S58

T-test 4 S55, S27, S52, S63

Effect Size 3 S6, S7, S10

Kolmogorov-

Smirnov test

3 S4, S20, S26

Correlation 2 S10, S63

Tukey test 2 S19, S22

ANOVA 1 S34

Brunner Test 1 S24

Permutation

tests

1 S56

Ranking

Method

Win-tie-loss 11 S8, S14, S15, S37, S41, S44, S24, S26, S34,

S35, S46

Scott-Knott 7 S4, S5, S7, S12, S20, S30, S41

Borda count 4 S4, S5, S12, S20

Continued on next page

86

Table 3.11: Analysis techniques and related SEE studies. (Continued)

Friedman

ranking

3 S46, S47, S57

Worse 1 S63

The descriptive analysis approach is used by all studies but two. This technique

consists of textually describing the results obtained by each studies technique, usually

aided by tables or figures that present the evaluation metrics. The descriptive analysis

also offers insights on the most successful techniques, as well as the scenarios in which

the studied techniques may or may not function adequately. This technique is mostly

employed as a complement to statistical tests and ranking methods, but there are also

studies that rely purely on descriptive analysis to draw conclusions.

The statistical tests approach is concerned on determining whether the studied

techniques have a large enough difference in performance to be considered differ-

ent. This is often performed by studies that focus on a particular approach. These

studies evaluate the main approach, as well as some previously existing techniques as

baselines. Afterwards, these statistical tests are used to confirm if the main approach

had different performance than the baselines. Studies that instead compare multiple

techniques can also employ statistical tests, but also tend to use ranking methods.

We identified 11 different statistical tests: Wilcoxon sign-rank test, Friedman’s test,

Mann-Whitney U test, t-test, effect size, Kolmogorov-Smirnov test, correlation, Tukey

test, ANOVA, Brunner test, and permutation tests.

The ranking method approach is concerned with determining a rank or ordering

of the machine learning approaches evaluated in a study. These ranking methods

are based on statistical tests, whose results are aggregated to determine either an

order relationship, equivalence groups, or a new metric altogether (primarily “win”

counts). We encountered 5 unique ranking methods. The Win-tie-loss technique was

used in 11 studies, and was the most used ranking method. Win-tie-loss compares

two different techniques or treatments by counting how many wins, ties, and losses

does a technique have across multiple iterations. The original win-tie-loss technique

employs the Friedman test to determine each case. If the test determines a significant

difference, the algorithm adds one point to the winner and subtracts one point from

the loser. Otherwise, it is counted as a tie for both sides. The Scott-Knott algorithm

was the second most used ranking method, with a total of 7 studies. Scott-Knott

uses hierarchical clustering and the analysis of variance test to group and rank tech-

87

niques in equivalence clusters. This is thus used to determine a technique or group

of techniques with the best accuracy. However, this approach can only analyze one

evaluation metrics at a time. Three other counting methods were employed: Borda

count with 4 studies, Friedman ranking with 3 studies, and worse with one study.

Similar to win-tie-loss, these counting approaches rely on determining how many

“wins” does a technique have across multiple iterations. The counting approaches

over rankings (like Scott-Knott) is that they can be used to combine the results of

different evaluation metrics.

SEE studies have favored the use of metrics that rely on the prediction error. More-

over, the majority of studies employ a metric that is a variant of relative error. Many

researchers have also favored the use of absolute error metrics as an unbiased alter-

native. Going forward, it is possible that studies start reporting both RE and AE-type

metrics. Thirty-five studies (S2, S3, S9, S11, S16, S23, S28, S29, S31, S33, S36, S38,

S39, S42, S43, S45, S48, S49, S53, S54, S59, S60, S67, S68, S69, S70, S71, S72,

S73, S74, S75, S76, S77, S78, S79) have rejected the use of statistical and ranking

analysis techniques in favor of descriptive analysis. This is a problem for the reliabil-

ity of the obtained results, as the conclusions many of these studies have reached are

not backed from a statistical standpoint.

3.2.4 Discussion

In this section, we discuss the results obtained in the mapping study and the implica-

tions of these for research of software effort estimation. Section 3.2.4.1 summarizes

some of the challenges reported by the identified studies. Section 3.2.4.2 discusses

some of the open issues and possible venues of research based on the results and

the challenges obtained in this mapping study. Section 3.2.5 concludes this literature

mapping.

3.2.4.1 Challenges

To complement the results obtained from the systematic mapping study, we discuss

the current state of research in hyper-parameter tuning in SEE. To meet this end,

we identified the challenges reported by each paper and categorize them based on

the keywording approach [62]. We identified 28 unique categories of challenges

in the literature. Table 3.12 shows the identified challenge categories as well as the

studies that employ them, and figure 3.12 shows the trend of studies that report these

88

challenges over time.

Table 3.12: Challenge categories and related SEE studies.

Category N Studies

Risks of inaccurate

estimation

26 S1, S3, S9, S10, S11, S13, S15, S17, S19, S22,

S25, S26, S27, S29, S42, S46, S47, S49, S50,

S54, S60, S63, S67, S70, S71, S72

Limitations of a technique 23 S12, S20, S40, S55, S1, S2, S4, S6, S10, S13,

S16, S17, S18, S19, S24, S31, S32, S35, S45,

S69, S75, S78, S79

Selection of parameters 21 S7, S12, S20, S33, S37, S51, S40, S61, S66, S64,

S4, S11, S13, S16, S21, S26, S35, S45, S62, S63,

S74

No free lunch 20 S12, S20, S30, S41, S61, S1, S2, S5, S9, S14,

S15, S16, S18, S22, S24, S26, S42, S52, S63,

S70

Lack of research 16 S30, S51, S44, S8, S10, S11, S13, S15, S16, S17,

S18, S34, S50, S58, S63, S74

Quality of collected data 14 S7, S4, S6, S13, S16, S18, S24, S50, S59, S62,

S69, S73, S75, S78

Prediction stability 13 S12, S20, S37, S51, S41, S61, S66, S8, S17, S18,

S24, S26, S46

Computational Cost 12 S40, S44, S53, S14, S26, S32, S34, S45, S48,

S62, S67, S69

Reporting quality of

studies

9 S51, S41, S55, S2, S24, S46, S57, S58, S63

Adoption by the industry 7 S55, S53, S66, S2, S3, S16, S19

Accuracy of effort

estimates

6 S14, S16, S22, S32, S57, S78

Cost of data collection 5 S7, S44, S53, S47, S58

Evaluation metrics 5 S55, S66, S24, S35, S73

Continued on next page

89

Table 3.12: Challenge categories and related SEE studies. (Continued)

Comparability of studies 3 S41, S55, S18

Insufficient data 3 S24, S35, S57

Lack of tuning

approaches

3 S7, S12, S41

Online scenario 3 S7, S51, S57

Complexity of effort

estimation

2 S70, S76

Generalizability of results 2 S55, S9

Interpretability of models 2 S56, S78

Lack of automation 2 S46, S47

Model obsolesence 2 S7, S57

Prediction uncertainty 2 S10, S28

Estimation through the

life cycle

1 S15

Lack of techniques 1 S16

Overcomplexity 1 S17

Risks of point estimation 1 S10

The type of challenge most reported in the surveyed studies were the potential

risks of inaccurate effort estimation, with 26 studies. These risks are related with

the over- and under-estimation of effort, which can potentially cause loss of profit.

This challenge was reported often at the beginning of a paper, as a justification of

the research and use of machine learning as a more viable alternative to traditional

SEE approaches. There are two periods in which this challenge was reported: 2008–

2013, and 2016–2019. Both periods had, on their ending year, a spike of studies

that reported this challenge. The reason that this challenge is still being reported, as

well as the reasons SEE research is still active, is perhaps because the quality of effort

estimates is not satisfactory for real-life purposes. However, this is contrasted by the

null amount of practical case studies on real life effort estimation that we identified

as part of this mapping.

The limitations of a technique challenge has been mentioned in 23 different stud-

90

Figure 3.12: Reported challenges through time.

91

ies, and was the second most mentioned challenge. As its name implies, this type of

challenge covers limitations about a specific machine learning technique. For exam-

ple, S40 describes that one drawback of the grid search technique is that the search

is always performed in the same (coarse grained) points, without taking into account

the dataset to guide the search. While it has been consistently reported through the

years, the amount of reports rose in the 2018 and 2019 years. This could perhaps

indicate that studies have shifted their focus to addressing limitations of existing es-

timation techniques.

Challenges about the complexity in the selection of parameters was reported in 21

studies. This challenge is the main concern of hyper-parameter tuning for software

effort estimation, and has been continuously reported across the years. As its name

implies, it deals with the difficulty of manually selecting parameter values for machine

learning approaches. This is often the focus of the researches studies, as they employ

hyper-parameter tuning techniques to address this challenge. Starting from 2008,

the challenge has been steadily reported over the years. This could indicate that,

despite the amount of tuning studies performed, hyper-parameter tuning remains as

a complex task that can be improved on.

The no free lunch theorem has been mentioned (although often not using this

name) in 20 studies. The theorem states that there is no best machine learning tech-

nique for all existing problems, but rather there are certain techniques that are better

for certain types of problem [11]. These studies have addressed this problem by

performing comparisons of existing machine learning approaches, although for a lim-

ited amount of datasets. This challenge is related to the generalizability of results

obtained from these studies to a real estimation scenario. This challenge has been es-

pecially reported in the 2016-2019 period. This could indicate that SEE studies could

shift from single-technique evaluates to more comprehensive ones: using more effort

estimation methods, more data, and more robust analysis.

The lack of research challenge has been reported in 16 studies. This challenge

describes that there is a need of research studies for a particular technique or knowl-

edge area, such as ensemble effort estimation (S30), evaluation of the impact of

tuning (S51), and use of kernel methods (S44). In many cases, these challenges are

reported as a justification of the research presented in the paper. Lack of research has

been especially reported in the latest years, and it is a good indicator that research on

hyper-parameter tuning for SEE has future work.

The quality of collected data challenge has been reported in 14 studies. These

92

challenge deals with the characteristics of the datasets used in SEE literature, such as

heterogeneity of the software projects (S7, S16), missing values in the dataset (S4,

S13), outliers (S4, S16, S18), and the accuracy of the recorded information (S6). The

quality of the collected data has been a concern for SEE since its initial years, but has

been a point of worry especially for the more recent studies.

The prediction stability challenge has been reported in 13 studies. This challenge

has two aspects: 1) the accuracy machine learning algorithms depends on several fac-

tors (datasets, data transformation, feature selection, hyper-parameters), and 2) pre-

vious studies have reached different results with respect to the performance of the

same machine learning approaches, arguably due to these factors. This challenge

goes in hand with selection of parameters, as hyper-parameters are one of the factors

that affect estimation, and thus stability. Initially, SEE studies focused on identified

the technique with the highest accuracy. However, this challenge has been reported

more and more by recent studies, as the research area matures and experimental

protocols become more settled, determining that stable results are important.

A total of 12 studies report on the computational cost challenge, which describes

the high dimensionality of the search space for some approaches, such as feature se-

lectors (S44, S53), machine learning algorithms (S44), hyper-parameter values (S40),

or overall amount of techniques (S14). The peak year for this challenge was 2013,

and it has been reported less since then. One possibility is that computation cost

becomes less of a worry as the computational power of researchers and practitioners

increase.

Challenges regarding reporting quality of studies, which were reported on 9 stud-

ies, explained problems with the completeness of the reported experimental protocols

in previous SEE studies. Many SEE studies let details out that difficult the replicabil-

ity of results. These details include hyper-parameter tuning ranges, pre-processing

applied to the dataset, specific metric calculations, among others. Such difficulty in

performing a replication and lack of reporting detail could potentially make a re-

searcher doubt the generalizability of the reported results. Contrary to prediction

stability, as the research area matures the perceived quality of results could go up, as

protocols and reporting procedures become more settled.

The adoption by the industry challenge has been reported in 7 studies. These

challenges reported that many projects failed in the effort estimation task and resulted

in delay or overbudget (S53, S66), as well as the preference of expert estimation over

machine learning approaches (S55). This challenge was first reported in the 2010–

93

2012 period, but it has seen a rise in the most recent years. Perhaps somewhat related

to potential risks of inaccurate estimation, SEE researchers are realizing that there is

a lack of connection with practitioners.

Seventeen challenges have been reported in six or less studies. Accuracy of effort

estimates describes that the methods in the literature are unable to provide satisfac-

tory effort estimates. Cost of data collection explains the elevated cost of collecting

project data to construct new effort estimation datasets. This challenge is related

to the quality of collected data challenge, and helps explain the perceived lack of

high quality datasets. It was especially reported in 2012 and 2013, indicating that

there may have been an effort on those years to collect more SEE data. The evalua-

tion metrics challenge describes that there is no clear consensus on which metrics to

use (S55), or describe limitations or biases of some of the metrics used in literature,

like MMRE (S66). Related to this is the challenge of comparability of studies, which

reports on the difficulty, or outright impossibility, of comparing results of previous

studies. One of the reasons for this was use of different metrics, but lack of reporting

detail also hindered comparisons. Similar to the elevated cost of data collection, the

insufficient data challenge states that the small amount of SEE datasets, as well as

the amount of projects inside them, can reduce credibility of the results obtained in

the area. Lack of tuning approaches was reported for online estimation (S7), ensem-

ble estimation (S12), and interpretable methods (S41). Online scenario relates that

existing studies do not take into account that effort estimation applied to real-life

projects is a online problem. Other challenges include complexity of effort estima-

tion, generalizability of results, interpretability of models, lack of automation, model

obsolescence, prediction uncertainty, estimation through the life cycle, lack of ma-

chine learning techniques, overcomplexity of existing approaches, and potential risks

of point estimation (in contrast with interval estimation).

3.2.4.2 Open issues

Based on the results obtained in the literature mapping, as well as the identified

challenges, we discuss some open issues in hyper-parameter tuning SEE literature:

Use of tuning vs. research of tuning There is a need to compare the existing hyper-

parameter tuning approaches. Out of the 79 covered studies, only 4 focused on the

evaluation of multiple hyper-parameter tuning approaches (tuning benchmark), and

thus evaluated models using different tuners. The most used hyper-parameter tuning

94

technique was the grid search, which is an exhaustive technique that can require

large computational resources, and requires manually determining a search space.

With the exception of genetic algorithms, other existing tuning approaches have been

used in six or less studies. Our recommendation is to empirically compare existing

hyper-parameter tuning approaches, in order to determine a set of techniques that

can effectively select the amount of hyper-parameters using less resources.

“Look before you leap” There is a particular paradox in the use of tuning for SEE,

as determined by the reported challenges. Several studies have warned about the

low amount of data of SEE datasets, as well as the low quality in said data. However,

the most used hyper-parameter tuning technique is still the most resource consum-

ing: grid search. Moreover, 12 studies reported on the higher costs of some of this

machine learning techniques, of which tuning would only exacerbate. Given such a

“simple” data and an elevated cost of tuning: is it really worth it to use grid search?

We recommend SEE researchers to first analyze the properties and complexity of the

dataset before using any tuning approach, and deciding whether to employ exhaus-

tive approaches, fast tuning, or no tuning at all.

Observations on machine learning approaches We have identified a total of 21

broad machine learning approaches in this study. The three of the four most used

approaches—regression trees, support vector regressions, and neural networks—have

also the largest amount of parameters. This result reflects the research interests of

hyper-parameter tuning studies in SEE: enhancing the accuracy of machine learning

models through appropriate hyper-parameters. However, this could also indicate that

these techniques have a better potential use in the broader areas of effort estima-

tion. One potential avenue for research are combined methods such as ensembles or

baggings, which have more hyper-parameters than single techniques.

Feature selection and tuning Recent studies in hyper-parameter tuning have not

employed feature selection approaches, even though these approaches can further

improve the accuracy of effort estimates. One possibility for lack of research in these

approaches are the size of the datasets in SEE literature, which is comprised by few

projects and even fewer features. Additionally, the more ‘complex’ machine learning

techniques like support vector machines and neural networks may not be as reliant

on the selected features as regression models. In this line, one possible solution is to

employ a hybrid approach, similarly to S53 and S66, in which hyper-parameter tun-

95

ing and feature selection is performed by the same algorithm. Another direction for

research is to compare ‘complex’ machine learning techniques and hyper-parameter

tuning using feature selection.

Tried-and-tested datasets SEE research has focused on a particular body of datasets,

mostly comprised by those that belong to the PROMISE and ISBSG repositories. The

latest inclusion of a new free dataset was in 2013, with the Miyazaki94 dataset (which

contains projects from 1994). Effort estimation has not seen a new publicly used

dataset in more than 7 years. This is understandable, do to the elevated costs of data

collection of software development projects. Ideally, one solution to this problem, as

well as aiding with the adoption of these approaches, is to perform research in the in-

dustrial context. The academy could perhaps collaborate with software development

practitioners to apply the existing approaches to real-world scenarios, improving qual-

ity of effort estimates. In exchange, researches could gain access to novel project data.

Another possible solution is to use publicly available software repository data from

sites such as github.

Recommended metrics Absolute error and relative error based metrics have seen

widespread use in SEE research. Although critics have been made against the mag-

nitude of relative error metrics [41], their use in the studies has prevailed. However,

this use has been in conjunction with absolute error metrics. Studies continue to use

relative error metrics as a means to have compatibility with previous results in SEE

literature. On the other hand, baseline metrics like standardized accuracy have not

been adopted by a considerable amount of studies, even though they allow for better

comparability of results[41]. Our recommendation for researchers it to report their

results with the standardized accuracy in conjunction with their preferred metrics.

Online estimation Results obtained in this mapping have shed some light on the

open problems in hyper-parameter tuning for effort estimation. The area faces many

challenges, such as instability of results, lack of parameter tuning approaches for

certain areas, elevated cost of data collection, problems in the adoption of the pro-

posed approaches, limited generalization of results, model obsolescence, among oth-

ers. Compared to offline estimation scenarios, online estimation has been less re-

searched. Of the 79 covered papers, only 4 research online SEE. Research in this type

of estimation could help researchers see things from a different perspective, and find

solutions or alternatives to some of these problems. For instance, online studies could

96

develop novel approaches to perform hyper-parameter tuning, alleviate or aid with

model obsolescence, provide better stability. In addition, online approaches could

be more compatible with real estimation scenarios, which would benefit adoption of

these techniques. Moreover, as mentioned previously, collaboration in the industry

could result in new project data available.

3.2.5 Conclusions of the mapping study

This systematic literature mapping study characterized the machine learning hyper-

parameter tuning approaches used in software effort estimation. The mapping study

identified 79 primary studies that utilize hyper-parameter tuning for machine learn-

ing software effort estimation.

To answer our first research question, we identified and classified hyper-parameter

tuning approaches into 12 categories. Our results showed that grid search was the

most used tuning approach, even though it is the most exhaustive and computa-

tionally costly. The majority (56 out of 79) of studies utilized tuning as a way to

bolster the accuracy of SEE models, and only 22 studies evaluated the impact of tun-

ing. We identified 21 machine learning algorithms, 5 cross-validation approaches,

10 data transformation techniques, and 10 feature selection approaches. Neural net-

works, regression trees, regression models, and support vector machines were the top

4 most used models in the surveyed studies. The most used cross-validation approach

was leave-one-out. For data transformations, the predominant technique was unit

range[0, 1]. Only 24 papers employed feature selection approaches, and the most

used approach was correlation-based feature selection.

To answer our second research question, we identified and classified the datasets

by their repository and availability. We identified 8 origins for SEE datasets. The most

common repositories in the primary studies were PROMISE with 58 papers, ISBSG

with 30 papers, and (other) open data with 24 papers. The most used PROMISE

datasets were Desharnais, Albrecht, Kemerer, and Maxwell. For ISBSG, the most used

version was ISBSG release 10. The literature in SEE favored the use of open data,

increasing the replicability of the studies.

To answer our third research question, we identified and classified the evaluation

metrics used by the primary studies by the base metric (type of error, correlation, etc)

used. We identified 10 base metrics, and determined that SEE research favored the

use of relative error and absolute error metrics. Out of 79, a total of 68 used relative

error metrics. Of these, the most used were mean magnitude of relative error (MMRE)

97

and Pred(L); even though relative error metrics are known to be biased [41]. Only

37 studies employed absolute error metrics, with the mean absolute error being the

most common. In addition to this, we identified and grouped the analysis techniques

that these studies employed to compare the SEE models based on these metrics. We

determined that almost every study (77 out of 79) utilized descriptive analysis to

draw conclusions. We identified 11 statistics tests and 5 ranking methods in SEE.

Many of the studies in SEE have reported their results using a biased metric, and

drawing conclusions that are not backed by a statistical analysis.

We identified and categorized the challenges reported by the primary studies, in

order to gain insights the state of research of hyper-parameter tuning machine learn-

ing SEE. Our analysis identified 28 categories of challenges, with the most often re-

ported being risks of inaccurate effort estimates, limitations of individual techniques,

complexity in the selection of hyper-parameters, and the no free lunch theorem (there

is no overall best SEE model). Our discussion of these topics covered some open is-

sues in the literature, including the way SEE studies have used tuning, the complexity

of the datasets versus the complexity of the tuners, the types and parameters of the

most used models, the relationship between feature selection and tuners, the current

SEE datasets, the case of the most used metrics, and the lack of research on online

estimation.

The state of hyper-parameter tuning research in SEE is currently active, as inter-

est over tuning has kept steady over the years. All of the surveyed papers employed

hyper-parameter tuning, although to varying degrees, which demonstrates that these

researchers understand the value of tuning. There is a lack of evaluation on the ef-

fectivity of hyper-parameter tuning approaches (against each other), as many studies

just employ grid search. Due to the quality of SEE dataset and the properties of the

most used datasets, different hyper-parameter tuning approaches could achieve bet-

ter or worse results. For future tuning studies, we recommend to utilize at least three

hyper-parameter tuning approaches for comparison: default hyper-parameters, grid

search, and any other non-exhaustive approach.

98

Chapter 4

ChimeraHPT: an automated machine
learning hyper-parameter tuning

framework

This chapter presents the results of an iterative development process to address the

second specific objective of this thesis: to automate a hyper-parameter tuning pro-

cedure for machine learning in the context of software effort estimation (SEE). We

built a procedure and framework, called ChimeraHPT, that supports machine learn-

ing and hyper-parameter tuning techniques used by SEE researchers, as identified in

the literature mapping presented in chapter 3. Currently ChimeraHPT supports 40

total techniques across 5 categories: 15 hyper-parameter tuners, 8 machine learning

models, 7 cross-validators, 2 data transformations, and 8 feature selectors.

ChimeraHPT is a procedure and framework mainly built on the scikit-learn1 li-

brary for the Python programming language, focusing on the task of tuning and eval-

uating prediction models. ChimeraHPT borrows hyper-parameter tuning technique

implementations from 8 additional machine learning libraries and repositories (see

table 4.4), adapting them to the scikit-learn interface. We implement data analy-

sis and statistical testing procedures for the analysis of the evaluation metrics of the

constructed SEE models using the R programming language.

The ChimeraHPT procedure supports three tasks, as shown in figure 4.1: (1) pre-

processing, (2) model training and evaluation, and (3) statistical analysis. Figure 4.2

shows the supported activities for each task, as well as the structure and process flow

of the framework. The data pre-processing task comprises a preliminary analysis of a

1https://scikit-learn.org

https://scikit-learn.org

99

Figure 4.1: Tasks of the ChimeraHTP procedure.

dataset and its characteristics, as well as its adaptation to serve as input data for a ma-

chine learning model (Section 4.1). The model training and evaluation task involves

training machine learning algorithms, their combinations with hyper-parameter tun-

ing approaches (plus cross-validators, data transformations, and feature selectors),

and evaluation of their predictive performance (Section 4.2). The statistical analysis

task uses metrics collected from the previous task to draw conclusions and determine

the most effective techniques for the studied data (Section 4.3). ChimeraHPT fo-

cuses on automation of model training and evaluation, and provides support of the

data pre-processing and statistical analysis tasks to help researchers and practitioners

in SEE to help the models learn from their data, and to determine which models are

better for predicting effort for their data. The contents of this chapter are summarized

on section 4.4.

4.1 Pre-processing

The pre-procesing task analyzes a particular dataset and adapts it to be used as in-

put data for the machine learning process. Many software effort estimation datasets

contain problems such as missing data, outlier instances, redundant or unrelated

features, and class imbalance (among others). In such cases, the ChimeraHPT frame-

work selects and transforms the data to eliminate these problems and improve the

model predictive performance. The framework supports three pre-processing activi-

ties, as shown on the first part of figure 4.2.

100

Figure 4.2: Tasks and activities of the ChimeraHTP procedure.

101

Select projects The select project activity consists of choosing a subset of all the

instances (rows) of the original dataset to be used in the final project data. The

selection process is done by defining selection criteria, which consists of features

and a series of values. For example, if a researcher wants to only use projects with

IFPUG 4+ type function points, they would define the criteria: “function point
type == IFPUG 4+.” If the focus is on large development projects, the criteria

“functional size ≥ 250” can be used. The subset of projects that meets all

criteria is selected and used in the next activity.

Select features The select features activity consist of choosing a subset of all the

features (columns) of the selected projects. Similarly to select projects, this activity is

done by defining selection criteria. These criteria include manually determining the

subset of features to use, excluding a type of feature (numerical or categorical), de-

termining a threshold for missing values (i.e. all features with less than 25% missing

values), and excluding low variance or one-value features. The subset of features that

meets all criteria is selected and used in the next activity.

Hold-out split The hold-out split activity is optional and involves selecting (usually

randomly) a portion of the data for use on the statistical analysis task. As explained

in chapter 2, machine learning models can encounter two problems: overfitting and

data mismatch. To overcome these problems, it is necessary to perform two validation

approaches. ChimeraHPT is designed to perform the validation for overfitting in the

second task (Section 4.2), and the validation for data mismatch on the third task

(Section 4.3). The hold-out split activity takes a subset of the selected data (referred

to as New data) to be used in the validation for data mismatch. The remainder data

(referred to as Historical data) is used as the input data for the model training and

evaluation activity. The percentage of data to be held out, as well as the selection

mechanism (randomly or newest data) can be configured.

The data pre-procesing task is manual, and requires constant human intervention

to accurately determine the best criteria that maximizes prediction accuracy. More-

over, it is an iterative process, as a framework user can come back to this task if their

models do not describe the data correctly. Because of these reasons, ChimeraHPT

does not automate this task. We implemented Python scripts to perform this task

for our controlled experiments, which include selection criteria for both projects and

features, as well as code for the hold-out split activity.

102

4.2 Model training and evaluation

The model training and evaluation task assesses machine learning techniques applied

to an estimation task. This evaluation is an iterative process; the same procedure is

used to evaluate different techniques, on several datasets. As such, the evaluation

task is comprised by an evaluation loop, which covers the assembling, training, and

evaluation of a single model on a single dataset partition; repeated for each dataset

and partition. Such model is built from a learning scheme, a combination of: data

transformation, feature selection, machine learning algorithm, and hyper-parameter

tuner. The combination of this learning scheme, dataset and cross-validation method

is called the evaluation scheme. Parallel to this, the framework configuration compo-

nent allows the modification of the techniques evaluated in this loop. The framework

is configured using a set of text files, which contain the techniques and their pa-

rameters. The techniques specified in these files are combined to create all evaluation

schemes. As shown on the second part of figure 4.2, the ChimeraHPT framework sup-

ports a framework configuration component (left) and implements the main evalua-

tion loop (right). Section 4.2.1 covers the framework configuration, and section 4.2.2

covers the evaluation loop.

4.2.1 Framework configuration

The ChimeraHPT framework allows configuration of the techniques, datasets, and

metrics that are used in the evaluation loop. This configuration is done through a

series of 7 files: framework (FW), dataset (DS), data transformation (DT), attribute

selection (AS), learning algorithm (LA), parameter tuning (PT), and evaluation met-

ric (EM). These files must be placed on the config directory. Listing 4.1 shows the

syntax for the FW file, and table 4.1 lists the supported parameters and values.

FW – Framework This file deals with the main configurations related to the evalua-

tion loop. This includes the cross-validation approach to be used and its parameters.

For example, the user can select k-fold cross-validation and specify the parameter k

with a value of 10. The framework file requires the specification of a baseline model,

which is used in the calculation of baseline metrics. Lastly, the target metrics for

multi-objective tuning are specified in this file. The following is an example of the

FW file:

103

Table 4.1: Categories, techniques, parameters and possible values for the FW file.

Cat. Technique Parameter Type Description Ex.

CV traintestsplit train_size float The percentage of projects that are assigned to the
training set

0.3

repeatedtraintest n_splits int Amount of random partitions to generate 10
train_size float The percentage of projects that are assigned to the

training set
0.3

kfold n_splits int Parameter k, the amount of folds to partition the
data into

5

repeatedkfold n_splits int Parameter k, the amount of folds to partition the
data into

3

n_repeats int Amount of times the splitting is repeated 20
leaveoneout - - - -
bootstrap n_bootstraps int Amount of partitions to generate 100
loader group int If specified, use the index files with that numeral

ending
1, 2, 3

offset int Amount of iterations to skip 5

Baseline None - - - -
marp0 - - - -
mdarp0 - - - -
median - - - -
marp0loo - - - -

Multiobj - metrics str Name of the metrics to calculate multi-objective
metrics

MAR, MMRE

reference float Reference point (usually minimum) for each metric 0, 0

Listing 4.1: Syntax for the FW file.

Category : Technique

−parameter , type : value

DS – dataset This file specifies which datasets are used in the evaluation loop. The

name of each dataset and its target feature must be specified in this configuration. The

dataset must have the exact name and be stored in the data directory. In addition,

small pre-processings can be specified in the file, such as which features to exclude,

which rows to drop, or which symbol refers to missing values. At least one dataset

must be specified. Listing 4.2 shows the syntax for the DS file, and table 4.2 lists the

supported parameters and values.

Listing 4.2: Syntax for the DS file.

da ta se t . csv :

−parameter1 : value

−parameter2 : value1 , value2 , value3 , . . .

104

Table 4.2: Parameters and possible values for the DS file.

Parameter Description Possible values Example

predict Name of the target feature Numerical feature name effort
exclude Name of features to re-

move from the dataset
Feature names, separated
by comma

id, loc

drop Index of rows to remove
from the dataset

Row indexes, separated by
comma

41, 47, 58

delimiter Delimiter character of csv
file

String, surrounded by
double quotes

","

na_values String that represents
missing values in file

String, surrounded by
double quotes

"NA"

as_dummies Apply dummy encoding to
categorical features

True or False True

quotechar Delimiter character for
strings

String, surrounded by
double quotes

"’"

Table 4.3: Parameters and possible values for the DT file.

Technique Parameter Type Description Example

None - - - -
Log - - - -
Norm - - - -

DT – data transformation This file specifies which data transformation techniques

are used to assemble the model. If the technique allows for hyper-parameters, those

can be specified either as single set values, or as a list of values for tuning. Currently,

only one data transformation can be used per model, and they cannot be combined. If

the file is left blank, no data transformation is assumed. Listing 4.3 shows the syntax

for the DT file, and table 4.3 lists the supported parameters and values.

Listing 4.3: Syntax for the DT file.

technique :

−parameter1 , type : value

−parameter2 , type : value1 , value2 , value3 , . . .

−parameter3 , type : [i n i t i a l , f i n a l , i n c r ea se]

−parameter4 , type : [i n i t i a l , f i n a l , increase , formula]

−parameter5 , type : [range1] ; [range2] ; value1 , value2

105

AS – feature selection This file specifies which feature selection techniques are

used to assemble the model. If the technique allows for hyper-parameters, those can

be specified either as single set values, or as a list of values for tuning. If the file is

left blank, no feature selection is assumed. Listing 4.4 shows the syntax for the AS

file. Table B.1 on appendix B lists the supported techniques, parameters and values.

Listing 4.4: Syntax for the AS file.

technique :

−parameter1 , type : value

−parameter2 , type : value1 , value2 , value3 , . . .

−parameter3 , type : [i n i t i a l , f i n a l , i n c r ea se]

−parameter4 , type : [i n i t i a l , f i n a l , increase , formula]

−parameter5 , type : [range1] ; [range2] ; value1 , value2

LA – learning algorithm This file specifies which machine learning techniques are

used to assemble the model. If the technique allows for hyper-parameters, those

can be specified either as single set values, or as a list of values for tuning. In ad-

dition, lists of values can be specified as specific sequences, incremental sequences,

or a combination of these. At least one machine learning technique must be speci-

fied. Listing 4.5 shows the syntax for the LA file. Table B.2 on appendix B lists the

supported techniques, parameters and values.

Listing 4.5: Syntax for the LA file.

technique :

−parameter1 , type : value

−parameter2 , type : value1 , value2 , value3 , . . .

−parameter3 , type : [i n i t i a l , f i n a l , i n c r ea se]

−parameter4 , type : [i n i t i a l , f i n a l , increase , formula]

−parameter5 , type : [range1] ; [range2] ; value1 , value2

PT – parameter tuning This file specifies which hyper-parameter tuning approaches

are used to find optimal parameter values for the estimation model. If the approach

allows for hyper-parameters, those can be specified either as single set values. Univer-

sal configurations include the amount of cross-validation iterations, scoring technique

(single- or multi-objective), and amount of parallel jobs. If the file is left blank, de-

fault hyper-parameters are used, except if a single value is specified in the LA file.

106

Listing 4.6 shows the syntax for the PT file. Table B.3 on appendix B lists the sup-

ported techniques, parameters and values.

Listing 4.6: Syntax for the PT file.

technique :

−parameter , type : value

EM – evaluation metrics This file specifies which metrics are calculated and saved

based on the predicted values of each model. At least one metric must be specified.

The list of supported evaluation metrics is found on section 4.2.3, in table 4.10.

4.2.2 Evaluation loop

The framework implements an evaluation loop to assemble, train, and evaluate ma-

chine learning models. The evaluation loop is comprised by the following 5 activities:

1) Split, 2) Assemble, 3) Tune, 4) Train, and 5) Evaluate. The techniques, configura-

tions and hyper-parameters specified in the framework configuration (section 4.2.1)

are loaded and used in the evaluation loop.

4.2.2.1 Split

The first activity is to partition the dataset(s) into training and testing data. This is

done in two steps: 1) dataset loading, and 2) dataset partitioning. The result of this

activity is a pair of training and testing sets, which are used in the following activi-

ties. If more than one dataset is used, or if the cross-validation approach generates

more than one partition, then more than one training-testing pair is generated. The

remaining activities of the evaluation loop are then performed with each generated

training-testing pair.

Dataset loading The first step of the split activity is to load the dataset from the

data repository of the framework. If pre-processing was specified in the DS file (see

section 4.2.1), the specified transformations are applied in this step. If more than one

dataset was included in the DS file, the dataset partitioning is individually done for

each.

107

Dataset partitioning The second step from the split activity is to partition the

dataset into one or more training-testing set pairs. This activity employs the cross-

validation approach that was specified in the FW settings file. The result of this

process is one or more pairs of train-test sets, depending on the selected cross-

validation. For example, train-test split performs only one split, while leave-one-out

cross-validation performs n splits, where n is the amount of projects (rows) in the

dataset.

4.2.2.2 Assemble

The second activity is to assemble the machine learning model. As stated previously,

the model is built from a learning scheme, the combination of: data transformation,

feature selection, machine learning algorithm, and hyper-parameter tuner. The result

of this activity is an untrained machine learning model. The techniques that comprise

the learning scheme are loaded from their respective files: DT, AS, LA, and PT. Be-

cause more than one technique can be specified in each file, more than one model can

be generated. Currently, ChimeraHPT generates one model for each possible combi-

nation of techniques. For example, if 3 DTs, 2 AS, 4 MLA and 2 PT are specified,

then the framework generates 3 × 2 × 4 × 2 = 48 models. If more than one model is

generated, then the remaining activities are repeated for each model.

The model is comprised by one of each type of the following techniques: data

transformation, feature selection, and machine learning algorithm. The hyper-parameter

tuning approach is logically considered part of the learning scheme, but in implemen-

tation the tuner works over this model instead of being part of it. Moreover, once the

optimal parameters are found in the tune activity, the tuning approach is not used in

the train and evaluate activities.

As part of the model assembly, a pre-processing component is added to the model.

This component “overrides” the data transformation technique. This pre-processing

is comprised by: 1) type selection, 2) missing-value imputation, and 3) data transfor-

mation. Type selection divides the input data by numerical and categorical features,

so that different pre-processing is applied to each. Missing value imputation over-

writes missing values using information derived from the available data. For numer-

ical features, K-nearest neighbor imputation is used; and for categorical features, a

new category (missing) is used. This is done because many of the scikit-learn meth-

ods are not implemented to handle missing values. Lastly, the data transformation

step applies the data transformation approach from the current learning scheme to

108

the numerical features. The categorical features are instead converted using one-hot

encoding, but no data transformation is applied to them. Thus, the final dataset is

comprised only by numerical features. Similar to missing values, many methods of

the scikit-learn only work on numerical features.

4.2.2.3 Tune

The third activity is to tune the model hyper-parameters. This is done in two steps: 1)

determine the search space, and 2) tuning. The result of this step is a tuned model.

Determine the search space Before tuning is performed, the framework deter-

mines the search space of each technique: data transformation, feature selection, and

machine learning model. This is done by identifying the hyper-parameters from their

respective configuration file that have more than one specified value. The hyper-

parameters with only one possible value are fixed, and don’t form part of the tuning

process. The search spaces of each technique are combined into a joint search space.

This way, the hyper-parameter tuner finds optimal values for the three techniques at

the same time.

Tuning After the search space is determined, the hyper-parameter tuning approach

then uses the model and search space to find optimal hyper-parameter values. As

shown in figure 4.3, tuning typically consists of (1) determining the next point of

exploration based on information of the search space, and (2) training and evalu-

ating the model using the selected parameters on the current training set. Because

this process requires training and evaluating a model for each exploration point, the

tuning approach employs a cross-validation approach to split the training set into the

sub-training and validation sets. The model is trained using the selected parameters

on the sub-training set, and it is used to predict the values for the validation set. The

target metrics are then calculated from the predicted and actual values. The best

exploration point in the searched space is selected, and the hyper-parameters of this

point are used in the train activity. Note that the hyper-parameters are optimized for

the training set, and the performance may be different in the evaluation activity.

Hyper-parameter tuners in ChimeraHPT can be configured to optimize a single

metric, or to perform multi-objective optimization. The advantage of utilizing multi-

objective optimization is that the framework searches for hyper-parameters that po-

tentially achieve good results in multiple metrics, resulting in an overall more compre-

109

Figure 4.3: Hyper-parameter tuning in ChimeraHPT.

hensive model. Moreover, multi-objective optimization provides solutions that offer

trade-offs between two or more metrics, and the final decision on which model to

employ can. This is done through the PT file (see section 4.2.1). The cross-validation,

target metrics, and multi-objective optimization can be configured in these settings

as well.

The results of the hyper-parameter optimization are recorded. Each of the ex-

plored hyper-parameters as well as their metrics are stored in a hyper-parameter

tuning results file.

4.2.2.4 Train

The fourth activity is to train the tuned model. After optimal hyper-parameter values

are found, the model is trained one last time using these hyper-parameters, and using

as input the complete training set. This activity results on the final estimation model,

which is used in the evaluate activity.

4.2.2.5 Evaluate

The fifth activity is to evaluate the estimation model. This is accomplished by having

the model predict the values of the testing set (without access to the correct values).

The evaluation metrics are then calculated from the predicted and actual values. The

110

Table 4.4: Libraries used in for the construction of ChimeraHPT.

Library URL Purpose

scikit-learn https:
//scikit-learn.org/stable/

Base library of the framework.

OIL https://github.com/arennax/
effort_oil_2019

Hyper-parameter tuning techniques.

Dodge https:
//github.com/amritbhanu/Dodge

Hyper-parameter tuning techniques.

genetic
algorithm

https://pypi.org/project/
geneticalgorithm/

Hyper-parameter tuning techniques.

Solid https://100.github.io/Solid/ Hyper-parameter tuning techniques.
hyperband https://github.com/zygmuntz/

hyperband
Hyper-parameter tuning techniques.

Nevergrad https://github.com/
FacebookResearch/Nevergrad

Hyper-parameter tuning techniques.

BorutaPy https://github.com/
scikit-learn-contrib/boruta_
py

Feature selection techniques.

Intrinsic
Dimension

https://github.com/XueqiYang/
intrinsic_dimension

Intrinsic dimensionality calculator for
datasets.

specific evaluation metrics can be configured in the EM file (see section 4.2.1). These

metrics are recorded in a results file, along with the techniques that comprise the

current evaluation scheme: the learning scheme, the dataset, the cross-validation

approach, and the selected hyper-parameters. In the case of multi-objective opti-

mization each viable solution (i.e. every point in the pareto front) is recorded in a

separate file, and the main file reports the average values for each metric.

4.2.3 Machine learning techniques

The ChimeraHPT framework combines different libraries to provide a wide selec-

tion of machine learning techniques from the SEE literature. Table 4.4 shows the

repositories from which the framework includes, extends, or adapts techniques. The

following subsections cover the list of available techniques per type. New techniques

can be included in the framework by altering the corresponding “database” file. The

explanation of the implemented techniques is available in chapter 2.

4.2.3.1 Machine learning algorithms

Table 4.5 shows the supported machine learning algorithms, their libraries, and im-

portant hyper-parameters. Additional regression algorithms can be included, and we

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://github.com/arennax/effort_oil_2019
https://github.com/arennax/effort_oil_2019
https://github.com/amritbhanu/Dodge
https://github.com/amritbhanu/Dodge
https://pypi.org/project/geneticalgorithm/
https://pypi.org/project/geneticalgorithm/
https://100.github.io/Solid/
https://github.com/zygmuntz/hyperband
https://github.com/zygmuntz/hyperband
https://github.com/FacebookResearch/Nevergrad
https://github.com/FacebookResearch/Nevergrad
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/XueqiYang/intrinsic_dimension
https://github.com/XueqiYang/intrinsic_dimension

111

Table 4.5: Machine learning algorithms supported in ChimeraHPT.

Technique Library Main hyper-parameters

K-Nearest Neighbors scikit-learn n_neighbors, weights, p
Multi-Layer Perceptron scikit-learn n_layers, n_hidden, activation, solver, batch_size,

learning_rate, max_iter, alpha
Linear Regression scikit-learn fit_intercept, normalize
Ridge Regression scikit-learn fit_intercept, normalize, alpha, solver, max_iter
Support Vector Regression scikit-learn kernel, degree, gamma, C, epsilon
CART scikit-learn max_depth, min_samples_split, min_samples_leaf,

max_features, min_impurity_decrease
Bagging scikit-learn n_estimators, max_samples, max_features, bootstrap
Mean scikit-learn -

only provided a base selection. Each technique supports hyper-parametrization as

described in the scikit-learn documentation.

4.2.3.2 Hyper-parameter tuning

Table 4.6 shows the supported hyper-parameter tuners, their libraries, and impor-

tant configurations. In addition to the supported parameters, each technique sup-

ports 3 universal parameters: scoring (target metric to optimize, more than one

for multi-objective optimization), cv (number of k-fold cross-validation folds), and

n_jobs (number of threads to use).

4.2.3.3 Cross-validation

Table 4.7 shows the supported cross-validation approaches, their libraries, and im-

portant parameters.

The Loader method is an utility cross-validation that loads pre-fabricated cross-

validation partitions. This permits to run the same CV approach and partitions in

different computers.

4.2.3.4 Data transformation

We adapted data transformations from the numpy library to be compatible with the

scikit-learn pipeline. Thus, any numerical function that supports numpy notation can

be used as a data transformation. Table 4.8 shows the supported data transforma-

tions, their libraries, and important parameters.

112

Table 4.6: Hyper-parameter tuners supported in ChimeraHPT.

Technique Library Main hyper-parameters

Default ChimeraHPT -
Grid Search scikit-learn -
Random Search scikit-learn n_iter
Random Range Search ChimeraHPT n_iter
Differential Evolution OIL mutation_rate, crossover_rate,

population_size,iterations
Flash OIL budget, population_size, initial_size
Dodge Dodge epsilon, initial_size, population_size
Genetic Algorithm genetic algorithm max_num_iteration, population_size,

mutation_probability, elit_ratio,
crossover_probability, parents_portion,

crossover_type, max_iteration_without_improv
Compact Genetic Algorithm Nevergrad budget
1+1 Genetic Algorithm Nevergrad budget
Particle Swarm Optimization Nevergrad budget, popsize
Bayesian Optimization Nevergrad budget
Tabu Search Solid tabu_size, max_steps, neighborhood_size
Harmony Search Solid memory_size, memory_considering_rate,

pitch_adjustment_rate, fret_width, max_steps
Hyperband hyperband budget, eta

Table 4.7: Cross-validation approaches supported in ChimeraHPT.

Technique Library Main hyper-parameters

Train Test Split scikit-learn train_size
Repeated Train Test Split scikit-learn train_size, n_splits
K Fold scikit-learn n_splits
Repeated K Fold scikit-learn n_splits, n_repeats
Leave One Out scikit-learn -
Bootstrap ChimeraHPT n_bootstraps
Loader ChimeraHPT group, offset

Table 4.8: Data transformations supported in ChimeraHPT.

Technique Library Main hyper-parameters

None scikit-learn -
Logarithm scikit-learn -
Standardization scikit-learn -

113

Table 4.9: Feature selectors supported in ChimeraHPT.

Technique Library Type Main hyper-parameters

None scikit-learn -
Variance Threshold scikit-learn Filter threshold
Correlation Percentile scikit-learn Filter percentile
K Best scikit-learn Filter score_func, k
False Positive Rate scikit-learn Filter score_func, alpha
False Discovery Rate scikit-learn Filter score_func, alpha
Family-Wise Error Rate scikit-learn Filter score_func, alpha
Recursive Feature Elimination scikit-learn Wrapper n_features_to_select, step
Random Forest BorutaPY Filter n_estimators

4.2.3.5 Feature selection

Table 4.9 shows the supported feature selectors, their libraries, its type between filter

and wrapper, and important parameters.

4.2.3.6 Evaluation Metrics

Table 4.10 shows the supported evaluation metrics, a brief explanation and formulas.

In the presented formulas, y are the real effort values, ŷ are the effort values estimated

by the model, and n is the amount of estimations (and real values). For hypervolume,

m is the amount of specified metrics in the FW file, metrici is the i-th specified metric,

and referencei is the i-th reference point.

4.2.3.7 Baselines

Table 4.11 shows the supported set of baseline estimators for the calculation of base-

line techniques: standardized accuracy and ∆.

4.3 Statistical analysis

The statistical analysis task covers the analysis and verification of the evaluation met-

rics obtained as part of the model training and evaluation task. The objective of this

task is to draw conclusions on the effectiveness of the evaluated techniques relative

to the studied datasets. We identified two statistical analysis activities, as shown on

the third part of figure 4.2: model evaluation, and model verification.

114

Table 4.10: Evaluation metrics supported in ChimeraHPT.

Metric Description Formula

MMRE Mean error as a percentage of original effort (1/n)
∑n

i=1 |yi − ŷi|/yi
MMRE Median error as a percentage of original effort median(|yi − ŷi|/yi, i = 1, ..., n)

Pred(L) Percentage of predictions with relative error
below a user-defined threshold, L

count(|yi − ŷi|/yi ≤ L, i = 1, ..., n)

MAR/MAE Mean absolute error (1/n)
∑n

i=1 |yi − ŷi|
MdAR/MdAE Median absolute error median(|yi − ŷi|, i = 1, ..., n)

SdAR/SdAE Standard deviation of the absolute error sd(|yi − ŷi|, i = 1, ..., n)

SA Standardized accuracy, percentage of im-
provement over a baseline estimator p0

1−MAR/MARp0

∆ Effect size of SA, how large is the difference
between the estimator and baseline p0

(MAR−MARp0)/SdARp0

MBRE Mean error as a percentage of the minimum
between original effort and predicted effort

(1/n)
∑n

i=1 |yi − ŷi|/min(yi, ŷi)

MIBRE Mean error as a percentage of the maximum
between original effort and predicted effort

(1/n)
∑n

i=1 |yi − ŷi|/max(yi, ŷi)

SCC Spearman’s correlation coefficient between
actual and predicted values

covariance(y, ŷ)/(sd(y) · sd(ŷ))

Hypervolume Hyper-volume of the m metrics specified in
the FW file

∏m
i=1 metrici(y, ŷ)− referencei

Table 4.11: Baseline estimators supported in ChimeraHPT.

Name Reference Description

MARp0 [43] Estimates effort as a random guess of the values in the testing set, re-
peated 1000 times. After this, calculate the mean absolute error of the
estimates.

MdARp0 [12] Estimates effort as a random guess of the values in the testing set, re-
peated 1000 times. After this, calculate the median absolute error of the
estimates.

Median - Estimates effort as the median of the dataset. After this, calculate the
mean absolute error of the estimates.

MARp0LOO [43] Estimates effort as a random guess of the values in the training and
testing set, repeated 1000 times. After this, calculate the mean absolute
error of the estimates. Use only for leave-one-out cross-validation.

115

4.3.1 Model evaluation

The model evaluation activity consists of employing statistical analysis to draw con-

clusions from the metrics collected for each of the models. This includes descriptive

statistics to describe the distribution of metrics, statistical inference to determine rela-

tionships (such as equality) between the studied techniques, and plotting to visualize

such distributions or relationships.

The model evaluation activity is manual, as the analysis highly depends on the

studied datasets, the particular questions of the user, the techniques used, the se-

lected metrics, and the depth of the analysis. Because of these reasons, ChimeraHPT

does not automate this task. We implemented R scripts to perform this task for our

controlled experiments. These scripts analyze the obtained results using plotting,

statistical tests, and ranking methods.

We recommend the following procedures when analyzing hyper-parameter tuning

approaches, which were obtained from the experience of conducting the experiments:

• Plotting the distribution of metric to check they lie in the expected range. For

example, checking that SA is between 0 and 1 and MAR is greater than 0.

• Box-plotting or describing the main statistics of each metric (median, quantiles,

inter-quantile range) for each model.

• Calculating metric improvement with respect to default hyper-parameters for

each studied tuning approach and model, and checking that the difference is

positive.

• Performing a statistical test (Wilcoxon signed-rank test) to determine whether

tuning improves accuracy (SA, MAR) with respect to default parameters.

• Use Scott-Knott analysis to rank each of the studied models per dataset. Deter-

mine which models predict more accurately.

• Use Scott-Knott analysis on the normalized rankings of the previous analysis to

give an overall score to the studied models.

• Use the win-tie-loss algorithm based on a statistical test (Wilcoxon signed-rank

test) to compare two types of model and determine which scenarios are better.

For example, comparing single- vs. multi-objective optimization.

116

4.3.2 Model verification

The model verification activity consists of reviewing that the metrics obtained in the

model training and evaluation task are accurate, and not affected by problems such

as data mismatch and overfitting. This is accomplished by evaluating the New data

set that was reserved on the data pre-processing task.

This activity is currently supported as part of the model training and evaluation.

This is accomplished by using a the loader cross-validation approach, which uses the

Historical data as training and the New data as testing. For this task, we employed

the Kolmogorov-Smirnov test as a goodness-of-fit test between the obtained evalua-

tion metrics from the model training and evaluation activity, and the accuracy metric

obtained from this activity.

4.4 Summary

We proposed the ChimeraHPT framework as an automated hyper-parameter tuning

machine learning evaluation procedure. ChimeraHPT allows for construction and

evaluation of SEE models, but can be extended to other domains. The framework

supports three main tasks, with varying degrees of automation: data pre-processing,

model training and evaluation, and statistical analysis. The framework can be config-

ured with respect to: the machine learning techniques, the metrics to use, the ranges

of hyper-parameters to tune, among others.

Considerations for extensions of this framework include some of the following:

• Further automation of the data pre-processing and statistical analysis tasks.

• Customization of the learning scheme. For example, building models that in-

clude multiple data transformations or feature selectors.

• Addition of clustering algorithms, allowing models to be trained according to

different categories. For example, having different models to estimate different

functional size categories.

• Support for ensemble models and customization of their inner techniques.

• Adding statistical analysis during the evaluation loop, giving constant feedback

about the results during the execution.

117

• Estimating the duration or complexity of an execution based on the hyper-

parameter search space, total techniques to analyze, dataset and cross-validation

approach.

• Providing support for hyper-parameter tuning of hyper-parameter tuning ap-

proaches.

118

Chapter 5

Evaluation of the effectiveness of the
automated hyper-parameter tuning

procedure: a series of quasi
experiments

This chapter presents the results of a series of quasi experiments to address the third

specific objective of this thesis: to evaluate the effectiveness of the automated hyper-

parameter tuning procedure for machine learning in the context of software effort

estimation (SEE).

In total, five quasi experiments were carried on as part of this research. The

quasi experiments were designed and executed based on the guidelines by Wohlin et

al. [64]. This chapter presents the quasi experiments as a collection of conference

papers, of which the candidate was the first author and main contributor. Table 5.1

shows the five quasi experiments, their reference, the related section of this chapter,

the appendix which contains the full text publication, the motivation behind the study,

and its additions (in terms of experimental design) with respect to the previous quasi

experiment.

The following sections summarize the design and findings of each of the quasi ex-

periments. The respective publications are available as appendixes to the thesis doc-

ument. Section 5.1 contains an evaluation of the grid and random search techniques.

The study in section 5.2 aggregates to the previous evaluation the dodge tuner and

the classification and regression trees model. Section 5.3 relates the evaluation of

additional nature-based hyper-parameter tuners, including genetic algorithms. Sec-

119

Table 5.1: Quasi experiments of the third specific objective.

Title Ref. Sec. Apx. Motivation Additions

Evaluation of Grid and
Random Search for
Support Vector
Regression

[127] 5.1 D To evaluate the impact of
hyper-parameter tuning applied to
support vector regression for SEE,
and to compare the performance
of grid search against random
search.

Dataset: 4 sub-sets of the
ISBSG R18. Data

transformation: Log. Feature
selection: variance threshold,

correlation percentile. Learning
algorithms: SVR, ridge.

Parameter tuning: grid search,
random search.

Hyper-Parameter
Tuning of Classification
and Regression Trees
for Software Effort
Estimation

[128] 5.2 E To evaluate the impact of
hyper-parameter tuning applied to
classification and regression trees
for SEE, to compare the
performance of dodge against grid
and random search, and to
determine which of the studied
models is better for SEE.

Learning algorithms: CART.
Parameter tuning: Dodge.

Hyper-parameter
Tuning using Genetic
Algorithms for Software
Effort Estimation

[129] 5.3 F To evaluate the impact of genetic
and bio-inspired algorithms for
hyper-parameter tuning with
respect to grid and random
search.

Parameter tuning: genetic
algorithm, compact GA, 1+1

GA, harmony search, tabu
search.

Multi-objective
Hyper-parameter
Tuning for Software
Effort Estimation

[130] 5.4 G To evaluate the impact of
multi-objective optimization for
hyper-parameter tuning with
respect to single-objective
optimization, and to determine
which of the studied models is
better for SEE.

Parameter tuning: flash,
differential evolution, particle
swarm optimization, Bayesian

optimization, hyperband. A
multi-objective variant for each

tuner.

Comparative study of
Random Search
Hyper-Parameter
Tuning for Software
Effort Estimation

[131] 5.5 H To compare the impact of
state-of-the-art tuners in SEE
against random search in ISBSG
and PROMISE datasets.

Dataset: albrecht, china,
desharnais, finnish, isbsg10,

kemerer, kitchenham, maxwell,
miyazaki94.

tion 5.4 presents the evaluation of hyper-parameter tuners adapted for multi-objective

optimization, targeting both accuracy and stability. Section 5.5 presents a compre-

hensive evaluation of state-of-the-art hyper-parameter tuners against random search.

Section 5.6 summarizes the results of all quasi experiments and draws trends and

patterns from these findings.

5.1 Quasi experiment 1: Evaluation of grid and ran-

dom search for support vector regression

5.1.1 Study summary

The first quasi experiment [127] investigates the random search hyper-parameter

tuning algorithm applied to software effort estimation, particularly in its ability to

120

improve the accuracy and stability of support vector regression and ridge regression

models. Random search is compared to the exhaustive, more expensive, and widely

used grid search algorithm. To perform this evaluation, the ISBSG R18 dataset was

used to train and evaluate the models. For data transformations, we compared those

models built using no transformation against the log transformation. We also used

two feature selectors, one based on selection by correlation, and the other based

on selection by variance. The models were evaluated on two metrics: standardized

accuracy as a measure for accuracy, and the standard deviation of the absolute error

as a measure of stability. We employed the Scott-Knott [132] procedure to produce a

ranking of these models for each dataset.

Directions for future work were highlighted in the study. The first one was the ex-

tension of this quasi experiment to include additional machine learning algorithms,

such as CART, and additional hyper-parameter tuners, such as Dodge, genetic algo-

rithms, and other search methods. The second one was to replicate the study on other

SEE datasets, such as PROMISE datasets. The third line for future work was the ex-

tension of this study to cover other types of data transformation and feature selection

approaches. Lastly, the fourth proposal was to further research the properties of the

ISBSG R18 dataset.

5.1.2 Main results

This quasi experiment confirmed previous findings in SEE literature with respect to

the effect of hyper-parameter tuning on effort estimation models. Hyper-parameter

tuning improves both the accuracy and stability of SVR models. Our results were

also in line with previous accuracy values reported in SEE literature using tuning,

confirming that our techniques are on the same level as the state of the art.

Across the evaluated datasets, random search was able to increase the standard-

ized accuracy of the SVR model with log transformation to up to 0.227. This indicates

that tuning made the model 22.7% more accurate with respect to randomly guessing

effort values. Random search also was able to improve the model stability, bringing

it to a minimum ratio of 0.84. This can be interpreted as having 16% less standard

deviation of the prediction error than default hyper-parameters.

In addition, our results showed that the random search technique was able to

obtain results that are similar to grid search tuned models. In all cases, the Scott-

Knott algorithm determined that SVR models tuned with grid search were equivalent

to their random search tuned counterpart. The largest median difference between

121

techniques was less than 0.05 SA for accuracy, and less than 5% improvement in the

case of stability. However, random search required far less evaluations compared to

grid search. Grid search explored a total of 4,128 hyper-parameter values for each

SVR model. Random search randomly sampled 60 of these values, and still obtained

results that are on the same line. These results show that a less exhaustive approach

like random search is a viable alternative for hyper-parameter tuning.

5.2 Quasi experiment 2: Hyper-Parameter Tuning of

Classification and Regression Trees for Software

Effort Estimation

5.2.1 Study summary

The second quasi experiment [128] extends our first one by further evaluating the

dodge hyper-parameter tuning algorithm alongside random and grid search. More-

over, the study includes classification and regression trees (CART) as an additional

model to evaluate tuning.

The remainder of the experimental design is similar to our previous study. We

employed the ISBSG R18 dataset. A total of 40 models were evaluated, product of

our two 2 transformations (none and log), 3 feature selectors (none, correlation per-

centile, 3 models (CART, SVR, ridge), and 4 tuners (default, random, grid, dodge).

Because feature selection had no effect on CART and SVR, those combinations were

discarded, and 40 models remained. We measured their accuracy in terms of stan-

dardized accuracy and their stability on the standard deviation of absolute error.

We performed multiple additions to the experimental design with respect to our

previous publication. Firstly, we added the classification and regression tree as a ma-

chine learning algorithm, in order to determine the effect of tuning for this technique.

Next, we utilized the novel dodge hyper-parameter tuning approach, and compared

its performance against grid and random searches. Lastly, to extend our analysis, we

added a second Scott-Knott evaluation based on the results of the first Scott-Knott

groups. By doing this we are giving a general ranking of each technique, based on

their ranking for each dataset.

Directions for future work were highlighted in the study. The first one was to ex-

tend the study for other SEE datasets, such as PROMISE datasets. The second one

122

was the extension of the quasi experiment to include additional machine learning

algorithms, hyper-parameter tuners, data transformation and feature selection ap-

proaches. The third line for future work was a proposal to research the effect of

adjusting the parameters of the hyper-parameter approaches, such as the ϵ hyper-

parameter in dodge.

5.2.2 Main results

Hyper-parameter tuning was able to improve the accuracy and stability of both CART

and SVR models. For CART models, tuning improved accuracy by a maximum of

0.153 SA with respect to default hyper-parameters. This signifies a decrease of 15.3%

of prediction error with respect to randomly guessing. Tuning also reduced the sta-

bility ratio to 0.819: a 18.1% decrease in standard deviation of the absolute error

with respect to default hyper-parameters. For SVR, tuning improved SA by 0.227 and

accuracy to a ratio of 0.829. In general terms, tuning had a larger increase of accu-

racy in SVR than CART. However, tuning had a larger improvement of stability (lower

stability ratio) in CART than SVR.

Regarding absolute results, we found that the combination of log, SVR and tun-

ing provided the greatest accuracy across the 40 evaluated models. These models

consistently achieved first ranking in the Scott-Knott analysis across the 4 datasets.

However, the secondary Scott-Knott analysis determined that tuned SVR and CART

had statistically equal performance, and were categorized in the first group. The sec-

ond group consisted of untuned SVR and CART. The third and last group consisted

of all ridge techniques, tuned and untuned. By this analysis we determined that the

accuracy of tuned CART and SVR is better than their untuned counterparts; and the

accuracy of all CART and SVR models was overall better than any ridge method.

While accuracy of tuned CART models was slightly lower, they had better stability

than SVR models, and they provide a trade-off between the two metrics with good

accuracy.

Similar to our previous study, we found that dodge provides improvements in

CART and SVR that are comparable to grid and random search. SVR with no data

transformation was the exception, and it ranked 1 group below other tuned SVR and

CART models. The advantage to dodge was that, similar to random search, it required

less explored hyper-parameter values than grid search.

123

5.3 Quasi experiment 3: Hyper-parameter Tuning us-

ing Genetic Algorithms for Software Effort Estima-

tion

5.3.1 Study summary

The third quasi experiment [129] further extends the scope of hyper-parameter tun-

ing by incorporating techniques that have been used in SEE literature as well as out-

side SEE. We focused on optimization techniques inspired in nature. The new eval-

uated tuners include three variants of genetic algorithms: classic genetic algorithm,

compact genetic algorithm, and the 1+1 genetic algorithm. In addition, we include

the harmony search and tabu search tuners.

We performed multiple additions to the experimental design with respect to our

previous publication. Firstly, the study included 5 additional hyper-parameter tuning

algorithms: GA, compact GA, and the 1+1 GA, and tabu and harmony searches. The

analysis of the study thus focused on the comparison between these tuners and our

previously evaluated tuners (grid, random, dodge). This study also introduced stan-

dardized stability, a metric based of standardized accuracy, as a measure for model

stability.

Directions for future work were highlighted in the study. Firstly, our intent was to

next extend the study for other datasets used in SEE. We also intended to evaluate

further machine learning algorithms and their improvements in accuracy and stability

when tuned. Lastly, we proposed the evaluation of tuning the parameters of the

hyper-parameter tuning approaches.

5.3.2 Main results

Following the trend of our previous research, the novel tuning algorithms produced

SVR and CART with accuracy and stability scores similar or better to our baseline

grid and random searches. Genetic algorithms provided a maximum increase of 0.21

standardized accuracy (SA) and 0.23 standardized stability (SD). Compact genetic

achieved up to 0.21 SA and 0.22 SD. 1+1 GA achieved up to 0.21 SA and 0.14 SD.

Harmony achieved 0.20 SA and 0.14 SD. Lastly, Tabu achieved up to 0.21 increase in

SA and 0.13 in SD. For comparison, grid and random search obtained up to 0.20 SA

124

and 0.13 SD.

Our analysis determined that tuned Log+SVR, CART, and Log+CART have the

best accuracy of all studied models. However, we also determined that tuned SVR

without the log transformation performs similarly to untuned SVR. This indicates

that data pre-processing techniques can also impact the degree in which tuning can

improve a model.

Regarding the question of the best evaluated model, the most effective combina-

tions for obtaining high accuracy was Log+SVR with either traditional, compact, or

1+1 genetic algorithms. These CGA and GA combinations obtained the top ranking

across all datasets, while also maintaining a level of stability comparable with the

other tuners. The 1+1 tuned Log+SVR model ranked first in the COSMIC BFC set,

and second in the remaining three. From our previous studies, this is the first time

we have identified a method that has been able to break parity with the baseline grid

search method.

5.4 Quasi experiment 4: Multi-objective Hyper-parameter

Tuning for Software Effort Estimation

5.4.1 Study summary

The fourth quasi experiment [130] evaluates the effectiveness of multi-objective op-

timization applied to our hyper-parameter tuners. We implement multi-objective ver-

sions of all the tuners we have evaluated previously, plus the new tuners included in

this study: flash, differential evolution, particle swarm optimization, Bayesian opti-

mization, and hyperband. Instead of finding one best solution, multi-objective tuners

present multiple, equally viable hyper-parameters that offer a trade-off between ac-

curacy and stability. Our quasi experiment evaluates whether these tuners can offer

accuracy and stability that is equal or better than their single objective counterparts.

Regarding analysis of results, we performed two evaluation activities. The first

was to perform a ranking of all single-objective tuned techniques based on their ac-

curacy and stability, similar to our previous quasi experiments. The second activity

performed a one on one comparison of each multi-objective tuned model against

its single-objective optimized counterpart, using the Wilcoxon singed-rank statistical

test. To better analyze these results, we used the win-tie-loss algorithm to determine

125

in which scenarios was multi-objective tuning effective, and which models were not

improved.

We performed multiple additions to the experimental design with respect to our

previous publication. Mainly, we implemented multi-objective variants for each of

the previously utilized and new hyper-parameter tuners. Such variants finds equally

viable solutions that offer trade-offs between the optimized metrics. In addition, the

study included 5 additional hyper-parameter tuning algorithms: differential evolu-

tion, flash, particle swarm optimization, Bayesian optimization, and hyperband. Com-

pared to previous quasi experiments, we extended our analysis of results by using the

win-tie-loss method as a means to compare multi-objective tuning, and determine

whether it improves, maintains, or worsens stability and accuracy of the produced

effort estimates.

Future work discussed in the study included the exploration of additional SEE

datasets, machine learning algorithms, and data transformations. Also, similar to

previous studies, we have discussed the possible value of exploring the effect of dif-

ferent configurations for the parameters of the hyper-parameter tuners are modified.

5.4.2 Main results

Regarding single-objective tuners, the Scott-Knott analysis determined that the top

performing group in terms of accuracy is comprised by tuned Log+SVR models, ex-

cept those using grid and random search. Particularly, traditional and compact genetic

algorithms, as well as differential evolution and flash resulted in top-ranking models

in the four studied datasets. For accuracy of Log+SVR, Flash obtained a maximum

0.537 SA; compact genetic, 0.534 SA; differential evolution, 0.534 SA; and genetic

algorithm, 0.532 SA. These four methods also resulted in the top-ranking stability

when performing this analysis on the standardized stability. For Flash, a SD of 0.450

was achieved; for genetic, 0.440 SD; for differential evolution, 0.430 SD; and for

compact genetic, 0.426 SD. In general terms, this indicates that these models are

up to 53% more accurate and 45% more stable than random guessing models. The

impact of tuning (with respect to default hyper-parameters) was an increase in 0.2

SA, and 0.234 SD. Tuning was more effective in datasets that utilized full functional

points, and models were more accurate on IFPUG 4+ datasets.

One important difference between the result of this and the previous study was

on the Scott-Knott ranking on the accuracy of the models. Previously, the Scott-

Knott method determined that dodge, tabu, and harmony search were not different

126

to random and grid search tuned models. In this study, for Log+SVR models, the

analysis determined that these three methods have a higher increase on accuracy than

grid and random searches. By adding more techniques to the analysis, the amount

of Scott-Knott groups increased, and so did the gap (in terms of groups) between the

best tuners and the baseline tuners.

The effect of multi-objective optimization depended on the base model. In the

case of Log+SVR, the best model for single-objective optimization, resulted in more

stable models at the cost of lowering their accuracy. Conversely, the best 4 tuners

saw a decrease in effectiveness when switched to a multi-objective target. Results for

CART and Log+CART were more consistent, showing that multi-objective optimiza-

tion rarely decreased either stability or accuracy.

When analyzing the effect of multi-objective optimization on each tuner, the dif-

ference between techniques is less apparent. The four tuners with the best improve-

ments in accuracy (CGA, DE, FS, and GA) were the ones that saw the greater loss in

accuracy with multi-objective optimization; with only one win and up to 22 losses

against their single-objective counterparts. For stability, the 4 tuners achieved be-

tween 6 and 12 wins, and between 2 and 7 losses. For the other tuners, results were

more favorable, as they improved their stability in up to 20 cases.

5.5 Quasi experiment 5: Comparative study of Ran-

dom Search Hyper-Parameter Tuning for Software

Effort Estimation

5.5.1 Study summary

The fifth quasi experiment [131] compared many of the state-of-the-art hyper-parameter

tuners against the fast, simple random search. We employed the previous 13 (12

without random search) tuners from our previous studies. However, we included 9

additional datasets from the PROMISE data repository. This quasi experiment eval-

uated whether these tuners can offer accuracy and stability that is equal or better

than random search, which is arguably the simplest tuning approach. Our aim was

to find out if (and in which scenarios) the investment in a more complex (in terms of

implementation) tuning algorithm pays off.

Regarding analysis of results, we performed two comparisons using the win-tie-

127

loss algorithm and the Wilcoxon sign-rank test. The first round of analysis compared

the obtained results against default hyper-parameters to determine in which datasets

or models each tuner was effective. The second analysis compared random search

against the other 12 tuners. In addition, we utilized the Scott-Knott algorithm to

determine whether certain learning schemes were more effective for certain datasets.

We performed multiple additions to the experimental design with respect to our

previous publication. The main change in terms of experiment design was the addi-

tion of the 9 PROMISE datasets into the experimental design: albrecht, china, deshar-

nais, finnish, isbsg10, kemerer, kitchenham, maxwell, and miyazaki94. Our design

however did not account for multi-objective optimization due to the computational

cost of such techniques. The study changed the approach we took to the compari-

son of techniques. Instead of mainly relying the Scott-Knott approach, we used the

Wilcoxon sign-rank test (with Holm-Bonferroni corrections) to determine, for each in-

dividual tuner, if it provided improvements with respect to default hyper-parameters

and random search. As a criteria to what “improvement” is, we determined that a

tuner must significantly improve accuracy and maintain or improve stability to be

considered more efficient.

Future work discussed in the study included the extension of this study for fur-

ther machine learning algorithms and data transformation, as well as to additional

datasets in SEE. We discussed the possibility of extending this study using different

“budgets” for each tuner, to further determine the pay-off of tuning.

5.5.2 Main results

The results on the default vs. tuned comparison revealed that no tuner was effective

(improved accuracy while maintaining or improving stability) in every dataset and

model. Results depended mostly on the model and dataset, and not so much on the

particular hyper-parameter tuning approach. However, we determined that tuning

was generally more effective on datasets with low intrinsic dimensionality. That is,

tuning had a greater effect when the data was simple.

Regarding the random vs. tuned comparison, we determined that no tuner was

able to outperform random search in all cases. The inverse likewise is true, and

each tuner had at least one scenario in which it had better performance than ran-

dom. However, in 6% of the studied scenarios (combinations of dataset and model),

the 12 state-of-the-art tuners could not outperform random search. If the optimal

tuner could be chosen for each dataset × model combination, tuning would then

128

outperform random search in 27% of scenarios. This means that, for the remainder

of scenarios, the random search hyper-parameter tuner found a solution that was

equally good or better than the other tuners. The compact genetic algorithm, genetic

algorithm, tabu search and hyperband approaches outperformed random search in

10 or more scenarios.

No learning scheme was dominant over all others. That is, each model had cases

in which they performed better or worse. In the case of accuracy, the technique

that ranked first in largest amount of scenarios was Flash tuning for SVR with log-

arithm transformation, which obtained an average mean standardized accuracy of

0.48 across al datasets. We also observed that ridge regression models could perform

well in scenarios that SVR could not, and vice versa. In terms of stability, hyperband

tuning for ridge regression with logarithm transformation ranked first in the largest

amount of scenarios.

5.6 General findings and discussion

The results of the five quasi experiments showed that hyper-parameter tuning has

its place in software effort estimation from the perspective of SEE researchers and

practitioners. The first and second quasi experiments showed that tuning improve

the predictive performance of SVR and CART models. This was done for the ISBSG

2018 dataset, which contains over 8,000 projects and 252 features. Our fifth quasi

experiment also showed that tuning can improve the performance of ridge models

in PROMISE datasets. However, this fifth quasi experiment also demonstrated that

tuning does not work in all cases, and highly depends on the dataset and model.

While tuning always improved performance of SVR and CART in ISBSG datasets, this

was not the case for PROMISE. Inversely, tuning improved the performance of ridge

regression models in PROMISE, but it did not in ISBSG.

Our second main observation is that, while tuning can be effective in many scenar-

ios, different hyper-parameter tuners may provide similar model improvements. The

results shown in the fifth quasi experiment showed that other tuners achieve similar

improvements to what random search could provide in 94% of scenarios. In quasi ex-

periments 1 and 2, the results showed that the exhaustive grid search algorithm was

as effective as random search for SVR and CART. If we add to this that grid search

explored over 4,000 hyper-parameter values for each model, whilst random search

only did 60; the investment (in terms of computational resources spent) does not pay

129

off for the exhaustive grid search technique. While the non-grid tuners in quasi ex-

periment 5 similarly explored around 60 hyper-parameters, they obtained equivalent

results while being (arguably) more complex in implementation. Thus, depending

on the model and dataset, researchers and practitioners do not need to heavily in-

vest into exhaustively determining which tuner is the best. Instead, they can perform

small tests with random search and one or two additional methods (particularly ge-

netic algorithms) to assess which of these tuners best fits their data.

As a counterpoint, there were particular scenarios in which the choice of tuner

was important. For instance, our quasi experiments showed that genetic algorithm,

compact genetic algorithms, differential evolution, flash, tabu search and hyperband

can provide improvements in accuracy for logarithm SVR that are better than random

search. Moreover, Log SVR built using these tuners was in the top of the accuracy

rankings in quasi experiments 4 and 5. This was also the case in quasi experiment

3 with the genetic algorithm and compact genetic algorithm tuners. Note that this

was not the case for all tuners, and certain methods like Bayesian optimization hardly

outperformed random search. The practical lesson here is to evaluate the impact of

a group of tuners in practical applications, but to not go overboard. For example,

a selection of random search, one genetic algorithm, and one heuristic method like

flash can be sufficient.

Regarding multi-objective optimization, we determined that it mostly helps to

cover the “weakness” of a model. For the most accurate models, SVR, it increased

their stability at the cost of their accuracy. For CART models, it increased both met-

rics and made them closer in performance to SVR. In the case of ridge regression,

it similarly increased stability at the cost of accuracy in many scenarios. We would

not recommend the use of multi-objective tuning in ridge, however, as these mod-

els already offer low accuracy. More studies using multi-objective optimization are

necessary to determine its benefits. We would recommend the use of multi-objective

optimization for future SEE studies, but it may not be suitable for use in practical

effort estimation, following the results of our quasi experiments.

As a general rule, we recommend researchers to look into their data before choos-

ing a hyper-parameter tuner. If the data in hand is low dimensional, a tuner like

random search could be as effective as any other tuner. If the dataset was instead

more complex, then it may be worthwhile to evaluate other tuning approaches. Of

our researched approaches, we recommend the use of those inspired in evolution:

genetic algorithm, compact genetic algorithm, and differential evolution. We also en-

dorse the use of one heuristic method: tabu search, hyperband, or harmony search.

130

We are also interested in the performance of model-based optimizers like flash, which

employ a prediction model to determine promising hyper-parameter values. There is

still room for research of hyper-parameter tuning for software effort estimation, es-

pecially from the practical, real life estimation perspective.

131

Chapter 6

Conclusion

This section concludes this thesis document by discussing the results obtained and

their implications. Section 6.1 summarizes the results, addresses each specific objec-

tive, and closes with some of the learned lessons. Section 6.2 lists the contributions

of this research. Section 6.3 highlights open questions that can direct future work in

software effort estimation research.

6.1 Summary of results

This research compiled the state-of-the-art in hyper-parameter tuning for software

effort estimation, developed an automated procedure for machine learning hyper-

parameter tuning in the context of software effort estimation, and generated empiri-

cal evidence on the impact of hyper-parameter tuning on software effort estimation.

6.1.1 SO1: Characterization of hyper-parameter tuning approaches

for machine learning

We performed a systematic literature mapping study to address the first specific ob-

jective of the thesis: “to characterize hyper-parameter tuning approaches for machine

learning”. The protocol and results of this study were presented in chapter 3.

The systematic literature mapping study identified 79 primary studies in soft-

ware effort estimation that employed hyper-parameter tuning approaches on machine

learning techniques.

We identified 12 unique hyper-parameter tuning approaches. Grid search was

132

used by the majority (60) studies, sometimes as a baseline but often as the only tuner.

For machine learning algorithms, the mapping identified 21 methods that included

neural networks, various types of regression, decision trees, support vector machines,

case based reasoning, k-nearest neighbors, and combined models like ensembles, bag-

ging, boosting and stacking. While there was no predominant model, we observed

that tuning studies had a preference for models with 4 or more hyper-parameters.

The study also identified 5 cross-validation approaches, 10 data transformations and

10 feature selectors. Every study employed at least one cross-validation approach,

with the preferred method being leave-one-out. The most common data transforma-

tion was to limit numerical features to the [0, 1] range, and the majority of studies

did not employ feature selection.

We identified 47 datasets and categorized them by their origin. The datasets were

categorized in a total of 8 origins: PROMISE, ISBSG, open, tukutuku, unidentified,

artificial, private, and IBM. The identified studies had a preference for open repos-

itories (PROMISE, ISBSG, open, tukutuku), and mainly utilized datasets from the

PROMISE and ISBSG repositories. The most used PROMISE datasets were deshar-

nais, cocomo81, albrecht, kemerer, and maxwell. The most used version of the ISBSG

dataset was release 8.

We identified 41 unique metrics used to evaluate SEE model performance, which

were categorized depending on the type of error used in their formula. We iden-

tified 10 metric categories, of which relative error metrics were the most common.

However, previous literature has reported that these types of metrics are biased, thus

dissuading their use [41]. Instead, researchers have endorsed the use of metrics

based on absolute error and baseline predictors. In addition, the studies utilized 17

different analysis techniques, classified as descriptive analysis, statistical tests and

ranking methods. Thirty-five studies opted to simply describe their results and draw

observations, instead of relying on a statistical method. We encourage future effort

estimation studies to employ statistical analysis to improve their conclusion stability.

We grouped the challenges reported in the primary studies into 28 categories.

Frequently reported problems in SEE tuning studies included the potential risks of

inaccurate effort estimation, specific limitations of the studied machine learning tech-

niques, complexity in the selection of hyper-parameters, the lack of a dominating

machine learning model (no free lunch theorem), and lack of research for certain

types of techniques like ensembles or online tuning.

From the design and execution of the search strategy, we discovered that many

133

effort estimation studies did not report the use of hyper-parameter tuning in their

abstract. This hindered the search process, as the full text of many papers had to

be reviewed to determine if the paper employed hyper-parameter tuning. We ask

future effort estimation studies to report the types of techniques they employ in their

abstract, and to use standard terminology to make effort estimation literature more

accessible.

From this objective, we learned that hyper-parameter tuning studies often focus

on improving the accuracy of the base model, and rarely focus on evaluating the

impact of tuning. As previous studies have determined that tuning has a positive

impact in model accuracy [14, 52, 25, 12], this indicates that the SEE community

is aware of the benefits of tuning. We also determined that studies perform tuning

on “worthwhile” techniques, meaning those that have multiple hyper-parameters, or

those with values that are difficult to manually determine.

The main takeaway is that SEE researchers must expand their horizons and per-

form more practical case studies, in collaboration with software developers. Effort

estimation datasets are outdated, and novel techniques are not reaching the indus-

try. Collaborative studies benefit both parties, as researchers further validate their

methods on new data and practitioners can improve their effort estimation practices.

Research on software effort estimation has stayed too long in the lab, and our tech-

niques deserve some sunlight.

6.1.2 SO2: Automation of a hyper-parameter tuning procedure

for machine learning

We implemented a hyper-parameter tuning framework to address the second specific

objective of the thesis: “to automate a hyper-parameter tuning procedure for ma-

chine learning”. Chapter 4 documents the automated procedure and its supported

techniques.

The framework supports three tasks: pre-processing, model training and evalua-

tion, and statistical analysis. Moreover, the framework automates the model training

and evaluation task.

The pre-procesing task was divided into three activities: select projects, select

features, and hold-out split. Pre-processing is performed to eliminate or lessen the

effect of problems such as missing data, outliers, unrelated or redundant features, and

class imbalance. This process is manual, and requires constant human intervention

134

and judgment. The framework does not automate this task, but it provides general

guidelines in the form of the three indicated activities.

The model training and evaluation task was automated with two components:

the framework configuration and the evaluation loop. The framework configura-

tion component allows selection of techniques of the learning scheme (data trans-

formation, feature selection, machine learning, hyper-parameter tuning), datasets,

cross-validation, and evaluation metrics that will be used in the evaluation loop.

The selected techniques are combined into learning schemes, which are then used

to build models. The configuration component is handled through 7 files, each listing

the name of the techniques or datasets, and their hyper-parameter or other options.

Currently, the framework supports 15 hyper-parameter tuners, 8 machine learning

models, 7 cross-validators, 2 data transformations, and 8 feature selectors.

The evaluation loop of the model training and evaluation task assembles, trains,

and evaluates machine learning models based on each evaluation scheme: the com-

binations of dataset, cross-validation, and learning scheme in the framework configu-

ration. The input data is divided by the cross-validation approach, resulting in one or

more train-test splits. After this, a model is assembled as a combination of three tech-

niques: data transformation, feature selection, and machine learning. Input data for

this model is transformed, selected, and then used to train the machine learner. The

assembled model is then optimized using the hyper-parameter tuning algorithm. The

tuner combines the hyper-parameter search spaces of the transformation, selection

and learner and finds the best possible value that results in the most accurate predic-

tions. Moreover, the tuner can be configured to optimize multiple metrics (accuracy

and stability). When the best hyper-parameters are found, the model is trained with

the complete training set. Lastly, the trained model is evaluated on the test set, and

the evaluation metrics for the evaluation scheme are recorded.

The statistical analysis task was divided into two activities: model evaluation and

model verification. The model evaluation activity utilizes statistical analysis to draw

conclusions from the recorded metrics. This statistical analysis can determine if the

model is producing estimates in the expected ranges, assess whether tuning has an

advantage over default parameters, compare the accuracy of two models, rank the

models according to their performance, and conclude if there is a “best” model. Be-

cause model evaluation is a manual activity that depends on the type of study, the

framework does not provide automation. The model verification activity consists of

reviewing that the metrics obtained in the model training and evaluation task are

correct, and not affected by problems such as data mismatch and overfitting. The

135

model training and evaluation task can gather new evaluation metrics by using the

historical and new sets to evaluate the learning schemes on unseen data. The new

metrics can be compared with the original metrics to determine if there are problems

in the original evaluation.

From the literature mapping we determined that there is no standard machine

learning process for SEE, and the actual use of techniques will depend on the design of

the study. Our framework automates what we believe would be a standard procedure,

but researchers or practitioners with a more specialized type of study may have to

modify the framework to suit their needs.

From the implementation of this framework, we learned that there is good sup-

port for hyper-parameter tuning in Python, as there are multiple supporting libraries

and implementations for each algorithm. However, many of the tuners were not com-

patible between each other, as each had their unique “interface”. For example, some

tuners required as input a fitness function, while others require a model and a func-

tion that returns a metric. This framework was an effort in standardizing some of the

existing techniques to the scikit-learn standards. On a similar topic, there are many

machine learning libraries for Python and other programming languages, each with

their own focuses, benefits and disadvantages. We selected scikit-learn as our “base”

library as it provides a wide selection of machine learning techniques. If someone

were to take a similar endeavor of implementing a hyper-parameter tuning (or gen-

eral machine learning) framework, our recommendation would be to similarly select

a base library or technology, and to adapt existing or new methods into the library

interface. This does not only make the framework more standardized and extendable,

but potentially makes its use easier for those familiar with the base library.

6.1.3 SO3: Evaluation of the effectiveness of the automated hyper-

parameter tuning procedure for machine learning

We performed a set of controlled quasi experiments to address the third specific ob-

jective of the thesis: “to evaluate the effectiveness of the automated hyper-parameter

tuning procedure for machine learning”. The protocol and results of these studies

were presented in chapter 5. A total of five quasi experiments were executed, with

each study adding an increment over the previous one, either evaluating more tech-

niques or doing a different analysis.

The first quasi experiment evaluated grid and random search for support vector

136

regression. We researched the effect of these two tuners on 4 subsets of the ISBSG

R18 dataset. We constructed support vector regression and ridge regression models

with and without log transformation; using 2 feature selectors for ridge regression;

and using default hyper-parameters, grid search and random search for tuning. The

results of the quasi experiment determined that random search obtained results that

were in line with the more exhaustive grid search algorithm, with the largest differ-

ence being 0.05 standardized accuracy. Grid search was configured to evaluate 4,128

hyper-parameters, while random search did only 60. We thus concluded that random

search was a viable, faster and less costly alternative to grid search for support vector

regression in the context of effort estimation.

The second quasi experiment evaluated grid search, random search, and dodge

hyper-parameter tuning for classification and regression trees. We extended the de-

sign of our previous quasi experiment to add CART as a model (no feature selection),

and dodge as a tuning algorithm. We determined that hyper-parameter tuned CART

outperformed its default parameter counterpart. However, our results showed that

the best accuracy was achieved by log-transformed, tuned SVR models. CART models

were generally less accurate than SVR, but instead offered a higher stability.

The third quasi experiment evaluated genetic and nature-based hyper-parameter

tuning techniques for SEE. Five new tuners were added to our previous quasi exper-

iment: genetic algorithm, 1+1 GA, compact GA, tabu search, and harmony search.

This study also proposed our own variant of standardized accuracy for measuring

stability. The study determined that traditional and compact genetic algorithms were

more effective than grid and random search for tuning Log+SVR models, as they

ranked top in accuracy across all datasets.

The fourth quasi experiment evaluated multi-objective optimization for hyper-

parameter tuning. We implemented multi-objective variations of each tuner, which

optimize both accuracy and stability of the model. The quasi experiment compared

the performance of the tuners from the third quasi experiment against their multi-

objective counterparts. Moreover, 5 additional tuners were implemented, for both

single- and multi-objective optimization: flash, differential evolution, particle swarm

optimization, bayesian optimization, and hyperband. The effect of multi-objective

optimization depended on the base model, but it mainly offered a trade-off between

stability and accuracy. For highly accurate models like Log+SVR, multi-objective tun-

ing decreased their accuracy and increased their stability. For CART models, multi-

objective optimization offered similar levels of stability, rarely decreasing it, while

increasing accuracy in some cases.

137

The fifth quasi experiment evaluated state-of-the-art tuners against random search.

This study extended the protocol of the fourth quasi experiment by adding 9 datasets

from the PROMISE repository, although multi-objective optimization was not consid-

ered. For each model and dataset, the state-of-the-art tuners were compared against

random search in terms of their effectivity. A model was considered effective if it

could achieve better accuracy than its random search tuned counterpart, while main-

taining or improving stability. The quasi experiment determined that, while tuners

were almost always more effective than default hyper-parameters, they were only

more effective than random search in 6% of the studied dataset × model combina-

tions. However, if the “optimal” tuner (i.e. the best tuner for a particular model and

dataset) was selected, this probability raised to 27%.

From this objective, we learned that tuning is effective for software effort esti-

mation. In each of the first four quasi experiments, default hyper-parameter models

had consistently worse performance than tuned models. In our fifth study there were

some scenarios in which tuning generated models with the same predictive accu-

racy than default parameters. However, we analyzed that tuning had more effect in

datasets with small intrinsic dimensionality, which tends to be the case for effort es-

timation. Future research should employ hyper-parameter tuning to further improve

the predictive accuracy of their effort estimation models.

There is work to be done regarding research in hyper-parameter tuning for soft-

ware effort estimation. Our quasi experiments considered a large amount of datasets

and hyper-parameter tuners, but the amount of machine learning algorithms, data

transformations, feature selectors was relatively low. Moreover, the quasi experi-

ments were by no means exhaustive, and still many tuners and datasets from SEE

literature were not covered.

The most important lesson with respect to the use of tuning was emphasized in the

fifth quasi experiment: “look before you leap”. Utilize a model and optimizer that are

congruent with the size and complexity of your data. For example, for a dataset like

kemerer with less than 30 data instances, an untuned CART model was as effective

as CART with tuning. In this case, tuning was not necessary at all. For a dataset with

more than 800 instances like ISBSG, the peak accuracy was only achieved by tuned

Log+SVR, and the use of tuning is justified.

We recommend future studies to stop using grid search. The results of the lit-

erature mapping showed that 60 out of the 79 percent studies, or 76%, used grid

search. However, in our five quasi experiments we concluded that the other hyper-

138

parameter tuning approaches were equally or more effective than random search to

improve model accuracy. In addition, grid search explored substantially more hyper-

parameters (over 4,000) than random search and other tuners (60). In cases that the

hyper-parameter search space is large, grid search can be effectively replaced with a

simple approach like random search.

Hyper-parameter tuning is only as important as the other types of tricks and tech-

niques in machine learning. A tuner cannot improve performance if the quality or

quantity of the original data is low, and pre-processing of datasets may be more ef-

fective in this case. We evidenced this phenomenon with the Log transformation on

SVR: tuning had very low impact in SVR, but substantially improved the results of

Log+SVR.

For future studies and applications of hyper-parameter tuning, we would firstly

not recommend to perform an evaluation as exhaustive as ours. To evaluate 13

hyper-parameter tuners can be more than necessary for the majority of practical ap-

plications. In the case of our quasi experiments, such evaluation required months of

computational time. We would thus recommend a small evaluation of tuning using

between 3 and 4 methods: random search as a baseline, one genetic algorithm, one

heuristic or model-based tuner, and optionally one other method. We found particu-

larly good results for the traditional genetic algorithm, the compact genetic algorithm,

flash, differential evolution, tabu search, and hyperband. Moreover, it is equally im-

portant to select an appropriate search space for these techniques; as the tuner cannot

find the optimal solution if it is has no access to that part of the space. On the other

hand, a search space that is too wide may difficult or lengthen the search process.

Lastly, hyper-parameter tuning is as important to the machine learning process

as other types of techniques and data transformations. A tuner cannot improve per-

formance if the quality or quantity of the original data is low, and pre-processing of

datasets may be more effective in this case. We evidenced this phenomenon with

the Log transformation on SVR: tuning had very low impact in SVR, but substan-

tially improved the results of Log+SVR. Thus, a combination of pre-processing, data

transformations, missing value treatment, feature and project selection, appropriate

machine learning technique selection, and hyper-parameter tuning are more effec-

tive at generating accurate and stable effort estimation models than using only one

of these.

139

6.2 Contributions

This research provided the following contributions:

• A characterization, including categorization, of the existing machine learning

techniques, datasets, and metrics used for hyper-parameter tuning SEE; as well

as a report of the challenges reported in the state-of-the-art of hyper-parameter

tuning SEE.

• A procedure for hyper-parameter tuning SEE that defines three tasks and sub-

activities, and a framework for hyper-parameter tuning SEE that automates the

model training and evaluation task of the procedure, and provides support for

the pre-processing and statistical analysis tasks.

• Empirical evaluations of random and grid search hyper-parameter tuning for

support vector regression and classification and regression trees, genetic and

nature-inspired hyper-parameter tuning approaches, multi-objective optimiza-

tion for tuning, and state-of-the-art tuning against random search in the context

of SEE.

6.3 Future work

We have presented a systematic literature mapping that covers the existing machine

learning techniques, datasets and metrics used in hyper-parameter tuning SEE. An

extension of this study could cover the hyper-parameters ranges or values that were

tuned in these studies. Novel tuning studies can use this information to select their

hyper-parameter search space. Instead of analyzing each technique individually, fu-

ture literature studies could analyze the use of technique combinations to determine

research trends, and to help future studies to select effective technique combinations.

One last possible venue of future work for literature studies is the comparison of

the reported accuracy of SEE models. This can provide a general guideline of the

expected metric values for the machine learning techniques, depending on the con-

text. Researchers and practitioners could utilize these values to validate whether their

models are within the previously reported accuracy values, or if they can take steps to

improve the accuracy of their models. Another potential benefit of this type of com-

parison is that it can compare results of different studies if their experiment designs

are similar.

140

The procedure proposed in this research describes three tasks, with our frame-

work automating the model training and evaluation task and supporting the other

two. Future work on this framework could automatize the pre-processing and statis-

tical testing tasks. While human intervention is necessary, some level of automation

can make these tasks shorter. For automation of pre-processing, the framework could

use a rule-based approach to select of filter projects and features. An example of such

automation is: the rule “missing values < 0.25 and type == numerical”

indicates the framework to select only numerical features with less than 25% missing

values, and would filter the current dataset with those properties. For automation

of the statistical testing, the framework could provide a suite of pre-made statisti-

cal tests, plots, and ranking methods. Another potential improvement to the frame-

work is a “scheme” configuration that permits to vary the order and techniques of the

learning scheme. Currently the framework creates a model comprised of transforma-

tion+selection+model. A scheme configuration could be used to change this process

to suit the users needs. For example, an user may want to perform tuning separately

for each component, or to construct ensemble models using different rules.

Our quasi experiments evaluated different facets of hyper-parameter tuning in

the context of SEE. However, these quasi experiments are not exhaustive, and do

not cover the entire body of techniques and dataset used in SEE. First, the quasi ex-

periments focused only on SVR, CART, and ridge regression models. Future studies

or extensions to these quasi experiments can evaluate the effect of tuners in other

models, such as neural networks, k-nearest neighbors, case-based reasoning, and en-

semble and other combination-type models. Studies in tuning for ensembles would

have to contemplate tuning in two phases: tuning for the base models, and tun-

ing the hyper-parameters of the ensemble. Second, further studies are necessary for

evaluation of multi-objective optimization applied for hyper-parameter tuning. Our

quasi experiment showed that multi-objective optimization offers a trade-off between

accuracy and stability. In certain cases, such as CART models, multi-objective opti-

mization offered relatively no downsides; while also allowing an user to customize

their trade-off between the two metrics. Third, future studies could evaluate the cost

of “tuning more”. Based on our results, we determined that evaluating 60 (randomly

sampled) hyper-parameters offered the same benefit in accuracy than evaluating over

than 4,000. This implies that there is a point in which investing more resources (time,

computer power) in tuning stops paying off. Thus, a study on the amount of hyper-

parameters searched by an algorithm could determine the stopping point or criteria

for tuners, as well as the properties of the dataset and model that require additional

141

tuning (i.e. more complex models or datasets would require additional tuning).

There are further venues of future work for general software effort estimation, ma-

chine learning, and hyper-parameter tuning. As many studies have reported, there

is a need for new project data, and low adoption of the existing techniques by the

industry. More case studies in collaboration with software development companies

potentially attack these two issues, as researchers can work and make publicly avail-

able novel software project data, and the companies can experience firsthand the

benefits of novel SEE techniques. Another recommendation for future SEE studies is

to “look before you leap”, meaning to consider the complexity of your data before

selecting a model. For instance, while grid-searched deep learning models may be

effective, they may not be efficient in resources when a simple regression model may

have had similar accuracy. We identified that very little studies performed online

software effort estimation. While the hyper-parameter tuning approaches for such

studies are limited, the online scenario better captures the actual effort estimation

process of a development company than offline estimation. Lastly, there is potential

in researching hyper-parameter tuning for machine learning in other software en-

gineering sub-areas. Tuning has been successfully used in error detection [28] and

code smell detection [52], and may be applicable to similar prediction or classification

tasks.

142

Appendix A

Hyper-parameter tuning techniques in
SEE

Table A.1: List of selected studies.

ID Year Title Authors Source

S1 2019 Investigating the use of random
forest in software effort
estimation

Abdelali Z., Mustapha H.,
Abdelwahed N.

Procedia Computer Science

S2 2019 Whale-crow optimization
(WCO)-based Optimal
Regression model for Software
Cost Estimation

Ahmad, Sumera W.; Bamnote, G.
R.

SADHANA-ACADEMY
PROCEEDINGS IN
ENGINEERING SCIENCES

S3 2019 Performance tuning for machine
learning-based software
development effort prediction
models

Ertuğrul E., Baytar Z., Çatal Ç.,
Muratli C.

Turkish Journal of Electrical
Engineering and Computer
Sciences

S4 2019 Evaluating filter fuzzy analogy
homogenous ensembles for
software development effort
estimation

Hosni M., Idri A., Abran A. Journal of Software: Evolution
and Process

S5 2019 Improved effort estimation of
heterogeneous ensembles using
filter feature selection

Hosni M., Idri A., Abran A. ICSOFT 2018 - Proceedings of
the 13th International
Conference on Software
Technologies

S6 2019 An ensemble-based model for
predicting agile software
development effort

Malgonde O., Chari K. Empirical Software Engineering

Continued on next page

143

Table A.1: List of selected studies. (Continued)

S7 2019 A novel online supervised
hyperparameter tuning
procedure applied to
cross-company software effort
estimation

Minku L.L. Empirical Software Engineering

S8 2019 Model-based software effort
estimation - A robust comparison
of 14 algorithms widely used in
the data science community

Phannachitta P., Matsumoto K. International Journal of
Innovative Computing,
Information and Control

S9 2019 Applicability of Neural Network
Based Models for Software Effort
Estimation

S. Shukla; S. Kumar 2019 IEEE World Congress on
Services (SERVICES)

S10 2019 Software effort interval
prediction via Bayesian inference
and synthetic bootstrap
resampling

Song L., Minku L.L., Xin Y.A.O. ACM Transactions on Software
Engineering and Methodology

S11 2018 Support Vector Regression Based
on Grid-Search Method for Agile
Software Effort Prediction

A. Zakrani; A. Najm; A. Marzak 2018 IEEE 5th International
Congress on Information Science
and Technology (CiSt)

S12 2018 On the value of parameter tuning
in heterogeneous ensembles
effort estimation

Hosni M., Idri A., Abran A.,
Nassif A.B.

Soft Computing

S13 2018 Support vector regression-based
imputation in analogy-based
software development effort
estimation

Idri, Ali; Abnane, Ibtissam;
Abran, Alain

JOURNAL OF
SOFTWARE-EVOLUTION AND
PROCESS

S14 2018 Ensemble effort estimation using
selection and genetic algorithms

Jodpimai P., Sophatsathit P.,
Lursinsap C.

International Journal of
Computer Applications in
Technology

S15 2018 Re-estimating software effort
using prior phase efforts and data
mining techniques

Jodpimai P., Sophatsathit P.,
Lursinsap C.

Innovations in Systems and
Software Engineering

S16 2018 Software effort estimation using
FAHP and weighted kernel
LSSVM machine

Sehra S.K., Brar Y.S., Kaur N.,
Sehra S.S.

Soft Computing

S17 2018 A Comparison Study Between
Soft Computing and Statistical
Regression Techniques for
Software Effort Estimation

T. Mohamed Abdellatif 2018 IEEE Canadian Conference
on Electrical & Computer
Engineering (CCECE)

S18 2018 Software development effort
estimation using random forests:
An empirical study and
evaluation

Zakrani A., Hain M., Namir A. International Journal of
Intelligent Engineering and
Systems

S19 2017 A class of hybrid multilayer
perceptrons for software
development effort estimation
problems

de A. Araújo R., Oliveira A.L.I.,
Meira S.

Expert Systems with Applications

Continued on next page

144

Table A.1: List of selected studies. (Continued)

S20 2017 Investigating heterogeneous
ensembles with filter feature
selection for software effort
estimation

Hosni M., Idri A., Abran A. ACM International Conference
Proceeding Series

S21 2017 Utilizing cluster quality in
hierarchical clustering for
analogy-based software effort
estimation

J. H. C. Wu; J. W. Keung 2017 8th IEEE International
Conference on Software
Engineering and Service Science
(ICSESS)

S22 2017 Heterogeneous Ensemble
Dynamic Selection for Software
Development Effort Estimation

J. T. H. de A. Cabral; R. de A.
Araujo; J. P. Nobrega; A. L. I.
Oliveira

2017 IEEE 29th International
Conference on Tools with
Artificial Intelligence (ICTAI)

S23 2017 A new architecture based on
artificial neural network and PSO
algorithm for estimating software
development effort

Moradbeiky A., Bardsiri A.K. Journal of Telecommunication,
Electronic and Computer
Engineering

S24 2017 A stability assessment of solution
adaptation techniques for
analogy-based software effort
estimation

Phannachitta P., Keung J.,
Monden A., Matsumoto K.

Empirical Software Engineering

S25 2017 Satin bowerbird optimizer: A
new optimization algorithm to
optimize ANFIS for software
development effort estimation

Samareh Moosavi S.H., Khatibi
Bardsiri V.

Engineering Applications of
Artificial Intelligence

S26 2016 Pareto efficient multi-objective
optimization for local tuning of
analogy-based estimation

Azzeh M., Nassif A.B., Banitaan
S., Almasalha F.

Neural Computing and
Applications

S27 2016 Software development efforts
prediction using artificial neural
network

Bisi M., Goyal N.K. IET Software

S28 2016 A hybrid model for task
completion effort estimation

Dehghan A., Blincoe K., Damian
D.

SWAN 2016 - Proceedings of the
2nd International Workshop on
Software Analytics, co-located
with FSE 2016

S29 2016 A differential evolution-based
model to estimate the software
services development effort

Khatibi Bardsiri A., Hashemi S.M. Journal of Software: Evolution
and Process

S30 2016 Heterogeneous Ensembles for
Software Development Effort
Estimation

M. Hosni; A. Idri; A. B. Nassif; A.
Abran

2016 3rd International
Conference on Soft Computing &
Machine Intelligence (ISCMI)

S31 2016 Hybridizing PSO with SA for
optimizing SVR applied to
software effort estimation

Novitasari D., Cholissodin I.,
Mahmudy W.F.

Telkomnika (Telecommunication
Computing Electronics and
Control)

S32 2015 Model to estimate the software
development effort based on
in-depth analysis of project
attributes

E. Khatibi; V. Khatibi Bardsiri IET Software

Continued on next page

145

Table A.1: List of selected studies. (Continued)

S33 2015 Predicting software development
effort using tuned Artificial
Neural Network

Hota H.S., Shukla R., Singhai S. Smart Innovation, Systems and
Technologies

S34 2015 An empirical analysis of data
preprocessing for machine
learning-based software cost
estimation

Huang J., Li Y.-F., Xie M. Information and Software
Technology

S35 2015 Analogy-based effort estimation:
a new method to discover set of
analogies from dataset
characteristics

M. Azzeh; A. B. Nassif IET Software

S36 2014 Predicting project effort
intelligently in early stages by
applying genetic algorithms with
neural networks

Li Z.Y. Applied Mechanics and Materials

S37 2014 A Better Case Adaptation Method
for Case-Based Effort Estimation
Using Multi-objective
Optimization

M. Azzeh; A. B. Nassif; S.
Banitaan

2014 13th International
Conference on Machine Learning
and Applications

S38 2014 Story point approach based agile
software effort estimation using
various SVR kernel methods

Satapathy S.M., Panda A., Rath
S.K.

Proceedings of the International
Conference on Software
Engineering and Knowledge
Engineering, SEKE

S39 2014 Class point approach for software
effort estimation using various
support vector regression kernel
methods

Satapathy S.M., Rath S.K. ACM International Conference
Proceeding Series

S40 2013 Using tabu search to configure
support vector regression for
effort estimation

Corazza A., Di Martino S.,
Ferrucci F., Gravino C., Sarro F.,
Mendes E.

Empirical Software Engineering

S41 2013 Using Ensembles for Web Effort
Estimation

D. Azhar; P. Riddle; E. Mendes;
N. Mittas; L. Angelis

2013 ACM / IEEE International
Symposium on Empirical
Software Engineering and
Measurement

S42 2013 Empirical study of homogeneous
and heterogeneous ensemble
models for software development
effort estimation

Elish M.O., Helmy T., Hussain
M.I.

Mathematical Problems in
Engineering

S43 2013 A PSO-based model to increase
the accuracy of software
development effort estimation

Khatibi Bardsiri V., Jawawi
D.N.A., Hashim S.Z.M., Khatibi E.

Software Quality Journal

S44 2013 Kernel methods for software
effort estimation: Effects of
different kernel functions and
bandwidths on estimation
accuracy

Kocaguneli E., Menzies T., Keung
J.W.

Empirical Software Engineering

Continued on next page

146

Table A.1: List of selected studies. (Continued)

S45 2013 A genetic algorithm approach to
global optimization of software
cost estimation by analogy

Milios D., Stamelos I.,
Chatzibagias C.

Intelligent Decision Technologies

S46 2013 Ensembles and locality: Insight
on improving software effort
estimation

Minku L.L., Yao X. Information and Software
Technology

S47 2013 Software effort estimation as a
multiobjective learning problem

Minku L.L., Yao X. ACM Transactions on Software
Engineering and Methodology

S48 2013 An Empirical Experiment on
Analogy-Based Software Cost
Estimation with CUDA
Framework

P. Phannachitta; J. Keung; K.
Matsumoto

2013 22nd Australian Software
Engineering Conference

S49 2013 Software effort estimation using
a neural network ensemble

Pai D.R., McFall K.S.,
Subramanian G.H.

Journal of Computer Information
Systems

S50 2013 On the value of outlier
elimination on software effort
estimation research

Seo Y.-S., Bae D.-H. Empirical Software Engineering

S51 2013 The impact of parameter tuning
on software effort estimation
using learning machines

Song L., Minku L.L., Yao X. ACM International Conference
Proceeding Series

S52 2013 Linear combination of multiple
case-based reasoning with
optimized weight for software
effort estimation

Wu D., Li J., Liang Y. Journal of Supercomputing

S53 2012 Hybrid morphological
methodology for software
development cost estimation

Araújo R.D.A., Soares S., Oliveira
A.L.I.

Expert Systems with Applications

S54 2012 SEffEst: Effort estimation in
software projects using fuzzy
logic and neural networks

Gonzalez-Carrasco, Israel;
Colomo-Palacios, Ricardo; Luis
Lopez-Cuadrado, Jose; Garcia
Penalvo, Francisco Jose

INTERNATIONAL JOURNAL OF
COMPUTATIONAL
INTELLIGENCE SYSTEMS

S55 2012 Data Mining Techniques for
Software Effort Estimation: A
Comparative Study

K. Dejaeger; W. Verbeke; D.
Martens; B. Baesens

IEEE Transactions on Software
Engineering

S56 2012 Alternative methods using
similarities in software effort
Estimation

Kosti M.V., Mittas N., Angelis L. ACM International Conference
Proceeding Series

S57 2012 Can cross-company data improve
performance in software effort
estimation?

Minku L.L., Yao X. ACM International Conference
Proceeding Series

S58 2012 Software cost modelling and
estimation using artificial neural
networks enhanced by input
sensitivity analysis

Papatheocharous E., Andreou
A.S.

Journal of Universal Computer
Science

Continued on next page

147

Table A.1: List of selected studies. (Continued)

S59 2012 Increasing the accuracy of
software development effort
estimation using projects
clustering

V. K. Bardsiri; D. N. A. Jawawi; S.
Z. M. Hashim; E. Khatibi

IET Software

S60 2011 A shift-invariant morphological
system for software development
cost estimation

Araújo R.D.A., Oliveira A.L.I.,
Soares S.

Expert Systems with Applications

S61 2011 Software effort estimation based
on optimized model tree

Azzeh M. ACM International Conference
Proceeding Series

S62 2011 Model Tree Based Adaption
Strategy for Software Effort
Estimation by Analogy

M. Azzeh 2011 IEEE 11th International
Conference on Computer and
Information Technology

S63 2011 A principled evaluation of
ensembles of learning machines
for software effort estimation

Minku L.L., Yao X. ACM International Conference
Proceeding Series

S64 2010 How effective is Tabu Search to
configure Support Vector
Regression for effort estimation?

Corazza A., Di Martino Martino
S., Ferrucci F., Gravino C., Sarro
F., Mendes E.

ACM International Conference
Proceeding Series

S65 2010 Estimating software development
effort using Tabu search

Ferrucci F., Gravino C., Oliveto
R., Sarro F.

ICEIS 2010 - Proceedings of the
12th International Conference on
Enterprise Information Systems

S66 2010 GA-based method for feature
selection and parameters
optimization for machine
learning regression applied to
software effort estimation

Oliveira A.L.I., Braga P.L., Lima
R.M.F., Cornélio M.L.

Information and Software
Technology

S67 2010 Hybrid Intelligent Design of
Morphological-Rank-Linear
Perceptrons for Software
Development Cost Estimation

R. d. A. Araújo; A. L. I. de
Oliveira; S. Soares

2010 22nd IEEE International
Conference on Tools with
Artificial Intelligence

S68 2009 Software Cost Estimation Using
SVR Based on Immune Algorithm

J. Lee; K. Kwon 2009 10th ACIS International
Conference on Software
Engineering, Artificial
Intelligences, Networking and
Parallel/Distributed Computing

S69 2009 A study of project selection and
feature weighting for analogy
based software cost estimation

Li Y.F., Xie M., Goh T.N. Journal of Systems and Software

S70 2009 Hybrid computational models for
software cost prediction: An
approach using artificial neural
networks and genetic algorithms

Papatheocharous E., Andreou
A.S.

Lecture Notes in Business
Information Processing

S71 2009 A Morphological-Rank-Linear
Approach for Software
Development Cost Estimation

R. d. A. Araújo; A. L. I. de
Oliveira; S. C. B. Soares

2009 21st IEEE International
Conference on Tools with
Artificial Intelligence

Continued on next page

148

Table A.1: List of selected studies. (Continued)

S72 2008 A GA-based feature selection and
parameters optimization for
support vector regression applied
to software effort estimation

Braga P.L., Oliveira A.L.I., Meira
S.R.L.

Proceedings of the ACM
Symposium on Applied
Computing

S73 2008 Theoretical Maximum Prediction
Accuracy for Analogy-Based
Software Cost Estimation

J. W. Keung 2008 15th Asia-Pacific Software
Engineering Conference

S74 2008 Optimization of feature weights
and number of neighbors for
Analogy based cost Estimation in
software project management

Y. F. Li; M. Xie; T. N. Goh 2008 IEEE International
Conference on Industrial
Engineering and Engineering
Management

S75 2006 Improving Accuracy of Multiple
Regression Analysis for Effort
Prediction Model

K. Iwata; T. Nakashima; Y. Anan;
N. Ishii

5th IEEE/ACIS International
Conference on Computer and
Information Science and 1st
IEEE/ACIS International
Workshop on Component-Based
Software Engineering,Software
Architecture and Reuse
(ICIS-COMSAR’06)

S76 2004 Relation-based neurofuzzy
networks with evolutionary data
granulation

Oh S.-K., Pedrycz W., Park B.-J. Mathematical and Computer
Modelling

S77 2003 Self-organizing neurofuzzy
networks based on evolutionary
fuzzy granulation

Sung-Kwun Oh; W. Pedrycz;
Byoung-Jun Park

IEEE Transactions on Systems,
Man, and Cybernetics - Part A:
Systems and Humans

S78 2002 Self-organising networks in
modelling experimental data in
software engineering

S. -. Oh; W. Pedrycz; H. -. Park IEE Proceedings - Computers and
Digital Techniques

S79 2001 Quasi-optimal case-selective
neural network model for
software effort estimation

Jun E.S., Lee J.K. Expert Systems with Applications

Table A.2: Quality assessment per paper.

ID QA1: Does

the study

report its

goal or

main

objective?

QA2: Does

the study

report

research

questions?

QA3: Does

the study

report the

datasets

that are

used?

QA4: Does

the study

measure

accuracy

with an

unbiased

metric?

QA5: Does

the study

analyze

the

obtained

results?

Total score

Continued on next page

149

Table A.2: Quality assessment per paper. (Continued)

S1 1.0 0.0 1.0 0.0 1.0 3.0

S2 1.0 0.0 1.0 0.0 0.5 2.5

S3 1.0 1.0 1.0 0.5 0.5 4.0

S4 1.0 1.0 1.0 1.0 1.0 5.0

S5 1.0 0.0 1.0 1.0 1.0 4.0

S6 1.0 0.0 0.5 0.5 1.0 3.0

S7 1.0 1.0 1.0 1.0 1.0 5.0

S8 1.0 0.0 1.0 1.0 1.0 4.0

S9 1.0 0.0 1.0 0.0 0.0 2.0

S10 1.0 1.0 1.0 1.0 1.0 5.0

S11 1.0 1.0 0.5 0.0 0.5 3.0

S12 1.0 1.0 1.0 1.0 1.0 5.0

S13 1.0 1.0 1.0 1.0 1.0 5.0

S14 1.0 0.0 1.0 0.0 1.0 3.0

S15 1.0 0.0 1.0 0.0 1.0 3.0

S16 1.0 0.0 1.0 0.0 0.5 2.5

S17 1.0 0.0 1.0 0.0 1.0 3.0

S18 1.0 0.0 1.0 0.0 1.0 3.0

S19 1.0 0.0 1.0 0.0 1.0 3.0

S20 1.0 1.0 1.0 1.0 1.0 5.0

S21 1.0 0.0 1.0 0.0 1.0 3.0

S22 1.0 0.0 1.0 0.0 1.0 3.0

S23 1.0 0.0 1.0 0.0 0.0 2.0

S24 1.0 1.0 1.0 0.5 1.0 4.5

S25 1.0 0.0 1.0 0.0 1.0 3.0

S26 1.0 1.0 1.0 1.0 1.0 5.0

S27 1.0 0.0 1.0 0.0 1.0 3.0

Continued on next page

150

Table A.2: Quality assessment per paper. (Continued)

S28 1.0 0.0 0.5 0.0 0.5 2.0

S29 1.0 0.0 1.0 0.0 0.5 2.5

S30 1.0 1.0 1.0 1.0 1.0 5.0

S31 1.0 0.0 1.0 0.5 0.5 3.0

S32 1.0 0.0 1.0 0.5 1.0 3.5

S33 1.0 0.0 1.0 0.5 0.5 3.0

S34 1.0 1.0 1.0 0.5 1.0 4.5

S35 1.0 0.0 1.0 0.5 1.0 3.5

S36 1.0 0.0 1.0 0.0 0.0 2.0

S37 1.0 0.0 1.0 1.0 1.0 4.0

S38 1.0 0.0 1.0 0.5 0.5 3.0

S39 1.0 0.0 1.0 0.5 0.5 3.0

S40 1.0 1.0 1.0 0.5 1.0 4.5

S41 1.0 0.0 0.5 0.5 1.0 3.0

S42 1.0 0.0 1.0 0.0 0.5 2.5

S43 1.0 0.0 1.0 0.0 0.5 2.5

S44 1.0 1.0 1.0 0.5 1.0 4.5

S45 1.0 0.0 1.0 0.0 0.5 2.5

S46 1.0 1.0 1.0 1.0 1.0 5.0

S47 1.0 1.0 1.0 0.5 1.0 4.5

S48 1.0 0.0 1.0 0.5 0.5 3.0

S49 1.0 0.0 0.5 0.0 0.5 2.0

S50 1.0 1.0 1.0 0.0 1.0 4.0

S51 1.0 1.0 1.0 0.5 1.0 4.5

S52 1.0 0.0 1.0 0.0 1.0 3.0

S53 1.0 0.0 1.0 0.0 0.5 2.5

S54 1.0 0.0 1.0 0.0 0.5 2.5

Continued on next page

151

Table A.2: Quality assessment per paper. (Continued)

S55 1.0 0.0 1.0 0.0 1.0 3.0

S56 1.0 0.0 1.0 0.5 1.0 3.5

S57 1.0 1.0 1.0 1.0 1.0 5.0

S58 1.0 1.0 1.0 0.0 1.0 4.0

S59 1.0 0.0 1.0 0.0 0.5 2.5

S60 1.0 0.0 1.0 0.0 0.5 2.5

S61 1.0 0.0 1.0 0.0 1.0 3.0

S62 1.0 0.0 1.0 0.5 1.0 3.5

S63 1.0 1.0 1.0 0.0 1.0 4.0

S64 1.0 1.0 0.5 0.0 1.0 3.5

S65 1.0 0.0 1.0 0.5 1.0 3.5

S66 1.0 0.0 1.0 0.5 1.0 3.5

S67 1.0 0.0 1.0 0.0 0.5 2.5

S68 1.0 0.0 1.0 0.0 0.5 2.5

S69 1.0 0.0 1.0 0.0 0.5 2.5

S70 1.0 0.0 1.0 0.0 0.5 2.5

S71 1.0 0.0 1.0 0.0 0.5 2.5

S72 1.0 0.0 1.0 0.0 0.5 2.5

S73 1.0 0.0 1.0 0.0 0.5 2.5

S74 1.0 0.0 1.0 0.0 0.5 2.5

S75 1.0 0.0 0.0 0.5 0.5 2.0

S76 1.0 0.0 1.0 0.0 0.5 2.5

S77 1.0 0.0 1.0 0.0 0.5 2.5

S78 1.0 0.0 1.0 0.0 0.5 2.5

S79 1.0 0.0 0.5 0.0 0.5 2.0

152

Table A.3: Machine learning techniques by sub-type and related SEE studies.

Technique Sub-type N Studies

Bagging 12 S7, S8, S10, S22, S46, S47, S51, S53, S63, S67, S71,
S72

Bagging Bootstrap 1 S10

Bagging Synthetic Bootstrapping
with Relevance Vector
Machines

1 S10

Bayesian Model Naive Bayes 2 S22, S28

Bayesian Model Bayesian Network 1 S6

Boosting Adaptative Boost 3 S6, S8, S22

Boosting Gradient Boosting 3 S3, S6, S8

Boosting 1 S22

Boosting Gradient Boosting: Multiple
additive regression trees

1 S60

Boosting Stochastic Gradient
Boosting

1 S11

Case Based Reasoning Analogy Based Estimation 16 S8, S13, S21, S29, S32, S35, S43, S45, S47, S48,
S50, S56, S59, S62, S69, S74

Case Based Reasoning 8 S34, S37, S40, S55, S61, S64, S65, S79

Case Based Reasoning Analogy Based Estimation
+ Genetic Algorithm

3 S29, S69, S74

Case Based Reasoning Fuzzy Analogy 3 S4, S13, S18

Case Based Reasoning Analogy Based Estimation
+ Particle Swarm
Optimization

2 S29, S43

Case Based Reasoning Analogy Based Estimation 0 2 S24, S26

Case Based Reasoning OneR 2 S22, S28

Case Based Reasoning Analogy Based Estimation
+ ANOVA/ANCOVA
weighting

1 S32

Case Based Reasoning Analogy Based Estimation
+ Differential Evolution

1 S29

Case Based Reasoning Analogy Based Estimation
with CUDA

1 S48

Case Based Reasoning AQUA+ Analogy Based
Estimation

1 S45

Case Based Reasoning KStar 1 S22

Case Based Reasoning Non-uniform Analogy Based
Estimation

1 S44

Case Based Reasoning Particle Swarm
Optimization Case Based
Reasoning

1 S18

Continued on next page

153

Table A.3: Machine learning techniques by sub-type and related SEE studies. (Continued)

Case Based Reasoning Particle Swarm Optimized
Case Based Reasoning

1 S52

Case Based Reasoning Stochastic Matrix Analogy
Based Estimation

1 S56

Case Based Reasoning Uniform Analogy Based
Estimation

1 S44

Ensemble Heterogeneous Ensemble 10 S5, S6, S12, S14, S20, S22, S30, S41, S42, S46

Ensemble Homogeneous Ensemble 3 S4, S42, S49

Ensemble Negative Correlation
Learning

3 S46, S47, S63

Ensemble Random Ensemble 3 S46, S47, S63

Ensemble 1 S52

Ensemble Bucket 1 S59

Ensemble Dynamic Cross-company
Learning

1 S57

Ensemble Dynamic Weight Majority 1 S57

Ensemble Dynamical Ensemble
Selector

1 S22

Ensemble Genetic Algorithm
Ensemble

1 S14

Ensemble Harmonic Distance Multi
Objective Evolutionary
Algorithm Ensemble

1 S47

Ensemble Heterogeneous OptimalBeta
Ensemble

1 S6

Gaussian Process 1 S22

Genetic Algorithm 1 S2

K-Means Clustering Spherical K-Means
Clustering

1 S28

K Nearest Neighbors 17 S3, S5, S6, S9, S10, S12, S14, S15, S20, S22, S23,
S28, S30, S41, S46, S51, S73

Learning Automata 1 S2

Mean 3 S22, S40, S64

Median 3 S7, S40, S64

Neural Network Multi Layer Perceptron 21 S3, S5, S8, S9, S10, S12, S18, S19, S20, S22, S29,
S30, S42, S46, S47, S51, S54, S55, S61, S63, S66

Neural Network 15 S6, S8, S17, S25, S32, S34, S41, S49, S54, S58, S59,
S69, S70, S74, S79

Neural Network Radial Basis Function
Network

13 S15, S19, S22, S29, S46, S47, S54, S55, S60, S63,
S69, S71, S72

Neural Network GMDH Polynomial Neural
Network

4 S11, S76, S77, S78

Continued on next page

154

Table A.3: Machine learning techniques by sub-type and related SEE studies. (Continued)

Neural Network Morphological-Rank-Linear
Perceptron

3 S19, S53, S67

Neural Network Self-Organized Neuro-Fuzzy
Network

3 S76, S77, S78

Neural Network Adaptative Neuro-Fuzzy
Interference System

2 S25, S42

Neural Network Neuro-Fuzzy Network 2 S76, S77

Neural Network Particle Swarm
Optimization Neural
Network

2 S23, S27

Neural Network Cascade-Correlation Neural
Network

1 S11

Neural Network Error Back Propagation
Network

1 S33

Neural Network General Regression Neural
Network

1 S11

Neural Network Genetic Algorithm Particle
Swarm Optimization Neural
Network

1 S27

Neural Network Genetic Algoritm Neural
Network

1 S36

Neural Network Multilayer
Dilation-Erosion-Linear
Perceptron

1 S19

Neural Network Probabilistic Neural
Network

1 S11

Neural Network Recurrent Neural Network 1 S54

Particle Swarm
Optimization

Particle Swarm
Optimization-Composite
Particle

1 S2

Random Forest 8 S1, S3, S6, S8, S11, S18, S22, S28

Random Forest Extra Trees 1 S6

Regression Ordinary Least Squares
Regression

15 S2, S3, S6, S8, S9, S14, S15, S19, S22, S35, S41,
S50, S55, S60, S71

Regression Stepwise Regression 12 S23, S25, S29, S32, S35, S41, S43, S59, S61, S64,
S65, S74

Regression Multiple Regression 6 S23, S25, S29, S32, S43, S49

Regression Multiple Linear Regression 4 S17, S58, S59, S75

Regression Ridge Regression 4 S3, S6, S8, S55

Regression Logistic Regression 3 S19, S22, S28

Regression Least Median Squares
Regression

2 S22, S55

Regression Morphological-Rank-Linear
Filter Regression

2 S60, S71

Continued on next page

155

Table A.3: Machine learning techniques by sub-type and related SEE studies. (Continued)

Regression 1 S79

Regression ABC-PSO Regression 1 S11

Regression Automatically Transformed
Linear Model

1 S10

Regression Crow Search Algorithm +
Kernel Regression

1 S2

Regression Crow Search Algorithm +
Linear Regression

1 S2

Regression Elastic-Net Regression 1 S8

Regression Empirical Automatically
Transformed Linear Model

1 S10

Regression Kernel Regression 1 S2

Regression Lasso Regression 1 S3

Regression Least Absolute Shrinkage
and Selection Operator
Regression

1 S8

Regression Least Angle Regression 1 S8

Regression Log-Linear Regression 1 S17

Regression Logarithmic Linear
Regresion

1 S7

Regression Manual Regression 1 S11

Regression Manual Stepwise
Regression

1 S40

Regression Multivariate Adaptive
Regression Splines

1 S55

Regression Partial Least Squares
Regression

1 S41

Regression Polinomial Regression 1 S78

Regression Principal Component
Analysis Regression

1 S41

Regression Robust Regression 1 S55

Regression Tabu Search Regression 1 S65

Regression Whale-Crow Optimization
+ Kernel Regression

1 S2

Regression Whale-Crow Optimization
+ Linear Regression

1 S2

Regression Tree Classification and
Regression Trees

16 S3, S8, S15, S23, S25, S29, S32, S34, S35, S41, S43,
S55, S59, S60, S69, S74

Regression Tree 13 S1, S5, S6, S7, S10, S11, S12, S14, S18, S19, S20,
S47, S51

Regression Tree M5P Model Tree 4 S18, S61, S62, S66

Regression Tree M5 Tree 2 S22, S55

Regression Tree REPTree Regression Trees 2 S46, S63

Continued on next page

156

Table A.3: Machine learning techniques by sub-type and related SEE studies. (Continued)

Regression Tree C4.5 Decision Tree 1 S28

Regression Tree Chaid Decision Tree 1 S28

Regression Tree J48 Tree 1 S22

Regression Tree M5Prime 1 S30

Regression Tree RepTree 1 S22

Regression Tree REPTree 1 S57

Relevance Vector Machines 1 S10

Relevance Vector Machines Empirical Relevance Vector
Machines

1 S10

Rule Based Estimation Conjunctive Rules 2 S22, S46

Rule Based Estimation Decision Table 2 S22, S46

Rule Based Estimation M5 Rules 2 S22, S46

Stacking 4 S6, S8, S28, S62

Stacking Voting 1 S28

Support Vector Regression 31 S3, S5, S6, S8, S9, S10, S11, S12, S15, S17, S18,
S19, S20, S22, S28, S30, S31, S38, S39, S40, S42,
S53, S54, S60, S64, S66, S67, S68, S69, S71, S72

Support Vector Regression Fuzzy Analytic Hierarchy
Process Least Squares
Support Vector Regression

1 S16

Support Vector Regression Least Squares Support
Vector Machine

1 S55

Support Vector Regression Least Squares Support
Vector Regression

1 S16

157

Appendix B

ChimeraHPT list of technique and
parameters

1

Table B.1: Categories, techniques, parameters and possible values for the AS file.

Technique Parameter Type Description Ex.

none - - -

variancethreshold threshold float Features with a training-set variance lower than this
threshold will be removed

0.1

correlationpercentile percentile int Percent of features to keep 10

kbest score_func function Function that takes a set of features and returns a
score

-

k int Number of features to keep 3

fpr score_func function Function that takes a set of features and returns a
score

-

alpha float The highest p-value for features to be kept 0.05

fdr score_func function Function that takes a set of features and returns a
score

-

alpha float The highest p-value for features to be kept 0.05

fwe score_func function Function that takes a set of features and returns a
score

-

alpha float The highest p-value for features to be kept 0.05

rfe n_features_to_select int Number of features to select 6

step int or float Amount (int) or percentage (float) of features to
remove at each iteration

0.15

Random Forest n_estimators int Amount of regression tree models that comprise the
forest

100

158

Table B.2: Categories, techniques, parameters and possible values for the LA file.

Technique Parameter Type Description Ex.

knn n_neighbors int Number of neighbors to use 5

weights str or function Weight function used in prediction ‘uniform’

algorithm str Algorithm used to compute the nearest
neighbors

‘auto’

leaf_size int Leaf size passed to BallTree or KDTree 30

p int Power parameter for the Minkowski metric 2

metric str or function The distance metric to use for the tree ‘minkowski’

mlp n_layers int Amount of hidden layers 1

n_hidden int Amount of neurons in each hidden layer 100

activation str Activation function for the hidden layer ‘relu’

solver str The solver for weight optimization ‘adam’

alpha float L2 penalty (regularization term) parameter 0.0001

batch_size int Size of minibatches for stochastic optimizers 200

learning_rate str Learning rate schedule for weight updates,
only used when solver=‘sgd’

‘constant’

learning_rate_init float The initial learning rate used, only with
solver=‘sgd’ or ‘adam’

0.001

power_t float The exponent for inverse scaling learning
rate, only used when solver=‘sgd’

0.5

max_iter int Maximum number of iterations for the
solver

200

shuffle bool Whether to shuffle samples in each iteration True

tol float Tolerance for the optimization 0.0001

momentum float Momentum for gradient descent update,
between 0 and 1, only used when
solver=‘sgd’

0.9

nesterovs_momentum bool Whether to use Nesterov’s momentum, only
used when solver=‘sgd’

True

early_stopping bool Whether to use early stopping to terminate
training when validation score is not
improving

False

validation_fraction float The proportion of training data to set aside
as validation set for early stopping

0.1

beta_1 float Exponential decay rate for estimates of first
moment vector in adam

0.9

beta_2 float Exponential decay rate for estimates of
second moment vector in adam

0.999

epsilon float Value for numerical stability in adam 0.01

lr fit_intercept bool Whether to calculate the intercept for this
model

True

Continued on next page

159

Table B.2: Categories, techniques, parameters and possible values for the LA file. (Continued)

normalize bool When fit_intercept is True, the input data
will be normalized

False

copy_X bool If True, X will be copied True

ridge alpha float Regularization strength; must be a positive
float

1.0

fit_intercept bool Whether to calculate the intercept for this
model

True

normalize bool When fit_intercept is True, the input data
will be normalized

False

copy_X bool If True, X will be copied True

max_iter int Maximum number of iterations for
conjugate gradient solver

100

tol float Precision of the solution 0.001

solver str Solver to use in the computational routines ‘auto’

svr kernel str Kernel type ‘rbf’

degree int Degree of the polynomial kernel function 3

gamma float Kernel coefficient for ‘rbf’, ‘poly’ and
‘sigmoid’

3

coef0 float Independent term in kernel function, for
‘poly’ and ‘sigmoid’

0

tol float Tolerance for stopping criterion 0.001

C float Regularization parameter 1.0

epsilon float Epsilon in the epsilon-SVR model 0.1

shrinking bool Whether to use the shrinking heuristic True

regressiontree criterion str The function to measure the quality of a
split

‘mse’

splitter str The strategy used to choose the split at each
node

‘best’

max_depth int The maximum depth of the tree None

min_samples_split int or float The minimum number of samples required
to split an internal node

2

min_samples_leaf int or float The minimum number of samples required
to be at a leaf node

1

min_weight_fraction_leaf float The minimum weighted fraction of the sum
total of weights required to be at a leaf node

0.0

max_features int or float The number of features to consider when
looking for the best split

None

max_leaf_nodes int Grow a tree with max_leaf_nodes in
best-first fashion

None

min_impurity_decrease float A node will be split if this split induces a
decrease of the impurity greater than or
equal to this value

0.0

Continued on next page

160

Table B.2: Categories, techniques, parameters and possible values for the LA file. (Continued)

bagging base_estimator object The base estimator to fit on random subsets
of the dataset, currently not supported

None

n_estimators int The number of base estimators in the
ensemble

10

max_samples int or float The number of samples to draw from X to
train each base estimator, using bootstrap

1.0

max_features int or float The number of features to draw from X to
train each base estimator

1.0

bootstrap bool Whether samples are drawn with
replacement

True

bootstrap_features bool Whether features are drawn with
replacement

False

oob_score bool Whether to use out-of-bag samples to
estimate the generalization error

False

zeror strategy str Strategy to use to generate predictions ‘mean’

constant int or float The explicit constant as predicted by the
‘constant’ strategy

6

quantile float The quantile to predict using the ‘quantile’
strategy

0.5

* verbose int Controls the verbosity when fitting and
predicting

0

n_jobs int The number of jobs to run in parallel for
both fit and predict

-1

random_state int Random seed None

Table B.3: Categories, techniques, parameters and possible values for the PT file.

Technique Parameter Type Description Ex.

default - - - -

grid search - - - -

random search n_iter int Number of parameter settings that are
sampled

10

random range search n_iter int Number of parameter settings that are
sampled

60

de mutation_rate float Probability that a gene is mutated 0.7

crossover_rate float Percentage of genes that are carried over
from parents

0.8

population_size int Individuals generated per iteration 10

iterations int Amount of iterations 60

flash budget int Amount of solutions that are explored 60

population_size int Amount of randomly generated solutions 2880

Continued on next page

161

Table B.3: Categories, techniques, parameters and possible values for the PT file. (Continued)

initial_size int Amount of solutions that are randomly
explored before the prediction model is used

15

dodge initial_size int Amount of solutions that are randomly
explored before the prediction model is used

15

population_size int Amount of solutions that are explored,
includes initial_size

60

ga max_num_iteratio int The termination criterion of
geneticalgorithm, max amount of iterations

15

population_size int Determines the number of trial solutions in
each iteration

100

mutation_probability float Determines the chance of each gene in each
individual solution to be replaced by a
random value

0.1

elit_ratio int Determines the number of elites in the
population

0

crossover_probability float Determines the chance of an existed solution
to pass its genome to new trial solutions

0.5

cga budget int Amount of explored solutions 60

oneplusone budget int Amount of explored solutions 60

pso budget int Amount of explored solutions 60

popsize int Amount of explored solutions per iteration 10

bo budget int Amount of explored solutions 60

tabu tabu_size int Size of the tabu list, adds that many
additional explored solutions

15

max_steps int Amount of iterations 10

neighborhood_size int Amount of solutions explored per iteration 12

harmony memory_size int Size of the harmony set, adds that many
additional explored solutions

10

memory_considering_rate float Probability that a generated solution
considers the harmony set

0.4

pitch_adjustment_rate float Probability that a parameter taken form the
harmony set is mutated

0.1

fret_width float Maximum value for the mutation for
pitch_adjustment_rate

3

max_steps int Amount of iterations 6

* scoring str or list Metrics to evaluate the performance of the
cross-validated model on the test set

‘MMRE’

n_jobs int The number of jobs to run in parallel for
both fit and predict

-1

refit bool or str Refit an estimator using the best found
parameters on the whole dataset, for
multi-objective optimization it needs to be
hypervolume

True

Continued on next page

162

Table B.3: Categories, techniques, parameters and possible values for the PT file. (Continued)

cv int Number of folds to use in k-fold
cross-validation

5

random_state int Seed for pseudo random number generator None

163

Appendix C

Paper 1: Técnicas de ajuste de
hiperparámetros de algoritmos de

aprendizaje automático para la
estimación de esfuerzo: un mapeo de

literatura

Reference Villalobos-Arias, L., Quesada-López, C., Martínez, A., & Jenkins, M. (2021).

Técnicas de ajuste de hiperparámetros de algoritmos de aprendizaje automático

para la estimación de esfuerzo: un mapeo de literatura. Revista Ibérica de Sis-

temas e Tecnologias de Informação, (E42), 305-318.

164

Status Indexed in Scopus

Técnicas de ajuste de hiperparámetros de
algoritmos de aprendizaje automático para la
estimación de esfuerzo: un mapeo de literatura

Leonardo Villalobos-Arias, Christian Quesada-López, Alexandra Martínez,
Marcelo Jenkins

{leonardo.villalobosarias, cristian.quesadalopez, alexandra.martinez,
marcelo.jenkins}@ucr.ac.cr

Universidad de Costa Rica, San Pedro, Costa Rica.

DOI: 10.17013/risti.n.pi-pf

Resumen: Distintos algoritmos de aprendizaje automático (ML) han sido uti-
lizados para apoyar los procesos de estimación de esfuerzo de desarrollo del
software (EES). Sin embargo, el desempeño de estos algoritmos puede verse
impactado por varios factores, uno de los cuales es la escogencia de los hiper-
parámetros. En los últimos años, el ajuste de hiperparámetros ha surgido como
un área de investigación de interés para la EES que busca optimizar el desem-
peño de los modelos de ML. En este trabajo, realizamos un mapeo sistemático
de literatura para caracterizar las técnicas de ajuste automático de hiperpará-
metros de algoritmos de ML utilizados en el contexto de la EES. Presentamos
los resultados de 67 estudios identificados entre el 2010 y el 2019 y clasificamos
las técnicas de ajuste de hiperparámetros, los algoritmos de ML y los conjuntos
de datos dónde se han aplicado. Asimismo, reportamos los retos reportados
como mapa de ruta para futuras investigaciones en el área.

Palabras-clave: hiperparámetros; aprendizaje automático; estimación de es-
fuerzo del desarrollo de software; mapeo sistemático de literatura.

Machine learning hyper-parameter tuning techniques for software
effort estimation: a systematic mapping study

Abstract: Different machine learning (ML) algorithms have been used to sup-
port software effort estimation (SEE) processes. However, the performance of
these algorithms are sensible to multiple factors, including the choice of hyper-
parameters. More recently, hyper-parameter tuning has risen as a SEE research
area to improve the performance of ML models. In this paper, we perform a
systematic mapping study to characterize hyper-parameter tuning techniques
for ML algorithms in the context of SEE. We present the results of 67 studies

165

identified between 2010 and 2019, and classified the hyper-parameter tuning
techniques, ML algorithms, and datasets. Likewise, we reported the challenges
as a roadmap for future research in the area.

Keywords: hyper-parameters; machine learning; software effort estimation;
systematic literature mapping study.

1. Introducción

La estimación de esfuerzo de desarrollo del software (EES) es una tarea esencial en
la administración de proyectos (Boehm, 1984). La exactitud de los modelos de EES
es esencial, dado que la sobre estimación puede causar la pérdida de oportunidades
de negocio y la subestimación puede afectar el éxito de un proyecto (Lederer &
Prasad, 1995).

Los algoritmos de aprendizaje automático (ML) han sido investigados en el área de
la EES por décadas (Wen, et al., 2012). Estos estudios evalúan distintas técnicas de
validación, pre-procesamiento, selección de atributos y aprendizaje automático que
buscan minimizar el error de las estimaciones. El principal beneficio de estos mode-
los es que pueden apoyar a los profesionales en sus procesos de toma de decisiones
durante el desarrollo de los proyectos (Minku, 2019).

En los últimos años, el ajuste automático de los hiperparámetros ha emergido como
área de investigación que potencialmente pueden impactar el desempeño de los mo-
delos de SEE (Song et al., 2013; Idri et al., 2016; Hosni, et al., 2018; Minku, 2019).
El ajuste de hiperparámetros ha demostrado su impacto en distintas áreas tales
como la predicción de defectos (Agrawal et al., 2019).

Los hiperparámetros son configuraciones ajustables que se eligen para entrenar el
modelo y que rigen proceso de entrenamiento (Luo, 2016). Las técnicas de ajuste de
hiperparámetros permiten obtener de manera automática las configuraciones que
optimizan la exactitud de las estimaciones, estas incluyen técnicas de búsqueda ex-
haustivas, aleatorias, genéticas y otras (Luo, 2016). Muchos de los estudios en EES
no reportan las configuraciones de los hiperparámetros, utilizan las configuraciones
por defecto, o no utilizan técnicas de ajuste (Minku & Yao, 2013). La evaluación del
ajuste automático de hiperparámetros en modelos de SEE es necesaria para deter-
minar el impacto en la exactitud de las estimaciones de esfuerzo (Minku, 2019).

En este trabajo, realizamos un mapeo sistemático de literatura para caracterizar las
técnicas de ajuste automático de hiperparámetros de algoritmos de ML utilizados en
el contexto de la EES. Presentamos los resultados preliminares basado en el análisis
de 67 estudios publicados entre el 2010 y el 2019. Para esto, clasificamos las técnicas
de ajuste de hiperparámetros, los algoritmos de ML, los conjuntos de datos dónde se

166

han aplicado y las métricas de desempeño con las cuáles se han evaluado los modelos
de EES.

El contenido del resto del artículo se estructura de la siguiente manera. La Sección 2
presenta estudios de literatura realizados en el área de la EES. La Sección 3 describe
el diseño del mapeo. La Sección 4 presenta y discute los resultados. Finalmente, la
Sección 5 establece las conclusiones.

2. Trabajo relacionado

Jorgensen & Shepperd (2006) realizaron una revisión sistemática de literatura sobre
la estimación de costos analizando sus oportunidades de mejora. Identificaron 304
estudios que clasificaron de acuerdo a su objetivo de investigación, enfoque de esti-
mación y de investigación, conjuntos de datos y contexto. Wen et al. (2012) realiza-
ron una revisión sistemática de literatura sobre estudios empíricos de modelos de
aprendizaje automático (ML) para la EES. Clasificaron 84 estudios de acuerdo a los
tipos de técnicas, los resultados de exactitud, los métodos de comparación y el con-
texto. Idri et al. (2016) reportan una revisión sistemática de literatura de 24 estudios
en la que identifican modelos ensamblados de estimación de esfuerzo, su exactitud,
las reglas para la combinación de técnicas y las metodologías utilizadas.

Malgorta et al. (2017) realizaron una revisión sistemática que identificó 78 estudios
sobre la capacidad de los algoritmos basados en búsqueda para modelos de predic-
ción. Los autores clasificaron las investigaciones de acuerdo a las técnicas de bús-
queda, las configuraciones para los experimentos, las funciones de aptitud, el desem-
peño, las técnicas estadísticas, y las ventajas y desventajas de su utilización. Sehra et
al. (2017) estudiaron las tendencias y patrones de la investigación sobre modelos de
estimación de esfuerzo. El estudio identificó 12 áreas de investigación y su mapeo
semántico con 60 tendencias de investigación.

Este mapeo sistemático de literatura agrega evidencia sobre la caracterización de las
técnicas de ajuste automático de hiperparámetros de algoritmos de ML en el con-
texto de la EES. En nuestro entendimiento, no existe un mapeo de literatura que
presente esta caracterización en el área de la EES.

3. Metodología

El diseño del estudio se realizó basado en los lineamientos descritos por Petersen et
al. (2015). El objetivo del estudio fue caracterizar las técnicas de ajuste automático
de hiperparámetros utilizadas en el contexto de la estimación de esfuerzo (EES).
Para esto, identificamos los algoritmos de aprendizaje automático (ML) y los con-
juntos de datos reportados en los estudios que aplican ajuste automático de hiperpa-
rámetros. El detalle de cada uno de los formularios producto de la ejecución del pro-
tocolo se encuentra disponible en https://tinyurl.com/y5z7kcuc.

167

3.1. Preguntas de investigación

Las siguientes preguntas de investigación se analizan en el contexto de la EES para
alcanzar el objetivo de investigación:

 RQ1: ¿Cuáles técnicas de ajuste automático de hiperparámetros han sido
utilizadas en modelos de estimación que utilizan algoritmos de ML?

 RQ2: ¿Cuáles conjuntos de datos de proyectos han sido utilizados en los
estudios de ajuste automático de hiperparámetros?

La RQ1 identifica y clasifica las técnicas utilizadas en los estudios de ajuste de hiper-
parámetros que incluyen las técnicas de validación, pre-procesamiento, selección de
atributos, aprendizaje automático y ajuste automático. La RQ2 identifica los conjun-
tos de datos utilizados y sus características.

Para la construcción, refinamiento y validación del protocolo de diseño del mapeo,
utilizamos 15 artículos de control (Corazza et al., 2010; Oliveira et al., 2010; Azzeh,
2011; Dejaeger et al., 2011; Araújo et al., 2012; Azhar et al., 2013; Corazza et al., 2013;
Kocaguneli et al., 2013; Song et al., 2013; Azzeh et al., 2014; Hota et al., 2015; Hosni
et al., 2016; 2017; 2018; Minku et al., 2019). Los estudios de control fueron identifi-
cados mediante una búsqueda exploratoria para identificar artículos que evalúan
técnicas de ajuste automático de hiperparámetros en el contexto de la EES. Estos
fueron utilizados para refinar las cadenas de búsqueda y los procesos de selección de
artículos relevantes.

3.2. Estrategia de búsqueda y selección

La cadena de búsqueda se construyó a partir de las preguntas de investigación y las
palabras clave del título y resumen de los artículos de control. En el mapeo realiza-
mos un conjunto de búsquedas automatizadas y la aplicación de criterios de inclu-
sión y exclusión para identificar los estudios primarios relevantes. Para guiar el pro-
ceso de construcción de la cadena de búsqueda utilizamos el modelo PICO que per-
mite organizar las palabras clave en grupos de búsqueda a partir de la población (P),
intervención (I), comparación (C) y salidas esperadas (O). En el caso de nuestro es-
tudio la población buscada son los artículos de modelos de EES, la intervención son
las técnicas de ajuste automático de hiperparámetros y los algoritmos de ML, no con-
sideramos aspectos de comparación, y las salidas son las técnicas utilizadas para la
construcción de los modelos de ML en EES, los conjuntos de datos y las métricas de
evaluación. Basado en el PICO y a partir de múltiples corridas de refinamiento esta-
blecimos la siguiente la cadena de búsqueda:

(“software” AND (“effort estimation” OR “effort prediction” OR “cost estimation”
OR “cost prediction”)) AND (“tuning” OR “optim*” OR “setting*” OR “combinat*”
OR “ensemble*” OR “scheme*”)

168

Las búsquedas automatizadas se realizaron en las bases de datos Scopus, IEEE
Xplore, Web of Science y ScienceDirect en febrero del 2020. Estas fueron adaptadas
a cada una de las bases de datos. Los buscadores se configuraron para identificar
artículos basado en el título, resumen y palabras clave. Una vez que se obtuvieron los
artículos de las búsquedas en las bases de datos se procedió con la eliminación de los
duplicados. En total se identificaron un total de 644 artículos sin duplicar desde el
2010.

Inclusión y exclusión

La identificación de los artículos relevantes se realizó mediante del proceso de inclu-
sión y exclusión. Para esto se aplicaron un conjunto de criterios a cada uno de los
artículos obtenidos en la búsqueda automatizada a partir del título, resumen y pala-
bras clave. En caso de duda, se realizó la lectura a texto completo del artículo para
determinar su relevancia para responder las preguntas de investigación. Se incluye-
ron los artículos: (I1) que son estudios primarios, (I2) en el campo de la EES, (I3)
que utiliza algoritmos de aprendizaje automático y (I4) que utiliza técnicas de ajuste
automático de hiperparámetros. Se excluyeron artículos (E1) que no estuvieran es-
critos en inglés y (E2) que no estuvieran disponibles en texto completo. Después del
proceso de inclusión y exclusión se determinaron 67 artículos relevantes. El principal
criterio para descartar artículos fue el I4, dado que muchos de los artículos obtenidos
de las búsquedas no aplicaban algoritmos de ajuste automático de hiperparámetros,
dado que seleccionaban los hiperparámetros manualmente o utilizaban los valores
por defecto de los algoritmos de ML.

Evaluación de calidad

Para cada uno de los artículos relevantes, realizamos una evaluación de calidad para
determinar el nivel de detalle para responder las preguntas de investigación. Se eva-
luaron y reportaron los criterios relacionados con: (Q1) el reporte del objetivo y (Q2)
las preguntas de investigación, (Q3) el reporte de los conjuntos de datos utilizados,
(Q4) la calidad de las métricas de evaluación y (Q5) el análisis de los resultados ob-
tenidos. Cada criterio se puntúa en una escala de 0 a 1, donde 0 significa que no se
reporta, 0.5 parcialmente y 1 completamente. Para calcular la puntuación de calidad
de cada artículo se suman los resultados de los criterios, para un máximo posible de
5 puntos. En nuestro estudio, la evaluación de calidad no fue utilizada para excluir
artículos durante el análisis.

3.3. Extracción, clasificación y análisis

Para cada una de las preguntas de investigación se definieron los componentes a ex-
traer a partir del contenido de cada artículo. Primero se extrae información general
del estudio, y luego la correspondiente a cada pregunta de investigación. Durante la
extracción se realizó la clasificación de cada artículo utilizando las recomendaciones
para la construcción de esquemas de clasificación de estudios de mapeo aplicado a

169

los estudios de control, que se complementó durante la extracción de todos los ar-
tículos relevantes (Petersen et al., 2015). La Tabla 1 detalla cada uno de los compo-
nentes extraídos y ejemplos de categorías para su clasificación.

Tabla 1 – Formulario de extracción

RQ Componentes

General Año, autores, foro, tipo de foro, tipo de estudio, objetivo, preguntas de investigación

RQ1 Técnicas de ajuste automático de hiperparámetros (grid search, random search, gene-
tic algorithm, otros), validación (k-fold, leave-one-out, otros), transformación (stan-
dardization, logarithm, otras), selección de atributos (correlation-based, sequential
search, genetic algorithm, otros), algoritmos de aprendizaje automático (regression,
neural networks, regression trees, support vector machines, otros), hiperparámetros y
rangos, proceso de estimación (on-line, off-line)

RQ2 Conjuntos de datos (ISBSG, Albrecht, COCOMO, NASA, Desharnais, otros), tipo de
conjunto de datos (Cross Company, Single Company)

Toda la información de los artículos fue tabulada en una hoja de extracción de datos.
Para responder cada pregunta de investigación, se obtienen los grupos a partir de las
clasificaciones y se presentan las tendencias y patrones identificados.

3.4. Amenazas a la validez

Las siguientes amenazas a la validez del estudio de mapeo deben considerarse. El
análisis se realiza considerando estudios primarios del 2010 al 2019 lo que puede
dejar por fuera artículos relevantes de años anteriores. Asimismo, la cadena de bús-
queda fue definida y calibrada mediante múltiples corridas de prueba; sin embargo,
estudios relevantes pueden no ser identificados en las búsquedas automatizadas por-
que no utilizan las palabras clave seleccionadas. Para las búsquedas se utilizaron ba-
ses de datos reconocidas en el área de la ingeniería de software y la computación. El
proceso de inclusión y exclusión, así como la extracción de los artículos fue realizada
por el autor principal de este mapeo, lo que podría introducir un sesgo en la selec-
ción. Durante la inclusión y exclusión, un segundo autor realizó un muestro aleatorio
para validar este proceso. Finalmente, los resultados del mapeo solo pueden ser ge-
neralizados al conjunto de literatura seleccionada para el análisis.

4. Resultados

En esta sección presentamos los resultados del mapeo de literatura. El listado de los
artículos relevantes y el formulario de extracción se encuentra disponible en
https://tinyurl.com/y5z7kcuc, los estudios son identificados con la nomenclatura

170

S1-S67 que es utilizada para el reporte de resultados. La Figura 1 muestra los artícu-
los seleccionados del mapeo. La búsqueda automatizada en las bases de datos recu-
peró un total de 1,310 artículos. Después del proceso de eliminación de duplicados
se obtuvieron un total de 644 artículos entre el 2010-2019. El proceso de inclusión y
exclusión seleccionó un total de 67 estudios primarios relevantes que fueron extraí-
dos, evaluados y analizados. Los resultados de calidad obtenidos para el conjunto de
artículos relevantes variaron entre 2 y 5, con una media de 3.5, una mediana de 3 y
una deviación de 1. Los resultados indican que los estudios brindan un nivel de de-
talle aceptable para responder a las preguntas de investigación. Asimismo, se denota
la necesidad de mejorar los reportes utilizando métricas de exactitud estandarizadas.

Figura 1 – Artículos seleccionados a partir de la estrategia de búsqueda

La distribución de los artículos fue la siguiente: 4 artículos fueron publicados en el
2010 y 4 en el 2011, 7 en el 2012, 13 en el 2013, 4 en 2014 y 4 en el 2015, 6 en el año
2016, 7 en el 2017, 8 en el 2018, y finalmente 10 artículos en el 2019. La distribución
de los artículos muestra que la investigación sobre el ajuste automático de hiperpa-
rámetros en la EES es un área vigente.

4.1. Técnicas de ajuste de hiperparámetros

La Tabla 2 lista las técnicas de ajuste automático de hiperparámetros reportadas en
los estudios de EES que utilizan algoritmos de ML. En total se identificaron 12 téc-
nicas de ajuste. Las técnicas más utilizadas fueron Grid Search con 53 estudios, Ge-
netic Algorithms con 8 y Particle Swarm Optimization con 6 estudios.

Grid Search consiste en evaluar todas las configuraciones de hiperparámetros de un
espacio de búsqueda. A partir de los valores predefinidos para cada hiperparámetro
se exploran todas las combinaciones posibles, evaluando los resultados del modelo
para cada una. Por su parte, Genetic Algorithms es un método de optimización ins-
pirado en la naturaleza que genera una población inicial de individuos, llamados cro-
mosomas, que representan las configuraciones de hiperparámetros. La función de
aptitud de cada cromosoma es evaluada mediante una métrica de desempeño y se
conservan solamente los individuos más aptos y se generan nuevos individuos a par-

171

tir de la combinación de los existentes. De manera similar, el Particle Swarm Opti-
mization simula el comportamiento de aves buscando comida en un área. Diferentes
soluciones potenciales de hiperparámetros son representadas como una partícula en
el espacio. Para determinar cuál de las partículas está más cercana a la solución óp-
tima, se calcula su aptitud. Las demás partículas se mueven para estar más cercanas
a la solución óptima. Este proceso se repite por una cantidad de iteraciones o hasta
que se encuentre una solución satisfactoria.

Tabla 2 – Técnicas de ajuste de hiperparámetros

Técnica Cant. Estudios

Grid Search 53 S1, S3, S4, S5, S6, S8, S10, S11, S12, S14, S15, S17, S18, S19, S20, S22, S23,
S24, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S38, S39,
S40, S41, S42, S43, S44, S46, S47, S48, S49, S50, S51, S52, S55, S56, S57,
S58, S59, S60, S62, S63, S65, S66

Genetic Algo-
rithm

8 S18, S37, S42, S45, S53, S54, S66, S67

Particle Swarm
Optimization

6 S2, S12, S13, S25, S31, S37

Tabu Search 3 S2, S40, S64

Random
Search

2 S21, S40

Las técnicas siguientes fueron reportadas en un estudio: Bee's Algorithm [S61], Hill Climbing [S7], K-
Fold Cross-Validation [S16], Linear Size Adjustment [S37], Online Supervised Tuning Procedure
[S7], Regression Towards the Mean [S37] y Satin Bowerbird Optimization [S25].

La Tabla 3 lista los algoritmos de ML reportados en los estudios de EES. En total se
identificaron 18 técnicas de ML utilizadas para la construcción de modelos de EES.
Las técnicas más utilizadas reportadas fueron: Neural Networks con 39 estudios,
Regression Trees con 35, Regressions con 31estudios, Case Based Reasoning con 29
y Support Vector Regressions con 29 estudios.

Los hiperparámetros estudiados para las Neural Networks corresponden principal-
mente a la arquitectura de la red (cantidad de capas ocultas o intermedias y la canti-
dad de neuronas en cada una de estas capas), valores de ajuste del entrenamiento
(tasa de aprendizaje, momentum, épocas de entrenamiento) y la función de activa-
ción. En la EES se ha investigado principalmente arquitecturas pequeñas, usual-
mente una capa oculta con menos de 20 neuronas. Entre los hiperparámetros estu-
diados para los Regression Trees se encuentran la profundidad máxima del árbol y
los criterios para determinar si se divide un nodo (función de partición, cantidad
mínima de instancias por hoja, incremento mínimo de rendimiento o varianza). En
el caso de Regression, las regresiones lineares, polinomiales, logarítmicas, o modelos
múltiples no cuentan con hiperparámetros, pero han sido estudiadas en conjunto

172

con otros algoritmos para generar modelos complejos, o como líneas base. Case Ba-
sed Reasoning ha sido estudiando principalmente mediante analogy based estima-
tion y analizando 3 hiperparámetros: la cantidad de casos similares a considerar, la
función de distancia para determinar los casos más cercanos, y la función de ajuste.
Para la Support Vector Regression se han estudiado hiperparámetros para aumentar
la cantidad de dimensiones y facilitar la búsqueda de un margen de separación. En
este caso se han ajustado la penalización por errores (complejidad), el tamaño del
margen de tolerancia de errores, la función de kernel, y el parámetro para la función
de kernel.

Tabla 3 – Algoritmos de ML

Algoritmo Cant. Estudios

Neural Net-
work

39 S3, S5, S6, S8, S9, S10, S11, S12, S15, S17, S18, S19, S20, S22, S23, S25, S27,
S29, S30, S32, S33, S34, S36, S41, S42, S46, S47, S49, S51, S53, S54, S55,
S58, S59, S60, S61, S63, S66, S67

Regression
Tree

35 S1, S5, S6, S7, S8, S10, S11, S12, S14, S15, S18, S19, S20, S22, S23, S25, S28,
S29, S30, S32, S34, S35, S41, S43, S46, S47, S51, S55, S57, S59, S60, S61,
S62, S63, S66

Regression 31 S2, S3, S6, S7, S8, S9, S10, S11, S14, S15, S17, S19, S22, S23, S25, S28, S29,
S32, S35, S40, S41, S43, S49, S50, S55, S58, S59, S60, S61, S64, S65

Case Based
Reasoning

29 S4, S8, S13, S18, S21, S22, S24, S26, S28, S29, S32, S34, S35, S37, S40, S43,
S44, S45, S47, S48, S50, S52, S55, S56, S59, S61, S62, S64, S65

Support Vec-
tor Regres-
sion

29 S3, S5, S6, S8, S9, S10, S11, S12, S15, S16, S17, S18, S19, S20, S22, S28, S30,
S31, S38, S39, S40, S42, S53, S54, S55, S60, S64, S66, S67

Ensemble 17 S4, S5, S6, S12, S14, S20, S22, S30, S41, S42, S46, S47, S49, S52, S57, S59,
S63

K Nearest
Neighbors

16 S3, S5, S6, S9, S10, S12, S14, S15, S20, S22, S23, S28, S30, S41, S46, S51

Los siguientes algoritmos de ML fueron reportados en 10 estudios o menos: Bagging [S7, S8, S10, S22,
S46, S47, S51, S53, S63, S67], Random Forest [S1, S3, S6, S8, S11, S18, S22, S28], Boosting [S3, S6, S8,
S11, S22, S60], Stacking [S6, S8, S28, S62], Bayesian Model [S6, S22, S28], Rule Based Estimation
[S22, S46], Gaussian Process [S22], Genetic Algorithm [S2], K-Means Clustering [S28], Particle Swarm
Optimization [S2] y Relevance Vector Machines [S10].

Se identificaron 5 técnicas de validación cruzada (Cross-Validation): Leave-One-
Out Cross-Validation fue reportada en 32 estudios [S4, S5, S8, S11, S12, S13, S18,
S19, S20, S21, S22, S23, S24, S26, S27, S29, S30, S35, S36, S37, S40, S41, S44, S49,
S50, S53, S55, S56, S60, S62, S64, S66], K-Fold Cross-Validation en 27 [S1, S3, S10,
S11, S13, S14, S15, S16, S17, S18, S19, S25, S27, S28, S31, S32, S38, S39, S40, S43,
S50, S54, S59, S61, S62, S65, S66], Hold-out Split en 24 [S1, S2, S3, S9, S17, S18,
S22, S33, S34, S38, S42, S45, S46, S47, S52, S53, S54, S55, S58, S60, S63, S64, S66,

173

S67], Online en 4 estudios [S7, S45, S51, S57] y finalmente, Blocked Cross-Validation
en un estudio [S6]. Para la EES se recomienda Leave-One-Out Cross-Validation ya
que las particiones generadas por este algoritmo son determinísticas, incrementando
la replicabilidad de los resultados de las evaluaciones.

Con respecto a los algoritmos de pre procesamiento se reportaron 22 distintas: Unit
Range [0,1] en 21 estudios [S8, S15, S17, S19, S25, S26, S31, S32, S33, S34, S37, S38,
S39, S41, S43, S45, S46, S53, S60, S62, S67], Logarithm en 13 [S8, S14, S15, S17, S35,
S40, S41, S47, S50, S55, S58, S61, S64], K Nearest Neighbors en 7 [S10, S13, S46,
S47, S50, S51, S63], K-Means Clustering en 5 estudios [S46, S47, S50, S55, S63] al
igual que Principal Component Analysis [S3, S8, S27, S41, S42] y Standardization
[S3, S10, S14, S15, S49]. One-hot Encoding fue reportado en 4 estudios [S3, S10, S35,
S55] y Binning [S3, S66], BoxCox [S15, S55], Cook's Distance [S15, S50], Interquar-
tile Range [S15, S50], Mean [S34, S54], Median [S54, S55], Unit Range [-1,1] [S34,
S58] en 2 estudios. Finalmente, los siguientes fueron reportados en 1 estudio: Binary
Encoding [S49], Jarque-Bera Test [S15], Least Trimmed Squares [S50], Listwise
Deletion [S34], Mantel Leverage Metric [S50], Random [S54], Support Vector Re-
gression [S13], y Z-Score [S15]. El Unit Range [0, 1] se utiliza para eliminar el sesgo
de la escala de unidad de las variables, y la transformación Logarithmic para que los
datos cumplan los supuestos de normalidad. El método de imputación de datos fal-
tantes más reportado es K Nearest Neighbors dado que considera las propiedades
de los datos.

Las técnicas de selección de atributos reportadas fueron 9: Correlation Based
Feature Selection en 10 estudios [S4, S5, S6, S15, S20, S24, S34, S41, S58, S63], Ge-
netic Algorithm en 5 [S18, S42, S53, S66, S67], Pearson correlation en 4 [S4, S5, S9,
S40], RReliefF Based Feature Selection en 3 [S4, S5, S20], Backward Feature Eli-
mination en 2 [S8, S55] y Exhaustive Search [S35], Particle Swarm Optimiza-
tion [S31], Principal Component Analysis [S24] y Regression [S41] en un artículo.
Cabe resaltar que Genetic Algorithms y Particle Swarm Optimization han sido uti-
lizadas para la selección de atributos y el ajuste de hiperparámetros.

4.2. Conjuntos de datos

La Tabla 4 muestra los estudios por los conjuntos de datos reportados para las eva-
luaciones de los modelos de EES clasificados con respecto a su repositorio de origen.
El repositorio de datos más utilizado es el repositorio abierto PROMISE. Este con-
tiene conjuntos de datos sigle-company (Deshanrais, Albrecht, Kemerer) como
cross-company (Miyazaki94, Coco-moNasa2 o Nasa93). La mayoría de estos con-
juntos contienen menos de 100 proyectos, en la mayoría de casos. El repositorio del
International Software Benchmarking Standards Group (ISBSG, R8, R10, R11) es
cross-company y contiene proyectos de múltiples compañías alrededor del mundo.
Por ejemplo, el release 11 está conformado por 5052 proyectos de 24 países distintos.
Dada la gran cantidad de organizaciones y sus diferentes prácticas, los datos de este

174

conjunto deben ser pre procesados previo a su uso para estimación. El conjunto
Open se refiere a los repositorios de datos que se encuentran disponibles de manera
abierta (NasaBailey y KotenGray). Estos se componen de datos single-company,
reportando menos de 50 proyectos. El origen de datos Tukutuku corresponde con
proyectos de desarrollo web. Se identificaron 3 conjuntos de datos privados que co-
rresponden a la compañía IBM, y finalmente, un estudio utilizó 2 conjuntos de datos
generados de manera artificial, marcados como Artificial.

Tabla 4 – Conjuntos de datos de estimación de esfuerzo

Tipo Cant. Conjuntos de datos y estudios

PROMISE 52 Desharnais [S2, S4, S5, S8, S9, S12, S13, S14, S18, S19, S20, S21, S22, S23,
S24, S26, S27, S29, S31, S34, S35, S40, S42, S44, S45, S46, S47, S48, S50, S52,
S53, S55, S56, S58, S59, S61, S62, S63, S65, S66, S67]. Cocomo81 [S1, S2, S4,
S5, S8, S10, S12, S13, S14, S16, S18, S19, S20, S21, S23, S24, S26, S27, S35,
S36, S37, S42, S44, S46, S47, S48, S53, S55, S57, S61, S62, S63, S66, S67]. Al-
brecht [S4, S5, S8, S12, S13, S18, S19, S20, S22, S24, S25, S26, S27, S30, S35,
S37, S40, S42, S44, S48, S53, S61, S62, S66]. Kemerer [S8, S12, S13, S14, S16,
S18, S19, S20, S21, S24, S25, S26, S35, S37, S40, S44, S48, S53, S61, S62,
S66]. Maxwell [S8, S10, S14, S21, S22, S23, S24, S26, S33, S35, S37, S40, S42,
S44, S48, S51, S55, S59, S61, S62]. CocomoNasa2 [S2, S8, S10, S17, S21, S22,
S24, S37, S44, S46, S47, S48, S57, S61, S63]. China [S4, S5, S12, S13, S20, S21,
S24, S26, S33, S35, S37, S40, S48, S62]. Miyazaki94 [S4, S5, S8, S12, S13, S14,
S20, S24, S30, S40, S42, S44, S48, S52]. Telecom [S14, S26, S35, S37, S40,
S44, S48, S61]. CocomoSDR [S8, S22, S24, S44, S46, S47, S63]. CocomoNasa
[S2, S22, S55, S57]. Kitchenham [S10, S34, S48, S51]. USP05 [S34, S48, S55].

ISBSG 29 ISBSG R10 [S7, S10, S26, S34, S35, S45, S46, S47, S51, S57, S61, S62, S63].
ISBSG R8 [S1, S4, S5, S12, S13, S18, S50]. ISBSG R11 [S3, S25, S29, S32, S43,
S55]. ISBSG R? [S22, S54]. ISBSG R9 [S58].

Open 18 NasaBailey [S19, S26, S27, S35, S53, S60, S63, S65, S66]. Finnish [S8, S24,
S40, S44]. KotenGray [S8, S19, S53, S66]. CF [S43, S56]. Costagliola05
[S39]. Jodpimai18 [S15]. Ziauddin12 [S38].

Tukutuku 5 Tukutuku [S1, S18, S40, S41, S64].

Private 4 ESA [S55]. Euroclear [S55]. Experience [S55]. IT University [S6]. IVR [S16].
Pai13 [S49].

Unknown 3 Bank [S50]. Stock [S50]. Unidentified [S16]. Zakrani18 [S11].

IBM 2 DPS [S43]. RQM [S28]. RTC [S28].

Artificial 1 Moderate [S29]. Severe [S29].

4.5. Discusión

Los estudios identificados establecen la complejidad de la selección de los valores de
los hiperparámetros manualmente para los distintos algoritmos de ML. Para abordar
este problema los autores plantean el uso de las técnicas de ajuste automático [S4,
S7, S11, S12, S13, S16, S20, S21, S26, S33, S35, S37, S40, S45, S51, S61, S62, S63, S64,

175

S66]. Sin embargo, también se ha reportado la falta de técnicas de ajuste [S7, S12,
S41] y distintas limitaciones en estas técnicas de ajuste y en los algoritmos de ML
[S1, S2, S4, S6, S10, S12, S13, S16, S17, S18, S19, S20, S24, S31, S32, S35, S40, S45,
S55]. Los autores plantean la necesidad de técnicas que guíen las búsquedas de hi-
perparámetros a partir de las características de los conjuntos de datos.

El teorema de “No Free Lunch”, que establece que no existe un modelo de aprendi-
zaje universal para resolver todos los problemas, ha sido reportado por los autores
en el campo de la EES [S1, S2, S5, S9, S12, S14, S15, S16, S18, S20, S22, S24, S26,
S30, S41, S42, S52, S61, S63]. Para distintos conjuntos de datos, un algoritmo de ML
puede obtener resultados contradictorios, por lo que se ha establecido la necesidad
de estudios comparativos [S18, S41, S55] y la implementación de métricas estanda-
rizadas para la comparación sin sesgo entre estudios [S24, S35, S55, S66]. Dado este
problema, los autores reportan las limitaciones para la generalización de los resulta-
dos. Estas limitaciones se incrementan dada la cantidad y tamaño de los conjuntos
de datos disponibles para este tipo de estudios [S9, S55].

La necesidad de evidencia empírica sobre la efectividad de las técnicas de ajuste de
hiperparámetros para los algoritmos de ML ha sido reportado [S8, S10, S11, S13, S15,
S16, S17, S18, S30, S34, S44, S50, S51, S58, S63]. Esto incluye investigaciones rela-
cionadas con la construcción de algoritmos de ensamblaje de ML [S8, S18, S30, S60],
la evaluación de algoritmos de ML [S16, S17], la evaluación del impacto del ajuste de
hiperparámetros [S51], el uso de los métodos de kernel [S44], técnicas de imputación
de valores faltantes [S13], técnicas de detección y eliminación de valores atípicos
[S50], análisis de importancia de variables de entrada [S58], estimación en interva-
los [S10], estimación ágil [S11] y a través del ciclo de vida de desarrollo [S15]. Los
estudios indican que la estabilidad de las estimaciones depende de distintos factores
durante la construcción de los modelos de EES (conjuntos de datos, transformacio-
nes, selección de atributos e hiperparámetros) [S8, S12, S17, S18, S20, S24, S26, S37,
S41, S46, S51, S61, S66]. Todos estos factores deben ser estudiados y reportados para
habilitar la replicación y la agregación de evidencia [S2, S24, S41, S46, S51, S55, S57,
S58, S63], lo que implica la mejora en la completitud de los reportes de los estudios.

Los riesgos del sobre y sub ajuste en las estimaciones han sido advertidos en el área
[S1, S3, S9, S10, S11, S13, S15, S17, S19, S22, S25, S26, S27, S29, S42, S46, S47, S49,
S50, S54, S60, S63, S67]. Asimismo, la baja adopción de estos modelos de estimación
en la industria [S2, S3, S16, S19, S53, S55, S66] en comparación con la estimación de
juicio experto. Se plantea la necesidad de mejorar los resultados de las estimaciones
[S14, S16, S22, S32, S57] y su adaptación para escenarios reales en-línea [S7, S51,
S57] para mejorar la adopción.

La dificultad y el costo de recolección de datos [S7, S44, S47, S53, S58], la calidad de
los datos recolectados [S4, S6, S7, S13, S16, S18, S24, S50, S59, S62], los valores fal-
tantes [S4, S13], la heterogeneidad [S7, S16] y los valores atípicos [S4, S16, S18, S50,
S62] de los conjuntos de datos fueron reportados como restos del área. Finalmente,
el costo computacional de las técnicas de ajuste ha sido indicada estableciendo la

176

necesidad de técnicas más eficientes [S14, S26, S32, S34, S40, S44, S45, S48, S53,
S62, S67].

5. Conclusiones

En este trabajo se identificaron estudios de ajuste de hiperparámetros en el contexto
de la EES. Hemos reportado las técnicas de ajuste automático, los algoritmos de ML,
los conjuntos de datos y las métricas de desempeño utilizadas para evaluar los mo-
delos de EES. Los resultados ofrecen un mapeo que puede servir como guía para la
selección de técnicas y algoritmos para estudios en EES. La clasificación de técnicas
de ajuste indica que Grid Search, Genetic Algorithms y Particle Swarm Optimiza-
tion son las más utilizadas. En cuanto a los algoritmos de ML, las Neural Networks,
Regression Trees, Regressions, Case Based Reasoning y Support Vector Regres-
sions son las más evaluadas. Asimismo, los estudios reportan múltiples algoritmos
de validación cruzada, pre procesamiento y selección de atributos que se han combi-
nado para evaluar el impacto en los resultados de las estimaciones.

Basado en los resultados del mapeo se identifican posibles problemas abiertos en el
área de ajuste automático de hiperparámetros. No solo se deben realizar estudios
comparativos para evaluar el impacto de las técnicas de ajuste automático en la exac-
titud de los modelos de EES, sino también estudiar nuevas técnicas que reduzcan la
cantidad de hiperparámetros seleccionados, manteniendo la exactitud de las estima-
ciones. Se requiere la evaluación de la efectividad de los ensambles de algoritmos de
ML (y sus hiperparámetros) en la EES. Las técnicas de ajuste no solo deben ser uti-
lizadas en los algoritmos de ML que determinan el modelo, sino también cuando en
las etapas de pre procesamiento y selección de atributos, si los algoritmos utilizados
lo permiten. Se requiere la evaluación de nuevos conjuntos de datos y de la industria.
El uso de estrategias que se acerquen a la práctica de la industria, tal como la esti-
mación en-línea, debe ser evaluada. Los investigadores deben utilizar métricas de
exactitud estandarizadas para habilitar la comparación de resultados independien-
temente de los conjuntos de datos.

Agradecimientos

Este estudio fue apoyado por la Universidad de Costa Rica No. 834-B8-A27. Nuestro
agradecimiento al Empirical Software Engineering Group (ESEG) de la Universidad
de Costa Rica retroalimentación sobre este trabajo.

Referencias

Agrawal, A., Fu, W., Chen, D., Shen, X., & Menzies, T. (2019). How to" DODGE"
Complex Software Analytics. IEEE Transactions on Software Engineering.

177

Araújo, R. D. A., Soares, S., & Oliveira, A. L. (2012). Hybrid morphological metho-
dology for software development cost estimation. Expert Systems with Applica-
tions, 39(6), 6129-6139.

Azhar, D., Riddle, P., Mendes, E., Mittas, N., & Angelis, L. (2013). Using ensembles
for web effort estimation. In 2013 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (pp. 173-182). IEEE.

Azzeh, M. (2011). Software effort estimation based on optimized model tree. In Pro-
ceedings of the 7th International Conference on Predictive Models in Software
Engineering (pp. 1-8).

Azzeh, M., Nassif, A. B., & Banitaan, S. (2014). A better case adaptation method for
case-based effort estimation using multi-objective optimization. In 2014 13th
International Conference on Machine Learning and Applications (pp. 409-414).
IEEE.

Boehm, B. W. (1984). Software engineering economics. IEEE transactions on Soft-
ware Engineering, (1), 4-21.

Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., & Mendes, E. (2010).
How effective is tabu search to configure support vector regression for effort es-
timation?. In Proceedings of the 6th international conference on predictive mo-
dels in software engineering (pp. 1-10).

Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., & Mendes, E. (2013).
Using tabu search to configure support vector regression for effort estimation.
Empirical Software Engineering, 18(3), 506-546.

Dejaeger, K., Verbeke, W., Martens, D., & Baesens, B. (2011). Data mining techniques
for software effort estimation: a comparative study. IEEE transactions on soft-
ware engineering, 38(2), 375-397.

Idri, A., Hosni, M., & Abran, A. (2016). Systematic literature review of ensemble ef-
fort estimation. Journal of Systems and Software, 118, 151-175.

Jorgensen, M., & Shepperd, M. (2006). A systematic review of software development
cost estimation studies. IEEE Transactions on software engineering, 33(1), 33-
53.

Hosni, M., Idri, A., Nassif, A. B., & Abran, A. (2016). Heterogeneous ensembles for
software development effort estimation. In 2016 3rd International Conference
on Soft Computing & Machine Intelligence (ISCMI) (pp. 174-178). IEEE.

Hosni, M., Idri, A., & Abran, A. (2017). Investigating heterogeneous ensembles with
filter feature selection for software effort estimation. In Proceedings of the 27th
International Workshop on Software Measurement and 12th International Con-
ference on Software Process and Product Measurement (pp. 207-220).

178

Hosni, M., Idri, A., Abran, A., & Nassif, A. B. (2018). On the value of parameter tu-
ning in heterogeneous ensembles effort estimation. Soft Computing, 22(18),
5977-6010.

Hota, H. S., Shukla, R., & Singhai, S. (2015). Predicting Software Development Effort
Using Tuned Artificial Neural Network. In Computational Intelligence in Data
Mining-Volume 3 (pp. 195-203). Springer, New Delhi.

Kocaguneli, E., Menzies, T., & Keung, J. W. (2013). Kernel methods for software ef-
fort estimation. Empirical Software Engineering, 18(1), 1-24.

Lederer, A. L., & Prasad, J. (1995). Causes of inaccurate software development cost
estimates. Journal of systems and software, 31(2), 125-134.

Luo, G. (2016). A review of automatic selection methods for machine learning algo-
rithms and hyper-parameter values. Network Modeling Analysis in Health In-
formatics and Bioinformatics, 5(1), 18.

Malhotra, R., Khanna, M., & Raje, R. R. (2017). On the application of search-based
techniques for software engineering predictive modeling: A systematic review
and future directions. Swarm and Evolutionary Computation, 32, 85-109.

Minku, L. L., & Yao, X. (2013). Ensembles and locality: Insight on improving soft-
ware effort estimation. Information and Software Technology, 55(8), 1512-1528.

Minku, L. L. (2019). A novel online supervised hyperparameter tuning procedure
applied to cross-company software effort estimation. Empirical Software Engi-
neering, 24(5), 3153-3204.

Oliveira, A. L., Braga, P. L., Lima, R. M., & Cornélio, M. L. (2010). GA-based method
for feature selection and parameters optimization for machine learning regres-
sion applied to software effort estimation. information and Software Techno-
logy, 52(11), 1155-1166.

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting syste-
matic mapping studies in software engineering: An update. Information and
Software Technology, 64, 1-18.

Sehra, S. K., Brar, Y. S., Kaur, N., & Sehra, S. S. (2017). Research patterns and trends
in software effort estimation. Information and Software Technology, 91, 1-21.

Song, L., Minku, L. L., & Yao, X. (2013). The impact of parameter tuning on software
effort estimation using learning machines. In Proceedings of the 9th internatio-
nal conference on predictive models in software engineering (pp. 1-10).

Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. (2012). Systematic literature review of
machine learning based software development effort estimation models. Infor-
mation and Software Technology, 54(1), 41-59.

179

180

Appendix D

Paper 2: Evaluation of Grid and
Random Search for Support Vector

Regression

Reference Villalobos-Arias, L., Quesada-López, C., Guevara-Coto, J., Martínez, A.,

& Jenkins, M. (2020, November). Evaluating hyper-parameter tuning using

random search in support vector machines for software effort estimation. In

Proceedings of the 16th ACM International Conference on Predictive Models

and Data Analytics in Software Engineering (pp. 31-40).

181

Status Indexed in ACM

Evaluating Hyper-parameter Tuning using Random Search in
Support Vector Machines for Software Effort Estimation

Leonardo Villalobos-Arias
leonardo.villalobosarias@ucr.ac.cr

Universidad de Costa Rica
San Pedro, Costa Rica

Christian Quesada-López
cristian.quesadalopez@ucr.ac.cr

Universidad de Costa Rica
San Pedro, Costa Rica

Jose Guevara-Coto
jose.guevaracoto@ucr.ac.cr
Universidad de Costa Rica
San Pedro, Costa Rica

Alexandra Martínez
alexandra.martinez@ucr.ac.cr
Universidad de Costa Rica
San Pedro, Costa Rica

Marcelo Jenkins
marcelo.jenkins@ucr.ac.cr
Universidad de Costa Rica
San Pedro, Costa Rica

ABSTRACT
Studies in software effort estimation (SEE) have explored the use of
hyper-parameter tuning for machine learning algorithms (MLA) to
improve the accuracy of effort estimates. In other contexts random
search (RS) has shown similar results to grid search, while being
less computationally-expensive. In this paper, we investigate to
what extent the random search hyper-parameter tuning approach
affects the accuracy and stability of support vector regression (SVR)
in SEE. Results were compared to those obtained from ridge re-
gression models and grid search-tuned models. A case study with
four data sets extracted from the ISBSG 2018 repository shows that
random search exhibits similar performance to grid search, ren-
dering it an attractive alternative technique for hyper-parameter
tuning. RS-tuned SVR achieved an increase of 0.227 standardized
accuracy (𝑆𝐴) with respect to default hyper-parameters. In addition,
random search improved prediction stability of SVR models to a
minimum ratio of 0.840. The analysis showed that RS-tuned SVR
attained performance equivalent to GS-tuned SVR. Future work
includes extending this research to cover other hyper-parameter
tuning approaches and machine learning algorithms, as well as
using additional data sets.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; • Computing methodologies → Machine learning;
Supervised learning.

KEYWORDS
Software effort estimation, empirical study, support vector ma-
chines, hyper-parameter tuning, random search, grid search
ACM Reference Format:
Leonardo Villalobos-Arias, Christian Quesada-López, Jose Guevara-Coto,
AlexandraMartínez, andMarcelo Jenkins. 2020. EvaluatingHyper-parameter
Tuning using Random Search in Support Vector Machines for Software Ef-
fort Estimation. In Proceedings of the 16th ACM International Conference

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
PROMISE ’20, November 8–9, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8127-7/20/11. . . $15.00
https://doi.org/10.1145/3416508.3417121

on Predictive Models and Data Analytics in Software Engineering (PROMISE
’20), November 8–9, 2020, Virtual, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3416508.3417121

1 INTRODUCTION
The process of estimating the effort required to develop a software
product is known as software effort estimation (SEE). Among these
is support vector regression (SVR), a machine learning algorithm
which has been successfully used for effort estimation of cross-
company (CC) data sets [7, 8]. The effectiveness of SVR can be
attributed to its ability to adapt to different and heterogeneous
chunks of data. Hyper-parameter settings allow SVR to better rep-
resent the characteristics of the data, but inappropriate selection of
values can result in model over- or under-fitting. This could lead to
potentially worse prediction accuracy than default values [19].

Hyper-parameters are sets of values defined before the SEE
model’s construction, and can affect model performance [21, 30].
Appropriate hyper-parameter values can increase the prediction
accuracy of the model, when compared to the default values [35].
To avoid manually tuning hyper-parameters, research in SEE has
studied automated hyper-parameter tuning approaches [21]. A com-
mon characteristic among these studies is the frequent use of grid
search, a method that exhaustively explores the hyper-parameter
value space to identify the best set of values [4]. Yet, grid search
is computationally costly and suffers from the so-called curse of
dimensionality [3]. Random search, on the other hand, is a hyper-
parameter tuning approach that takes and evaluates samples from
a search space. Existing evidence suggests that random search can
provide model performance similar to that of grid search, while
being less computationally costly [3]. Previous studies have evalu-
ated hyper-parameter tuning approaches in other areas of software
engineering [1, 13, 33, 34]. We attempt to extend this work in the
area of software effort estimation, initially with the random search
tuning approach.

In this study, we evaluate the effect of the random search hyper-
parameter tuning approach applied to SVR for software effort es-
timation. To this end, we performed an experimental study that
compares the prediction accuracy and stability of an SVR model
tuned with random search to an SVRmodel built with default hyper-
parameters. Four subsets obtained from the ISBSG 2018 Release 1
data set are used. Additionally, ridge regression models and grid
search-tuned models are used as evaluation benchmarks.

31

182

PROMISE ’20, November 8–9, 2020, Virtual, USA Leonardo Villalobos-Arias, ChristianQuesada-López, Jose Guevara-Coto, Alexandra Martínez, and Marcelo Jenkins

2 RELATEDWORK
Several studies have investigated the effect of hyper-parameter
tuning for SEE models. Song et al. [30] performed a study to assess
the impact of hyper-parameter tuning in different machine learning
algorithms (MLA). The authors trained and evaluated four different
MLA using all possible combinations of hyper-parameter values
defined across a range, akin to grid search. The study compared
the best, the worst, and the default settings for hyper-parameter
values.

Dejaeger et al. [9] performed a benchmarking study on the per-
formance of multiple effort estimation techniques. They employed
nine different data sets and two feature selection methods to train
13 different machine learning models. Besides, they used grid search
to select appropriate hyper-parameter values for each technique
lacking a recommended value in the literature.

Minku [23] proposed a novel technique for online effort estima-
tion using data clustering and hyper-parameter tuning techniques
to provide better estimates and minimize the need for collecting
within-company data. The study compared their technique to the
untuned version of the model, and other baselines for online effort
estimation. The results showed that their tuning approach increased
the accuracy with respect to the untuned model.

Xia et al. [37] present a hyper-parameter tuning architecture
called OIL for SEE. OIL is used to construct and evaluate the com-
binations of 3 optimizers and 2 learners against 4 ‘off-the-shelf’
methods. The study concludes that off-the-shelf methods and de-
fault parameters should be deprecated, and instead recommends the
usage of simple, automatic, effective and fast optimization methods
in conjunction with learners for SEE. Corazza et al. [8] applied the
Tabu Search technique as an automated hyper-parameter tuning
approach for support vector regression in the context of SEE.

Oliviera et al. [24] used Genetic Algorithms (GA) for simulta-
neous feature selection and hyper-parameter tuning applied to
machine learning algorithms for SEE.

Similar studies have been performed in other software engineer-
ing research areas. Tantithamthavorn et al. [33] applied a hyper-
parameter tuning approach (Caret optimization) to improve the
performance of defect prediction models. An extension study by
Tantithamthavorn et al. [34] further assess the interpretability of
models, transferability of parameters, and computational cost of
hyper-parameter tuning. Fu et al. [13] evaluate three defect predic-
tors using differential evolution tuning in 9 data sets. The results
of this study show that tuning defect predictors can be simple and
can improve their performance, to the point of changing which
learners are the ‘best’. Similarly, Agrawal et al. [1] propose a novel
tuning approach called DODGE(𝜖) that avoids redundant hyper-
parameter settings, runs orders of magnitude faster, and generates
more accurate models. Our future work will encompass evaluation
of some tuners proposed in these papers.

3 STUDY DESIGN
The main objective of this study is to investigate to what extent
the random search hyper-parameter tuning approach affects the
accuracy and stability of support vector regression for software
effort estimation. We compared the results against those obtained

from ridge regression models and grid search-tuned models. The
following research questions were posed:

RQ1 What is the improvement in prediction accuracy of support
vector regression when random search is used?

RQ2 How stable is the prediction accuracy of support vector re-
gression when random search is used?

RQ3 Which of the evaluated models yields the best accuracy for
SEE?

3.1 Data Set
The analyses presented in this paper are based on the Interna-
tional Software Benchmarking Standards Group (ISBSG) Repos-
itory (https://www.isbsg.org/). We used the Development & En-
hancement 2018 Release 1 data set. The preprocessing and project se-
lection procedures were based on known recommendations [9, 30].
We selected projects with the following characteristics [9, 30]: (a)
Data points quality A or B. For IFPUG 4+ data sets, projects must
also have function point quality A or B. (b) Recorded effort accounts
only for development team. (c) Development type is new develop-
ment. (d) Functional sizing with the selected approach (IFPUG 4+
or COSMIC).

With the selected projects, we split the data set in subsets based
on the function point measure unit: IFPUG 4+ and COSMIC. We
select the IFPUG method as it is the most used in the industry [12]
and COSMIC as it has had high adoption in the latest years [10].
Moreover, we analyze the performance of the estimation models
using base functional components (BFC) and unadjusted function
points (UFP) as BFC are correlated with effort and can affect the
performance of the estimation models, quesada2016cosmic. Thus,
the study used four data sets obtained from ISBSG 2018 Release
1: IFPUG 4+ unadjusted function points (UFP), IFPUG 4+ basic
functional components (BFC), COSMIC full function points (FFP),
and COSMIC BFC. The preprocessing was applied to each data set
independently. Outlier values were not removed.

The feature selection procedure was performed based on the
protocol of Dejaeger et al. [9] and recommendations detailed in
González-Ladrón-de-Guevara et al. [14]. The following feature se-
lection guidelines were defined:

(1) Only retain features relevant for effort estimation
(2) Dimensionality reduction by removal of redundant features
(3) Remove features that are not available at the time of estima-

tion, such as Project Elapsed Time.
(4) Remove features with more than 25% missing values.

The exception to the second guideline was the function point
total. Instead, functional size features were selected depending on
the counting approach. For IFPUG 4+ UFP and COSMIC FFP, the
Functional Size feature was selected. For IFPUG 4+ BFC, the fea-
tures Input count, Output count, Enquiry count, and File count
were selected. For COSMIC BFC, the features COSMIC Entry, COS-
MIC Exit, COSMIC Read, COSMIC Write were selected. In all cases,
the remaining software size features were removed. In addition to
these, each set retained the following features: Application Group,
Architecture, Case Tool Used, Development Methodologies, De-
velopment Platform, Industry Sector, Intended Market, Language
Type, Max Team Size, Team Size Group, Used Methodology, and

32

183

Evaluating Hyper-parameter Tuning using Random Search in Support Vector Machines for Software Effort Estimation PROMISE ’20, November 8–9, 2020, Virtual, USA

Table 1: ISBSG 2018 Release 1 data sets

Name Projects Features

COSMIC BFC 168 15
COSMIC FFP 168 12
IFPUG 4+ BFC 821 18
IFPUG 4+ UFP 821 14

Year of Project. SummaryWork Effort was the target feature. Table 1
contains the final descriptions of each data set.

3.2 Machine Learning Model Evaluation
In this study, machine learning models were trained and evaluated
using the data sets presented in section 3.1. The data was parti-
tioned using a hold-out group, where 90% of the data was used for
constructing the models and collecting the performance metrics,
and the remaining 10% was used as a prediction set or test set. The
evaluation process was conducted using the 90% of the data, and
was used to obtain the accuracy metrics presented in this study.

A second validation approach was used on the 90% of the data
selected to construct the models. We validated the performance of
the investigated SEE approaches through 10 times 10-fold Cross-
Validation (CV), based on previous work by Song et al. [31]. The
accuracy metrics were calculated for each validation fold.

After the metrics were obtained for the 90% set, the models
were evaluated one more time using the 10% set. To accomplish
this, all evaluated models were re-trained using the entirety of the
90% set and then were used to predict effort for the 10% set. The
metrics obtained were compared to those reported in the study,
with the objective of detecting problems such as overfitting and
data mismatch. In this case, the results obtained for the test set did
not greatly differ from those presented in the study.

3.3 Machine Learning Algorithms and
Hyper-parameter Settings

We constructed the SEE models by combining the following meth-
ods: logarithmic (Log) data transformation (DT), 2 feature selec-
tion (FS) methods—variance threshold (VT) and correlation per-
centile (CP)—, and 2 machine learning algorithms(MLA)—support
vector regression (SVR) and ridge regression (RR). For model tun-
ing, we used 2 hyper-parameter tuning (PT) approaches:—random
search (RS) and grid search (GS). A total of twenty-four models were
compared. For example, we compared RS+Log+SVR with Log+SVR
and GS+Log+SVR. We did not investigate VT+SVR and CP+SVR,
as we determined from preliminary runs that feature selection had
almost no effect on accuracy when using SVR. We used the imple-
mentation from the scikit-learn library for Python (https://scikit-
learn.org/) for all studied models. The following sections explain
each technique and the reasoning behind its use.

3.3.1 Hyper-parameter Tuning. Grid search. Grid search is a hyper-
parameter tuning approach that evaluates each possible parameter
combination in the search space [4]. The search space is formed
by a hyper-parameter grid: a multi-dimensional space with one
dimension per parameter. A point in the search space is defined by a
value along each dimension. For example, a valid point in the search
space comprised by hyper-parameters 𝐶 = {100, 150, 200} and 𝛾 =

{0.001, 0.01, 0.1} would be (𝐶 = 150, 𝛾 = 0.01). Grid search explores
all combinations of values for each parameter (i.e., the entire search
space). For each such combination (point in the search space), a
model is built and evaluated using those hyper-parameter values.
The hyper-parameter combination with the highest accuracy is
reported. The scikit-learn implementation of grid search search
uses cross-validation for the search process. We selected a 10-fold
cross-validation approach.

Random search. Random search is an hyper-parameter tuning
approach that samples a subset of the search space, making it less
computationally expensive than grid search. Additionally, random
search provides a level of accuracy improvement comparable to
grid search [3]. The theoretical soundness of random search is
probability: assuming that at least 5% of all points in the hyper-
parameter space are optimal (or close) solutions, by sampling 60
points there is a 95% chance at least one of them will be in the
top-performing hyper-parameters [38]. Thus, we used a sample
of 60 hyper-parameters in this study. Similar to grid search, we
employed an inner 10-fold cross-validation approach.

Default hyper-parameters. To represent the scenario whithout
hyper-parameter tuning, we used the default hyper-parameter
values for each studied method, as defined by the scikit-learn li-
brary. This is our baseline for determining the accuracy improve-
ment of hyper-parameter tuning. In scikit-learn, the default hyper-
parameters for SVR are: a) kernel = rbf, b) 𝐶 = 1, and 𝜖 = 0.1 c)
𝛾 = 1/(𝑛 ∗ 𝑣𝑎𝑟) where 𝑛 = number of features, 𝑣𝑎𝑟 = variance of
the data set. The default hyper-parameter for ridge regression is
𝛼 = 1.0. The default hyper-parameter for VT is 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0. The
default hyper-parameter for CP is 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = 10. Regarding the
kernel hyper-parameter for SVR, its default value is radial basis
function (rbf). This kernel has been successfully used in multiple
SEE studies [8, 17], and has shown to work well in both high and
low dimensional feature spaces when adequately adjusted [18].

3.3.2 Machine Learning Algorithms. Support vector regression. Sup-
port vector machines (SVM) are a type of model useful in high
dimensional feature spaces [28]. This technique searches for a
boundary that splits the data based on the target feature. Support
vector regression is an approach based on SVMs that is suitable
for prediction problems [26]. SVR was chosen for this study as it is
a technique that has been used in SEE literature [36], and whose
accuracy depends on appropriate hyper-parameter settings [19].

Ridge regression. Ridge regression is an approach based on ordi-
nary least squares (OLS) regression, which addresses the problem
of highly correlated attributes [9, 15, 16] by estimating the coef-
ficients using a ridge estimator. The ridge estimator is biased but
has a lower variance than the OLS estimator, due to the penalty
factor (𝜆), which penalizes high values of 𝛽 (coefficient), resulting
in coefficient shrinkage. This model is selected as a baseline for
comparison against SVR, as previous studies have reported that
regression-based models outperform more complex machine learn-
ing methods [9]. The scikit-learn implementation of this approach
applies standardization to the data. Ridge regression was selected
as a baseline technique that has been successfully used in previous
SEE studies, such as Dejaeger et al. [9], Ertuğrul et al. [11], and
Malgonde et al. [22].

33

184

PROMISE ’20, November 8–9, 2020, Virtual, USA Leonardo Villalobos-Arias, ChristianQuesada-López, Jose Guevara-Coto, Alexandra Martínez, and Marcelo Jenkins

3.3.3 Feature Selection. Variance threshold. Variance threshold-
ing (VT) is a basic feature selection approach, based on the idea
that low variance features could be less useful than high variance
features [2]. The method calculates the variance of each feature,
and then drops all those whose variance is under the threshold. The
sci-kit learn library implementation has one hyper-parameter: the
threshold value.

Correlation percentile. Pearson’s correlation coefficient can be
used as a filter approach for feature selection [28]. A feature se-
lection approach based on this metric calculates the correlation
between each feature and the target feature. Features that have
high correlation with the target are likely to be very informative
for model training [2]. Based on these correlations, a subset of the
most correlated features is selected.

Correlation percentile is a method based on the SelectPercentile
feature selector of the scikit-learn library and Pearson’s correlation
coefficient. The method calculates the correlation between each
feature and the target feature, and then selects those features with
the highest correlation in the percentile. This percentile can be
adjusted as a hyper-parameter of the method.

3.3.4 Data Transformations. Log. The logarithmic transformation
has been traditionally used in SEE studies [7, 9]. We used a modified
version of this transformation, which is defined as 𝑥 = 𝑙𝑜𝑔(1 + 𝑥),
where 𝑥 is each numerical feature. The logarithmic transformation
is used to address two problems in the data: 1) large differences in
the feature ranges that can bias the model, and 2) non-linearity in
the feature space that may affect the applicability of linear meth-
ods [7].

Whether or not the Log transformation is used, the following
transformations were applied to the data:

• Missing values are treated using 1NN (k-Nearest neighbors
with 𝑘 = 1) imputation [5].

• Categorical features are transformed via one-hot-encoding.
This representation converts a categorical feature with 𝐾
unique values into 𝐾 binary features. These features are
exempted from the data transformation technique.

3.3.5 Hyper-parameter Values. The hyper-parameter values re-
searched in this study are shown in table 2. These values were
selected from existing recommendations in the literature [22, 31],
with modifications product of adjustment performed in preliminary
iterations. The grid size (amount of possible parameter combina-
tions) for each technique is as follows: 4128 for SVR, 29 for RR, 232
for VT+RR, and 261 for CP+RR. For the 𝛾 parameter of SVR, the
value auto equals to 1/𝑛 and scale equals to 1/(𝑛 ∗ 𝑣𝑎𝑟), where 𝑛 =
number of features.

3.4 Performance Metrics
We measured the prediction accuracy of SEE models using several
metrics based on the absolute residual: 𝐴𝑅𝑖 = |𝑦𝑖 − 𝑦𝑖 |, where 𝑦𝑖 is
the observed effort value for the 𝑖-th project on the test set, and 𝑦𝑖
is the predicted effort for the same project. The absolute error is
calculated for each predicted value. The average of these errors is

Table 2: Hyper-parameter values

Approach Hyper-parameters and values

SVR kernel = {rbf, sigmoid}
𝛾 = (10𝑥 , 𝑥 = {−3,−2.5,−2, ...,−0.5}) ; auto, scale
𝐶 = 1, 5, 15, 30, {50, 100, ... , 450}, {500, 1000, ... , 15000}
𝜖 = 10𝑥 , 𝑥 = {−3,−2.5,−2, ...,−0.5}

RR 𝛼 = 1, {5, 10, ..., 45}, {50, 75, ..., 500}
VT+RR 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5

𝛼 = 1, {5, 10, ..., 45}, {50, 75, ..., 500}
CP+RR 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = {10, 20, 30, ... , 90}

𝛼 = 1, {5, 10, ..., 45}, {50, 75, ..., 500}

the mean absolute residual (𝑀𝐴𝑅):

𝑀𝐴𝑅 =
1
𝑛

𝑛∑
𝑖=1

𝐴𝑅𝑖 . (1)

The median of the absolute residuals𝑀𝑑𝐴𝑅 is another summary
metric that is more resilient to outliers than𝑀𝐴𝑅.

We can also calculate the standard deviation 𝑆𝑑𝐴𝑅 of the 𝐴𝑅
values:

𝑆𝑑𝐴𝑅 =
1
𝑛

√√
𝑛∑
𝑖=1

(𝑦𝑖 −𝑀𝐴𝑅) . (2)

Standardized accuracy, defined by Shepperd and MacDonell [29],
is a ratio of how much better is the estimation model than the
baseline model. A value of 0 indicates the same accuracy as a ran-
dom guessing, while a negative value indicates lower accuracy
than random guessing. The use of such metric is recommended for
comparability with other studies. We used the modified version
proposed by Minku [23], which employs𝑀𝑑𝐴𝑅 instead of𝑀𝐴𝑅, as
follows:

𝑆𝐴 = 1 − 𝑀𝑑𝐴𝑅

𝑀𝑑𝐴𝑅𝑝0
, (3)

where 𝑀𝑑𝐴𝑅𝑝0 is the median absolute residual of the baseline
predictor 𝑝0. We used the random estimation baseline model rec-
ommended by Langdon et al. [20].

To answer RQ1, the improvement in accuracy was determined
as 𝑖𝑚𝑝 = 𝑆𝐴1 − 𝑆𝐴2, where 𝑆𝐴1 and 𝑆𝐴2 are the standardized
accuracy of the tuned and untuned models, respectively. Positive
values indicate an improvement in accuracy, whereas negative
values indicate a diminishing in accuracy. A value of 0 indicates that
tuning has no effect in performance. The magnitude of changes was
quantified using the standardized metric described by Glass [25]:

Δ =
𝑀𝑑𝐴𝑅1 −𝑀𝑑𝐴𝑅2

𝑆𝑑𝐴𝑅2
, (4)

where𝑀𝐴𝑅1 is the𝑀𝐴𝑅 obtained by the hyper-parameter tun-
ing approach, and 𝑀𝐴𝑅2 and 𝑆𝑑𝐴𝑅2 are the 𝑀𝐴𝑅 and 𝑆𝑑𝐴𝑅 ob-
tained by default hyper-parameters, respectively. To interpret this
metric, we use the categories proposed by Cohen [6]:

effect size =


negligible if Δ ≤ 0.2
small if 0.2 < Δ ≤ 0.5
medium if 0.5 < Δ ≤ 0.8
large if 0.8 < Δ

(5)

34

185

Evaluating Hyper-parameter Tuning using Random Search in Support Vector Machines for Software Effort Estimation PROMISE ’20, November 8–9, 2020, Virtual, USA

To answer RQ2, the stability ratio of tuned against default hyper-
parameters was calculated as [33]:

stability ratio =
𝑆𝑑𝐴𝑅1
𝑆𝑑𝐴𝑅2

(6)

where 𝑆𝑑𝐴𝑅1 and 𝑆𝑑𝐴𝑅2 are the 𝑆𝑑𝐴𝑅 obtained by tuned hyper-
parameters and default hyper-parameters, respectively. The stabil-
ity ratio metric functions as an inverse of 𝑆𝐴. A stability ratio of
1 indicates that the tuning method is equally stable as the default
hyper-parameters. Whereas values above 1 indicate that the tuning
approach induces instability, and values smaller than 1 indicate an
increase or improvement in stability.

3.5 Threats to Validity
Internal validity. The accuracy of the constructed models is mea-

sured in standardized accuracy, which is calculated using a baseline
random model. In essence, the metric shows the ratio of improve-
ment over random guessing; and thus shows if the accuracy of a
model is due to random factors or due to the selected techniques.
In addition, we report other accuracy measures commonly used
in the literature to increase our comparability with other studies.
Another factor that may affect the causality of the metrics is the
split of training and validation data. To mitigate this effect, we have
employed 10 times 10-fold cross-validation.

Construct validity. One threat to construct validity is the vari-
ability of the ISBSG data set. As data are collected from multiple
sources, some variations on the measurements could affect the in-
tegrity of the data. To mitigate this effect, we selected only those
projects with high data quality rating. Another threat is the search
space for the hyper-parameter tuning approaches, as there are con-
straints on the execution time of this study. To reduce this threat,
the search space for these techniques was selected and validated
both through existing studies in tuning and empirical runs before
the experiment. Missing value imputation introduces some threats
to construct validity.

External validity. This study covers only the ISBSG 2018 Release
1 data set, thus limiting the reach of generalization of results to
other data sets or projects. Future work includes the extension of
this study into different data sets to provide more general results.

Conclusion validity. We use a large number of cross-validation
iterations to provide enough experimental runs and measurements.
Besides, we study the properties of the collected data (i.e. normality)
and validate the accuracy metrics with those from the test set. We
also validated the obtained results with previous SEE literature.
One threat to conclusion validity is the obtained effect size for the
hyper-parameter tuning approaches. According to the categories
by Cohen, tuning was negligible in all but two cases. This could
indicate that the results obtained in this study could be due to
randomness instead of a significant difference between tuned vs.
default parameters. However, results of the Scott-Knott analysis
show that tuned and untuned SVR models have significant 𝑆𝐴
differences.

4 RESULTS
4.1 Prediction Accuracy Improvement when

Using Random Search
This section answers RQ1, which aimed at finding the improvement
in SVR prediction accuracy when using random search. For this,
we contrast hyper-parameter tuned models with untuned models
(using default hyper-parameters).

The accuracy improvements and effect size achieved by random
search for the SEE models constructed using each data set are
shown in Figure 1. The overall accuracy improvement, represented
as the median improvement (and standard deviation) for the models
are summarized in Table 3. The use of random search allowed for
the identification of a median increase in SA of up to 0.227. When
analyzing the ranges, we observed that the maximum value for 𝑆𝐴
improvement was around 1, outliers excluded. The improvement
provided by random search is not negligible for the ridge regression
model and the VT-RR, for the COSMIC FFP data set.

The performance improvement provided by random search has
an intrinsic relationship to the data set. Random search provided
accuracy improvements on models trained with the COSMIC data
sets than those trained with IFPUG 4+. It is also important to note
that the effect of tuning was far more noticeable when function
point total was used instead of BFC. Interestingly, also random
search decreased the performance of several models: 1 in COSMIC
BFC, 1 in IFPUG 4+ BFC, and 2 in IFPUG 4+ UFP, as can be seen
in Table 3. In all cases, this decrease in performance was less than
0.05 SA.

The model that benefited the most of hyper-parameter tuning
was Log+SVR, having the largest performance increase in three out
of four data sets, and median increases in 𝑆𝐴 ranging from 0.129
to 0.227, as shown in table 3. Random search also had a positive
effect on the SVR model, improving accuracy in all data sets. The
ridge regressionmodels were mostly improved when using function
point totals, but had their performance mostly unaffected in BFC
sets.

Random search provided similar increases in accuracy with re-
spect to grid search. For both SVR models—SVR and Log+SVR—the
difference between grid search and random search does not exceed
0.21 SA, with the contrast that random search used a smaller search
space, obtaining results in less time. For the RR models, grid search
offers, at best, an increase of 0.045 SA over random search. One
explanation for random search having less performance than grid
may be due to the 5% top-performing parameters assumption of
the algorithm not applying to the searched space.

(RQ1) Random search increases the accuracy of SVR models
to a maximum of 0.227 SA. SVR models benefited from ran-
dom search in all of the data sets. The accuracy improvement
obtained by random search and grid search was very similar,
with grid search surpassing random search by at most 0.045
SA.

35

186

PROMISE ’20, November 8–9, 2020, Virtual, USA Leonardo Villalobos-Arias, ChristianQuesada-López, Jose Guevara-Coto, Alexandra Martínez, and Marcelo Jenkins

Figure 1: Accuracy improvement and effect size of random search.

Table 3: Median and deviation accuracy improvement of parameter tuning.

COSMIC IFPUG 4+
BFC FFP BFC UFP

Md Sd Md Sd Md Sd Md Sd

RS+SVR 0.099 0.220 0.113 0.317 0.088 0.082 0.140 0.106
RS+RR 0.000 0.297 0.177 0.338 0.000 0.144 0.064 0.223
RS+VT+RR -0.012 0.291 0.165 0.335 0.002 0.211 0.113 0.235
RS+CP+RR 0.047 0.321 0.081 0.230 -0.041 0.182 -0.045 0.140
RS+Log+SVR 0.129 0.261 0.180 0.406 0.166 0.094 0.227 0.129
RS+Log+RR 0.005 0.279 0.183 0.316 0.000 0.022 0.104 0.237
RS+Log+VT+RR 0.005 0.277 0.152 0.349 0.000 0.165 0.091 0.241
RS+Log+CP+RR 0.036 0.214 0.014 0.244 0.000 0.191 -0.012 0.159

GS+SVR 0.102 0.232 0.092 0.323 0.105 0.076 0.156 0.098
GS+RR 0.000 0.297 0.177 0.338 0.000 0.144 0.064 0.223
GS+VT+RR 0.000 0.313 0.160 0.345 0.000 0.169 0.108 0.237
GS+CP+RR 0.018 0.249 0.083 0.233 0.000 0.167 0.000 0.067
GS+Log+SVR 0.128 0.262 0.171 0.433 0.177 0.094 0.223 0.117
GS+Log+RR 0.005 0.279 0.183 0.316 0.000 0.022 0.104 0.237
GS+Log+VT+RR 0.007 0.299 0.158 0.353 0.000 0.057 0.093 0.233
GS+Log+CP+RR 0.040 0.275 0.001 0.249 -0.014 0.175 -0.002 0.154

4.2 Prediction Accuracy Stability when Using
Random Search

This section answers RQ2, which sought to determine the stability
of SVR prediction accuracy when using random search. For this,
we compare the variability in accuracy produced across each cross-
validation iteration and data set.

Table 4 shows the median and standard deviation of the stability
ratio for each data set and SEE model. In the majority of cases,
models tuned by random search were as stable as those with de-
fault hyper-parameters. The median stability ratio of all techniques
across all data sets is below 1.040 and often below 1. At its best,
random search was able to reduce the median stability ratio of a
SEE model to 0.840, and up to a maximum reduction of around 0.5
stability ratio.

The accuracy of the Log+SVR and SVR models became more sta-
ble due hyper-parameter tuning. These techniques boast a median

stability ratio of 0.842 to 0.986 for Log+SVR, and 0.840 to 1.004 for
SVR, as shown on table 4. For ridge regression models, the stability
ratio varies from 0.880 to 1.040. Most cases in which regression
models had a median increase in variability were on the IFPUG 4+
data sets.

When comparing the stability ratios of the models constructed
using random search and grid search, both techniques produced
highly similar results. For both SVR and Log-SVR, the differences be-
tween grid search and random search did not exceed 0.045. In most
cases, grid search showed a better stability than random search.
However, these differences are not large. At best, grid search offered
an increase in stability ratio of 0.008, when compared to random
search applied to regression techniques. Thus, the accuracy stabil-
ity achieved by random search and grid search can be deemed as
similar.

36

187

Evaluating Hyper-parameter Tuning using Random Search in Support Vector Machines for Software Effort Estimation PROMISE ’20, November 8–9, 2020, Virtual, USA

Table 4: Median and deviation stability ratio of parameter tuning.

COSMIC IFPUG 4+
BFC FFP BFC UFP

Md Sd Md Sd Md Sd Md Sd

RS+SVR 1.004 0.074 0.840 0.215 0.958 0.043 0.877 0.113
RS+RR 1.000 0.119 0.971 0.204 1.000 0.248 1.006 0.239
RS+VT+RR 0.999 0.146 0.971 0.203 1.040 0.288 1.010 0.262
RS+CP+RR 0.981 0.192 0.996 0.112 1.000 0.188 1.000 0.122
RS+Log+SVR 0.986 0.085 0.842 0.210 0.911 0.059 0.915 0.085
RS+Log+RR 0.997 0.124 0.880 0.177 1.000 0.006 1.018 0.188
RS+Log+VT+RR 0.988 0.134 0.892 0.178 1.000 0.136 1.024 0.184
RS+Log+CP+RR 0.980 0.095 0.998 0.112 0.999 0.081 1.001 0.135

GS+SVR 1.002 0.084 0.885 0.254 0.958 0.043 0.864 0.076
GS+RR 1.000 0.119 0.971 0.204 1.000 0.248 1.006 0.239
GS+VT+RR 1.000 0.127 0.968 0.200 1.005 0.266 1.009 0.261
GS+CP+RR 0.980 0.190 0.996 0.117 1.000 0.075 1.000 0.033
GS+Log+SVR 0.984 0.082 0.845 0.191 0.922 0.054 0.909 0.078
GS+Log+RR 0.997 0.124 0.880 0.177 1.000 0.006 1.018 0.188
GS+Log+VT+RR 0.985 0.130 0.899 0.170 1.000 0.014 1.023 0.184
GS+Log+CP+RR 0.988 0.092 1.000 0.104 0.999 0.074 1.000 0.125

(RQ2) Random search maintained median prediction sta-
bility for all constructed models, with a maximum stability
ratio of 1.040. SVR models gained the most stability when
tuned with random search, to a minimum of 0.840. Accuracy
stability obtained by random search and grid search was
very similar, with at most grid search surpassing random
search by a ratio difference of 0.045.

4.3 Ranking of SEE Models Based on
Standardized Accuracy

This section answers RQ3, which strove for the best performing
models. To achieve this, we ranked all the constructed SEE models.
This was done using the Scott-Knott algorithm [27]. This method
uses a hierarchical clustering algorithm to partition the treatments
into equal groups. Starting from a group comprised by all treat-
ments, the algorithm splits it into two non-overlapping groups. The
procedure orders the groups by the accuracy metric and splits it
into two groups by determining the largest difference. The process
is repeated, for each group, if the treatments are not equal.

Figure 2 shows the ranked clusters and SA of each SEE model
researched in this study, per data set. The median 𝑆𝐴,𝑀𝑑𝐴𝑅, and
𝑆𝑑𝐴𝑅 of all researched SEE models across the different analyzed
data sets is available in Table 5. The models that belong in the
top group are highlighted. It can be appreciated that, the high-
est observations are comprised of RS+Log+SVR and GS+Log+SVR.
In the case of COSMIC BFC, the highest group is comprised by
RS+Log+SVR, GS+Log+SVR RS+SVR, and GS+SVR. Based on the
results of the Scott-Knott method, RS+Log+SVR and GS+Log+SVR
always outperformed their default counterpart, Log+SVR. Similarly,
RS+SVR and GS+SVR always ranked above both SVR and Log+SVR.
It is also noteworthy, that our results indicated that tuned Log+SVR
outperformed other models such as RR or VT+RR. RS+Log+SVR has
a median 𝑆𝐴 from 0.398 to 0.488 across all data sets. GS+Log+SVR
has a median 𝑆𝐴 from 0.420 to 0.486 across all data sets. This shows
a moderate improvement of prediction accuracy over the baseline.
Moreover, this indicates that, for all data sets, random search has
the same accuracy than grid search when applied to Log+SVR.

The SVR models presented similar or better prediction accuracy
than the RR models. Second to the tuned Log+SVR models, the SVR,
Log+SVR, RS+SVR, and GS+SVR models formed the highest ranked
groups for the COSMIC BFC, IFPUG 4+ BFC, and IFPUG 4+ UFP.
Interestingly, The COSMIC FFP data set is the exception; the third
group being comprised of both untuned SVR and tuned RR models.
The median 𝑆𝐴 of the SVR models always was above 0.2; ranging
from 0.325 to 0.434 for the RS+SVR model, from 0.301 to 0.440 for
the GS+SVR model, from 0.245 to 0.378 for the Log+SVR model,
and from 0.245 to 0.378 for the SVR model. Moreover, the RS+SVR
and GS+SVR models belonged to the same group in all data sets.
This indicates that, random search has the same accuracy than grid
search when applied to SVR.

The accuracy of ridge regression models depends on the data
set. For COSMIC data sets, the median 𝑆𝐴 of ridge models ranged
from −0.02 to 0.266, and in the majority of cases (41 out of 72)
the median 𝑆𝐴 was between −0.1 and 0.3. On COSMIC BFC, the
hyper-parameter tuned RR models have a larger 𝑆𝐴 than their
unoptimized counterparts (excepting one case). For IFPUG 4+ data
sets, the performance of ridge regression models was always below
the baseline. The exception to this tendency were the three CP+RR
models in the IFPUG 4+ UFP data set.

SVR models generally had better performance in BFC data sets
than in FFP data sets, which would indicate that there is value in
using the basic functional components as features for SEE. Future
work could further study the use of BFC against or along with the
functional size.

(RQ3) Tuned SVR models outperformed all other studied
SEE models. Particularly, RS+Log+SVR and GS+Log+SVR
placed in the top group in all datasets. Thesemodels achieved
a maximum median 𝑆𝐴 of 0.488. Other SVR-based models
often achieved high places in the ranking. In addition, SVR
models tuned with random search were equivalent in accu-
racy to SVR models tuned with grid search.

37

188

PROMISE ’20, November 8–9, 2020, Virtual, USA Leonardo Villalobos-Arias, ChristianQuesada-López, Jose Guevara-Coto, Alexandra Martínez, and Marcelo Jenkins

(a) COSMIC BFC (b) COSMIC FFP

(c) IFPUG 4+ BFC (d) IFPUG 4+ UFP

Figure 2: Scott-Knott clusters and SA of the studied SEE models.

5 DISCUSSION
Our results confirmed previous findings in the SEE literature. The
hyper-parameter tuned SVR model had a significantly better perfor-
mance than other regression methods. Besides, tuned SVR models
had better prediction accuracy than untuned SVR. However, the
effect of random search on the accuracy was negligible, accord-
ing to the metric based on Glass’s Delta. Further research with a
larger hyper-parameter search space is necessary to corroborate
this result.

Results obtained as part of RQ2 showed that random search
was able to maintain or increase prediction stability, compared
to default settings. This confirms previously reported results by
Tantithamthavorn et al. [33]. The increase in stability was larger
for SVR models, showing the importance of appropriate hyper-
parameter tuning.

For COSMIC function points, the prediction accuracy for SVR
models was higher when models were trained and tested with data
sets that used basic functional components over function point total.
This goes against previous studies that use the ISBSG repository [9,
11, 17, 23, 32], as they choose to select the function point total
over the individual components. Our results show that SEE models

could benefit from the use of BFC as features. For instance, SEE
models could determine if BFC affected effort differently, depending
on other features. For example, input points could involve more
effort in projects developed with programming language A over
programming language B. Future work could research use BFC
alongside total functional size for SEE models.

Results obtained across all research questions show that the per-
formance of random search is similar to that of grid search, when
applied to support vector regression. RQ1 showed that the increase
in accuracy with respect to default parameters was very similar,
with a difference of at most 0.045 𝑆𝐴. Similarly, RQ2 shows that the
stability of random search and grid search is very similar, with a dif-
ference of at most 0.045. Lastly, RQ3 shows that SVR models tuned
with random search have performance equivalent to those tuned
with grid search. These results suggest that random search could
be used as a baseline technique for research on hyper-parameter
tuning for SVR in the ISBSG data set, with almost no effect on pre-
diction accuracy. Further comparisons among the techniques are
necessary before being able to generalize this statement to other
data sets and MLAs.

38

189

Evaluating Hyper-parameter Tuning using Random Search in Support Vector Machines for Software Effort Estimation PROMISE ’20, November 8–9, 2020, Virtual, USA

Table 5: Median SA, MdAR, and SdAR of all models.

COSMIC IFPUG 4+
BFC FFP BFC UFP

SA MdAR SdAR SA MdAR SdAR SA MdAR SdAR SA MdAR SdAR

SVR 0.378 2186 3664 0.245 2162 4111 0.305 1918 9297 0.259 1786 9968
RR 0.157 2667 3498 -0.020 2659 2909 -0.255 3285 6636 -0.224 2890 6450
VT+RR 0.157 2667 3498 -0.020 2659 2909 -0.255 3285 6636 -0.224 2890 6450
CP+RR 0.175 2946 2959 0.149 2386 2629 -0.118 2805 6679 0.121 2071 7035
Log+SVR 0.378 2184 3664 0.245 2160 4112 0.304 1916 9294 0.258 1798 9975
Log+RR 0.124 2790 3195 -0.010 2918 2796 -0.270 3238 6490 -0.493 3645 6754
Log+VT+RR 0.124 2790 3195 -0.010 2918 2796 -0.270 3238 6490 -0.493 3645 6754
Log+CP+RR 0.137 2921 2926 0.129 2446 2510 -0.273 3270 6675 -0.383 3295 6872

RS+SVR 0.434 1882 3709 0.325 1928 3128 0.369 1638 8686 0.401 1421 8538
RS+RR 0.173 2775 3214 0.248 2035 2730 -0.246 3294 7151 -0.104 2632 6609
RS+VT+RR 0.133 2800 3137 0.262 2071 2732 -0.237 3190 7468 -0.085 2633 6644
RS+CP+RR 0.137 2753 2864 0.266 2109 2704 -0.169 3007 6841 0.014 2291 6905
RS+Log+SVR 0.488 1662 3444 0.398 1515 3058 0.468 1434 8375 0.478 1212 8987
RS+Log+RR 0.215 2779 2972 0.099 2391 2373 -0.270 3228 6490 -0.385 3388 6765
RS+Log+VT+RR 0.134 2804 2915 0.126 2395 2337 -0.298 3453 6564 -0.389 3408 6761
RS+Log+CP+RR 0.134 2794 2778 0.096 2369 2342 -0.251 3233 6400 -0.414 3418 6708

GS+SVR 0.440 1810 3602 0.301 1998 3196 0.388 1604 8652 0.421 1394 8496
GS+RR 0.173 2775 3214 0.248 2035 2730 -0.246 3294 7151 -0.104 2632 6609
GS+VT+RR 0.203 2789 3199 0.223 2129 2758 -0.226 3220 7251 -0.082 2615 6644
GS+CP+RR 0.107 2858 2891 0.253 2077 2739 -0.129 2850 6592 0.121 2082 7035
GS+Log+SVR 0.473 1685 3453 0.420 1561 2945 0.465 1424 8470 0.486 1196 9099
GS+Log+RR 0.215 2779 2972 0.099 2391 2373 -0.270 3228 6490 -0.385 3388 6765
GS+Log+VT+RR 0.206 2789 3002 0.118 2433 2388 -0.270 3228 6490 -0.401 3408 6765
GS+Log+CP+RR 0.139 2633 2853 0.094 2394 2379 -0.242 3261 6488 -0.419 3468 6736

We compared the results obtained from this study with those
from recent (2018–2019) SEE studies that use hyper-parameter
tuning, SVRs, and the ISBSG data set.

Ertuğrul et al. [11] performed an experiment to compare 9 dif-
ferent machine learning algorithms, including grid search-tuned
SVR. They partition the ISBSG Release 11 data set into five sub-sets
depending on their effort size, and using IFPUG 4+ total functional
size. In their second case study, using 10-fold CV, they report MAR
values for the SVR model of 1242, 825, 1098, 838, and 5847. In com-
parison, our RS+Log+SVR and GS+Log+SVR models achieved a
median 𝑀𝑑𝐴𝑅 of 1196 and 1212, respectively. In three cases, our
study resulted in a model with a larger absolute residual, even when
using a larger amount of data. Grouping of ISBSG projects accord-
ing to project size is a worthwhile data transformation to explore
in future studies.

Song et al. [32] proposes a prediction interval estimator called
Synthetic Bootstrap ensemble of Relevance Vector Machines (SynB-
RVM). They perform an evaluation using seven partitions of the
ISBSG Repository Release 10, using IFPUG FPA. This evaluation
compares their proposed technique to multiple hyper-parameter
tuned point estimators, including SVR. For the 7 studied data sets,
SVR resulted in median accuracy scores of 𝑆𝐴 of 0.465, 0.363, 0.461,
0.364, 0.325, 0.327, 0.247. In terms of𝑀𝑑𝐴𝑅, their SVR scored 546,
828, 517, 2118, 3955, 2032, and 3807. Our RS+Log+SVR achieved a
median 𝑆𝐴 of 0.478 and a𝑀𝑑𝐴𝑅 score of 1212, and our GS+Log+SVR
a median 𝑆𝐴 of 0.486 and a𝑀𝑑𝐴𝑅 score of 1196. We thus verify that
the results of this study are in line with those previously reported
in SEE literature.

Hosni et al. [17] study the effect of hyper-parameter values on
heterogeneous ensemble effort estimation. We focus on the results
obtained in the first experimental study presented by the paper,
in which four base techniques, including SVR, are trained on the

ISBSG Repository Release 8 data set, using IFPUG FPA. The study
applies three hyper-parameter tuning approaches—grid search (GS),
particle swarm optimization (PSO), and uniform configuration (UC,
default hyper-parameters). For the GS-SVR, PSO-SVR, and UC-SVR
models, the study reported 𝑆𝐴 values of 0.558, 0.605, and 0.463. The
increase in accuracy achieved by grid search is 0.095. While the
RS+Log+SVR model scored lower 𝑆𝐴 values (0.478 in IFPUG 4+
UFP), it was able to achieve a higher increase in 𝑆𝐴 using random
search 0.227. The GS+Log+SVR model also resulted in a higher
increase in 𝑆𝐴 with respect to default parameters (0.223). This
increase in accuracy could potentially be attributed to the larger
amount of projects in the ISBSG 2018 Release 1 and a larger search
space. The results are similar to those previously reported in the
SEE literature. The difference in results can be attributed to the
version of the ISBSG data set, as well as the preprocessing applied
to the data.

6 CONCLUSION
In this paper we evaluated the the impact of hyper-parameter tun-
ing using random search (RS), and compared it with the accuracy
of models tuned using the more exhaustive grid search in support
vector regression algorithms. Our RS tuned SVR models were com-
pared to multiple estimators, which included those subjected to
tuning by RS and GS, as well as non-tuned models. The study used
4 sub sets of the ISBSG 2018 Release 1 data set to train and evaluate
these models. Our findings indicated that performance of RS-tuned
models was highly similar to those of grid search-tuned SEE models.

Furthermore, this study demonstrated that use of RS for model
tuning could provide an improvement in model stability. This ob-
servation was considerable for SVR models, which had the best
median metrics for accuracy and stability. Because RS searches
a limited parameter space or number of iterations, compared to

39

190

PROMISE ’20, November 8–9, 2020, Virtual, USA Leonardo Villalobos-Arias, ChristianQuesada-López, Jose Guevara-Coto, Alexandra Martínez, and Marcelo Jenkins

grid search, this could have accounted for some instances were
our results were lower than expected. Finally, we identified that
model tuning and data processing, in this case using logarithmic
transformation, improved model performance.

The results in our work confirm: 1) the use of hyper-parameter
tuning and data processing was crucial in constructing capable
predictive SVRmodels, 2) model stability and accuracy are improved
by the use adequate hyper-parameter tuning strategies, such as
grid search or random search, and 3) the performance of the less
exhaustive random search was comparable to the costly grid search,
making random search a viable alternative for hyper-parameter
tuning.

Future work encompasses various directions. One possibility
would be extending this study to further compare random search
and grid search using the data transformations, feature selectors,
and machine learning algorithms that are most used in SEE litera-
ture. The evaluation performed in this study could also be replicated
in more data sets to further generalize the obtained results. Future
work could also explore comparing the performance of other hyper-
parameter tuning approaches, such as hill climbing, genetic, and
other search algorithms. Another line of research would be to in-
vestigate further the properties of the ISBSG 2018 Release 1 data set,
and determine which preprocessing techniques would help increase
prediction accuracy.

ACKNOWLEDGMENTS
This work was supported by project No. 834-B8-A27 at the Univer-
sity of Costa Rica (ECCI-CITIC).

REFERENCES
[1] Amritanshu Agrawal, Wei Fu, Di Chen, Xipeng Shen, and Tim Menzies. 2019.

How to" DODGE" Complex Software Analytics. IEEE Transactions on Software
Engineering (2019).

[2] Chris Albon. 2018. Machine learning with python cookbook: Practical solutions
from preprocessing to deep learning. " O’Reilly Media, Inc.".

[3] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, Feb (2012), 281–305.

[4] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in neural information
processing systems. 2546–2554.

[5] Michelle H Cartwright, Martin J Shepperd, and Qinbao Song. 2004. Dealing
with missing software project data. In Proceedings. 5th International Workshop
on Enterprise Networking and Computing in Healthcare Industry (IEEE Cat. No.
03EX717). IEEE, 154–165.

[6] Jacob Cohen. 1992. A power primer. Psychological bulletin 112, 1 (1992), 155.
[7] Anna Corazza, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Federica

Sarro, and Emilia Mendes. 2010. How effective is tabu search to configure support
vector regression for effort estimation?. In Proceedings of the 6th international
conference on predictive models in software engineering. 1–10.

[8] Anna Corazza, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Federica
Sarro, and Emilia Mendes. 2013. Using tabu search to configure support vector
regression for effort estimation. Empirical Software Engineering 18, 3 (2013),
506–546.

[9] Karel Dejaeger, Wouter Verbeke, David Martens, and Bart Baesens. 2011. Data
mining techniques for software effort estimation: a comparative study. IEEE
transactions on software engineering 38, 2 (2011), 375–397.

[10] Reiner Dumke and Alain Abran. 2016. COSMIC Function Points: Theory and
Advanced Practices. CRC Press.

[11] Egemen Ertuğrul, Zakir Baytar, Çağatay Çatal, and Ömer Can Muratli. 2019.
Performance tuning for machine learning-based software development effort
prediction models. Turkish Journal of Electrical Engineering & Computer Sciences
27, 2 (2019), 1308–1324.

[12] S Fingerman. 2011. Practical software project estimation; a toolkit for estimating
software development effort & duration. Sci-Tech News 65, 1 (2011), 28.

[13] Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics: Is it
really necessary? Information and Software Technology 76 (2016), 135–146.

[14] Fernando González-Ladrón-de Guevara, Marta Fernández-Diego, and Chris
Lokan. 2016. The usage of ISBSG data fields in software effort estimation: A
systematic mapping study. Journal of Systems and Software 113 (2016), 188–215.

[15] Arthur E Hoerl and Robert W Kennard. 1970. Ridge regression: applications to
nonorthogonal problems. Technometrics 12, 1 (1970), 69–82.

[16] Arthur E Hoerl and Robert W Kennard. 1970. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics 12, 1 (1970), 55–67.

[17] Mohamed Hosni, Ali Idri, Alain Abran, and Ali Bou Nassif. 2018. On the value of
parameter tuning in heterogeneous ensembles effort estimation. Soft Computing
22, 18 (2018), 5977–6010.

[18] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. 2003. A practical guide to
support vector classification. https://www.csie.ntu.edu.tw/~cjlin/papers/guide/
guide.pdf. Accessed: 2020-07-07.

[19] S Sathiya Keerthi. 2002. Efficient tuning of SVM hyperparameters using ra-
dius/margin bound and iterative algorithms. IEEE Transactions on Neural Net-
works 13, 5 (2002), 1225–1229.

[20] William B Langdon, Javier Dolado, Federica Sarro, and Mark Harman. 2016. Exact
mean absolute error of baseline predictor, MARP0. Information and Software
Technology 73 (2016), 16–18.

[21] Gang Luo. 2016. A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Network Modeling Analysis in Health
Informatics and Bioinformatics 5, 1 (2016), 18.

[22] Onkar Malgonde and Kaushal Chari. 2019. An ensemble-based model for pre-
dicting agile software development effort. Empirical Software Engineering 24, 2
(2019), 1017–1055.

[23] Leandro L Minku. 2019. A novel online supervised hyperparameter tuning pro-
cedure applied to cross-company software effort estimation. Empirical Software
Engineering (2019), 1–52.

[24] Adriano LI Oliveira, Petronio L Braga, Ricardo MF Lima, and Márcio L Cornélio.
2010. GA-based method for feature selection and parameters optimization for
machine learning regression applied to software effort estimation. information
and Software Technology 52, 11 (2010), 1155–1166.

[25] Robert Rosenthal, Harris Cooper, and L Hedges. 1994. Parametric measures of
effect size. The handbook of research synthesis 621, 2 (1994), 231–244.

[26] Bernhard Schlkopf, Alexander J Smola, and Francis Bach. 2018. Learning with
kernels: support vector machines, regularization, optimization, and beyond. the
MIT Press.

[27] Andrew Jhon Scott and M Knott. 1974. A cluster analysis method for grouping
means in the analysis of variance. Biometrics (1974), 507–512.

[28] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[29] Martin Shepperd and Steve MacDonell. 2012. Evaluating prediction systems in
software project estimation. Information and Software Technology 54, 8 (2012),
820–827.

[30] Liyan Song, Leandro L Minku, and Xin Yao. 2013. The impact of parameter tuning
on software effort estimation using learning machines. In Proceedings of the 9th
international conference on predictive models in software engineering. 1–10.

[31] Liyan Song, Leandro L Minku, and Xin Yao. 2014. The potential benefit of
relevance vector machine to software effort estimation. In Proceedings of the 10th
International Conference on Predictive Models in Software Engineering. 52–61.

[32] Liyan Song, Leandro L Minku, and Xin Yao. 2019. Software effort interval
prediction via Bayesian inference and synthetic bootstrap resampling. ACM
Transactions on Software Engineering and Methodology (TOSEM) 28, 1 (2019),
1–46.

[33] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2016. Automated parameter optimization of classification techniques
for defect prediction models. In Proceedings of the 38th International Conference
on Software Engineering. 321–332.

[34] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2018. The impact of automated parameter optimization on defect
prediction models. IEEE Transactions on Software Engineering 45, 7 (2018), 683–
711.

[35] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined selection and hyperparameter optimization of classifica-
tion algorithms. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. 847–855.

[36] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang. 2012.
Systematic literature review of machine learning based software development
effort estimationmodels. Information and Software Technology 54, 1 (2012), 41–59.

[37] Tianpei Xia, Rahul Krishna, Jianfeng Chen, George Mathew, Xipeng Shen, and
Tim Menzies. 2018. Hyperparameter optimization for effort estimation. arXiv
preprint arXiv:1805.00336 (2018).

[38] Alice Zheng. 2015. Evaluating machine learning models: a beginner’s guide to
key concepts and pitfalls. (2015).

40

191

192

Appendix E

Paper 3: Hyper-Parameter Tuning of
Classification and Regression Trees

for Software Effort Estimation

Reference Villalobos-Arias, L., Quesada-López, C., Martínez, A., & Jenkins, M. (2021).

Hyper-Parameter Tuning of Classification and Regression Trees for Software Ef-

fort Estimation. In Trends and Applications in Information Systems and Tech-

nologies: Volume 3 9 (pp. 589-598). Springer International Publishing.

193

Status Indexed in Scopus

194

195

196

197

198

199

200

201

202

203

204

Appendix F

Paper 4: Hyper-parameter Tuning
using Genetic Algorithms for Software

Effort Estimation

Reference Villalobos-Arias, L., Quesada-López, C., Martínez, A., & Jenkins, M. (2021).

Hyper-parameter Tuning using Genetic Algorithms for Software Effort Estima-

tion. In Proceedings of the 16th Iberic Conference on Information and Technol-

ogy Systems.

205

Status Indexed in IEEExplore

Ajuste Automático de Hiperparámetros mediante Al-

goritmos Genéticos para la Estimación de Esfuerzo

Hyper-parameter Tuning using Genetic Algorithms

for Software Effort Estimation

Leonardo Villalobos-Arias, Christian Quesada-López,

Marcelo Jenkins

Escuela de Ciencias de la Computación e Informática

Universidad de Costa Rica, San Pedro, Costa Rica

 {leonardo.villalobosarias, cristian.quesadalopez, marce-

lo.jenkins}@ucr.ac.cr

Juan Murillo-Morera

Escuela de Informática

Universidad Nacional de Costa Rica, Heredia, Costa Rica

juan.murillo.morera@una.cr

Resumen—Estudios en el área de la estimación del esfuerzo del

desarrollo de software han reportado el impacto del ajuste de

hiperparámetros en los modelos basados en técnicas de aprendi-

zaje automático. Múltiples algoritmos de ajuste han sido pro-

puestos en la literatura con el objetivo de mejorar el desempeño

de las estimaciones. En este estudio comparamos los algoritmos

de ajuste de hiperparámetros Dodge, Grid, Harmony, Tabu y

Random Search con el Genetic Standard, 1+1 y Compact para

evaluar el impacto en la exactitud y la estabilidad de los modelos

de estimación de esfuerzo. Realizamos la evaluación utilizando el

conjunto de datos ISBSG R18 y ajustamos automáticamente los

hiperparámetros de las técnicas Support Vector Regression,

Classification and Regression Trees y Ridge Regression. Los

resultados del análisis de Scott-Knott muestran que los algorit-

mos genéticos obtienen un desempeño superior o similar a los

demás algoritmos de ajuste, incluyendo Grid Search. El ajuste de

hiperparámetros alcanza un impacto de hasta un máximo de 0,21

en la exactitud estandarizada con valores finales de hasta 0,53.

Los modelos de Support Vector Regression optimizados con

algoritmos genéticos muestran la mayor exactitud y mejoran la

estabilidad de las estimaciones con respecto a los demás algorit-

mos de ajuste.

Palabras Clave - optimización; hiperparámetros; algoritmos

evolutivos; aprendizaje automático; estudio empírico.

Abstract — Research on software effort estimation has investigat-

ed the impact of hyper-parameter tuning approaches for machine

learning. Many automated tuning approaches have been pro-

posed in the literature to improve the performance of their base

models. In this study we compare the Dodge, Grid, Harmony,

Tabu, and Random Search algorithms against Standard Genetic,

1+1 Genetic, and Compact Genetic Algorithms in terms of their

impact to model accuracy and stability. This evaluation was

performed using the ISBSG R18 dataset and on the Support

Vector Regression, Classification and Regression Trees, and

Ridge Regression techniques. Results of the Scott-Knott analysis

show that the genetic algorithms perform similar or better to the

other tuners, achieving an improvement of standardized accura-

cy of up to 0,21 and final values of up to 0,53. Genetic algorithm-

tuned Support Vector Regression achieves the highest accuracy

while improving estimation stability relative to other tuners.

Keywords - optimization; hyper-parameters; evolutive algo-

rithm; machine learning; empirical study.

I. INTRODUCCIÓN

La estimación del esfuerzo del desarrollo de software es
una tarea esencial para la administración de proyectos [11].
Distintas técnicas de aprendizaje automático han sido estudia-
das para mejorar los procesos de estimación de esfuerzo [12].
El principal beneficio de estas técnicas es que pueden apoyar a
los profesionales en sus procesos de toma de decisiones durante
el desarrollo de los proyectos [13].

El ajuste automático de los hiperparámetros ha sido estu-
diado para evaluar el impacto en el desempeño de los modelos
de estimación de esfuerzo, con el objetivo de mejorar su capa-
cidad de predicción [13, 30]. Las técnicas de ajuste automático
de hiperparámetros obtienen las configuraciones del modelo
que mejoran la exactitud de las estimaciones, al hacer que el
modelo se adapte mejor a los datos de entrada [13]. Las técni-
cas de ajuste incluyen búsquedas exhaustivas, aleatorias, gené-
ticas y otras [15]. Particularmente, los algoritmos bio-
inspirados, principalmente los genéticos, se han utilizado en el
área de estimación de esfuerzo [16, 32]. En trabajos previos
hemos evaluado el impacto de hiperparámetros en modelos de
aprendizaje automático [30, 31], y en este estudio extendemos
este trabajo para incluir enfoques de ajuste evolutivos.

En este artículo, analizamos el impacto del ajuste automáti-
co de hiperparámetros mediante algoritmos genéticos en la
exactitud y estabilidad de modelos de estimación de esfuerzo.
Para esto comparamos los algoritmos de ajuste Genetic Stan-
dard, 1+1 y Compact con Dodge, Grid, Harmony, Tabu y Ran-
dom Search. Realizamos la evaluación utilizando el conjunto
de datos ISBSG R18 y ajustamos automáticamente los hiperpa-
rámetros de las técnicas Support Vector Regression, Classifica-
tion and Regression Trees y Ridge Regression.

El reporte se estructura de la siguiente manera: la sección II
presenta el trabajo relacionado, la sección III describe la meto-
dología, el análisis de resultados se presenta en la sección IV y
finalmente, la sección V presenta las conclusiones.

206

II. TRABAJO RELACIONADO

Listamos estudios que utilizan técnicas bioinspiradas, prin-
cipalmente algoritmos genéticos para mejorar los resultados de
los modelos de estimación mediante el ajuste de hiperparáme-
tros y la selección de atributos.

Ali et al. [16] presentan una revisión sistemática de literatu-
ra para identificar los diferentes algoritmos bioinspirados y su
impacto en la parametrización en la estimación de esfuerzo.
Los autores identificaron que los algoritmos genéticos y Parti-
cle Swarm Optimization son ampliamente utilizados para la
parametrización de los modelos obteniéndose mejores resulta-
dos que las técnicas tradicionales. Del mismo modo, Villalo-
bos-Arias et al. [32] identificaron que los enfoques genéticos
son de los más utilizados para el ajuste en el área de estimación
de esfuerzo.

Palaniswamy et al. [17] presentan un método para mejorar
la estimación de esfuerzo utilizando el ajuste de hiperparáme-
tros mediante el uso de métodos evolutivos, Particle Swarm
Optimization y algoritmos genéticos.

Ali et al. [18], analiza la selección de atributos con el fin de
determinar el impacto de cada uno de ellos en la exactitud de
las estimaciones. Para esto utilizan algoritmos bioinspirados
Genetic Algorithm, Particle Swarm Optimization, Ant Colony
Optimization, Tabu Search, Harmony Search y Firefly. Los
autores determinan que estos algoritmos obtienen mejores
resultados que los tradicionales.

Oliveira et al. [4], investigan el uso de los algoritmos gené-
ticos para seleccionar de forma óptima un subconjunto de ca-
racterísticas y optimizar los parámetros de los métodos de
aprendizaje automático. Los resultados fueron comparados con
las técnicas clásicas. Las simulaciones mostraron que el méto-
do basado en algoritmos genéticos incrementó el desempeño de
los modelos de estimación. Además, identificaron que el uso
combinado de características y parámetros mejora la exactitud
de las estimaciones reduciendo la complejidad de los modelos.

A pesar que los estudios sobre algoritmos genéticos han
mostrado mejoras considerables en los modelos, estos algorit-
mos no son normalmente comparados contra algoritmos de
ajuste tradicionales. Nuestro estudio evalúa y compara algorit-
mos de ajuste de hiperparámetros con distintos algoritmos del
estado del arte confirmando su potencial para la optimización
de modelos de estimación para el conjunto de datos ISBSG
R18.

III. DISEÑO DEL ESTUDIO

El objetivo general del estudio fue evaluar el impacto del
ajuste de hiperparámetros mediante algoritmos genéticos en la
exactitud y estabilidad de modelos de estimación de esfuerzo.
Para ellos comparamos los algoritmos de ajuste, aplicados a las
técnicas de aprendizaje automático. Este estudio extiende nues-
tros trabajos previos [30, 31] evaluando los enfoques de ajuste
evolutivos mencionados. Las preguntas de investigación son
las siguientes:

 RQ1: ¿Cuál es el impacto del ajuste automático de hi-
perparámetros mediante algoritmos genéticos en la
exactitud y estabilidad de los modelos de estimación?

 RQ2: ¿Cuál es la clasificación de modelos de estima-
ción ajustados automáticamente mediante algoritmos
genéticos basado en su desempeño?

A. Conjunto de datos

Realizamos la evaluación utilizando el conjunto de datos
del International Software Benchmarking Standards Group
Development & Enhancement 2018 Repository Release 1
(ISBSG R18). El conjunto de datos fue pre procesado basado
en los lineamientos descritos en [30, 31]. Seleccionamos pro-
yectos (a) con calidad A o B y calidad de puntos de función A
o B para IFPUG, (b) el esfuerzo registrado solo para el equipo
de desarrollo, (c) nuevos desarrollos, y (d) medido con el mé-
todo de medición IFPUG 4+ o COSMIC.

El conjunto de datos resultante fue dividido en dos subcon-
juntos, uno para cada método de medición. Además, para mé-
todo generamos dos subconjuntos: uno considerando los puntos
de función agregados y otro con los componentes funcionales
básicos. Se utilizaron los cuatro subconjuntos: COSMIC FFP,
COSMIC BFC e IFPUG UFP e IFPUG BFC.

La selección de atributos fue aplicada independientemente
para cada subconjunto basado en los lineamientos descritos en
[1] y las recomendaciones en [2]. Solo se utilizaron atributos
(a) relevantes para la estimación de esfuerzo, (b) no redundan-
tes con otros atributos, (c) están disponibles en los procesos de
estimación, y (d) tienen menos de 25% de valores faltantes.

B. Técnicas de ajuste y aprendizaje automático evaluadas

Los modelos de estimación de esfuerzo se construyeron
combinando técnicas de pre procesamiento, selección de atri-
butos y aprendizaje automático. Se combinaron la transforma-
ción logarítmica (DT) [20], las técnicas Support Vector Re-
gression (SVR) [12], Classification and Regression Trees
(CART) [21] y Ridge Regression (RR) [1]. Para el ajuste de
hiperparámetros se utilizaron los algoritmos Genetic Standard
(GA) [28], 1+1 (1+1GA) [26], Compact (CGA) [27], Dodge
(DG) [14], Grid (GS) [24], Harmony (HS) [29], Tabu (TS) [20]
y Random Search (RS) [25]. Los modelos se construyeron con
los hiperparámetros por defecto y con cada uno de los algorit-
mos de ajuste.

Para RR se utilizaron los métodos de selección de atributos
variance threshold (VT) [22] y correlation percentile (CP) [23].
Las técnicas SVR y CART fueron evaluadas con estos selecto-
res, pero no fueron reportados al no presentar mejoras signifi-
cativas. Un total de 90 modelos fueron comparados producto
de 9 algoritmos de ajuste (GA, 1+1, CGA, DG, GS, HS, TS,
RS, Default), 2 transformaciones, (Log, None), y 5 técnicas
(SVR, CART, RR, VT+RR, CP+RR).

TABLE I. VALORES DE LOS HIPERPARÁMETROS

Técnica Valores

SVR

kernel = {rbf, sigmoid}; γ = (10x, x = {-3, -2,5, -2, …, -

0,5}); auto, scale; C = 1, 5, 15, 30, {50, 100, …, 450},
{500, 1000, ... , 15000}; ϵ = 10x, x = {-3, -2,5, -2, …, -0:5}

CART

min_samples_leaf = {1, 2, 3, …20};

min_impurity_decrease = (10x, x = {-5,-4:5,-4, …, 0});
max depth = {1, 2, 3, …, 20}

RR,

VT+RR,

CP+RR

α = 1; {5, 10,…, 45}, {50,75,…,500}; threshold = 0, 0,01,

0,05, 0,1, 0,2, 0,3, 0,4, 0,5; percentile = {10, 20, 30, …,90}

207

C. Valores de los hiperparámetros

Los valores de los hiperparámetros utilizados para las téc-
nicas de aprendizaje automático se listan en la Tabla I. Los
valores se basan en los reportados en estudios previos [4, 5,
30]. Los hiperparámetros default son los especificados por la
librería scikit-learn, y son incluidos en el espacio de búsqueda
de los algoritmos de ajuste. Los modelos default son utilizados
como línea base de comparación para los modelos ajustados.
Para los algoritmos de ajuste no aleatorios y no exhaustivos, el
rango de valores usados para los valores numéricos correspon-
de al mínimo y máximo valor del espacio de búsqueda. En
total, los enfoques exhaustivos como GS exploran 4.851 com-
binaciones de hiperparámetros para CART, 4.128 para SVR,
29 para RR, 232 para VT+RR, y 261 para CP+RR. En contras-
te, los otros algoritmos de ajuste fueron configurados para
explorar un máximo de 60 valores. Los tiempos no se reportan,
dado que los algoritmos corrieron en hardware diferente.

D. Evaluación de los modelos de aprendizaje automático

Para evaluar los modelos utilizamos dos enfoques de vali-
dación. En el primero el hold-out set fue utilizado con 90% de
los datos para entrenamiento y 10% para evaluación. En el
segundo, con el 90% de los datos se construyen los modelos y
se evalúa el rendimiento con un 10 times 10-fold Cross-
Validation (CV) basado en las recomendaciones de [3] para
reducir el problema de leave-one-out en conjuntos de datos
pequeños. La métrica de exactitud fue calculada para cada fold.
El conjunto de pruebas (10%) fue utilizado para corroborar los
resultados reportados.

E. Métricas de evaluación

La exactitud de los modelos de estimación se calcula utili-
zando métricas basadas en los residuos absolutos. Se calculan
la exactitud estandarizada (SA) utilizando un modelo de línea
base de estimación aleatoria (MARp0) y el promedio absoluto
de residuos (MAR) [6, 9]. El impacto en la exactitud (con res-
pecto a los parámetros por defecto) se calcula usando la ratio
de mejora (IR) [7]. Para el análisis de estabilidad se utiliza la
ratio de estabilidad (SR) [7] basado una métrica que denomi-
namos estabilidad estandarizada (SS). Similar a SA, esta se
calcula utilizando un modelo de línea base de estimación alea-
toria (MARp0), pero con desviación estándar de los residuos
absolutos (SdAR) de los modelos en lugar del promedio. MAR
y SdAR se obtienen calculando el promedio y la desviación de
los residuos absolutos.

IV. RESULTADOS

La Tabla II muestra la mejora promedio en la exactitud y la
estabilidad para los modelos con hiperparámetros ajustados con
respecto a los modelos con valores por defecto. La escala de
grises resalta las cuatro clasificaciones con mayor impacto de
acuerdo al análisis de Scott-Knott [10]. El análisis utiliza un
algoritmo de agrupamiento para particionar los tratamientos en
grupos equivalentes. El análisis fue realizado por separado para
las métricas de exactitud (SA) y estabilidad (SS) de los mode-
los. Los resultados de exactitud y estabilidad son presentados
para cada modelo de estimación por subconjunto de datos,
indicando técnica de ajuste y de aprendizaje automático. No se
muestran los modelos RR porque fueron los que mostraron
menor desempeño en la exactitud. Estos modelos presentan alta

estabilidad dado que el impacto del ajuste de hiperparámetros
es poco.

A. Impacto del ajuste de hiperparámetros en la exactitud y la

estabilidad

Exactitud. Para los modelos ajustados con algoritmos gené-
ticos se presentaron mejoras de hasta 0,21 en la SA con una
mediana de 0,11. En particular, Genetic Standard obtuvo mejo-
ras de hasta 0,21 con mediana de 0,14, 1+1 Genetic de hasta
0,21 con mediana de 0,10 y el Genetic Compact de hasta 0,21
con mediana de 0,11 en el SA. Los mayores impactos se obtu-
vieron en el conjunto de datos COSMIC BFC para el modelo
Log+CART. En el conjunto de datos COSMIC FFP el impacto
máximo fue de 0,19 con mediana de 0,07. En este caso el mejor
modelo fue Log+SVR. En el conjunto de datos IFPUG BFC el
impacto máximo fue de 0,14 con mediana de 0,11 en el modelo
Log+CART. En el conjunto de datos IFPUG UFP el impacto
máximo fue de 0,17 con mediana de 0,13 para el modelo
Log+SVR. Los algoritmos genéticos alcanzan impactos simila-
res a los obtenidos por Grid Search que realiza la exploración
de todo el espacio de búsqueda. Asimismo, los algoritmos
Dodge, Harmony, Tabu y Random Search alcanzan impactos
similares. Esto comprueba la competitividad de los algoritmos
genéticos con algoritmos exhaustivos y demás reportados en el
estado del arte.

Estabilidad. Para los modelos ajustados con algoritmos ge-
néticos se presentaron mejoras de hasta 0,23 en la estabilidad
con una mediana de 0,10. En particular, Genetic Standard ob-
tuvo mejoras de hasta 0,23 con mediana de 0,10, 1+1 Genetic
de hasta 0,14 con mediana de 0,07 y el Genetic Compact de
hasta 0,22 con mediana de 0,10 en la estabilidad. Los mayores
impactos se obtuvieron en el conjunto de datos IFPUG UFP
para el modelo Log+SVR. En el conjunto de datos COSMIC
BFC el impacto máximo fue de 0,11, en los modelos CART y
Log+CART, con mediana de 0,09. En el conjunto de datos
COSMIC FFP el impacto máximo fue de 0,20 con mediana de
0,08. En este caso el modelo con mayor mejora en la estabili-
dad fue Log+SVR. En el conjunto de datos IFPUG BFC el
impacto máximo fue de 0,13, en el modelo Log+CART, con
mediana de 0,09. Para el análisis de estabilidad basado en
Scott-Knott, los algoritmos Genetic Standard y Genetic Com-
pact se clasifican en el grupo más estable (primer grupo) con
respecto a la variación del error absoluto de las estimaciones
para los modelos CART, Log+SVR, Log+CART y RR. El
algoritmo 1+1 Genetic se clasificó en el segundo grupo para los
mismos modelos. Todos los algoritmos de ajuste para RR clasi-
ficaron en el primer grupo, dado que RR presenta poco impacto
por el ajuste de hiperparámetros.

En resumen, los algoritmos de ajuste automático mejoraron
el desempeño de los modelos por defecto similarmente. Para el
conjunto COSMIC BFC, todas las combinaciones de SVR y
CART con Log y ajuste obtuvieron la precisión más alta (grupo
1). Para los demás conjuntos, el nivel de exactitud logrado por
las técnicas fue aceptable (grupos 2-4). Las combinaciones de
GA y CGA con Log+SVR obtuvieron el desempeño más alto
(grupo 1), independientemente del conjunto. En todos los ca-
sos, las técnicas de ajuste mejoraron la estabilidad de CART y
SVR, obteniendo rango 4 o superior en la mayoría de casos
(103 de 128 modelos).

208

TABLE II. MEJORA PROMEDIO EN LA EXACTITUD Y LA ESTABILIDAD PARA LOS MODELOS DE LOS CONJUNTOS DE DATOS ESTUDIADOS

Ajuste Modelo

Mejora Exactitud Mejora Estabilidad

COSMIC IFPUG

COSMIC IFPUG

BFC FFP BFC UFP BFC FFP BFC UFP

1+1 CART 0,19 0,07 0,10 0,13

0,10 0,01 0,06 0,12

1+1 Log+CART 0,21 0,09 0,12 0,13

0,10 0,07 0,08 0,14

1+1 Log+SVR 0,06 0,15 0,09 0,12

0,01 0,14 0,06 0,10

1+1 SVR 0,02 0,05 0,01 0,02

0,00 0,11 0,00 0,02

CGA CART 0,18 0,07 0,11 0,15

0,11 0,08 0,10 0,16

CGA Log+CART 0,21 0,06 0,14 0,14

0,09 0,04 0,13 0,17

CGA Log+SVR 0,06 0,19 0,11 0,17

0,04 0,20 0,10 0,22

CGA SVR 0,03 0,02 0,02 0,01

0,02 0,07 0,02 0,04

DG CART 0,17 0,07 0,10 0,14

0,10 0,03 0,06 0,13

DG Log+CART 0,19 0,07 0,14 0,12

0,12 0,02 0,11 0,13

DG Log+SVR 0,05 0,15 0,09 0,14

0,02 0,13 0,07 0,12

DG SVR 0,04 0,00 0,00 0,00

0,00 0,00 0,00 0,00

GA CART 0,18 0,10 0,11 0,14

0,11 0,04 0,09 0,17

GA Log+CART 0,21 0,07 0,14 0,13

0,11 0,02 0,10 0,18

GA Log+SVR 0,07 0,18 0,11 0,17

0,03 0,19 0,11 0,23

GA SVR 0,04 0,06 0,03 0,03

0,01 0,10 0,03 0,04

GS CART 0,15 0,12 0,10 0,11

0,07 0,07 0,05 0,10

GS Log+CART 0,20 0,11 0,15 0,11

0,08 0,05 0,13 0,09

GS Log+SVR 0,07 0,15 0,09 0,11

0,01 0,12 0,06 0,07

GS SVR 0,05 0,07 0,04 0,08

0,00 0,09 0,03 0,11

HS CART 0,18 0,10 0,11 0,13

0,08 0,05 0,08 0,11

HS Log+CART 0,20 0,07 0,13 0,13

0,10 0,04 0,10 0,11

HS Log+SVR 0,06 0,16 0,09 0,13

0,02 0,14 0,06 0,10

HS SVR 0,04 0,03 0,02 0,03

0,01 0,02 0,01 0,02

RS CART 0,17 0,09 0,09 0,13

0,10 0,07 0,05 0,10

RS Log+CART 0,20 0,07 0,13 0,12

0,09 0,05 0,10 0,12

RS Log+SVR 0,06 0,14 0,09 0,11

0,01 0,13 0,07 0,07

RS SVR 0,04 0,07 0,04 0,08

0,00 0,13 0,03 0,10

TS CART 0,18 0,08 0,12 0,13

0,10 0,02 0,06 0,13

TS Log+CART 0,21 0,08 0,13 0,13

0,08 0,01 0,08 0,10

TS Log+SVR 0,07 0,16 0,09 0,14

0,02 0,12 0,07 0,12

TS SVR 0,00 0,11 0,04 0,09 0,00 0,16 0,03 0,13

Rank 1 Rank 2 Rank 3 Rank 4

B. Clasificación de los modelos de estimación de esfuerzo

La Figura 1 muestra la distribución de la clasificación de
cada modelo de estimación estudiado de acuerdo a la exactitud.
Los modelos fueron agrupados aplicando el análisis Scott-
Knott sobre los rangos de grupos de la Tabla II. Los rangos se
normalizaron en una escala de [0, 1]. Para cada conjunto de
datos, se transformaron los rangos utilizando la fórmula 1 −
(𝑟𝑖 − 1)/(𝑅 − 1) donde 𝑟𝑖 es el 𝑖 -enésimo rango y 𝑅 es la
cantidad de rangos del conjunto. Por ejemplo, para el subcon-
junto de datos COSMIC FFP el análisis identificó 7 grupos, el
modelo CGA+Log+SVR con rango 1 tiene un puntaje normali-
zado de 1,0, el modelo TS+SVR de rango 4 un puntaje de 0,5,
y la técnica SVR de rango 7 tiene un puntaje de 0,0. Las distri-
buciones mostradas corresponden al rango normalizado de
cada modelo de estimación.

El análisis Scott-Knott identificó dos grupos. El primer
grupo lista los modelos con mayor desempeño. Los tres mode-
los con mejor desempeño fueron los que utilizaron la combina-
ción de las técnicas Log+SVR optimizados con los algoritmos
de ajuste Genetic Standard, 1+1 y Compact Genetic. En total,
nueve de los 25 modelos del primer grupo fueron los optimiza-
dos con algoritmos genéticos para las técnicas de aprendizaje
automático SVR y CART. En este grupo, los algoritmos de
ajuste genéticos, el Grid, Random, Dodge, Harmony y Tabu
lograron un buen desempeño para la optimización de los mode-
los basados en Log+SVR, SVR, CART y Log+CART. Los
modelos de estimación basados en Log+SVR presentaron la
mejor exactitud y clasificación para los cuatro subconjuntos de
datos COSMIC FFP y BFC e IFPUG UFP y BFC. En el caso
de los modelos Log+SVR, Log+CART y CART presentaron la

209

mejor clasificación para el subconjunto COSMIC BFC. En el
segundo grupo se incluyen todas las técnicas de RR, las SVR
con ajuste automático (excepto TS), y los modelos
Log+CART, Log+SVR con hiperparámetros por defecto.

Dentro del primer grupo, 2 modelos obtuvieron el máximo
puntaje en los 4 conjuntos de datos: GA+Log+SVR y
CGA+Log+SVR. La exactitud de las técnicas varió dependien-
do del conjunto de datos desde 0,34 hasta 0,53 para el SA en
GA+Log+SVR y desde 0,34 hasta 0,53 en CGA+Log+SVR. El
siguiente conjunto de técnicas con la clasificación más alta
correspondió al Log+SVR optimizado con los algoritmos 1+1,
Dodge, Harmony y Tabu Search, obteniendo valores de SA por
conjunto desde 0,25 hasta 0,50. La combinación de técnicas
que incluye CART con mayor puntaje corresponde con
CGA+Log+CART, con puntajes de SA desde 0,36 hasta 0,49.
Las técnicas restantes de CART dentro del primer grupo inclu-
yen todos modelos optimizados, con y sin Log, con valores de
SA desde 0,34 hasta 0,49. Con respecto a SVR, las técnicas
restantes del primero grupo corresponden con RS+Log+SVR,
GS+Log+SVR, y TS+SVR, con valores de SA desde 0,30
hasta 0,47. En todos los casos, GA y CGA obtuvieron resulta-
dos similares, con menos de una diferencia de 0,05 SA. Para
los modelos y datos estudiados, las técnicas podrían utilizarse
de manera intercambiable.

Dentro del segundo grupo, los dos modelos con la media
más alta son GS+SVR y RS+SVR. Estos modelos obtuvieron
valores de SA desde 0,31 hasta 0,45. Con respecto a RR, el
modelo con los puntajes más altos corresponde a TS+CP+RR,
con valores de SA desde 0,26 hasta 0,43. El segundo grupo
además contiene los modelos que utilizan parámetros por de-
fecto. Los modelos SVR sin optimizar obtuvieron puntajes
desde 0,27 hasta 0,37, los modelos CART sin optimizar, desde

0,12 hasta 0,35, y los modelos RR sin optimizar, desde 0,25
hasta 0,43.

Las mejores técnicas estudiadas incluyen los modelos
Log+SVR, CART, y Log+CART optimizados. Para los mode-
los basados en regresión y SVR sin Log, el ajuste automático
no logra una mejora en exactitud considerable. El impacto del
ajuste de hiperparámetros depende la complejidad del modelo y
sus parámetros: modelos más complejos como CART y SVR
se ven más beneficiados que modelos como RR. La transfor-
mación Log además mejora el impacto del ajuste en CART y
SVR.

A pesar que el análisis Scott-Knott determinó que las técni-
cas de ajuste tienen similar desempeño, hay una diferencia de
consistencia en las técnicas. Particularmente, los algoritmos
genéticos encontraron los valores de hiperparámetros que gene-
ran el modelo con más exactitud, independientemente del con-
junto de datos. Las demás técnicas de optimización presentaban
variaciones en su desempeño dependiendo de las cualidades de
los datos. Una posible explicación en la diferencia de desem-
peño de los algoritmos de ajuste es la forma en la que estos
explorar el espacio. Grid y Random están limitados en su espa-
cio de búsqueda, al solo usar puntos dentro de los valores pre-
determinados. Los demás algoritmos, a pesar de tener mayor
libertad en la búsqueda, podrían experimentar problemas de
localidad. Dodge, Tabu, y Harmony toman un punto de explo-
ración como base, y tratan de buscar valores cercanos que
mejoren la exactitud del modelo. Por este motivo, es posible
que estos algoritmos no encuentren los valores que causan
mejor desempeño, al quedarse atascados en estos máximos
locales. Los algoritmos genéticos evitan este problema al intro-
ducir la mutación aleatoria, que permite explorar puntos en el
espacio que normalmente no serían considerados.

Figure 1. Clasificación basada en Scott-Knott para los modelos de los conjuntos de datos estudiados.

210

V. CONCLUSIONES

En este artículo evaluamos el impacto del ajuste automático
de hiperparámetros mediante los algoritmos Genetic Standard,
1+1 y Compact, que comparamos contra Dodge, Grid, Har-
mony, Tabu y Random Search con respecto a su impacto en la
exactitud y estabilidad de modelos de estimación de esfuerzo.

Los resultados muestran que los algoritmos genéticos ob-
tienen un desempeño superior o similar a los demás algoritmos
de ajuste, incluyendo Grid Search, que realiza la exploración de
todos los puntos del espacio de búsqueda predeterminado y que
se utiliza como línea base. El ajuste de hiperparámetros alcanza
un impacto de hasta un máximo de 0,21 en la exactitud estan-
darizada con valores finales de hasta 0,53. Los modelos de
Support Vector Regression con logaritmo y optimizados con
algoritmos genéticos muestran la mayor exactitud y estabilidad.

El trabajo futuro de este estudio incluye el análisis de los
algoritmos de ajuste en otros conjuntos de datos comúnmente
usados en el área de la estimación de esfuerzo y con otras téc-
nicas de aprendizaje automático. Finalmente, es de interés
realizar la evaluación del ajuste de los valores de los paráme-
tros de los algoritmos de ajuste.

AGRADECIMIENTOS

Este estudio fue apoyado por la Universidad de Costa Rica
No. 834-B8-A27. Nuestro agradecimiento al Empirical Softwa-
re Engineering Group (ESEG) de la Universidad de Costa Rica.

REFERENCIAS

[1] Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining
techniques for software effort estimation: a comparative study. IEEE
transactions on software engineering 38(2), 375-397 (2011).

[2] Gonzalez-Ladron-de Guevara, F., Fernandez-Diego, M., Lokan, C.: The
usage of isbsg data fields in software effort estimation: A systematic
mapping study. Journal of Systems and Software 113, 188-215 (2016).

[3] Song, L., Minku, L.L., Yao, X.: Software effort interval prediction via
bayesian inference and synthetic bootstrap resampling. ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 28(1), 1-46
(2019).

[4] Song, L., Minku, L.L., Yao, X.: The potential benefit of relevance vector
machine to software effort estimation. In: Proceedings of the 10th Inter-
national Conference on Predictive Models in Software Engineering, pp.
52-61 (2014).

[5] Malgonde, O., Chari, K.: An ensemble-based model for predicting agile
software development effort. Empirical Software Engineering 24(2),
1017-1055 (2019).

[6] Shepperd, M., MacDonell, S.: Evaluating prediction systems in software
Project estimation. Information and Software Technology 54(8), 820-
827 (2012).

[7] Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: The
impact of automated parameter optimization on defect prediction mod-
els. IEEE Transactions on Software Engineering 45(7), 683-711 (2018).

[8] Minku, L. L. (2019). A novel online supervised hyperparameter tuning
procedure applied to cross-company software effort estimation. Empiri-
cal Software Engineering, 24(5), 3153-3204.

[9] Langdon, W.B., Dolado, J., Sarro, F., Harman, M.: Exact mean absolute
error of baseline predictor, marp0. Information and Software Technlogy
73, 16-18 (2016).

[10] Scott, A.J., Knott, M.: A cluster analysis method for grouping means in
the analysis of variance. Biometrics pp. 507-512 (1974).

[11] Boehm, B. W. Software engineering economics. IEEE transactions on
Software Engineering, (1), 4-2 (1984).

[12] Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. Systematic literature review
of machine learning based software development effort estimation mod-
els. Information and Software Technology, 54(1), 41-59 (2012).

[13] Minku, L. A novel online supervised hyperparameter tuning procedure
applied to cross-company software effort estimation. Empirical Software
Engineering, 24(5), 3153-3204 (2019).

[14] Agrawal, A., Fu, W., Chen, D., Shen, X., & Menzies, T. How to
"DODGE" Complex Software Analytics. IEEE Transactions on Softwa-
re Engineering (2019).

[15] Luo, G. A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Network Modeling Analysis in
Health Informatics and Bioinformatics, 5(1), 18 (2016).

[16] Ali, A., & Gravino, C. Using Bio-Inspired Features Selection Algo-
rithms in Software Effort Estimation: A Systematic Literature Review.
In 2019 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA) (pp. 220-227). IEEE (2019).

[17] Palaniswamy, S. K., & Venkatesan, R. Hyperparameters tuning of
ensemble model for software effort estimation. Journal of Ambient Inte-
lligence and Humanized Computing, 1-11 (2020).

[18] Ali, A., & Gravino, C. Improving Software Effort Estimation using Bio-
Inspired Algorithms to select relevant features: An Empirical Study.
Science of Computer Programming (2021).

[19] Oliveira, A. L., Braga, P. L., Lima, R. M., & Cornélio, M. L. GA-based
method for feature selection and parameters optimization for machine
learning regression applied to software effort estimation. information
and Software Technology, 52(11), 1155-1166 (2010).

[20] Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes,
E.: How effective is tabu search to configure support vector regression
for effort estimation. In Proceedings of the 6th international conference
on predictive models in software engineering, pp. 1-10 (2010).

[21] Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and
regression trees. CRC press (1984).

[22] Albon, C.: Machine learning with python cookbook: Practical solutions
from preprocessing to deep learning. " O'Reilly Media, Inc." (2018).

[23] Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning:
From theory to algorithms. Cambridge university press (2014).

[24] Bergstra, J.S., Bardenet, R., Bengio, Y., Kegl, B.: Algorithms for hyper-
parameter optimization. In: Advances in neural information processing
systems, pp. 2546-2554 (2011).

[25] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimiza-
tion. Journal of machine learning research 13(Feb), 281-305 (2012).

[26] Doerr, B., Doerr, C., & Ebel, F. (2015). From black-box complexity to
designing new genetic algorithms. Theoretical Computer Science, 567,
87-104.

[27] Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999). The compact
genetic algorithm. IEEE transactions on evolutionary computation, 3(4),
287-297.

[28] Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary compu-
ting (Vol. 53, p. 18). Berlin: Springer.

[29] Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic
optimization algorithm: harmony search. simulation, 76(2), 60-68.

[30] Villalobos-Arias, L., Quesada-López, C., Guevara-Coto, J., Martínez,
A., & Jenkins, M. (2020, November). Evaluating hyper-parameter tun-
ing using random search in support vector machines for software effort
estimation. In Proceedings of the 16th ACM International Conference on
Predictive Models and Data Analytics in Software Engineering (pp. 31-
40).

[31] Villalobos-Arias, L., Quesada-López, C., Martínez, A., & Jenkins, M.
(2021, March). Hyper-Parameter Tuning of Classification and Regres-
sion Trees for Software Effort Estimation. In Proceedings of the 9th
World Conference on Information Systems and Technologies.

[32] Villalobos-Arias, L., Quesada-López, C., Martínez, A., & Jenkins, M.
(2021). Técnicas de ajuste de hiperparámetros de algoritmos de
aprendizaje automático para la estimación de esfuerzo: un mapeo de
literatura. Revista Ibérica de Sistemas e Tecnologias de Informação,
(E42), 305-318.

211

212

Appendix G

Paper 5: Multi-objective
Hyper-parameter Tuning for Software

Effort Estimation

Reference Villalobos-Arias, L., Quesada-López, C., Martínez, A., & Jenkins, M. (2021).

Multi-objective Hyper-parameter Tuning for Software Effort Estimation. In Pro-

ceedings of the 24th Ibero-American Conference on Software Engineering. To

be published.

Status Camera-ready version submitted. Awaiting publication.

Multi-objective Hyper-parameter Tuning for
Software Effort Estimation

Leonardo Villalobos-Arias, Christian Quesada-López, Alexandra Martinez, and
Marcelo Jenkins

University of Costa Rica, San Pedro de Montes de Oca, Costa Rica
{leonardo.villalobosarias, cristian.quesadalopez, alexandra.martinez,

marcelo.jenkins}@ucr.ac.cr

Abstract. Studies of software effort estimation (SEE) have employed
machine learning techniques to improve the accuracy of their predictions
but concerns about the stability (and thus, replicability) of these models
have been raised. In this study, we evaluate the impact of multi-objective
hyper-parameter tuning on the accuracy and stability of five effort es-
timation algorithms: support vector regression (SVR), classification and
regression trees (CART), and three versions of ridge regression (RR).
Each model had two variants, for a total of 10: no data transformation
and using logarithmig (Log). We compare the single- and multi-objective
implementations of twelve hyper-parameter tuners, and evaluate their
accuracy and stability on four subsets of the ISBSG R18 dataset. We
evaluate the random search, flash, dodge, differential evolution, particle
swarm optimization, tabu search, genetic algorithm (GA), one plus one
GA, compact GA, bayesian optimization, harmony search, and hyper-
band tuners. The results indicated that, out of the 480 total (10 mod-
els × 12 tuners × 4 datasets) studied models, multi-objective tuning
improved their stability on 159 cases (33%) and maintained it on 268
cases (56%), while improving accuracy on 60 cases (13%) and maintain-
ing it on 247 (51%) cases. The effect of multi-objective tuning depended
on the underlying model. For Log+SVR models, it was particularly effec-
tive, improving or maintaining accuracy in 65% of cases, and improving
stability in 77% of cases. Multi-objective tuning also had a positive ef-
fect on CART and Log+CART models. In terms of accuracy, the most
effective tuners were differential evolution, flash, genetic algorithm, and
compact genetic algorithm when paired with Log+SVR.

Keywords: software effort estimation · hyper-parameter tuning · ma-
chine learning · multi-objective optimization · empirical study

1 Introduction

Software effort estimation (SEE), is an essential task of project management [6].
A key issue for software organizations is to accurately and consistently predict ef-
fort, as either overestimates and underestimates can result in missed business op-
portunities and threats for project development [14]. For these reasons, machine

213

2 L. Villalobos-Arias et al.

learning techniques have been used in SEE to create higher accuracy estima-
tion models [8]. Recent SEE studies apply hyper-parameter tuning (the process
of automatically finding optimal model hyper-parameters) [2, 35] for building
accurate models [36].

Machine learning research on software engineering had centered around im-
proving the accuracy of the model [8], but it has recently shifted its focus to
include additional model qualities such as stability [29]. Stability refers to an ef-
fect that holds for different situations [16]. In the context of SEE, a stable model
should have similar accuracy when replicated or tested on different datasets. On
the contrary, an unstable model may produce inconsistent results under different
circumstances [17]. The introduction of hyper-parameter tuning techniques can
affect the stability and accuracy of the SEE models [26]. Fortunately, current
defect prediction studies [29] demonstrate that tuned models are as stable as
untuned models.

Our previous work has focused on the evaluation of hyper-parameter tuning
approaches with respect to their ability to improve accuracy and stability [31–
33]. Such approaches seek to minimize the average prediction error, but overlook
the importance of producing effort estimates that lie in a consistent margin
of error [21]. By incorporating multi-objective optimization, a hyper-parameter
tuner could accomplish both objectives simultaneously.

In this paper, we investigate multi-objective tuning by optimizing the hyper-
parameter search for both model accuracy and stability. Our aim is to determine
how multi-objective tuning compares to single-objective tuning. To accomplish
this, we evaluated 14 single-objective hyper-parameter tuners (including default
parameters) and 12 multi-objective hyper-parameter tuners, applied to five ma-
chine learning algorithms, two transformations, and four datasets. We extended
the scope of our most recent work [33] by evaluating additional hyper-parameter
tuning approaches and incorporating multi-objective tuning. This paper is orga-
nized as follows: Section 2 presents related work; Section 3 describes the study
design; Section 4 shows the results; and section 5 outlines the conclusions.

2 Related Work

Langsari et al. [13] employed a fuzzy multi-objective particle swarm optimiza-
tion approach to find the optimal parameter values for the COCOMO II model,
and compared these results to a COCOMO II model with traditional values.
Their adjusted COCOMO model performed mode accurate estimations than
the default model. Similarly, Azzeh et al. [5] investigated multi-objective par-
ticle swarm optimization to adjust the hyper-parameters of analogy-based es-
timation. Their results highlight the importance of simultaneously tuning all
hyper-parameters and its noticeable impact to analogy based estimation. A study
by Sarro et al. [21] introduced a dual-objective algorithm for effort estimation,
which optimizes both the sum of absolute errors and the prediction confidence
interval. They compared it with state of the art techniques. Their results show
that the proposed approach outperforms state of the art techniques in terms of

214

Multi-objective Hyper-parameter Tuning for Software Effort Estimation 3

standardized accuracy, and that multi-objective approaches can improve model
performance.

Recent literature on software engineering has studied the effectiveness of
heuristics-based fast tuners as an alternative to exhaustive search. Agrawal et
al. [1, 2] proposed the dodge as a novel optimizer that searches for “interesting”
hyper-parameter combinations and avoids redundant settings. Fu et al. [10, 9]
analyzed the effectiveness of a differential evolution algorithm applied to the
tuning of defect prediction models. In the area of configurable software systems,
Nair et al. [18] used flash tuner, a method that determines the most promising
exploration points based on a prediction model. Xia et al. [35] evaluated both
flash tuner and differential evolution algorithm in the context of effort estimation.

Researchers have also studied bio-inspired tuning methods. Ali et al. [4] used
genetic algorithms, particle swarm optimization, ant colony optimization, and
tabu, harmony, and firefly searches for feature selection and tuning. The study by
Palaniswamy et al. [20] used particle swarm optimization and genetic algorithms
to improve the performance of ensemble learners. Oliviera et al. [19] employed
genetic algorithms for simultaneous tuning of hyper-parameters and selection of
features in SEE models.

This study further investigates the use of multi-objective optimization in SEE
in conjunction with many of the hyper-parameter tuners used in the literature.

3 Study design

The main objective of this study was to evaluate the impact of multi-objective
optimization hyper-parameter tuning on accuracy and stability, in the context of
SEE models. The following research questions were proposed to guide the study:

RQ1 What is the prediction accuracy and stability of single-objective hyper-
parameter tuning?

RQ2 Does multi-objective hyper-parameter tuning improve the prediction ac-
curacy and stability?

Figure 1 shows the model training and evaluation process used in this study.
Each task on the process corresponds with a section in the paper. The process is
supported by our our evaluation framework, which implements or adapts the ma-
chine learning techniques used in this study. This framework was built upon the
scikit-learn library using Python 3.7, and supports three machine learning activ-
ities: (1) preprocessing, (2) training and evaluation, and (3) statistical analysis.
Section 3.1 shows the dataset used in this study and preprocessing performed.
Section 3.2 describes the process used to train and evaluate SEE models. Sec-
tion 3.3 contains the studied algorithms that are combined to create SEE models,
the evaluation metrics, and configurations for multi-objective optimization. The
statistical analysis performed to the results of this study is detailed in section 4.

215

4 L. Villalobos-Arias et al.

Fig. 1: Machine learning framework and process.

3.1 Dataset

We employed the International Software Benchmarking Standards Group De-
velopment & Enhancement 2018 Repository Release 1 (ISBSG R18) dataset.
Based on previous research [8, 26, 32], we performed a three-step preprocessing
that included data splitting, project selection, and feature selection.

Data splitting We splitted the data by their function point measurement unit,
opting to use IFPUG 4+ and COSMIC. From these, we generated two datasets:
one using total function points (FP), and another using the base functional
components (BFC). This produced four datasets: IFPUG 4+ UFP (unified func-
tion points), IFPUG 4+ BFC, COSMIC FFP (full function points), and COS-
MIC BFC.

Project selection We selected projects that met these criteria: (a) data point
quality A or B, (b) function point quality A or B if function point type is
IFPUG 4+, (c) development type is “new development”, and (d) projects with
recorded effort values for the development team. The reason being that we were
interested in investigating effort estimation of new projects using reliable project
data, based on literature recommendations [8, 26].

Feature selection We selected those features that are both available and per-
tinent to the effort estimation process [8, 11]. Besides functional size features,

216

Multi-objective Hyper-parameter Tuning for Software Effort Estimation 5

the final feature set included Application Group, Architecture, Case Tool Used,
Development Methodologies, Development Platform, Industry Sector, Intended
Market, Language Type, Max Team Size, Team Size Group, Used Methodology,
and Year of Project. We used Summary Work Effort as our target feature.

We randomly selected and removed 10% of the data in each dataset, to be
used later in the evaluation (evaluation set). The remaining 90% of the data (his-
torical set) was used in the training and evaluation activity. The evaluation set
is used to review the metrics obtained in this study and discard problems such
as overfitting and data mismatch.

3.2 Training and evaluation

We performed two evaluation runs using a set of 14 hyper-parameter tuners:
one using single-objective optimization on prediction accuracy, and another us-
ing multi-objective optimization on prediction accuracy and stability. For the
single-objective evaluation run, we used 5 machine learning algorithms, 2 trans-
formation alternatives (log data transformation and no transformation), and 14
hyper-parameter tuners (including default parameters). A total of 5 × 2 × 14 =
140 machine learning models were constructed by combining these configura-
tions. For the multi-objective evaluation run, we only used 12 hyper-parameter
tuners, plus the same 5 algorithms and 2 transformations as before. This yielded
5 × 2 × 12 = 120 additional models. The two tuners excluded from the multi-
objective run were default parameters and grid search.

We trained each model using 10 times 10-fold cross-validation, as suggested
by previous research [27, 28]. To do this, we partitioned the dataset into 10
random groups of even size. Then we chose one partition as test set and the
remaining nine as training set, and repeated this until each partition had been
used once as testing set. The entire process was repeated ten times, for a total
of 100 runs. All 100 partitions were randomly created beforehand to ensure that
the 260 models were run over the same data. Each model instance was trained
using its corresponding training set. Each hyper-parameter tuning internally
performed a sub-partition using 10-fold cross-validation to adjust find optimal
values. The model is re-trained with the selected parameter(s) using the entire
training set. The evaluation metrics (section 3.3) are calculated on every testing
set for a total sample of 100 metrics per model and dataset.

3.3 Machine learning techniques

Machine learning algorithms: Five machine learning algorithms were used
to predict software effort values: classification and regression trees (CART) [7],
support vector regression (SVR) [34], and three variants of ridge regression (RR)
as a base for comparison [8]. The RR variants used were: normal ridge regression,
ridge regression with percentile correlation as feature selection (CP+RR) [23],
and ridge regression with threshold variance as feature selection (VT+RR) [3].
Table 1 shows the hyper-parameter search space, selected based on literature
suggestions [27, 15]. Feature selection was not used for CART and SVR models,

217

6 L. Villalobos-Arias et al.

Table 1: Hyper-parameter search space.

Model Hyper-parameters’ values

CART min samples leaf = {1, 2, 3, ..., 20}; max depth = {1, 2, 3, ..., 20};
min impurity decrease = (10x, x = {−5,−4.5,−4, ..., 0})

SVR C = 1, 5, 15, 30, {50, 100, ... , 450}, {500, 1000, ... , 15000};
kernel = {rbf, sigmoid}; γ = (10x, x = {−3,−2.5,−2, ...,−0.5}); auto, scale;
ε = 10x, x = {−3,−2.5,−2, ...,−0.5}

RR α = 1, {5, 10, ..., 45}, {50, 75, ..., 500}
VT+RR threshold = 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5; α from RR

CP+RR percentile = {10, 20, 30, ... , 90}; α from RR

as we determined in previous iterations of this experiment that the two studied
feature selectors did not affect the accuracy and stability of the CART and
SVR models. For tuning techniques that explore ranges of values (i.e., GA and
DODGE), the minimum and maximum values were used for numerical features.
Two varations of each model were used: one with no data transformation, and
one with the logarithmic (Log) transformation.

Hyper-parameter tuners: Our evaluation comprised 14 different tuners used
in SEE literature [33] and other research areas [36]. We employed the scikit-
learn implementation of default hyper-parameters, random search (RS), and
grid search (GS) as performance baseline. We also evaluated the flash (FS),
dodge (DG), and differential evolution (DE) tuners, since recent SE literature
has endorsed the use of such fast and effective optimizers [9, 18, 2]. As tradi-
tional tuners from the SEE literature, we selected particle swarm optimiza-
tion (PSO), tabu search (TS), and three variants of genetic algorithms: tradi-
tional genetic (GA), one plus one (1+1), and compact genetic algorithm (CGA).
We also evaluated algorithms used in other areas: Bayesian optimization (BO),
harmony search (HS) and hyperband (HB). For each of the 14 methods, two
variants were run: a single-objective variant (optimizing for standardized accu-
racy) and a multi-objective variant (optimizing for hyperspace). Grid search was
not run using multi-objective optimization as it was too computer-intensive.

Evaluation metrics: The accuracy of the SEE models was measured using
absolute residual metrics (based on the absolute difference between predicted
and actual values): the median absolute residual (MdAR) and the standardized
accuracy (SA) [25]. To measure the improvement on accuracy (with respect to
default parameters), we used the improvement ratio (imp) [29]. On the other
hand, the stability of the tuners was measured by the stability ratio [29] based
on the standard deviation of the absolute residual (SdAR), and by the standard-
ized stability (SD).

218

Multi-objective Hyper-parameter Tuning for Software Effort Estimation 7

MdAR and SdAR correspond to the median and standard deviation of
the absolute residuals, respectively. SA is computed as proposed by Shepperd
and MacDonell [24], using the random estimation baseline model MdARp0 rec-
ommended by Langdon et al. [12]. Additionally, we included our own met-
ric SD, similar to SA, for which the SdAR is normalized using the standard
deviation of random estimation baseline model, SdARp0. SD is calculated as
1 − SdAR/SdARp0.

In order to calculate the metrics for the multi-objective approaches, we com-
puted the average of the points in the Pareto front, as done in previous stud-
ies [21, 30] to compare single- and multi-objective methods. In real SEE appli-
cations, one of these points would be selected based on certain preference or
decision. However, for the purpose of this study we wanted to consider all pos-
sible points and, to not favor specific solutions, we used the mean aggregated
metrics.

Multi-objective optimization Implementations of hyper-parameter tuning
algorithms are traditionally designed to (1) optimize only one metric and (2)
return the best solution –usually one point in the search space. Thus, our tuners
had to be adapted for multi-objective optimization. First, a composite metric
was used to weight in both stability and accuracy. Second, the Pareto front of
the search space was employed.

Multi-objective function: Random and grid search hyper-parameter tuners eval-
uate a set of points from the search space, either by random sampling or consid-
ering all possibilities. However, most of the hyper-parameter tuners in this study
take a heuristic approach: they determine what is a ‘good’ (or ‘bad’) point in
the search space, and select the next portion of the space to explore based on
this information. A function (SA in our case) is then used to score each explored
point in the space. For multi-objective tuning, the tuners maximized the function
(SA + 1) × (SD + 1).

Evaluation of multiple solutions: The Pareto front of the searched values was
identified. This set consists of all non-dominant solutions. A solution p1 is said
to dominate another solution p2 if p1 is equally good or better than p2 for every
metric. Conversely, a solution p2 cannot be dominated by another solution p1 if
either p2 has the same values as p1 for each metric, or p2 has at least one metric
better than p1. Thus, all points in the Pareto front offer different but equally
viable trade-offs between accuracy and stability.

4 Results

4.1 Accuracy and stability of single-objective tuning (RQ1)

In order to rank the studied SEE models, we used the Scott-Knott algorithm [22],
which employs hierarchical clustering to partition treatments into equivalent

219

8 L. Villalobos-Arias et al.

groups. This analysis was performed twice for each dataset: one for SA and one
for SD. The Box-Cox transformation was applied to these metrics before the
analysis, as Scott-Knott requires its input to follow a normal distribution. Ridge
regression techniques were excluded from the analysis due to their low accuracy.
Even hyper-parameter tuning did not improve the accuracy of ridge models. We
refer to the ranks determined by the Scott-Knott analysis as dataset ranks.

A second Scott-Knott analysis grouped the techniques based on their overall
performance. This analysis was applied on the ranks obtained from the first
analysis, normalized to the [0, 1] scale. For this, we used the transformation
1− (ri − 1)/(R− 1), where ri is the rank of the i-th model and R is the amount
of ranks. We refer to the ranks determined by the second Scott-Knott analysis as
general ranks. Figure 2 shows the distribution of dataset ranks for each technique,
grouped by their general rank.

The analysis on SA determined four general groups: the first group comprises
tuned Log+SVR models, except traditional RS and GS tuners; the second group
contains all tuned CART and Log+CART models as well as GS+Log+SVR
and RS+Log+SVR; the third group has all tuned SVR models except those
with CGA and DG; the fourth group contains the four untuned models, plus
CGA+SVR and DG+SVR. Four models obtained the first dataset rank in all
cases: CGA+Log+SVR, DE+Log+SVR, FS+Log+SVR, and GA+Log+SVR.

When performed on SD, the Scott-Knott analysis determined three general
groups: the first group contains all tuned CART, Log+CART, and (CGA, DE,
FS, GA, DG, DE, and GA)+Log+SVR; the second group includes the remain-
ing tuned Log+SVR models, TS+SVR, RS+SVR, PSO+SVR, GS+SVR, and
CGA+SVR; the third group comprises the remaining tuned SVR models and
the four untuned models. Within the first group, four models obtained the first
dataset ranking in all except IFPUG 4+ BFC, where they obtained the second
ranking. These models are CGA+Log+SVR, DE+Log+SVR, FS+Log+SVR,
and GA+Log+SVR.

From these groups, it can be observed that hyper-parameter tuning improved
both the accuracy and the stability of CART, Log+CART, SVR, and Log+SVR
models. For SVR, only the TS, PSO, GS and RS tuners improved both qualities.
For CART and Log+CART models, all tuners provided similar improvements in
both accuracy and stability. For SVR and Log+SVR, the choice of tuner affected
the outcome, as demonstrated by the general groups. Overall, SVR benefited the
most from DE tuning, and Log+SVR from DE, GA, CGA, and FS.

Table 2 shows the SA and SD scores, and highlights the most accurate
models (with database rank 1 and 2). Log+SVR is shown as a reference point
for untuned models. Hyper-parameter tuning provided significant improvements
in mean SA in the top models with respect to its default counterpart. The gain
in accuracy was at its peak in FFP datasets, ranging from 0.139 to 0.2 SA in
COSMIC FFP, and from 0.123 to 0.168 SA in IFPUG 4+ UFP. Tuning in BFC
datasets was less impactful, ranging from 0.089 to 0.116 SA in IFPUG 4+ BFC,
and from 0.055 to 0.075 SA in COSMIC BFC. A similar pattern occurs in SD,
where tuning had a larger improvement in stability on IFPUG 4+ UFP, ranging

220

Multi-objective Hyper-parameter Tuning for Software Effort Estimation 9

Table 2: Mean SA, SD, and dataset rank of the most accurate models.

SA SD

IFPUG 4+ COSMIC IFPUG 4+ COSMIC

Model FFP BFC FFP BFC FFP BFC FFP BFC

CGA+Log+SVR 0.534 0.481 0.479 0.334 0.426 0.313 0.408 0.255

DE+Log+SVR 0.534 0.476 0.461 0.346 0.430 0.311 0.394 0.240

FS+Log+SVR 0.537 0.484 0.469 0.347 0.450 0.321 0.416 0.239

GA+Log+SVR 0.532 0.480 0.459 0.338 0.440 0.312 0.410 0.237

BO+Log+SVR 0.502 0.463 0.424 0.346 0.318 0.281 0.353 0.222

HB+Log+SVR 0.498 0.463 0.431 0.347 0.308 0.281 0.354 0.235

HS+Log+SVR 0.492 0.458 0.439 0.349 0.312 0.279 0.351 0.232

DG+Log+SVR 0.503 0.464 0.424 0.346 0.329 0.286 0.330 0.248

1+1+Log+SVR 0.496 0.459 0.418 0.344 0.315 0.282 0.365 0.231

PSO+Log+SVR 0.501 0.458 0.425 0.329 0.318 0.275 0.347 0.227

TS+Log+SVR 0.505 0.457 0.426 0.345 0.334 0.279 0.341 0.235

Log+SVR 0.369 0.368 0.279 0.274 0.216 0.222 0.209 0.212

Rank 1 Rank 2 Rank 3+

from 0.092 to 0.234 SD, and COSMIC FFP, ranging from 0.121 to 0.207 SD. In
contrast, the effect was lower on IFPUG 4+ BFC, ranging from 0.053 to 0.099
SD, and COSMIC BFC, ranging from 0.01 to 0.043 SD.

Single-objective hyper-parameter tuning improved the accuracy and stability
of CART and SVR based models, but had no effect on RR. In both accuracy
and stability, the models with the highest metrics were Log+SVR tuned with
differential evolution, flash, genetic algorithm, or compact genetic algorithm.

4.2 Accuracy and stability of multi-objective tuning (RQ2)

Comparing the performance of single- and multi- objective tuning was done by
means of Wilcoxon signed-rank tests (at 0.05 significance level). These tests were
performed for the two metrics SA and SD. Separate tests were done for each of
the four datasets and 120 models, yielding a total of 480 tests for each metric.

Table 3 shows the win-tie-loss statistics on the results of the Wilcoxon signed-
rank test, grouped by (a) tuner and (b) machine learning technique. These statis-
tics are calculated by counting the results of each test: a win if the test determines
a difference (p < 0.05) and multi-objective has a higher metric, a loss if the test
determines a difference and single-objective has a higher metric, and a tie if the
test determines no difference (p ≥ 0.05). In total, multi-objective tuning scored
60 wins, 247 ties, and 173 losses in SA, and 159 wins, 268 ties, and 53 losses on
SD.

All the multi-objective tuners had similar statistics. Regarding accuracy, the
tuners maintained accuracy in 17 to 27 cases (out of 50 cases), and were able
to improve it in 1 to 10 cases. However, they incurred in loss of accuracy in 9

221

10 L. Villalobos-Arias et al.

(a) Rank on SA.

(b) Rank on SD.

Fig. 2: Distribution of dataset ranks for each SVR and CART model.

222

Multi-objective Hyper-parameter Tuning for Software Effort Estimation 11

Table 3: Win-tie-loss statistics for multi-objective vs. single objective tuning.
(a) Hyper-parameter tuning

SA SD

Tuner W T L W T L

1+1 6 25 9 20 18 2

BO 9 21 10 13 22 5

CGA 1 19 20 11 27 2

DE 1 21 18 6 29 5

DG 4 17 19 12 21 7

FS 1 27 12 12 21 7

GA 1 17 22 10 27 3

HB 6 18 16 18 18 4

HS 9 20 11 14 21 5

PSO 5 20 15 13 21 6

RS 10 21 9 16 21 3

TS 7 21 12 14 22 4

60 247 173 159 268 53

(b) Machine learning technique

SA SD

Model W T L W T L

SVR 2 14 32 29 15 4

Log+SVR 21 10 17 37 6 5

CART 4 44 0 8 37 3

Log+CART 6 40 2 10 38 0

RR 9 25 14 7 33 8

Log+RR 0 23 25 15 24 9

CP+RR 2 31 15 10 34 4

Log+CP+RR 2 13 33 12 29 7

VT+RR 10 29 9 15 26 7

Log+VT+RR 4 18 26 16 26 6

60 247 173 159 268 53

to 22 cases (44% of cases in the worst scenario). The four tuners with highest
accuracy from section 4.1 were those with the least improvement on accuracy.
The CGA, DE, FS, and GA tuners registered only one win and up to 22 losses.
Regarding their accuracy, each tuner improved in 6 to 20 cases, maintained it in
18 to 29 cases, and reduced it in 2 to 7 cases. Similarly, CGA, DE, FS, GA, and
DG tuners obtained 12 or less wins. In general, tuners that were already good
at optimizing models gained less from multi-objective optimization.

A difference in multi-objective performance is seen when analyzing the statis-
tics by model. Multi-objective tuning has its largest effect on the Log+SVR
model, with 21 improvements on accuracy and 37 improvements on stability,
from the total 48 cases. However, there is potential hazard in 17 cases where
multi-objective optimization resulted in loss. When applied to Log+SVR, the
1+1 and TS tuners scored 3 wins and 1 tie in accuracy, and 4 wins in stability,
out of 4 cases. Similarly, the BO, HB, HS, PSO, and RS tuners obtained 4 wins
for stability, but resulted in loss of accuracy in certain scenarios. GA, CGA, DG,
and FS obtained the least gains from multi-objective optimization when applied
to Log+SVR. We again observe that the best single-objective performers gained
less from multi-objective optimization.

In the case of CART and Log+CART models, multi-objective optimization
achieved more stable results. For both models, the tuners achieved 10 wins, 84
ties, and 2 losses on SA, and 18 wins, 75 ties, and 3 losses on SD. Although not
particularly effective in improving either accuracy or stability, applying multi-
objective tuning can be a net positive, as it would rarely result on either metric
lowering and can potentially improve both metrics in certain cases.

223

12 L. Villalobos-Arias et al.

The six RR and SVR model did not particularly benefit from multi-objective
tuning, as accuracy was reduced in a maximum of 33 cases. With the exception
of VT+RR, the amount of losses in SA outnumbered the amount of wins. The
inverse can be observed for SD, with as high as 29 wins for multi-objective
tuners. However, given that SVR and RR-based models had already some of
the lowest accuracy scores in this study, we do not recommend multi-objective
tuning for these models.

The metrics we obtained for the multi-objective tuners was an average of
the Pareto front. In a real application, one of the hyper-parameter solutions in
the front would be selected to construct the final model. Thus, multi-objective
optimization has the aggregated value of producing multiple equally viable so-
lutions.

Multi-objective hyper-parameter tuning had different effects depending on
the model. For Log+SVR, tuning can boost stability at a potential loss of
accuracy. In CART and Log+CART models, multi-objective tuning main-
tained or improved the accuracy and stability, except in 5 cases. Multi-
objective tuning can also improve the stability of SVR and RR models, but
it can lower the accuracy of the model.

5 Conclusion

In this study we evaluated the impact of multi-objective hyper-parameter tuning
on accuracy and stability. Twelve single-objective and multi-objective tuners
were compared over 5 machine learning algorithms, 2 data transformations, and
4 datasets.

The results of the study show that single-objective hyper-parameter tuning
improves both the accuracy and stability on CART and SVR models, but had no
effect on the studied ridge regression models. The most effective models, in both
terms of stability and accuracy, were combinations of Log+SVR tuned using
genetic algorithm, compact genetic algorithm, differential evolution, and flash.
Multi-objective optimization offers a trade-off between accuracy and stability de-
pending on the model. For Log+SVR, multi-objective tuning only improved the
performance of the non-highest ranking tuners, such as random search. For mod-
els that use CART, multi-objective tuning resulted in improved or maintained
accuracy and stability, with very few cases in which the multi-objective model
performed worse. For SVR and ridge regression models, multi-objective tuning
may provide improvements on stability, but at the potential cost of degrading
their already low accuracy. Multi-objective optimization does offer multiple so-
lutions that are equally viable, and a researcher or practitioner can select the
hyper-parameter values that better suit their needs.

Future work includes exploring more datasets in the SEE literature, as well
as replicating this study on further machine learning algorithms and data trans-
formation methods. We are also interested in studying the effect of ‘meta-tuning’
the hyper-parameter tuners. For example, study how does a genetic algorithm
tuner perform when parameters such as mutation and crossover rates are altered.

224

Multi-objective Hyper-parameter Tuning for Software Effort Estimation 13

References

1. Agrawal, A., Fu, W., Chen, D., Shen, X., Menzies, T.: How to “dodge” complex
software analytics. IEEE Transactions on Software Engineering (2019)

2. Agrawal, A., Yang, X., Agrawal, R., Shen, X., Menzies, T.: Simpler hyperpa-
rameter optimization for software analytics: Why, how, when? arXiv preprint
arXiv:2008.07334 (2020)

3. Albon, C.: Machine learning with python cookbook: Practical solutions from pre-
processing to deep learning. ” O’Reilly Media, Inc.” (2018)

4. Ali, A., Gravino, C.: Improving software effort estimation using bio-inspired algo-
rithms to select relevant features: An empirical study. Science of Computer Pro-
gramming 205, 102621 (2021)

5. Azzeh, M., Nassif, A.B., Banitaan, S., Almasalha, F.: Pareto efficient multi-
objective optimization for local tuning of analogy-based estimation. Neural Com-
puting and Applications 27(8), 2241–2265 (2016)

6. Boehm, B.W.: Software engineering economics. IEEE transactions on Software
Engineering (1), 4–21 (1984)

7. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression
trees. CRC press (1984)

8. Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for
software effort estimation: a comparative study. IEEE transactions on software
engineering 38(2), 375–397 (2011)

9. Fu, W., Menzies, T., Shen, X.: Tuning for software analytics: Is it really necessary?
Information and Software Technology 76, 135–146 (2016)

10. Fu, W., Nair, V., Menzies, T.: Why is differential evolution better than grid search
for tuning defect predictors? arXiv preprint arXiv:1609.02613 (2016)

11. González-Ladrón-de Guevara, F., Fernández-Diego, M., Lokan, C.: The usage of
isbsg data fields in software effort estimation: A systematic mapping study. Journal
of Systems and Software 113, 188–215 (2016)

12. Langdon, W.B., Dolado, J., Sarro, F., Harman, M.: Exact mean absolute error of
baseline predictor, marp0. Information and Software Technology 73, 16–18 (2016)

13. Langsari, K., Sarno, R.: Optimizing effort and time parameters of cocomo ii esti-
mation using fuzzy multi-objective pso. In: 2017 4th International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI). pp. 1–6. IEEE
(2017)

14. Lederer, A.L., Prasad, J.: Causes of inaccurate software development cost esti-
mates. Journal of systems and software 31(2), 125–134 (1995)

15. Malgonde, O., Chari, K.: An ensemble-based model for predicting agile software
development effort. Empirical Software Engineering 24(2), 1017–1055 (2019)

16. Menzies, T., Shepperd, M.: Special issue on repeatable results in software engi-
neering prediction (2012)

17. Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models
through a multiple comparisons algorithm. IEEE Transactions on software engi-
neering 39(4), 537–551 (2012)

18. Nair, V., Yu, Z., Menzies, T., Siegmund, N., Apel, S.: Finding faster configurations
using flash. IEEE Transactions on Software Engineering 46(7), 794–811 (2018)

19. Oliveira, A.L., Braga, P.L., Lima, R.M., Cornélio, M.L.: Ga-based method for fea-
ture selection and parameters optimization for machine learning regression applied
to software effort estimation. information and Software Technology 52(11), 1155–
1166 (2010)

225

14 L. Villalobos-Arias et al.

20. Palaniswamy, S.K., Venkatesan, R.: Hyperparameters tuning of ensemble model
for software effort estimation. Journal of Ambient Intelligence and Humanized
Computing pp. 1–11 (2020)

21. Sarro, F., Petrozziello, A., Harman, M.: Multi-objective software effort estima-
tion. In: 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE). pp. 619–630. IEEE (2016)

22. Scott, A.J., Knott, M.: A cluster analysis method for grouping means in the analysis
of variance. Biometrics pp. 507–512 (1974)

23. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory
to algorithms. Cambridge university press (2014)

24. Shepperd, M.: Software project economics: a roadmap. In: 2007 Future of Software
Engineering. pp. 304–315. IEEE Computer Society (2007)

25. Shepperd, M., MacDonell, S.: Evaluating prediction systems in software project
estimation. Information and Software Technology 54(8), 820–827 (2012)

26. Song, L., Minku, L.L., Yao, X.: The impact of parameter tuning on software ef-
fort estimation using learning machines. In: Proceedings of the 9th international
conference on predictive models in software engineering. pp. 1–10 (2013)

27. Song, L., Minku, L.L., Yao, X.: The potential benefit of relevance vector machine
to software effort estimation. In: Proceedings of the 10th International Conference
on Predictive Models in Software Engineering. pp. 52–61 (2014)

28. Song, L., Minku, L.L., Yao, X.: Software effort interval prediction via bayesian
inference and synthetic bootstrap resampling. ACM Transactions on Software En-
gineering and Methodology (TOSEM) 28(1), 1–46 (2019)

29. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: The impact of
automated parameter optimization on defect prediction models. IEEE Transactions
on Software Engineering 45(7), 683–711 (2018)

30. Tawosi, V., Sarro, F., Petrozziello, A., Harman, M.: Multi-objective software effort
estimation: A replication study. IEEE Transactions on Software Engineering (2021)

31. Villalobos-Arias, L., Quesada-López, C., Guevara-Coto, J., Mart́ınez, A., Jenkins,
M.: Evaluating hyper-parameter tuning using random search in support vector
machines for software effort estimation. In: Proceedings of the 16th ACM Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineer-
ing (PROMISE‘20). ACM (2020)

32. Villalobos-Arias, L., Quesada-López, C., Mart́ınez, A., Jenkins, M.: Hyper-
parameter tuning of classification and regression trees for software effort estima-
tion. In: Trends and Applications in Information Systems and Technologies: Volume
3 9. pp. 589–598. Springer International Publishing (2021)

33. Villalobos-Arias, L., Quesada-López, C., Mart́ınez, A., Jenkins, M.: Técnicas de
ajuste de hiperparámetros de algoritmos de aprendizaje automático para la esti-
mación de esfuerzo: un mapeo de literatura. Revista Ibérica de Sistemas e Tecnolo-
gias de Informação (E42), 305–318 (2021)

34. Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review of machine
learning based software development effort estimation models. Information and
Software Technology 54(1), 41–59 (2012)

35. Xia, T., Krishna, R., Chen, J., Mathew, G., Shen, X., Menzies, T.: Hyperparameter
optimization for effort estimation. arXiv preprint arXiv:1805.00336 (2018)

36. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algo-
rithms: Theory and practice. Neurocomputing 415, 295–316 (2020)

226

227

Appendix H

Paper 6: Comparative study of
Random Search Hyper-Parameter

Tuning for Software Effort Estimation

Reference Villalobos-Arias, L., Quesada-López, C. (2021). Comparative study of

Random Search Hyper-Parameter Tuning for Software Effort Estimation. In Pro-

ceedings of the 17th International Conference on Predictable Models and Data

Analytics in Software Engineering. To be published.

Status Camera-ready version submitted. Awaiting publication.

Comparative study of Random Search Hyper-Parameter Tuning
for Software Effort Estimation

Leonardo Villalobos-Arias
leonardo.villalobosarias@ucr.ac.cr

Universidad de Costa Rica
San Pedro, Costa Rica

Christian Quesada-López
cristian.quesadalopez@ucr.ac.cr

Universidad de Costa Rica
San Pedro, Costa Rica

ABSTRACT
Empirical studies on software effort estimation have employed
hyper-parameter tuning algorithms to improve model accuracy
and stability. While these tuners can improve model performance,
some might be overly complex or costly for the low dimension-
ality datasets used in SEE. In such cases a method like random
search can potentially provide similar benefits as some of the exist-
ing tuners, with the advantage of using low amounts of resources
and being simple to implement. In this study we evaluate the im-
pact on model accuracy and stability of 12 state-of-the-art hyper-
parameter tuning algorithms against random search, on 9 datasets
of the PROMISE repository and 4 sub-datasets from the ISBSG R18
dataset. This study covers 2 traditional exhaustive tuners (grid and
random searches), 6 bio-inspired algorithms, 2 heuristic tuners,
and 3 model-based algorithms. The tuners are used to configure
support vector regression, classification and regression trees, and
ridge regression models. We aim to determine the techniques and
datasets for which certain tuners were 1) more effective than de-
fault hyper-parameters, 2) more effective than random search, 3)
which models(s) can be considered “the best” for which datasets.
The results of this study show that hyper-parameter tuning was
effective (increased accuracy and stability) in 862 (51%) of the 1,690
studied scenarios. The 12 state-of-the-art tuners were more effective
than random search in 95 (6%) of the 1,560 studied (non-random
search) scenarios. Although not effective in every dataset, the com-
bination of flash tuning, logarithm transformation and support
vector regression obtained top ranking in accuracy on the highest
amount (8 out of 13) of datasets. Hyperband tuned ridge regression
with logarithm transformation obtained top ranking in accuracy on
the highest amount (10 out of 13) of datasets. We endorse the use
of random search as a baseline for comparison for future studies
that consider hyper-parameter tuning.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; • Computing methodologies → Machine learning;
Supervised learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PROMISE’21, August 19–20, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

KEYWORDS
hyper-parameter tuning, software effort estimation, machine learn-
ing, empirical study

ACM Reference Format:
Leonardo Villalobos-Arias and Christian Quesada-López. 2021. Compar-
ative study of Random Search Hyper-Parameter Tuning for Software Ef-
fort Estimation. In Proceedings of the 17th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering (PROMISE’21),
August 19–20, 2021, Athens, Greece. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Software effort estimation (SEE) is a software engineering activ-
ity that deals with the estimation of the effort, in terms of time
required per person (person-hours), for the completion of a soft-
ware engineering project [6]. An effort estimate is helpful for other
activities in the early SE process, such as planning, budgeting, risk
analysis, and improvement analysis [5]. For this reason, accurate
and consistent effort estimates are a key issue for software devel-
opment organizations, and over- and underestimates can result in
respectively missed business opportunities or threats to project
delivery [20].

Machine learning (ML) has been researched for many years now
in SEE as a way to improve the accuracy of effort estimates [10]. To
further bolster the prediction capacity of a ML model, researchers
employ a series of techniques, including data pre-processing, fea-
ture and project selection, cross-validation, and hyper-parameter
tuning. Previous research in SEE has identified that the selection
of techniques affects model performance, but so far no study has
found an “optimal” scheme. Song et al. [32] have determined one
factor that can affect model accuracy is the configuration of hyper-
parameters in the model. Moreover, a study by Fu et al. [14] shows
evidence that tuning can change conclusions on which models are
better than others.

Hyper-parameter tuning algorithms are a way to automatically
determine appropriate hyper-parameter values [23, 32]. Research on
search-based software engineering (SBSE) has determined that tun-
ing can improve the accuracy of a machine learning scheme [25, 32],
as well as making their results more stable [35, 36]. However, hyper-
parameter tuning can be costly. An exhaustive tuner like grid search
can explore thousands of parameter configurations, which propor-
tionally elevates the computational cost. In a previous experiment,
we determined that a simple random search algorithm that sam-
ples 60 hyper-parameter combinations can perform as well as an
exhaustive grid search on more than 4,000 hyper-parameter values
for SEE data [38]. Agrawal et al. [2] suggest that the complexity

228

PROMISE’21, August 19–20, 2021, Athens, Greece Leonardo Villalobos-Arias and Christian Quesada-López

of datasets in software engineering is related to the efficacy of cer-
tain tuning algorithms. Simple learners and tuners can be effective
for optimization on datasets with low intrinsic dimensionality (i.e.
datasets that can be compressed with little information loss). Be-
cause of this, random search may be an effective hyper-parameter
tuning algorithm for SEE, while at the same time being simple to
implement and quick to execute.

In previous research, we have evaluated 13 hyper-parameter
tuning algorithms on the ISBSG 2018 dataset with respect to their
improvements on classification and regression trees (CART), sup-
port vector regression (SVR), and ridge regression (RR) models in
4 sub-datasets from the ISBSG R18 repository [37, 38]. This paper
extends our previous evaluation to 9 PROMISE SEE datasets, and
focuses on the comparison of random search against the other 12
state-of-the-art tuners.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 describes the study design. Sec-
tion 4 shows the results. Section 5 outlines the conclusions.

2 RELATEDWORK
This section reviews some of the studies in SEE and related SE
areas that use hyper-parameter tuning algorithms. Table 1 shows
the tuners we encountered in this literature that we evaluate in
this study, including the used library or repository. We include
some additional tuners from a recent literature study be Yang et
al. [43]. We categorized these tuners into 4 groups: exhaustive,
model-based, heuristic, and bio-inspired. The 2 exhaustive tuners
are simple methods that do not consider the qualities of the search
space to determine the next exploration point. The 3 model-based
tuners represent the explored points and their performance with a
predictive model, which then are used to predict the most promising
candidates for exploration. The 2 heuristic tuners are search-based
methods that use a set of rules to determine, based on the results of
previous exploration, the new point(s) in the search space to visit.
The 6 bio-inspired algorithms follow behavior found in nature,
such as natural selection, and implement it in the form of a search
algorithm.

In software engineering literature, the predilection of many stud-
ies is to employ traditional, exhaustive tuning algorithms.Minku [25]
proposed a method for online effort estimation based on grid search,
which contemplates tuning of the base model as well as tuning of a
clustering algorithm. Their results highlight that tuning improved
the predictive accuracy of online SEE models. Ertuğrul et al. [13]
evaluated grid search applied to 9 different SEE models, showing
that CART achieved the lowest mean average error. Tantithamtha-
vorn et al. [35, 36] researched the impact of grid search regarding its
impact to accuracy, stability, and training time; as well as parameter
sensitivity. Song et al. [32] evaluate the impact of hyper-parameter
tuning by studying model performance under the best, the worst,
and the default hyper-parameter values.

1https://scikit-learn.org/stable/
2https://github.com/arennax/effort_oil_2019
3https://github.com/amritbhanu/Dodge
4https://github.com/FacebookResearch/Nevergrad
5https://100.github.io/Solid/
6https://github.com/zygmuntz/hyperband
7https://pypi.org/project/geneticalgorithm/

In SEE and other related research areas in software engineer-
ing, researchers have started to propose, adapt, and evaluate non-
exhaustive, heuristic hyper-parameter tuners. These have demon-
strated to be viable alternatives to the traditional exhaustive algo-
rithms like grid search. Palaniswamy et al. [27] studied particle
swarm optimization and genetic algorithms as hyper-parameter
tuners to improve the performance of ensemble learners. The dodge
tuning algorithm was proposed by Agrawal et al. [1, 2]. Dodge
prioritizes points in the search space by avoiding redundant config-
urations (i.e. searching near parameters that do not substantially
improve accuracy) and endorses space around the best candidates.
Xia et al. [41] perform a study on the prediction of software project
health in which they evaluate the performance of differential evolu-
tion tuned CART against untuned models. Their results show that
tuned CART can consistently achieve less than 10% prediction error.
Nair et al. [26] propose using machine learning algorithms to per-
form hyper-parameter tuning by introducing their flash algorithm.
Flash utilizes a regression tree model to represent the explored
hyper-parameters and their accuracy, and using said model to pre-
dict which configuration candidate should be evaluated next. In the
area of software performance, a study by Chen et al. [8] adapted
the Bayesian optimization method and a predictive tree model for
optimization of compiler flags.

This study further investigates the effect of these heuristic tuners
in SEE, evaluating them in the PROMISE SEE datasets.

3 EXPERIMENTAL DESIGN
In this section, we detail the research questions, datasets, cross-
validation, evaluation metrics, machine learning algorithms, and
hyper-parameter tuners used in this study.

3.1 Research Questions
The main objective of this study is to evaluate random search hyper-
parameter tuning against 12 state-of-the-art algorithms on their
impact of accuracy and stability of SEE models. We propose the
following research questions to guide this research:

RQ1:Which tuners improvemodel accuracy andmaintain stability
with respect to default hyper-parameters?

RQ2:Which tuners improvemodel accuracy andmaintain stability
with respect to random search?

RQ3:Whichmodel(s) can be considered the best for which datasets?
The focus of these questions is on the effectiveness of the hyper-

parameter tuning algorithms. While tuning can potentially improve
a SEE model, it requires at substantially more time to find the opti-
mal hyper-parameter values. For this to be worthwhile, we would
expect, at least, a significant increase in prediction accuracy of the
model. In addition, previous studies have reported that another
important characteristic of prediction models in software engineer-
ing is stability [35, 36]. We thus define the concept of an effective
tuner in this study as a method that can significant increase model
accuracy while maintaining (or increasing) the model stability.

3.2 Datasets
We evaluate the hyper-parameter tuners in 9 datasets from the
PROMISE (also known as SEACRAFT) public repository as well as
4 sub-datasets from the ISBSG release 2018 (ISBSG R18) repository.

229

Comparative study of Random Search Hyper-Parameter Tuning for Software Effort Estimation PROMISE’21, August 19–20, 2021, Athens, Greece

Table 1: Hyper-parameter tuners evaluated in this study.

Tuner Code Ref Type Description Implementation

Grid search GS [4] Exhaustive Evaluates each possible combinations of hyper-parameters values in
the search space.

scikit-learn1

Random search RS [4] Exhaustive Randomly samples 60 combinations of hyper-parameter values from
the search space.

scikit-learn1

Flash FS [26] Model Represents all explored solutions using a regression tree, and
determines the best possible candidate by predicting their
performance.

OIL2

Dodge DG [1] Model Dodge represents visited solutions using a tree, and prioritizes
“interesting” points by avoiding solutions within 𝜖 performance of
previous solutions.

Dodge3

Bayesian
optimization

BO [31] Model Represents all explored solutions using a Bayesian model, and
determines the best possible candidate by predicting their
performance.

Nevergrad4

Tabu search TS [16] Heuristic TS explores a potential solution and its neighbors using a series of
transformations, and employs a taboo list to exclude recently visited
solutions.

Solid5

Hyperband HB [22] Heuristic HB is based on the concept of halving a space, with each iteration
discarding the worst half of possible solutions.

Hyperband6

Particle swarm
optimization

PSO [17] Bio PSO simulates the behavior of a flock of birds by having each
individual congregate closer to the most fit individual each iteration.

Nevergrad4

Harmony
search

HS [15] Bio Mimicking the search for musical harmony, HS improvises a solution
each iteration based off a list of the best harmonies encountered.

Solid5

Genetic
algorithm

GA [12] Bio Each iteration of the algorithm eliminates a percentage of the least fit
individuals, and new members of the population are generated based
off the survivors.

PyPi7

1+1 GA 1+1 [9] Bio A variant of GA in which only one individual survives and one is
generated each iteration.

Nevergrad4

Compact GA CGA [18] Bio A variant of GA that represents the population as a probabilistic
vector to reduce memory use.

Nevergrad4

Differential
evolution

DE [34] Bio DE keeps a frontier comprised by the most fit individuals, and new
individuals are generated by randomly combining three members of
the frontier.

OIL2

Tomeasure the complexity of these datasets, we employed the in-
trinsic dimensionality measure and calculation algorithm by Levina
et al. [21].

3.2.1 PROMISE. Table 2 shows the datasets used in this study,
their number of projects, number of features, number of categorical
features, names of predictor features, name of the target feature,
and L1 and L2 intrinsic dimensionality. We use the 9 datasets and
preprocessing rules used in the study by Xia et al. [42]. This selec-
tion comprises some of the most used datasets in hyper-parameter
tuning studies for SEE [39]. In the same line of Xia et al., we have
chosen to remove features that are 1) irrelevant to the effort esti-
mation task, 2) unavailable at the time of estimation, and 3) highly
correlated or overlap with each other. For desharnais, we removed
4 projects that had missing values: rows 38, 44, 66, and 75.

3.2.2 ISBSG R18. We extend the design of our previous studies [37,
38], in which we employed the International Software Benchmark-
ing Standards Group Development & Enhancement 2018 Repository

Release 1 (ISBSG R18) dataset. Similarly to Xia et al. [42], we re-
moved features that are 1) irrelevant to the effort estimation task,
2) unavailable at the time of estimation, and 3) highly correlated or
overlap with each other, and 4) have 25% or more missing values.
In addition, we selected only those projects that had: a) function
point type IFPUG 4+ or COSMIC, b) data point quality A or B, c)
function point quality A or B if function point type is IFPUG 4+,
d) development type is “new development”, and e) projects with
recorded effort values for the development team. Lastly, we splitted
the dataset in 2 sub-sets by function point type: IFPUG 4+ or COS-
MIC. Two variants were studied for each set: using total function
points, and using separate basic functional components. All datasets
contain the following 13 features, plus their specific function point
features: Application Group, Architecture, Case Tool Used (except
COSMIC), Development Methodologies (except COSMIC), Develop-
ment Platform, Industry Sector, Intended Market, Language Type,
Max Team Size, Team Size Group, Used Methodology, and Year
of Project. The target feature was Normalized Work Effort Level

230

PROMISE’21, August 19–20, 2021, Athens, Greece Leonardo Villalobos-Arias and Christian Quesada-López

Table 2: PROMISE datasets used in this study.

Dataset Proj. Features Dim.
N Cat. Predictors Target L1 L2

albrecht 24 4 0 Input, Output, Inquiry, File Effort 5.4 8.0
china 499 6 0 Input, Output, Enquiry, File, Interface, Resource Effort 6.2 6.2
desharnais 77 5 2 TeamExp, ManagerExp, Transactions, Entities, PointsAdjust Effort 3.4 5.4
finnish 38 4 0 hw, at, FP, co dev.eff.hrs 5.4 5.4
isbsg10 37 11 10 Data_Quality, UFP, IS, DP, LT, PPL, CA, FS, RS, Recording_Method, FPS s_effort 6.9 3.4
kemerer 15 3 0 AdjFP, Hardware, Language EffortMM 5.4 3.4
kitchenham 145 3 1 Client.code, Project.type, Adjusted.function.points Actual.effort 3.4 3.4
maxwell 62 23 0 App, Har, Dba, Ifc, Source, Telonuse, Nlan, T01, T02, ..., T15, Size Effort 3.8 3.4
miyazaki94 47 6 0 SCRN, FORM, FILE, ESCRN, EFORM, EFILE Effort 5.4 5.4

Table 3: ISBSG R18 datasets used in this study.

Dataset Proj. Features Dim.
N Cat. FP L1 L2

ifpug_total 821 14 10 Functional
Size

4.8 3.4

ifpug_bfc 821 18 10 Input, Output,
Enquiry, File,
Interface

5.4 5.4

cosmic_total 168 12 8 Functional
Size

4.3 2.5

cosmic_bfc 168 15 8 Entry, Exit,
Read, Write

3.4 5.4

1. Table 3 summarizes the four ISBSG subsets used in this study,
including their function point type features.

3.3 Cross-validation
For PROMISE datasets, we used 100 times out-of-sample bootstrap
sampling as a cross-validation method [11]. For a dataset of size
𝑁 , an out-of-sample bootstrap takes 𝑁 samples with replacement
from the original data as the train set, and uses those projects not
included as the test set. On average, the test set contains 36.8% of
the original projects. This process is repeated 100 times, producing
that many pairs of train and test sets. Out-of-sample bootstrap is
used instead of k-fold cross-validation, as it generates more stable
results when having less samples, as well as being recommended
for highly skewed datasets [36].

Following our previous design, we employ 10 times 10-fold cross-
validation for the ISBSG R18 datasets. We randomly divide the data
into 10 groups or folds. One fold is selected to become a test set, and
the remaining 9 are combined to become the train set; repeating
until every fold has been used once as the test set. This process is
repeated an additional 100 times, for a total of 100 pairs of train
and test sets.

For each scheme (combination of machine learning algorithm,
tuner, and data transformation), the models were tuned on the train
set. Because the tuners do not have access to the test set, a sub-
partition was performed using k-fold cross-validation. The value of
𝑘 was 5 for PROMISE sets and 10 for ISBSG sets. Once the optimal

hyper-parameter values are determined, the model is re-trained
with these parameters on the complete train set. Lastly, the model is
used to predict on the test set. The predicted effort values are used,
along with the actual effort, to compute the evaluation metrics, for
a total of 100 metrics per scheme and dataset.

3.4 Evaluation Metrics
Wemeasured the accuracy of the SEEmodels using the standardized
accuracy (𝑆𝐴) [30]. 𝑆𝐴 is calculated as 1−𝑀𝐴𝑅/𝑀𝐴𝑅𝑝0, where𝑀𝐴𝑅

is the mean of a between predicted and actual effort values.𝑀𝐴𝑅𝑝0
is the 𝑀𝐴𝑅 of a baseline model, for which we use the adjusted
random guessing algorithm by Langdon et al. [19].

The stability of these models was measured using a metric we
named standardized stability (𝑆𝐷), which is a modified version of
the stability ratio by Tantithanthavorn et al. [35, 36] to function
in the same scale as 𝑆𝐴. Moreover, instead of comparing against
default parameters, we calculate the stability ratio with respect to
the baseline estimator 𝑝0. The 𝑆𝐷 is calculated as 1−𝑆𝑑𝐴𝑅/𝑆𝑑𝐴𝑅𝑝0,
where 𝑆𝑑𝐴𝑅 is the standard deviation of the differences between
predicted and actual effort values. We use the baseline model 𝑝0 for
both 𝑆𝐴 and 𝑆𝐷 .

Both 𝑆𝐴 and 𝑆𝐷 are ratios that show the percentage of improve-
ment in accuracy and stability with respect to the baseline. A 𝑆𝐴

value of 0 indicates that the model has performance that is as good
as random guessing. A model that obtains an 𝑆𝐴 score of 1 is 100%
more accurate than random guessing. Conversely, negative 𝑆𝐴 or
𝑆𝐷 scores indicate that the model is worse than randomly guessing.

3.5 Machine Learning Algorithms
We employed five machine learning models in this experiment: clas-
sification and regression trees (CART) [7], support vector regres-
sion (SVR) [40] and three variants of ridge regression (RR) [10]. For
RR, we employed: ridge regression (no feature selection), ridge re-
gression with percentile correlation [29] feature selection (CP+RR),
and ridge regression with variance threshold [3] feature selec-
tion (VT+RR). Table 4 shows the hyper-parameter search space.
Tuners that explore continuous ranges for numerical features (ge-
netic algorithms, for example), instead use the minimum and maxi-
mum values. The hyper-parameter ranges and values were selected
based on suggestions of previous studies [24, 33].

231

Comparative study of Random Search Hyper-Parameter Tuning for Software Effort Estimation PROMISE’21, August 19–20, 2021, Athens, Greece

Table 4: Hyper-parameter search space.

Model Hyper-parameters and values

CART min_samples_leaf = {1, 2, 3, ..., 20}; max_depth
= {1, 2, 3, ..., 20}; min_impurity_decrease = (10𝑥 ,
𝑥 = {−5,−4.5,−4, ..., 0})

SVR 𝐶 = 1, 5, 15, 30, {50, 100, ... , 450}, {500, 1000, ... , 15000};
kernel = {rbf, sigmoid};
𝛾 = (10𝑥 , 𝑥 = {−3,−2.5,−2, ...,−0.5}); auto, scale;
𝜖 = 10𝑥 , 𝑥 = {−3,−2.5,−2, ...,−0.5}

RR 𝛼 = 1, {5, 10, ..., 45}, {50, 75, ..., 500}
VT+RR 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5; 𝛼 from RR

CP+RR 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = {10, 20, 30, ... , 90}; 𝛼 from RR

We employed the logarithm (Log) transformation in this exper-
iment. The five machine learning models were evaluated using
no data transformation, and using the Log transformation before
training. For example, two variants of the SVR model were evalu-
ated: no transformation SVR (SVR), and Log transformation plus
SVR (Log+SVR). Thus in total, this experiment evaluated 10 models.

3.6 Hyper-parameter Tuners
We employ a total of 13 tuning techniques in this study, plus default
hyper-parameters. These are the 13 algorithms presented on table 1.
All tuners, with the exception of grid search, were configured to
explore a maximum of 60 hyper-parameter combinations. Future
studies could compare 60-sample random search against tuning
algorithms with higher budgets. Flash was configured to have a pop-
ulation (sample) size of 2880 with an initial sample of 5. Dodge was
configured with 𝑛1 = 12 and 𝑛2 = 48 (i.e. 60 iterations), and 𝜖 = 0.01.
Bayesian optimization was configured with value of 𝛼 = 0.0001.
Tabu search was used with a tabu list size of 5, a neighborhood
size of 5, and a maximum of 12 steps. For Hyperband, 𝜂 was set
to 3. PSO was configured with a population size of 20. For Har-
mony search, the parameters were configured as𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒 =

10,𝑚𝑒𝑚𝑜𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 9, 𝑝𝑖𝑡𝑐ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑟𝑎𝑡𝑒 = 0.05,
𝑓 𝑟𝑒𝑡_𝑤𝑖𝑑𝑡ℎ = 0.01, and𝑚𝑎𝑥_𝑠𝑡𝑒𝑝𝑠 = 50 (the implementation does
not count the initial memory as part of𝑚𝑎𝑥_𝑠𝑡𝑒𝑝𝑠). The genetic al-
gorithm was configured with 14 iterations and a population size of
5, a mutation rate of 0.3, and a crossover rate of 0.8, and a surviving
population of 0.2 (1 individual). Because of this, GA explores a total
of 61 hyper-parameters: 5 initial values plus 4 per iteration, times
14. Differential evolution uses a mutation rate of 0.8, crossover rate
of 0.7, a population size of 6, and a total of 10 iterations. The 1+1
and compact genetic algorithms are used with parameters. Grid
search and random search do not have parameters, excepting the
exploration budget.

The (non grid search) hyper-parameter tuners used in this study
were configured to explore a maximum of 60 values in the search
space. This budget was chosen based on the study by Bergstra and
Bengio [4], in which random search for hyper-parameter tuning
obtained better results with respect to grid search when the explo-
ration budget was 64 or more. According to Zheng [44], if 5% of

the hyper-parameter space contains near-optimal solutions, a ran-
dom sample of 60 values has a 95% chance to contain one or more
optimal parameters. However, the results presented in this study
are limited to techniques configured to explore 60 hyper-parameter
values. Additional studies are required to confirm the impact of
tuning in stability and accuracy using different exploration budgets.

4 RESULTS
In this section we answer the research questions presented in sec-
tion 3.1 by presenting the results obtained from our experiment.
The obtained metrics and results of this experiment is publicly
available in http://tiny.cc/tuningvsrandom. This paper presents a
summary of these results.

4.1 RQ1: Tuning vs. Default
To answer the first research question on whether tuning can im-
prove accuracy and maintain stability with respect to default hyper-
parameters, we evaluated the improvement in performance pro-
vided by the 13 tuners. Specifically, we performed a Wilcoxon sign-
rank test (0.05 significance) with Holm-Bonferroni corrections (for
the total number of tuners) on the obtained 𝑆𝐴 and 𝑆𝐷 scores
against default hyper-parameters for eachmodel, dataset, and tuner;
resulting in a total of 1,690 evaluations. These results are labeled
as one of three cases: wins, where the tuner has a significantly
better score than default; tie, where the tuned and default have
similar scores; and loss, where the model has a significantly worse
score than default. Because tuning requires additional resources,
we would consider tuning effective if it increases accuracy (win in
SA), and is able to increase or maintain stability (win or tie in SD).
Otherwise, we consider tuning not effective. Table 5 shows for each
tuner, model and dataset the amount of scenarios (i.e. combinations
of the other two factors) in which tuning was effective, with the
total amount of scenarios in the bottom row.

Table 5: Effectiveness of tuning against default hyper-
parameters.

Tuner Model Dataset

GA 70 Log+SVR 120 cosmic total 130
HB 70 Log+RR 112 ifpug total 93
RS 70 Log+CP+RR 104 maxwell 90
1+1 69 CP+RR 93 miyazaki94 80
CGA 69 Log+VT+RR 88 kitchenham 74
FS 68 Log+CART 73 cosmic bfc 73
BO 67 VT+RR 71 desharnais 56
HS 66 RR 69 albrecht 54
GS 65 SVR 66 ifpug bfc 52
PSO 65 CART 66 kemerer 49
TS 63 china 46
DE 62 isbsg10 42
DG 58 finnish 23

130 169 130

232

PROMISE’21, August 19–20, 2021, Athens, Greece Leonardo Villalobos-Arias and Christian Quesada-López

The studied tuners were effective in 862 (51%) out of the 1,690
evaluated scenarios. On the non-effective scenarios, 46 combina-
tions of model and dataset resulted in no tuner being able to sig-
nificantly increase accuracy. If we could always select an effective
algorithm, tuning would be effective for 84 our of 130 model ×
dataset combinations, or 65% of the studied cases. For the remain-
ing 35% cases, none of the tuning approaches can improve upon
default hyper-parameters.

Hyper-parameter tuning was effective in datasets with L1 dimen-
sionality less than 5: cosmic total, maxwell, cosmic bfc, ifpug total,
desharnais, and kitchenham. Particularly, tuning was effective in
the cosmic total dataset regardless of the used tuner or the base
model. The effectiveness of tuning in the other low-dimensionality
datasets depends on particular combinations of base model and
tuner. With the exception of miyazaki94, the amount of scenarios
in which tuning is effective is less for datasets with dimensionality
5 or greater. This observation is consistent with a previous study of
tuning in software engineering by Agrawal et al. [2], in which they
report that dodge hyper-parameter tuning achieved better results
in datasets with dimensionality 3 or less.

Out of the 10 studied models, tuning was more consistently
effective for Log+SVR. The 13 studied tuners were effective in 9 of
the studied datasets: albrecht, cosmic bfc, cosmic total, finnish, ifpug
bfc, ifpug total, isbsg10, kitchenham, and maxwell. The 13 tuners
failed to improve performance of Log+SVR in the miyazaki94 and
kemerer datasets. Particularly for miyazaki94, tuning decreased the
accuracy of the model with respect to default parameters. For the
china dataset, only CGA was effective. For the desharnais dataset,
both CGA and RS were effective.

There were 46 combinations of dataset and model (out of 130) in
which none the 13 tuners were effective. These included 7 datasets
for RR and VT+RR (albrecht, china, cosmic bfc, finnish, ifpug bfc,
isbsg10, kitchenham), 7 datasets for SVR (china, desharnais, is-
bsg10, kemerer, kitchenham, maxwell, miyazaki94), 5 datasets for
Log+CART (albrecht, finnish, isbsh10, kemerer, miyazaki94), 4 datasets
for Log+VT+RR (china, finnish, ifpug bfc, ifpug total), 4 datasets for
CART (albrecht, finnish, isbsg10, kemerer), 4 datasets for CP+RR (de-
sharnais, ifpug bfc, ifpug total, kemerer), 3 datasets for Log+RR (china,
finnish, ifpug bfc), 3 datasets for Log+CP+RR (desharnais, finnish,
ifpug bfc), and 2 datasets for Log+SVR (kemerer, miyazaki94). More-
over, there was no tuner and model combination that was effective
across all datasets. Similarly, there were 53 such cases in which the
13 tuners were effective.

RQ1: there was no tuner that always improved model accuracy
and maintained stability, and are effective depending on the base
model and dataset. There is some overlap in the performance of
tuners, as in 53 cases every tuner was effective, and in 46 cases
every tuner was ineffective. In other words, the choice of tuner
was relevant in only 31 model × dataset combinations. Tuning was
generally more effective in scenarios where the dataset had low
dimensionality (<5).

4.2 RQ2: Tuning vs. Random
To answer the second research question on whether tuning can
improve accuracy and maintain stability with respect to random
search, we compared the performance of random search against

the other 12 studies tuners. We performed an analysis similar to
RQ1, for which we obtained the win-tie-loss values of a Wilxocon
sign-rank test with Holm-Bonferroni corrections on the 𝑆𝐴 and 𝑆𝐷
scores of the 12 tuners compared to random search. Similarly, we
considered the tunersmore effective than random if they can increase
accuracy, and increase or maintain stability. Table 6 shows for each
tuner, model and dataset the amount of scenarios (i.e. combinations
of the other two factors) in which tuning was effective, with the
total amount of scenarios in the bottom row.

Table 6: Effectiveness of tuning against random search.

Tuner Model Dataset

CGA 21 Log+SVR 25 albrecht 21
GA 13 CP+RR 17 maxwell 19
TS 11 RR 13 desharnais 16
HB 10 SVR 10 ifpug total 14
HS 8 CART 8 cosmic total 13
FS 6 VT+RR 8 finnish 13
1+1 5 Log+CART 6 miyazaki94 12
DE 5 Log+RR 5 ifpug bfc 9
DG 5 Log+VT+RR 3 china 8
PSO 5 Log+CP+RR 0 kemerer 7
GS 4 isbsg10 5
BO 2 kitchenham 3

cosmic bfc 1

130 156 120

The studied tuners were more effective than random search
in only 95 out of the 1,560 studied non-random search scenarios
(12 tuners × 10 models × 13 datasets), or 6% of all cases. If we
assume a practical scenario, in which we evaluated and select the
most effective tuner, tuning is more effective than random search
in 35 combinations of model and dataset out of 130 (27%). In the
remaining 73% of combinations, random search is as effective (or
more) than the other tuners.

The 4 tuners which outperformed random search in the highest
amount of scenarios were CGA, GA, TS, and HB. The first two
correspond with variants of genetic algorithms, and other three are
heuristic-based methods.

Grid search, one of the most used tuners in SEE literature, was
more effective than random search in only 4 (3%) of all scenarios.
Three of these cases were on the ISBSG R18 datasets. Many of the
studies that utilize Grid Search on the traditional SEE datasets could
switch to random search and achieve similar results. Moreover, the
best tuners were more effective than random search in only 17% of
all cases.

RQ2: there was no tuner that could outperform random search
in all scenarios. The studied hyper-parameter methods were more
effective than random search in only 6% of the studied model and
dataset combinations. This shows that random search is a viable
tuning algorithm for SEE datasets.

233

Comparative study of Random Search Hyper-Parameter Tuning for Software Effort Estimation PROMISE’21, August 19–20, 2021, Athens, Greece

4.3 RQ3: Best Tuners
To answer the third research question on whether a particular
model and tuner combination can be considered the overall “best”
technique in all of the studied datasets. To achieve this, we ranked
the evaluated models using the Scott-Knott algorithm [28]. The
Scott-Knott method uses hierarchical clustering to rank each tech-
nique in equivalence groups, so that techniques within each group
have similar performance. This analysis was performed for the (Box-
cox transformed) accuracy and stability of each dataset, totaling 13
accuracy ranks and 13 stability ranks assigned to each model+tuner.
Table 7 shows the 10 most accurate and the 10 most stable mod-
els across the studied datasets. To determine this, we counted the
amount of times (N) that the model obtained the top ranking for
each dataset. In the case of ties, we selected the technique with
higher 𝑆𝐴 or 𝑆𝐷 , averaged across all datasets.

Table 7: Top 10 techniques for 𝑆𝐴 and 𝑆𝐷 across all datasets.

Accuracy Stability
Model N SA Model N SD

FS+Log+SVR 8 0.48 HB+Log+RR 10 0.61
DE+Log+SVR 7 0.48 HB+Log+VT+RR 9 0.61
GA+Log+SVR 7 0.48 GA+Log+RR 9 0.61
CGA+Log+SVR 7 0.47 HS+Log+VT+RR 9 0.61
TS+CP+RR 7 0.45 HS+Log+RR 9 0.60
CGA+RR 7 0.45 HB+Log+CP+RR 9 0.60
GA+RR 7 0.45 PSO+Log+RR 9 0.60
PSO+CP+RR 7 0.45 GA+Log+CP+RR 9 0.60
DG+CP+RR 7 0.45 HS+Log+CP+RR 9 0.60
HB+RR 7 0.45 GA+Log+VT+RR 9 0.60

For accuracy, there was no technique that ranked first in all
datasets, and thus none can be considered the overall “best”. How-
ever, there are techniques that obtained top ranking inmore datasets
than others. The flash-tuned SVR model with log transformation
(FS+Log+SVR) ranked top in 8 out of 13 datasets, with a minimum
𝑆𝐷 of 0.31, a mean 𝑆𝐷 of 0.48, and a maximum 𝑆𝐷 of 0.67. The
second, third, and fourth top 𝑆𝐴 techniques according to the rank-
ing in table 7 corresponded with Log+SVR with DE, GA, and CGA
tuning. The models ranked 5 to 10 correspond with tuned RR and
CP+RR models.

The top-ranked RR models obtained the top rank in the datasets
where the best model did not. FS+Log+SVR ranked top in some
of the datasets with high amount of features (ISBSG R18 subsets
and isbsg10), and the RR models did so on the smaller datasets
(desharnais, kitchenham, maxwell, miyazaki94). Thus, these two
approaches are complementary, and generally cover each other’s
weaknesses on SEE.

For stability, there was no technique that ranked first in all cases,
and thus none can be considered the overall “best”. However, all top
10 (and up to the top 63) models correspond with ridge regression
models. The HB+Log+RR model ranked top in 10 out of 13 datasets,
with a minimum 𝑆𝐷 of 0.51, a mean 𝑆𝐷 of 0.61, and a maximum
𝑆𝐷 of 0.87. Moreover, HS+Log+RR obtained second ranking on the
other 3 datasets (albrecht, kitchenham, maxwell).

RQ3: No model and tuner combination can be considered the
best overall. The technique that was ranked first in accuracy in
the highest amount of datasets was FS+Log+SVR. Other combina-
tions of genetic algorithm Log+SVR also obtained good accuracy
scores. The technique that was ranked first in stability in the highest
amount of datasets was HS+Log+RR.

5 CONCLUSION
In this study we evaluated the impact on model accuracy and stabil-
ity of 12 state-of-the-art hyper-parameter tuning algorithms against
random search. These tuners adjusted the parameters of 10 machine
learning models, which were trained on 9 datasets of the PROMISE
repository and 4 sub-datasets from the ISBSG R18 dataset. This
involved the tuning, training and evaluation of 1,690 models; or
169,000 models if we account for the 100 repetitions of bootstrap
cross-validation.

The results obtained in the study indicate that hyper-parameter
tuning might not be effective in all circumstances, and that the
elevated cost of tuning might not necessarily improve a model. We
however determined that tuning was effective in 65% of the studied
situations if an appropriate tuner was selected. The effectiveness
of tuning was higher on datasets with intrinsic dimensionality less
than 5.

This study portrayed random search as a viable search algorithm
for SEE. We covered 12 state-of-the-art tuners, and our results show
that these methods were more effective than random search in only
6% of the studiedmodel and dataset combinations. If the best tuner is
selected, the state-of-the-art tuners are more effective than random
search in 27% of the studied model and dataset combinations. Of the
studied tuners, genetic and heuristic-based tuners had the highest
amount of scenarios that outperformed random search.

There was no “best” model for the studied datasets. The results
obtained in this study suggest that the most effective tuning method
depended on the model and data. The FS+Log+SVR model was
ranked first in accuracy in the highest amount of datasets, and that
HB+Log+RR was ranked first in stability in the highest amount of
datasets.

Our primary recommendation for future studies, SEE practition-
ers, and generally any user of hyper-parameter tuning is to “look
before you leap”. That is, analyze and determine how complex is
a dataset before utilizing a costly and exhaustive algorithm. We
advise SEE studies to select and evaluate a set of hyper-parameter
tuning algorithms and determine which one was effective for their
particular dataset and model. For this end, we particularly recom-
mend the flash, (compact) genetic algorithm, differential evolution,
and hyperband algorithms as effective hyper-parameter tuners. We
also endorse the use of random search as a baseline method tuner.
Just as random guessing became a baseline predictor for the stan-
dardized accuracy metric in SEE, perhaps random guessing can
become the baseline tuner.

For future work, we contemplate the replication this study on fur-
ther machine learning algorithms and data transformation methods.
We are also interested in extending this study to other datasets in
the software engineering literature. Another venue is studying the
effect of ‘tuning’ the hyper-parameter tuners, as well as comparing
random search against tuners with higher budgets.

234

PROMISE’21, August 19–20, 2021, Athens, Greece Leonardo Villalobos-Arias and Christian Quesada-López

ACKNOWLEDGMENTS
This work was supported by project No. 834-B8-A27 at the Univer-
sity of Costa Rica (ECCI-CITIC).

REFERENCES
[1] Amritanshu Agrawal, Wei Fu, Di Chen, Xipeng Shen, and Tim Menzies. 2019.

How to “DODGE” Complex Software Analytics. IEEE Transactions on Software
Engineering (2019).

[2] Amritanshu Agrawal, Xueqi Yang, Rishabh Agrawal, Rahul Yedida, Xipeng Shen,
and Tim Menzies. 2021. Simpler Hyperparameter Optimization for Software
Analytics: Why, How, When. IEEE Transactions on Software Engineering (2021),
1–1. https://doi.org/10.1109/TSE.2021.3073242

[3] Chris Albon. 2018. Machine learning with python cookbook: Practical solutions
from preprocessing to deep learning. " O’Reilly Media, Inc.".

[4] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, Feb (2012), 281–305.

[5] Barry Boehm, Chris Abts, and Sunita Chulani. 2000. Software development cost
estimation approaches—A survey. Annals of software engineering 10, 1-4 (2000),
177–205.

[6] Barry W Boehm. 1984. Software engineering economics. IEEE transactions on
Software Engineering 1 (1984), 4–21.

[7] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984.
Classification and regression trees. CRC press.

[8] Junjie Chen, Ningxin Xu, Peiqi Chen, andHongyu Zhang. 2021. Efficient Compiler
Autotuning via Bayesian Optimization. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1198–1209.

[9] Duc-Cuong Dang and Per Kristian Lehre. 2016. Self-adaptation of mutation rates
in non-elitist populations. In International Conference on Parallel Problem Solving
from Nature. Springer, 803–813.

[10] Karel Dejaeger, Wouter Verbeke, David Martens, and Bart Baesens. 2011. Data
mining techniques for software effort estimation: a comparative study. IEEE
transactions on software engineering 38, 2 (2011), 375–397.

[11] Bradley Efron. 1983. Estimating the error rate of a prediction rule: improvement
on cross-validation. Journal of the American statistical association 78, 382 (1983),
316–331.

[12] AP Engelbretch. 2005. Fundamentals of computational swarm intelligence. Eng-
land, John Wiley & Sons Ltd (2005), 5–129.

[13] Egemen Ertuğrul, Zakir Baytar, Çağatay Çatal, and Ömer Can Muratli. 2019.
Performance tuning for machine learning-based software development effort
prediction models. Turkish Journal of Electrical Engineering & Computer Sciences
27, 2 (2019), 1308–1324.

[14] Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics: Is it
really necessary? Information and Software Technology 76 (2016), 135–146.

[15] Zong Woo Geem, Joong Hoon Kim, and Gobichettipalayam Vasudevan Lo-
ganathan. 2001. A new heuristic optimization algorithm: harmony search. simu-
lation 76, 2 (2001), 60–68.

[16] Fred Glover and Manuel Laguna. 1998. Tabu search. In Handbook of combinatorial
optimization. Springer, 2093–2229.

[17] XC Guo, JH Yang, CGWu, CYWang, and YC Liang. 2008. A novel LS-SVMs hyper-
parameter selection based on particle swarm optimization. Neurocomputing 71,
16-18 (2008), 3211–3215.

[18] Georges R Harik, Fernando G Lobo, and David E Goldberg. 1999. The compact
genetic algorithm. IEEE transactions on evolutionary computation 3, 4 (1999),
287–297.

[19] William B Langdon, Javier Dolado, Federica Sarro, and Mark Harman. 2016. Exact
mean absolute error of baseline predictor, MARP0. Information and Software
Technology 73 (2016), 16–18.

[20] Albert L Lederer and Jayesh Prasad. 1995. Causes of inaccurate software devel-
opment cost estimates. Journal of systems and software 31, 2 (1995), 125–134.

[21] Elizaveta Levina and Peter J Bickel. 2005. Maximum likelihood estimation of
intrinsic dimension. In Advances in neural information processing systems. 777–
784.

[22] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765–6816.

[23] Gang Luo. 2016. A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Network Modeling Analysis in Health
Informatics and Bioinformatics 5, 1 (2016), 18.

[24] Onkar Malgonde and Kaushal Chari. 2019. An ensemble-based model for pre-
dicting agile software development effort. Empirical Software Engineering 24, 2
(2019), 1017–1055.

[25] Leandro L Minku. 2019. A novel online supervised hyperparameter tuning pro-
cedure applied to cross-company software effort estimation. Empirical Software
Engineering (2019), 1–52.

[26] VivekNair, Zhe Yu, TimMenzies, Norbert Siegmund, and SvenApel. 2018. Finding
faster configurations using flash. IEEE Transactions on Software Engineering 46, 7
(2018), 794–811.

[27] Sampath Kumar Palaniswamy and R Venkatesan. 2020. Hyperparameters tuning
of ensemble model for software effort estimation. Journal of Ambient Intelligence
and Humanized Computing (2020), 1–11.

[28] Andrew Jhon Scott and M Knott. 1974. A cluster analysis method for grouping
means in the analysis of variance. Biometrics (1974), 507–512.

[29] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[30] Martin Shepperd and Steve MacDonell. 2012. Evaluating prediction systems in
software project estimation. Information and Software Technology 54, 8 (2012),
820–827.

[31] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951–2959.

[32] Liyan Song, Leandro L Minku, and Xin Yao. 2013. The impact of parameter tuning
on software effort estimation using learning machines. In Proceedings of the 9th
international conference on predictive models in software engineering. 1–10.

[33] Liyan Song, Leandro L Minku, and Xin Yao. 2014. The potential benefit of
relevance vector machine to software effort estimation. In Proceedings of the 10th
International Conference on Predictive Models in Software Engineering. 52–61.

[34] Rainer Storn and Kenneth Price. 1997. Differential evolution–a simple and
efficient heuristic for global optimization over continuous spaces. Journal of
global optimization 11, 4 (1997), 341–359.

[35] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2016. Automated parameter optimization of classification techniques
for defect prediction models. In Proceedings of the 38th International Conference
on Software Engineering. 321–332.

[36] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2018. The impact of automated parameter optimization on defect
prediction models. IEEE Transactions on Software Engineering 45, 7 (2018), 683–
711.

[37] Leonardo Villalobos-Arias, Christian Quesada-López, Jose Guevara-Coto, Alexan-
dra Martínez, and Marcelo Jenkins. 2020. Evaluating Hyper-Parameter Tuning
using Random Search in Support Vector Machines for Software Effort Estimation.
In Proceedings of the 16th ACM International Conference on Predictive Models and
Data Analytics in Software Engineering (PROMISE‘20). ACM.

[38] Leonardo Villalobos-Arias, Christian Quesada-López, Alexandra Martínez, and
Marcelo Jenkins. 2021. Hyper-Parameter Tuning of Classification and Regression
Trees for Software Effort Estimation. In Trends and Applications in Information
Systems and Technologies: Volume 3 9. Springer International Publishing, 589–598.

[39] Leonardo Villalobos-Arias, Christian Quesada-López, Alexandra Martínez, and
Marcelo Jenkins. 2021. Técnicas de ajuste de hiperparámetros de algoritmos de
aprendizaje automático para la estimación de esfuerzo: un mapeo de literatura.
Revista Ibérica de Sistemas e Tecnologias de Informação E42 (2021), 305–318.

[40] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang. 2012.
Systematic literature review of machine learning based software development
effort estimationmodels. Information and Software Technology 54, 1 (2012), 41–59.

[41] Tianpei Xia, Wei Fu, Rui Shu, and Tim Menzies. 2020. Predicting Project Health
for Open Source Projects (using the DECART Hyperparameter Optimizer). arXiv
preprint arXiv:2006.07240 (2020).

[42] Tianpei Xia, Rahul Krishna, Jianfeng Chen, George Mathew, Xipeng Shen, and
Tim Menzies. 2018. Hyperparameter optimization for effort estimation. arXiv
preprint arXiv:1805.00336 (2018).

[43] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295–316.

[44] Alice Zheng. 2015. Evaluating machine learning models: a beginner’s guide to
key concepts and pitfalls. (2015).

235

236

Bibliography

[1] B. W. Boehm, “Software engineering economics,” IEEE transactions on Software
Engineering, no. 1, pp. 4–21, 1984.

[2] B. Boehm, C. Abts, and S. Chulani, “Software development cost estimation ap-

proaches—a survey,” Annals of software engineering, vol. 10, no. 1-4, pp. 177–

205, 2000.

[3] A. L. Lederer and J. Prasad, “Causes of inaccurate software development cost

estimates,” Journal of systems and software, vol. 31, no. 2, pp. 125–134, 1995.

[4] M. Nasir, “A survey of software estimation techniques and project plan-

ning practices,” in Seventh ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
(SNPD’06), pp. 305–310, IEEE, 2006.

[5] A. Abran, Software project estimation: the fundamentals for providing high qual-
ity information to decision makers. John Wiley & Sons, 2015.

[6] B. Baskeles, B. Turhan, and A. Bener, “Software effort estimation using ma-

chine learning methods,” in 2007 22nd international symposium on computer
and information sciences, pp. 1–6, IEEE, 2007.

[7] M. Jorgensen and M. Shepperd, “A systematic review of software development

cost estimation studies,” IEEE Transactions on software engineering, vol. 33,

no. 1, pp. 33–53, 2006.

[8] K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens, “Data mining techniques

for software effort estimation: a comparative study,” IEEE transactions on soft-
ware engineering, vol. 38, no. 2, pp. 375–397, 2011.

237

[9] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review of

machine learning based software development effort estimation models,” In-
formation and Software Technology, vol. 54, no. 1, pp. 41–59, 2012.

[10] S. K. Sehra, Y. S. Brar, N. Kaur, and S. S. Sehra, “Research patterns and trends

in software effort estimation,” Information and Software Technology, vol. 91,

pp. 1–21, 2017.

[11] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[12] L. L. Minku, “A novel online supervised hyperparameter tuning procedure ap-

plied to cross-company software effort estimation,” Empirical Software Engi-
neering, pp. 1–52, 2019.

[13] T. Menzies and M. Shepperd, “Special issue on repeatable results in software

engineering prediction,” 2012.

[14] L. Song, L. L. Minku, and X. Yao, “The impact of parameter tuning on software

effort estimation using learning machines,” in Proceedings of the 9th interna-
tional conference on predictive models in software engineering, p. 9, ACM, 2013.

[15] M. Jørgensen, “A review of studies on expert estimation of software develop-

ment effort,” Journal of Systems and Software, vol. 70, no. 1-2, pp. 37–60,

2004.

[16] E. Mendes and B. Kitchenham, “Further comparison of cross-company and

within-company effort estimation models for web applications,” in 10th In-
ternational Symposium on Software Metrics, 2004. Proceedings., pp. 348–357,

IEEE, 2004.

[17] C. Mair and M. Shepperd, “The consistency of empirical comparisons of regres-

sion and analogy-based software project cost prediction,” in 2005 International
Symposium on Empirical Software Engineering, 2005., pp. 10–pp, IEEE, 2005.

[18] M. Shepperd, “Software project economics: a roadmap,” in 2007 Future of
Software Engineering, pp. 304–315, IEEE Computer Society, 2007.

[19] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus within-

company cost estimation studies: A systematic review,” IEEE Transactions on
Software Engineering, vol. 33, no. 5, pp. 316–329, 2007.

238

[20] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “Auto-

mated parameter optimization of classification techniques for defect prediction

models,” in Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on, pp. 321–332, IEEE, 2016.

[21] G. Luo, “A review of automatic selection methods for machine learning al-

gorithms and hyper-parameter values,” Network Modeling Analysis in Health
Informatics and Bioinformatics, vol. 5, no. 1, p. 18, 2016.

[22] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes, “Us-

ing tabu search to configure support vector regression for effort estimation,”

Empirical Software Engineering, vol. 18, no. 3, pp. 506–546, 2013.

[23] L. Song, L. L. Minku, and X. Yao, “The potential benefit of relevance vector

machine to software effort estimation,” in Proceedings of the 10th International
Conference on Predictive Models in Software Engineering, pp. 52–61, ACM, 2014.

[24] M. Hosni, A. Idri, A. Abran, and A. B. Nassif, “On the value of parameter tuning

in heterogeneous ensembles effort estimation,” Soft Computing, vol. 22, no. 18,

pp. 5977–6010, 2018.

[25] E. Ertuğrul, Z. Baytar, Ç. Çatal, and Ö. C. Muratli, “Performance tuning for ma-

chine learning-based software development effort prediction models,” Turkish
Journal of Electrical Engineering & Computer Sciences, vol. 27, no. 2, pp. 1308–

1324, 2019.

[26] L. L. Minku and X. Yao, “Ensembles and locality: Insight on improving soft-

ware effort estimation,” Information and Software Technology, vol. 55, no. 8,

pp. 1512–1528, 2013.

[27] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-

parameter optimization,” in Advances in neural information processing systems,
pp. 2546–2554, 2011.

[28] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “The im-

pact of automated parameter optimization on defect prediction models,” IEEE
Transactions on Software Engineering, 2018.

[29] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”

Journal of machine learning research, vol. 13, no. Feb, pp. 281–305, 2012.

239

[30] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi, “A pso-based

model to increase the accuracy of software development effort estimation,”

Software Quality Journal, vol. 21, no. 3, pp. 501–526, 2013.

[31] P. L. Braga, A. L. Oliveira, and S. R. Meira, “A ga-based feature selection and pa-

rameters optimization for support vector regression applied to software effort

estimation,” in Proceedings of the 2008 ACM symposium on Applied computing,

pp. 1788–1792, ACM, 2008.

[32] A. Abran, Software metrics and software metrology. John Wiley & Sons, 2010.

[33] C. Quesada-López, J. Murillo-Morera, and M. Jenkins, “Un estudio compara-

tivo de técnicas de minería de datos y aprendizaje máquina para la estimación

del esfuerzo utilizando puntos de función,” Revista Ibérica de Sistemas e Tec-
nologias de Informação, no. E17, pp. 595–609, 2019.

[34] M. Jorgensen, “Experience with the accuracy of software maintenance task

effort prediction models,” IEEE Transactions on software engineering, vol. 21,

no. 8, pp. 674–681, 1995.

[35] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes

to learn defect predictors,” IEEE transactions on software engineering, vol. 33,

no. 1, pp. 2–13, 2006.

[36] H. Zhang and X. Zhang, “Comments on" data mining static code attributes to

learn defect predictors",” IEEE Transactions on Software Engineering, vol. 33,

no. 9, pp. 635–637, 2007.

[37] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems with preci-

sion: A response to "comments on ’data mining static code attributes to learn

defect predictors’",” IEEE Transactions on Software Engineering, vol. 33, no. 9,

pp. 637–640, 2007.

[38] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software defect-

proneness prediction framework,” IEEE transactions on software engineering,

vol. 37, no. 3, pp. 356–370, 2010.

[39] N. Mittas and L. Angelis, “Ranking and clustering software cost estimation

models through a multiple comparisons algorithm,” IEEE Transactions on soft-
ware engineering, vol. 39, no. 4, pp. 537–551, 2012.

240

[40] J. Keung, E. Kocaguneli, and T. Menzies, “Finding conclusion stability for se-

lecting the best effort predictor in software effort estimation,” Automated Soft-
ware Engineering, vol. 20, no. 4, pp. 543–567, 2013.

[41] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software

project estimation,” Information and Software Technology, vol. 54, no. 8,

pp. 820–827, 2012.

[42] W. B. Langdon, J. Dolado, F. Sarro, and M. Harman, “Exact mean absolute er-

ror of baseline predictor, marp0,” Information and Software Technology, vol. 73,

pp. 16–18, 2016.

[43] J. J. Dolado, D. Rodriguez, M. Harman, W. B. Langdon, and F. Sarro, “Evalua-

tion of estimation models using the minimum interval of equivalence,” Applied
Soft Computing, vol. 49, pp. 956–967, 2016.

[44] L. Lavazza and S. Morasca, “On the evaluation of effort estimation models,” in

Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering, pp. 41–50, ACM, 2017.

[45] S. D. Conte, H. E. Dunsmore, and Y. Shen, Software engineering metrics and
models. Benjamin-Cummings Publishing Co., Inc., 1986.

[46] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd, “What

accuracy statistics really measure,” IEE Proceedings-Software, vol. 148, no. 3,

pp. 81–85, 2001.

[47] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation study of the

model evaluation criterion mmre,” IEEE transactions on software engineering,

vol. 29, no. 11, pp. 985–995, 2003.

[48] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity in com-

parative studies of software prediction models,” IEEE Transactions on Software
Engineering, vol. 31, no. 5, pp. 380–391, 2005.

[49] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes,

“How effective is tabu search to configure support vector regression for effort

estimation?,” in Proceedings of the 6th international conference on predictive
models in software engineering, pp. 1–10, 2010.

241

[50] M. Azzeh, “Software effort estimation based on optimized model tree,” in Pro-
ceedings of the 7th International Conference on Predictive Models in Software
Engineering, pp. 1–8, 2011.

[51] A. Agrawal, T. Menzies, L. L. Minku, M. Wagner, and Z. Yu, “Better software

analytics via" duo": Data mining algorithms using/used-by optimizers,” arXiv
preprint arXiv:1812.01550, 2018.

[52] A. Agrawal, W. Fu, D. Chen, X. Shen, and T. Menzies, “How to" dodge" complex

software analytics,” IEEE Transactions on Software Engineering, 2019.

[53] V. Nair, Z. Yu, and T. Menzies, “Flash: A faster optimizer for sbse tasks,” arXiv
preprint arXiv:1705.05018, 2017.

[54] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel, “Finding faster configu-

rations using flash,” IEEE Transactions on Software Engineering, vol. 46, no. 7,

pp. 794–811, 2018.

[55] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it really

necessary?,” Information and Software Technology, vol. 76, pp. 135–146, 2016.

[56] W. Fu, V. Nair, and T. Menzies, “Why is differential evolution better than grid

search for tuning defect predictors?,” arXiv preprint arXiv:1609.02613, 2016.

[57] M. Azzeh, A. B. Nassif, and S. Banitaan, “A better case adaptation method for

case-based effort estimation using multi-objective optimization,” in 2014 13th
International Conference on Machine Learning and Applications, pp. 409–414,

IEEE, 2014.

[58] J. H. Wu and J. W. Keung, “Utilizing cluster quality in hierarchical clustering

for analogy-based software effort estimation,” in 2017 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS), pp. 1–4, IEEE,

2017.

[59] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, “The

promise repository of empirical software engineering data,” 2012.

[60] ISBSG, “The international software benchmarking standards group.” https:
//www.isbsg.org/, 2018. Accessed: 2020-07-07.

[61] R. J. Wieringa, Design science methodology for information systems and software
engineering. Springer, 2014.

https://www.isbsg.org/
https://www.isbsg.org/

242

[62] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting sys-

tematic mapping studies in software engineering: An update,” Information
and Software Technology, vol. 64, pp. 1–18, 2015.

[63] I. Sommerville, “Software engineering 9th edition,” ISBN-10137035152, 2011.

[64] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

Experimentation in software engineering. Springer Science & Business Media,

2012.

[65] T. Menzies, L. Williams, and T. Zimmermann, Perspectives on data science for
software engineering. Morgan Kaufmann, 2016.

[66] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie, “Software analytics

as a learning case in practice: Approaches and experiences,” in Proceedings
of the International Workshop on Machine Learning Technologies in Software
Engineering, pp. 55–58, ACM, 2011.

[67] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie, “Software analytics

in practice,” IEEE software, vol. 30, no. 5, pp. 30–37, 2013.

[68] M. Harman, S. A. Mansouri, and Y. Zhang, “Search based software engineer-

ing: A comprehensive analysis and review of trends techniques and applica-

tions,” Department of Computer Science, King’s College London, Tech. Rep. TR-
09-03, p. 23, 2009.

[69] M. Harman and B. F. Jones, “Search-based software engineering,” Information
and software Technology, vol. 43, no. 14, pp. 833–839, 2001.

[70] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search based software

engineering: Techniques, taxonomy, tutorial,” in Empirical software engineering
and verification, pp. 1–59, Springer, 2010.

[71] M. Harman and A. Mansouri, “Search based software engineering: Introduc-

tion to the special issue of the ieee transactions on software engineering,” IEEE
Transactions on Software Engineering, no. 6, pp. 737–741, 2010.

[72] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, “A brief review of nature-

inspired algorithms for optimization,” arXiv preprint arXiv:1307.4186, 2013.

243

[73] M. Harman, “The relationship between search based software engineering and

predictive modeling,” in Proceedings of the 6th International Conference on Pre-
dictive Models in Software Engineering, pp. 1–13, 2010.

[74] J. J. Dolado, “A validation of the component-based method for software size es-

timation,” IEEE Transactions on Software Engineering, vol. 26, no. 10, pp. 1006–

1021, 2000.

[75] J. J. Dolado, “On the problem of the software cost function,” Information and
Software Technology, vol. 43, no. 1, pp. 61–72, 2001.

[76] C. Kirsopp, M. J. Shepperd, and J. Hart, “Search heuristics, case-based reason-

ing and software project effort prediction,” 2002.

[77] X. Guo, J. Yang, C. Wu, C. Wang, and Y. Liang, “A novel ls-svms hyper-

parameter selection based on particle swarm optimization,” Neurocomputing,

vol. 71, no. 16-18, pp. 3211–3215, 2008.

[78] A. Arcuri and G. Fraser, “Parameter tuning or default values? an empirical

investigation in search-based software engineering,” Empirical Software Engi-
neering, vol. 18, no. 3, pp. 594–623, 2013.

[79] A. Arcuri and G. Fraser, “On parameter tuning in search based software en-

gineering,” in International Symposium on Search Based Software Engineering,

pp. 33–47, Springer, 2011.

[80] M. F. Bosu and S. G. Macdonell, “Experience: Quality benchmarking of

datasets used in software effort estimation,” Journal of Data and Information
Quality (JDIQ), vol. 11, no. 4, p. 19, 2019.

[81] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust regression for de-

veloping software estimation models,” Journal of Systems and Software, vol. 27,

no. 1, pp. 3–16, 1994.

[82] M. Shepperd and C. Schofield, “Estimating software project effort using analo-

gies,” IEEE Transactions on software engineering, vol. 23, no. 11, pp. 736–743,

1997.

[83] C. Mair, M. Shepperd, and M. Jørgensen, “An analysis of data sets used to train

and validate cost prediction systems,” in ACM SIGSOFT software engineering
notes, vol. 30, pp. 1–6, ACM, 2005.

244

[84] S. Amasaki, “Replicated analyses of windowing approach with single company

datasets,” in Proceedings of the 12th International Conference on Product Focused
Software Development and Process Improvement, pp. 14–17, ACM, 2011.

[85] M. D. Prabhakar, “Prediction of software effort using artificial neural network

and support vector machine,” International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 3, no. 3, 2013.

[86] M. Fernández-Diego and F. González-Ladrón-De-Guevara, “Potential and lim-

itations of the isbsg dataset in enhancing software engineering research: A

mapping review,” Information and Software Technology, vol. 56, no. 6, pp. 527–

544, 2014.

[87] F. González-Ladrón-de Guevara, M. Fernández-Diego, and C. Lokan, “The us-

age of isbsg data fields in software effort estimation: A systematic mapping

study,” Journal of Systems and Software, vol. 113, pp. 188–215, 2016.

[88] B. A. Kitchenham and E. Mendes, “A comparison of cross-company and within-

company effort estimation models for web applications,” in Proceedings of the
8th International Conference on Empirical Assessment in Software Engineering,
Edinburgh, Scotland, UK, pp. 47–55, 2004.

[89] L. L. Minku and S. Hou, “Clustering dycom: an online cross-company software

effort estimation study,” in Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering, pp. 12–21, 2017.

[90] J. Murillo-Morera, C. Quesada-López, C. Castro-Herrera, and M. Jenkins, “A

genetic algorithm based framework for software effort prediction,” Journal of
Software Engineering Research and Development, vol. 5, no. 1, p. 4, 2017.

[91] L. Minku, F. Sarro, E. Mendes, and F. Ferrucci, “How to make best use of cross-

company data for web effort estimation?,” in 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 1–

10, IEEE, 2015.

[92] A. G’eron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

[93] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,”

IEEE Intelligent Systems, vol. 24, no. 2, pp. 8–12, 2009.

245

[94] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”

Journal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[95] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques in

bioinformatics,” bioinformatics, vol. 23, no. 19, pp. 2507–2517, 2007.

[96] C. Albon, Machine learning with python cookbook: Practical solutions from pre-
processing to deep learning. " O’Reilly Media, Inc.", 2018.

[97] B. Efron, “Estimating the error rate of a prediction rule: improvement on cross-

validation,” Journal of the American statistical association, vol. 78, no. 382,

pp. 316–331, 1983.

[98] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “An empir-

ical comparison of model validation techniques for defect prediction models,”

IEEE Transactions on Software Engineering, vol. 43, no. 1, pp. 1–18, 2016.

[99] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization

of machine learning algorithms,” in Advances in neural information processing
systems, pp. 2951–2959, 2012.

[100] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn: automatic hyper-

parameter configuration for scikit-learn,” in ICML workshop on AutoML, vol. 9,

Citeseer, 2014.

[101] A. Engelbretch, “Fundamentals of computational swarm intelligence,” Eng-
land, John Wiley & Sons Ltd, pp. 5–129, 2005.

[102] A. L. Oliveira, P. L. Braga, R. M. Lima, and M. L. Cornélio, “Ga-based method

for feature selection and parameters optimization for machine learning regres-

sion applied to software effort estimation,” information and Software Technol-
ogy, vol. 52, no. 11, pp. 1155–1166, 2010.

[103] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,”

IEEE transactions on evolutionary computation, vol. 3, no. 4, pp. 287–297,

1999.

[104] D.-C. Dang and P. K. Lehre, “Self-adaptation of mutation rates in non-elitist

populations,” in International Conference on Parallel Problem Solving from Na-
ture, pp. 803–813, Springer, 2016.

246

[105] B. Doerr, H. P. Le, R. Makhmara, and T. D. Nguyen, “Fast genetic algo-

rithms,” in Proceedings of the Genetic and Evolutionary Computation Conference,

pp. 777–784, 2017.

[106] E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter optimization: A spectral

approach,” arXiv preprint arXiv:1706.00764, 2017.

[107] L. Yang and A. Shami, “On hyperparameter optimization of machine learning

algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316,

2020.

[108] F. Glover and M. Laguna, “Tabu search,” in Handbook of combinatorial opti-
mization, pp. 2093–2229, Springer, 1998.

[109] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic optimization

algorithm: harmony search,” simulation, vol. 76, no. 2, pp. 60–68, 2001.

[110] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces,” Journal of global optimization,

vol. 11, no. 4, pp. 341–359, 1997.

[111] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyper-

band: A novel bandit-based approach to hyperparameter optimization,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 6765–6816, 2017.

[112] I. Sabuncuoglu and M. Bayiz, “Job shop scheduling with beam search,” Euro-
pean Journal of Operational Research, vol. 118, no. 2, pp. 390–412, 1999.

[113] E. S. Jun and J. K. Lee, “Quasi-optimal case-selective neural network model

for software effort estimation,” Expert Systems with Applications, vol. 21, no. 1,

pp. 1–14, 2001.

[114] C. M. Bishop, “Pattern recognition,” Machine learning, vol. 128, no. 9, 2006.

[115] J.-k. Lee and K.-T. Kwon, “Software cost estimation using svr based on im-

mune algorithm,” in 2009 10th ACIS International Conference on Software Engi-
neering, Artificial Intelligences, Networking and Parallel/Distributed Computing,

pp. 462–466, IEEE, 2009.

[116] S. H. S. Moosavi and V. K. Bardsiri, “Satin bowerbird optimizer: A new opti-

mization algorithm to optimize anfis for software development effort estima-

tion,” Engineering Applications of Artificial Intelligence, vol. 60, pp. 1–15, 2017.

247

[117] R. L. Glass, “The software-research crisis,” IEEE Software, vol. 11, no. 6, pp. 42–

47, 1994.

[118] B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M. Turner, S. Linkman,

M. Jørgensen, E. Mendes, and G. Visaggio, “Guidelines for performing system-

atic literature reviews in software engineering,” tech. rep., Technical report,

Ver. 2.3 EBSE Technical Report. EBSE, 2007.

[119] B. Kitchenham and S. Charters, “Guidelines for performing systematic litera-

ture reviews in software engineering,” 2007.

[120] L. Villalobos-Arias, C. Quesada-López, A. Martínez, and M. Jenkins, “Técnicas

de ajuste de hiperparámetros de algoritmos de aprendizaje automático para la

estimación de esfuerzo: un mapeo de literatura,” Revista Ibérica de Sistemas e
Tecnologias de Informação, no. E42, pp. 305–318, 2021.

[121] R. d. A. Araújo, S. Soares, and A. L. Oliveira, “Hybrid morphological method-

ology for software development cost estimation,” Expert Systems with Applica-
tions, vol. 39, no. 6, pp. 6129–6139, 2012.

[122] E. Kocaguneli, T. Menzies, and J. W. Keung, “Kernel methods for software

effort estimation,” Empirical Software Engineering, vol. 18, no. 1, pp. 1–24,

2013.

[123] D. Azhar, P. Riddle, E. Mendes, N. Mittas, and L. Angelis, “Using ensembles for

web effort estimation,” in 2013 ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, pp. 173–182, IEEE, 2013.

[124] H. Hota, R. Shukla, and S. Singhai, “Predicting software development effort

using tuned artificial neural network,” in Computational Intelligence in Data
Mining-Volume 3, pp. 195–203, Springer, 2015.

[125] M. Hosni, A. Idri, A. B. Nassif, and A. Abran, “Heterogeneous ensembles for

software development effort estimation,” in 2016 3rd International Conference
on Soft Computing & Machine Intelligence (ISCMI), pp. 174–178, IEEE, 2016.

[126] M. Hosni, A. Idri, and A. Abran, “Investigating heterogeneous ensembles with

filter feature selection for software effort estimation,” in Proceedings of the
27th International Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement, pp. 207–220, 2017.

248

[127] L. Villalobos-Arias, C. Quesada-López, J. Guevara-Coto, A. Martínez, and

M. Jenkins, “Evaluating hyper-parameter tuning using random search in sup-

port vector machines for software effort estimation,” in Proceedings of the 16th
ACM International Conference on Predictive Models and Data Analytics in Soft-
ware Engineering, pp. 31–40, 2020.

[128] L. Villalobos-Arias, C. Quesada-López, A. Martínez, and M. Jenkins, “Hyper-

parameter tuning of classification and regression trees for software effort es-

timation,” in Trends and Applications in Information Systems and Technologies:
Volume 3 9, pp. 589–598, Springer International Publishing, 2021.

[129] L. Villalobos-Arias, C. Quesada-López, J. Murillo-Morera, and M. Jenkins,

“Hyper-parameter tuning using genetic algorithms for software effort estima-

tion,” in Proceedings of the 16th Iberic Conference on Information and Technology
Systems, 2021.

[130] L. Villalobos-Arias, C. Quesada-López, A. Martínez, and M. Jenkins, “Multi-

objective hyper-parameter tuning for software effort estimation,” in Proceed-
ings of the 24th Ibero-American Conference on Software Engineering, To be pub-

lished.

[131] L. Villalobos-Arias and C. Quesada-López, “Comparative study of random

search hyper-parameter tuning for software effort estimation,” in Proceedings
of the 17th International Conference on Predictable Models and Data Analytics in
Software Engineering, To be published.

[132] A. J. Scott and M. Knott, “A cluster analysis method for grouping means in the

analysis of variance,” Biometrics, pp. 507–512, 1974.

	Dedicatoria
	Agradecimientos
	Hoja de aprobación
	Table of contents
	Resumen
	Abstract
	List of tables
	List of figures
	List of acronyms
	Introduction
	Objectives
	Methodology
	Contributions and products
	Document structure

	Background
	Data science in software engineering
	Search based software engineering
	Software effort estimation
	SEE process
	SEE datasets

	SEE evaluation frameworks
	Baseline SEE frameworks

	Machine learning
	Data transformation techniques
	Feature selection techniques
	Clustering techniques
	Validation approaches
	Machine learning algorithms
	Hyper-parameter tuning approaches

	Empirical methodologies in software engineering
	Design science methodology for information systems and software engineering
	Empirical software engineering
	Systematic mapping studies
	Controlled experiments

	Software engineering methodologies

	Hyper-parameter tuning for machine learning software effort estimation: a systematic literature mapping
	Study design
	Research questions
	Control studies
	Search strategy
	Inclusion and exclusion criteria
	Selection process
	Quality assessment
	Data extraction and analysis

	Results
	RQ1: Hyper-parameter tuning approaches used in machine learning SEE
	RQ2: Datasets used in hyper-parameter tuning machine learning SEE
	RQ3: Performance metrics of hyper-parameter tuning approaches used in machine learning SEE
	Discussion
	Conclusions of the mapping study

	ChimeraHPT: an automated machine learning hyper-parameter tuning framework
	Pre-processing
	Model training and evaluation
	Framework configuration
	Evaluation loop
	Machine learning techniques

	Statistical analysis
	Model evaluation
	Model verification

	Summary

	Evaluation of the effectiveness of the automated hyper-parameter tuning procedure: a series of quasi experiments
	Quasi experiment 1: Evaluation of grid and random search for support vector regression
	Study summary
	Main results

	Quasi experiment 2: Hyper-Parameter Tuning of Classification and Regression Trees for Software Effort Estimation
	Study summary
	Main results

	Quasi experiment 3: Hyper-parameter Tuning using Genetic Algorithms for Software Effort Estimation
	Study summary
	Main results

	Quasi experiment 4: Multi-objective Hyper-parameter Tuning for Software Effort Estimation
	Study summary
	Main results

	Quasi experiment 5: Comparative study of Random Search Hyper-Parameter Tuning for Software Effort Estimation
	Study summary
	Main results

	General findings and discussion

	Conclusion
	Summary of results
	SO1: Characterization of hyper-parameter tuning approaches for machine learning
	SO2: Automation of a hyper-parameter tuning procedure for machine learning
	SO3: Evaluation of the effectiveness of the automated hyper-parameter tuning procedure for machine learning

	Contributions
	Future work

	Hyper-parameter tuning techniques in SEE
	ChimeraHPT list of technique and parameters
	Paper 1: Técnicas de ajuste de hiperparámetros de algoritmos de aprendizaje automático para la estimación de esfuerzo: un mapeo de literatura
	Paper 2: Evaluation of Grid and Random Search for Support Vector Regression
	Paper 3: Hyper-Parameter Tuning of Classification and Regression Trees for Software Effort Estimation
	Paper 4: Hyper-parameter Tuning using Genetic Algorithms for Software Effort Estimation
	Paper 5: Multi-objective Hyper-parameter Tuning for Software Effort Estimation
	Paper 6: Comparative study of Random Search Hyper-Parameter Tuning for Software Effort Estimation
	Bibliography

