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Resumen

Los algoritmos de aprendizaje automatico han sido utilizados para crear modelos
con mayor precision para la estimacion del esfuerzo del desarrollo de software. Sin
embargo, estos algoritmos son sensibles a factores, incluyendo la selecciéon de hiper
parametros. Para reducir esto, se han investigado recientemente algoritmos de ajuste
automatico de hiper parametros. Es necesario evaluar la efectividad de estos algorit-
mos en el contexto de estimacioén de esfuerzo. Estas evaluaciones podrian ayudar a
entender qué hiper parametros se pueden ajustar para mejorar los modelos, y en qué
contextos esto ayuda el rendimiento de los modelos.

El objetivo de este trabajo es desarrollar un procedimiento automatizado para el
ajuste de hiper parametros para algoritmos de aprendizaje automatico aplicados a la
estimacion de esfuerzo del desarrollo de software. La metodologia seguida en este
trabajo consta de realizar un estudio de mapeo sistemdtico para caracterizar los al-
goritmos de ajuste existentes, desarrollar el procedimiento automatizado, y conducir

cuasi experimentos controlados para evaluar este procedimiento.

Mediante el mapeo sistematico descubrimos que la literatura en estimacion de es-
fuerzo ha favorecido el uso de la bisqueda en cuadricula. Los resultados obtenidos en
nuestros cuasi experimentos demostraron que algoritmos de estimacién no-exhaustivos
son viables para la estimacién de esfuerzo. Estos resultados indican que evaluar
aleatoriamente 60 hiper pardmetros puede ser tan efectivo como la buisqueda en
cuadricula, y que muchos de los métodos usados en el estado del arte son solo mas
efectivos que esta btisqueda aleatoria en 6% de los escenarios. Recomendamos el
uso de la busqueda aleatoria, algoritmos genéticos y similares, y la busqueda tabu y
harmonica.



Abstract

Software effort estimation requires accurate prediction models. Machine learning
algorithms have been used to create more accurate estimation models. However,
these algorithms are sensitive to factors such as the choice of hyper-parameters. To
reduce this sensitivity, automated approaches for hyper-parameter tuning have been
recently investigated. There is a need for further research on the effectiveness of
such approaches in the context of software effort estimation. These evaluations could
help understand which hyper-parameter settings can be adjusted to improve model
accuracy, and in which specific contexts tuning can benefit model performance.

The goal of this work is to develop an automated procedure for machine learning
hyper-parameter tuning in the context of software effort estimation. The automated
procedure builds and evaluates software effort estimation models to determine the
most accurate evaluation schemes. The methodology followed in this work consists of
first performing a systematic mapping study to characterize existing hyper-parameter
tuning approaches in software effort estimation, developing the procedure to auto-
mate the evaluation of hyper-parameter tuning, and conducting controlled quasi ex-
periments to evaluate the automated procedure.

From the systematic literature mapping we discovered that effort estimation lit-
erature has favored the use of grid search. The results we obtained in our quasi ex-
periments demonstrated that fast, less exhaustive tuners were viable in place of grid
search. These results indicate that randomly evaluating 60 hyper-parameters can be
as good as grid search, and that multiple state-of-the-art tuners were only more ef-
fective than this random search in 6% of the evaluated dataset-model combinations.
We endorse random search, genetic algorithms, flash, differential evolution, and tabu
and harmony search as effective tuners.
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Chapter 1

Introduction

Software development deals with limited resources [1], and must carefully allocate
assets such as development personnel and budget to ensure the success of a project.
For this reason, a key problem in software engineering is the estimation of software
cost and effort [1], which is known as software effort estimation (SEE). Software
effort estimation techniques have practical applications in budgeting, risk analysis,
project planning, and improvement analysis [2]. Hence, the accuracy of software ef-
fort estimates is of vital importance. Overestimating the effort could lead to rejecting
a potentially beneficial project, and the loss of a strategic opportunity. Underestimat-
ing the effort, on the other hand, could result in accepting a project that would fail to
achieve its expected payoff [3].

There are two main approaches for software effort estimation: expert judgment
and engineering [2, 4, 5]. Expert judgment provides estimates based on practitioners’
expertise [2]. While this approach is useful in the absence of empirical data, it is diffi-
cult to evaluate due to its normally informal and undocumented nature [5]. The engi-
neering approach builds estimation models using information from past projects [5].
Traditionally, Software effort estimation has employed parametric models (those ex-
pressed as a mathematical equation) such as COCOMO, SLIM, and PRICE_S [2]. How-
ever, these models have been reported to yield poor estimations as size or complexity
of software grows [2, 6].

The use of machine learning (ML) algorithms in software effort estimation has
been an active research area from the late 1970s to date [7, 6, 8, 9, 10]. Based
on historical project data, machine learning algorithms generate and adjust (train)
an estimation model [11]. A model is constructed from an evaluation scheme, i.e.,
combination of dataset, validation approach, data pre-processing, feature selection



technique, machine learning algorithm, and hyper-parameter tuning approach. This
model is then trained to minimize the prediction error on existing data, while re-
maining general enough to predict new, unseen data [11]. The main application of
such models is to aid experts in performing or revising their effort estimations, thus
improving the decision-making process of software projects [12].

The use of ML algorithms in SEE comes with the challenge of sensitivity to multiple
factors: input data, data transformation, feature selection, validation approach, and
hyper-parameter values [13, 14]. The impact of factors on the prediction accuracy
of effort estimation models has been extensively studied, with somewhat contradic-
tory results [15, 16, 17, 18, 19, 13]. Many of these studies grant no access to their
experimental artifacts (source code), and lack reporting detail on their experimental
design, especially on the factors that affect the estimation models [13]. Because of
this, the results obtained by one study may be impossible to replicate in another. This
phenomenon is known as conclusion instability [13]. This instability can be measured
through the prediction stability: the variance in the prediction accuracy [20].

One key factor that can affect software effort estimation models is the hyper-
parameter configuration of the machine learning algorithm [14, 21]. These Hyper-
parameters are values that must be set before the model is trained, as they affect its
construction [12, 21]. Examples of hyper-parameters include the amount of hid-
den layers a in a multilayer perceptron, and the kernel type in a support vector
machine. Software effort estimation literature uses the term parameter instead of
hyper-parameter when referring to selection or tuning (i.e., parameter tuning instead
of hyper-parameter tuning) [8, 14, 22, 23, 24, 25]. Many studies of ML in SEE do not
report the hyper-parameter settings, or do not use a hyper-parameter tuning proce-
dure [13, 26]. Generally, hyper-parameters are set to their default values, or deter-
mined through an iterative, manual process [21].

Hyper-parameter tuning approaches (also known as parameter optimization) are
search algorithms that seek the hyper-parameter settings for a ML model that mini-
mize the estimation or prediction error [27]. These approaches can automate man-
ual tuning and achieve similar performance [21]. Previous works have reported
that hyper-parameter tuning improves the accuracy of effort estimation [14]. More-
over, tuning can reduce conclusion instability by improving the prediction stability
with respect to default parameter models [28]. Examples of tuning approaches are
grid search, random search [29], particle swarm optimization [30] and genetic algo-
rithms [31]. These tuners train and evaluate models with different hyper-parameter
configurations, and choose the one with highest accuracy [27]. This requires signif-



icant time and processing power [21], thus in practice, an organization would use
only the best tuning approach to improve their estimations [27, 21].

A software effort estimation procedure is necessary to determine the best hyper-
parameter tuning approach for a particular dataset and model. A SEE procedure is
a detailed series of tasks and sub-activities used in accordance with a measurement
method, to obtain an effort estimate [32]. A framework is required to automate the
otherwise manual activities of this procedure. A SEE framework is the implemen-
tation of a procedure, automating the process of building and evaluating machine
learning models [33].

The software engineering literature has defined multiple procedures and frame-
works. The first studies proposed the use of data statistics, such as the mean or
median, as a comparison baseline against estimation models [34, 16]. Afterwards,
the first notion of an evaluation framework was proposed [35, 36, 37]: a method
that allows the comparison of two different ML algorithms, favoring the use of pub-
lic datasets, validation techniques, and configuration evaluation techniques. Later,
this notion was extended by adding comparisons for each evaluation scheme, and
introducing a training-testing-validation split of the datasets [38]. These ideas were
brought into the SEE field [39] and better analysis techniques were introduced to
increment the conclusion stability of SEE studies [40].

As SEE frameworks were being developed, baseline frameworks emerged. These
frameworks included baseline techniques or metrics that allow comparison of results
from different studies, even when using different procedures. Examples of these
are the p, predictor and the standardized accuracy metric [41, 42], the minimum
interval of equivalence metric [43], and the individual absolute residuals [44]. With
the advent of these baselines, usage of biased metrics such as the mean magnitude of
relative error (MMRE) [45] was discouraged [46, 47, 48].

Lately, empirical studies have begun to include hyper-parameter tuning as part
of their frameworks. Previous research has evaluated the impact of hyper-parameter
tuning in the accuracy of effort estimation models, and suggested that tuning should
be included in future frameworks [14]. More recent studies in software effort es-
timation have employed hyper-parameter tuning for online estimation [12], evalu-
ated tabu search [49] and bee’s algorithm for tuning [50], and proposed fast and
efficient approaches such as dodge [51, 52], flash [53, 54], and differential evolu-
tion [55, 56]. However, only a few studies in software effort estimation have com-
pared hyper-parameter tuning approaches for machine learning [57, 58, 24]. This



thesis thus evaluates the effectiveness of some of the existing hyper-parameter tuning
approaches for machine learning algorithms to estimate software effort.

1.1 Objectives

The main goal of the thesis was to develop an automated procedure for machine learn-
ing hyper-parameter tuning in the context of software effort estimation. To meet this
general objective, three specific objectives were proposed in the context of software
effort estimation:

S01. To characterize hyper-parameter tuning approaches for machine learning.
S02. To automate a hyper-parameter tuning procedure for machine learning.

S03. To evaluate the effectiveness of the automated hyper-parameter tuning proce-
dure for machine learning.

The automated procedure supports the selection of techniques that comprise the
evaluation scheme: data sets (DS), validation approaches (CV), data pre-processing
transformations (DT), feature selections (FS), machine learning algorithms (L.A), and
hyper-parameter tuning (PT). The set of evaluation schemes to evaluate was con-
structed as every possible combination of all selected techniques. Each scheme was
evaluated by constructing, training, and evaluating an effort estimation model. In
this process, the hyper-parameter tuning algorithm adjusted and selected the hyper-
parameter values of the machine learning model.

To evaluate the automated procedure, we employed 9 benchmark datasets from
the software effort estimation literature [59] and 4 subsets from the ISBSG 2018
release 1 repository [60]. Such datasets included information about past software
engineering projects, and contained data of the company and the project size. The
procedure conducted a fair comparison of each hyper-parameter tuning approach
with respect to their effectiveness to improve the prediction accuracy and stability
of machine learning algorithms. Our automated procedure is potentially useful for
software engineering stakeholders. With its use, such professionals can determine
the best tuners and models for their company data, regardless of the characteristics
of their projects.
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Figure 1.1: Design of the research project.

1.2 Methodology

The development of this research and thesis document followed the design science
methodology for information systems and software engineering [61]. Design science
proposes a framework of design and investigation of research artifacts in the context
of software engineering. Design science uses a combination of design and empirical
cycles to propose design or research questions. Each question was answered at the
end of the completion of its respective cycle [61]. In the context of this research, the
research artifact was the automated procedure of machine learning hyper-parameter
tuning for software effort estimation.

The design of this research was composed by a set of design cycles (DC) and
empirical cycles (EC), as shown in figure 1.1. A main design cycle covered the main
objective of the thesis. The cycle consisted of three phases, each consisting of a sub-
cycle and covering a specific objective of the thesis.

To guide this research, the following design questions (DQ) and knowledge ques-
tions (KQ) were defined:

KQl: What are the characteristics of machine learning hyper-parameter tuning ap-
proaches for software effort estimation?

DQ2: How to design an automated parameter tuning procedure for machine learning
software effort estimation?



KQ3: What is the effectiveness of the automated parameter tuning procedure for
machine learning software effort estimation?

The first phase covered knowledge question 1 and the first specific objective (SO1),
in which machine learning hyper-parameter tuning approaches in SEE were charac-
terized. To accomplish this, an empirical cycle was executed to conduct a systematic
mapping study [62].

The second phase covered design question 2 and the second specific objective (S02),
in which the automated hyper-parameter tuning procedure for machine learning was
designed, implemented and validated To accomplish this, a design cycle was executed
using the iterative development methodology [63].

The third phase covered knowledge question 3 and the third specific objective (SO3),
in which effectiveness of the automated hyper-parameter tuning procedure was evalu-
ated. In this evaluation, the procedure determined the impact of the hyper-parameter
tuning approaches on the estimation accuracy of effort estimation models. To accom-
plish this, an empirical cycle, consisting of controlled quasi experiments, was exe-
cuted [64].

The completion of the activities related to these three phases resulted in different
products that comprise this thesis document. Figure 1.2 summarizes the objectives,
method, and products of each phase of the research.

The methodology followed in each of the three phases is covered on its specific
chapter of the thesis document. Chapter 3 presents the methodology for phase one to
conduct a systematic mapping study. Chapter 5 contains the methodology for phase
three, presenting a design for each of the conducted controlled quasi experiments.

1.3 Contributions and products

The following are the contributions and products of this research:

* The report of a systematic mapping study of the existing hyper-parameter tuning
approaches; additionally covering the machine learning algorithms, datasets,
data pre-processing, feature selection, and validation approaches used in con-
junction with hyper-parameter tuning.

* The design and implementation of an automated hyper-parameter tuning ma-
chine learning procedure for software effort estimation.
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Figure 1.2: Summary of research methodology.

* An empirical evaluation of the hyper-parameter tuning procedure in terms of
accuracy and stability, and a set of the hyper-parameter tuning approaches that
provide the best improvement of prediction accuracy for each particular dataset

and machine learning algorithm.

1.4 Document structure

This thesis document is structured as follows: Chapter 2 introduces the concepts of
software effort estimation, hyper-parameter tuning and machine learning, and em-
pirical research methodologies. Chapter 3 presents the mapping study on hyper-
parameter tuning approaches in SEE, showing the reported hyper-parameter tuners,
machine learning algorithms, datasets, evaluation metrics and challenges. Chapter 4
details the automated hyper-parameter tuning procedure for machine learning, as
well as the implemented framework to support this procedure. Chapter 5 presents
the design and results of the series of quasi experiments that evaluated the automated
hyper-parameter tuning procedure. These studies covered the following areas: effect
of tuning on the accuracy and stability of SEE models, genetic and bio-inspired tun-
ing, multi-objective hyper-parameter tuning, and random search vs. state-of-the-art



tuning. Lastly, chapter 6 summarizes the results of this research and shows possible
venues for future work.



Chapter 2

Background

This chapter presents the background concepts related to software effort estimation
and machine learning. Section 2.1 contains the foundation and role of data science
in software engineering. Section 2.2 contains a basic explanation of the search-based
software engineering research field. Section 2.3 contains the foundations of software
effort estimation. Section 2.4 contains the general process of machine learning eval-
uation frameworks for software effort estimation. Section 2.5 contains the principles
of machine learning. Sections 2.6 and 2.7 respectively contain the foundations of the
empirical methodologies and software engineering methodologies that will be used
in the thesis.

2.1 Data science in software engineering

The software engineering process naturally produces a large amount of data, in the
form of source code, bug reports, test cases, and user stories, among others. Research
in software engineering attempts to build new knowledge, based on this informa-
tion [65]. Software engineering data can come from different sources, collected using
different methods, be structured or unstructured, have varying degrees of noise, and
be objective or subjective. This variability introduces the need for data analysis for
software engineering [65].

Software analytics uses data-driven approaches to enable software practitioners to
perform data exploration and analysis, in order to obtain insightful and actionable in-
formation for completing various tasks around software systems, software users, and
the software development process [66, 67, 65]. Data analysis in software engineering
should provide a solution to a recurrent problem in the field, while being accessible
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(automatable, re-usable, and actionable) to software engineering practitioners [65].

Software analytics is relevant and used in many research areas of software en-
gineering. Some of these include repository mining, software testing and fault de-
tection, defect prediction, software analytics, service analysis, security analysis, and
software effort estimation. In the case of software effort estimation, data science
techniques—such as machine learning—are used to perform predictive analysis of
project effort. In order to minimize project costs, a practitioner could use historical
project data to predict costs of future development projects. In this scenario, predic-
tion techniques such as machine learning aid the data analysis tasks, which would
ultimately to a quantifiable benefit to the practitioner—the reduction development
costs due to minimization of estimation risk [65, 68]. In addition, search-based soft-
ware engineering techniques can be combined with data science approaches. For
instance, a machine learning technique can be combined with a search-based hyper-
parameter tuning approach [51].

2.2 Search based software engineering

Search based software engineering (SBSE) is a research field inside software engi-
neering, which applies search based optimization techniques to SE problems. In
other words, SBSE reformulates SE problems to search problems [69, 68, 70, 71].
Search problems in this contexts are problems in which an optimal (or near-optimal)
solution is sought in a search space composed of candidate solutions [71]. A search
function guides this process, differentiating which is best between two candidate so-
lutions. In addition, SBSE techniques work with limited resources—i.e. computation
time—, and thus usually do not search within the entirety of this sub-space [70].
Techniques such as random search, hill climbing, simulated annealing, nature-based
search algorithms (such as cuckoo search, artificial bee colonies, and particle swarm
optimization), and genetic algorithms comprise the field of SBSE [70, 72].

The search-based software engineering approach and its techniques can be ap-
plied to software effort estimation—particularly modeling [73] and hyper-parameter
tuning [51]. SBSE approaches can be used to estimate effort, select relevant features
for a dataset, and adapt models to new data, and select hyper-parameter values for
models. For effort estimation, genetic programming approaches can be used to esti-
mate software effort. One of the first authors [73] to do so is Dolado [74, 75], who
employed genetic algorithms to find accurate functions to predict effort. SBSE can
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aid in online effort estimation, which considers the change of data over time. Effort
estimation is a changing problem, as the company that performs the estimation will
change over time. An approach such as Bayesian evolutionary algorithms may aid
in this task [73]. For feature selection, SBSE approaches this as a multi-objective
optimization problem, in which the amount of features of the input data is minimal,
while maximizing estimation accuracy. Other factors, such as the cost of collecting
a particular feature, can be considered in a multi-objective feature selection [73].
Kirsopp et al. [76] used a hill climbing approach to select features for Case Based
Reasoning systems to estimate software effort. Lastly, for hyper-parameter tuning,
SBSE algorithms can be used to search for good hyper-parameter values for machine
learning algorithms applied to effort estimation, using approaches such as genetic
algorithms [31] or particle swarm optimization [77].

One of the main barriers for search based algorithms (or machine learning in
the context of this proposal) is tuning. Search algorithms have a series of hyper-
parameters that need to be set before execution, and the value of these impact the
performance of the approach [78]. The use of hyper-parameter tuning is a trade-
off problem in itself. On one hand, default hyper-parameter values from the litera-
ture can function adequately well in some cases, but not quite for larger amounts of
data [79]. Thus, it would be beneficial to perform a hyper-parameter tuning process.
On the other hand, hyper-parameter tuning may become very expensive, but the im-
provements that are produced by it may not be so good [78]. Based on this, it is
important that hyper-parameter tuning approaches act based on the allocated search
budget [79, 78].

Recently, a novel field of empirical software engineering has emerged: DUO (Data
mining Using/Used-by Optimizers) [51]. These research field combines the strength
of data mining approaches and optimization algorithms, which function as an “ad-
visor” that aids the tasks of a data analyst, and that can aid construction of better
predictive models. Similarly, data mining and optimization approaches complement
each other. Optimization—such as hyper-parameter tuning—can be used to improve
predictive accuracy of data miners. In turn, data mining approaches can be used
to mitigate the problem of diminishing returns that optimization approaches face—
dividing work using clustering, for instance. Because of this, data mining approaches
that employ no optimization have been considered deprecated [51], and previous
work should be revisited and reevaluated.
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2.3 Software effort estimation

Software effort estimation (SEE) can be defined as the process of predicting or es-
timating, from base characteristics of a software development project, the effort re-
quired for its completion, usually measured in man-hours [1, 2, 5]. Estimation is
not a process of coming up with a number that a team must commit to, but rather a
process to aid decision making [5].

Two approaches exist for effort estimation: the expert judgment approach and
the engineering approach [2, 4, 5]. The expert approach is the most used process in
industry, even though it is more subjective and is less measurable (and thus, is more
difficult to evaluate) than the engineering or model approach. Expert judgment is
highly dependent on the expertise on the people that participate on the process [5].
In addition, it is difficult to measure how effective this type of evaluation really is.
While a successful project may seem to respect its allocated budget, it is possible that
said project may do so at stake of not meeting all requirements [5].

The second approach to software effort estimation is the engineering approach [5],
also referred to as the model or mathematical approach [2, 4]. Instead of relying in
expert knowledge, this estimation method is based on information on past projects
and careful management and usage of this information. One of the most important
characteristics of this approach is understanding that not all existing models apply
to every situation, but rather it is imperative to understand the context and con-
straints of the available information and select one or more applicable models based
on these [5]. One analysis technique is to look at the existing historical data, one
variable at a time, and proposing a potential model that explains its relation with
effort [5]. The engineering approach can employ two types of prediction technique:
parametric models, and learning models [2]. Parametric models are based on math-
ematical functions, and learning models include regression methods and machine
learning algorithms [2].

Software effort estimation is a process that is performed through the life cycle of
a project, instead of only at the project planning. At the beginning of a software de-
velopment project, most information available is either obtained on past projects, or
documentation from the current project. As development progresses, more empirical
information on the project—such as time and requirement completion—is known.
This is a phenomenon in effort estimation known as the cone of uncertainty [5].

Accuracy of the effort estimation of a protect could improve along time, as new infor-
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Figure 2.1: Software effort estimation process phases. Adapted from [5].

mation is available as time goes on. Some uncertainty remains in the prediction, as
the interaction between variables is not fully known.

2.3.1 SEE process

The general effort estimation process has 5 phases [5], as shown in figure 2.1: (1) col-
lection of input data, (2) productivity model prediction, (3) model adjustment, (4) bud-
get decision, and (5) re-estimation.

The first phase of the estimation process deals with the collection of input data.
These often deal with those resources, processes, and products associated with the
project that could potentially drive the cost of the project.

The second phase of the estimation process relates to the productivity model. A
productivity model simulates the development process, based on the input data, and
generates an estimate of the required effort or resources. This estimate may be either
a single value, or an estimation interval with certain degree of confidence.

The third phase of the estimation process is the adjustment process. This refers
adjustment of the model, and the entire effort estimation process, to accommodate
for novel information. Through the early estimation process, new information and
constraints—originally not in the historical data—are discovered.

The fourth phase of the estimation process is the budget decision. This refers to
selecting a value or set of values from the estimation process, so that the project is (or
is not) carried out based on this estimate. This process is performed manually, with
expert judgment.

The fifth phase of the estimation process is the re-estimation. The software effort
estimation process is, by nature, iterative, as new and more pertinent information is
through time. The re-estimation process is similar to the adjustment process, as it
comprises the incorporation of new estimation into the productivity model to gener-
ate a more accurate estimation.
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This thesis focuses on the second step of the estimation process: the productivity
model. Through this work, it will be referred as a prediction model. While tradition-
ally productivity models were often mathematical equations, more recent research
has shifted into machine learning models. Section 2.5 covers the bases of machine
learning and its process.

2.3.2 SEE datasets

Data is the cornerstone of empirical software engineering research and practice [80].
Data drives the estimation process, as it is used to produce effort prediction mod-
els. Software effort estimation datasets contain metrics about completed software
engineering projects, such as size, effort, duration, programming language, type of
business, and so forth [80]. Software development companies often use their own
project data to perform SEE, but often do not share or publish their own datasets.
Because of this, a small amount of datasets are available for research, and of which
some are widely used in software effort estimation research.

There are several datasets that are commonly used in software effort estima-
tion [81, 82, 83, 84, 85, 80]. These datasets are available in either the PROMISE
repository!, or the International Software Benchmarking Standards Group (ISBSG)?2.
Table 2.1 shows the names, timeliness, amount of projects and features, and some
of the units of important features of these datasets. The timeliness column shows
the completion dates of the projects in the dataset. Datasets with an asterisk (*)
in their timeliness denote that no date information is available, and instead dataset
publication date is used. The Proj. and Feat. columns show the amount of software
projects (rows) and the metrics recorded for each project (columns), respectively.
The FP approach column shows the type of function points used to estimate software
size. The size unit columns shows estimated or delivered size of the final product,
measured in either lines of code (LOC), thousand lines of code (KLOC), or amount of
files. The effort unit column shows the amount of time required (in either hours or
months of work). The type columns shows whether the dataset contains information
belonging to a single company (WC, within-company), or multiple companies (CC,
Cross-company).

While unique, all datasets share some common features. All datasets share the
target variable, effort, which is also the feature that is most frequented in primary

Thttp://promise.site.uottawa.ca/SERepository/
2https://www.isbsg.org/
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studies [86]. The other dataset variables are then used to perform estimation of
the target feature. Other important variables for effort estimation include (adjusted)
functional size, development type, language type, development platform, team size,
organization type, programming language, among others [87]. These variables de-
scribe the amount of work required to complete the software project, and play an
important role in estimation problems. Other types of variables cover information
about the company or developing team.

There are some limitations regarding these datasets. Some are comprised of
projects of multiple companies (cross-company, CC), as opposed to one company
(Within-company, WC; or single company, SC). These have the problem of having
more outliers, and the data is more heterogeneous, as projects with similar charac-
teristics may have completely different effort values. Some solutions to this problem
include partitioning of the data into sub-datasets, or elimination of extreme values
altogether [86]. Because of these limitations, datasets are seldom used as they are,
and instead transformations or selection of data is performed.

Studies have reached conflicting results on the effect of CC studies against WC
studies [88, 16, 19]. In some cases, prediction is worse for CC studies. For other
cases, there is benefit—or it is indifferent—in using CC data instead of only WC data.
In general terms, usage of CC data for estimation is a trade-off between number of
data instances, and heterogeneity of the data points. Thus, research on the amount of
CC projects to use in software effort estimation is an ongoing research area [89, 12].

The most important advantage of these public datasets is that they diminish data
collection costs, which are expensive process for organizations [86]. These benefits
however, do not come with a series of challenges. The main problem of these can be
generally described as the variance within different projects, which generates vari-
ance bias and conclusion instability [13]. For instance, CC datasets have two main
problems: heterogeneity of data (as it is provided from multiple, different sources),
and the amount of missing values [86]. A traditional effort estimation approach—
such as a formula-based estimation model—may become too inaccurate given these
conditions. Machine learning approaches are able to work around these problems
(for instance, clustering and missing value imputations can address CC issues), and

provide more accurate estimations of effort.
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Table 2.1: SEE datasets and their qualities. Based on Bosu and Macdonnel [80], and

Shepperd and Schofield[82].

Size

Effort

Dataset Timeliness Proj. Feat. FP approach unit unit Type
Albrecht 1974-1979 24 8 Albrecht FP No Hours WC
China 2011* 499 19 Albrecht FP No Hours ?
Cocomo81 1981* 63 19 No LOC  Months ?
Desharnais 1982-1988 81 12 FP No Hours WC
Finnish 1997* 38 9 FP No Hours CcC
ISBSG10 2010 37 94 IFPUG LOC Hours CcC
NESMA
ISBSG16 1989-2015 7518 264 IFPUG, NESMA, LOC  Hours CcC
MARK II, COS-
MIC
ISBSG18 1989-2016 8261 252 IFPUG, NESMA, LOC  Hours CcC
MARK II, COS-
MIC, others
Kemerer 1981-1985 15 8 No KLOC Months WC
Kitchenham 1994-1988 145 10 FP No Hours WC
Maxwell 1993 62 27 FP No Hours WC
Miyazaki94 1994* 48 9 No KLOC Months CC
NASA93 1971-1987 93 24 No LOC  Months CC
SDR 2000 12 25 No LOC  Months CC
Telecom 1997* 18 4 No Files Months WC
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2.4 SEE evaluation frameworks

In software effort estimation, many factors affect the accuracy of a prediction model—
as well as conclusion stability of studies—, which can be generalized into two larger
factors: bias and variance [13]. Variance refers to the dispersion or distance of the
different model predictions, which would in turn cause conclusion instability across
studies. Bias refers to the distance from the predicted values to the real effort values,
which would also cause conclusion instability across studies.

Conclusion stability due to variance is mainly related to two possible sources:
variance from sampling, and variance from the validation scheme [13]. Variance from
sampling is related to the origin of the model input data, particularly when dealing
with the same model across two or more different datasets. An effort estimation
dataset is a non-random sample from a population of software projects, usually tied
to a specific organization and using the same collection method. Variance from the
validation scheme comes to the noise that has its origin in randomly splitting a dataset
for training and validation. If all data is used for training, it is possible that the model
accuracy is overestimated. Using different data for training the model and assessing
its accuracy lessen this overestimation. However, randomly splitting the dataset into
training and validation could assign «good» cases into one group and «bad» cases into
the other, affecting the accuracy.

Conclusion stability due to bias is mostly related to human or experimental factors,
such as the experimenter, language, sampling, and verification [13]. For instance,
a particular researcher that proposes a novel estimation model could be biased to
showcase its model as the best model of all studied. Another instance of a source of
bias could be introduced by the accuracy metric.

In order to reduce both bias and variance, multiple machine learning evaluation
frameworks have been proposed in effort estimation [35, 36, 37, 38, 39, 41, 40,
26, 43, 42, 89, 44, 90, 33, 12]. The general objective of the frameworks presented
by these studies is to reduce conclusion instability and guarantee replicability of the
study. In the case of instability by variance, these frameworks apply different com-
binations of data pre-processing and use validation schemes to mitigate effects of
randomness and high data set variance. For instability by bias, these frameworks
propose comparison of multiple techniques across different datasets. SEE evaluation
frameworks use multiple machine learning processes to build and evaluate models

under different conditions. In general terms, these machine learning processes can
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be summarized in 6 elements: datasets, validation approach, data pre-processing
(which covers transformation, clustering, and missing value imputation), feature (or
attribute) selection, machine learning algorithms (and their hyper-parameters), and
hyper-parameter tuning approach for these algorithms. In the beginning, these frame-
works were proposed for defect prediction, the same principles were applied in effort
estimation.

Table 2.2 shows some the existing SEE evaluation frameworks in the literature. For
each framework, the parts of the machine learning process are shown: datasets (DS),
data transformation (DT), clustering (CL), missing value imputation (MV), attribute
selection (AS), and machine learning algorithm (LLA). The amount of studied tech-
niques are shown for each of these categories. Sub-partitions or sub-techniques are
not counted. For the validation approach (CV), the table shows if the study uses
train-test split, train-test-validation split, Leave-one-out cross-validation, k-Fold cross-
validation, M x N-way cross-validation, or an online learning scheme. For parameter
tuning (PT), the table shows if no tuning is done, if tuning is done manually, or if an
automated hyper-parameter tuning approach is used. For baseline techniques (BL),
the table shows whether a study uses or not one such technique. For evaluation met-
rics (EM), the table shows whether a study uses classification metrics—such as recall,
precision, or area under a ROC curve—, relative error based metrics, or absolute error
based metrics. In the case of usage of more than one type of metrics, the main type
of metric is denoted (i.e. the metrics used for tuning or comparison of techniques).

One of the first proposals of a framework was done by Menzies et al. [35], in the
area of defect prediction. This study presents the notion of a baseline experiment—a
way to make two different studies comparable, by using the same data set. In their
proposed framework, they employ M x N-cross validation, all the combinations of two
data transformation (filter) techniques, one attribute selection, and three learning
algorithms. In addition, they employ as metrics probability of error detection (pd)
and probability of false alarm (pf).

Zhang and Zhang [36] commented on the framework by Menzies et al., addressing
that the metrics they used in their proposal—probability of detection, and probability
of false alarm—are not satisfactory enough metrics. Instead, they recommend to use
the precision and recall metrics for defect prediction, as pd and pf are influenced by
class imbalance. Menzies et al. responded to Zhang and Zhang’s comment [37] by
“agreeing to disagree” with their assessment. They present scenarios in which high
precision and recall do not necessarily result in good predictions. In general terms,
their argument is that precision and recall can be inversely proportional—increasing
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Table 2.2: SEE frameworks.

Framework DS CV DT CL MV AS LA PT BL EM
Menzies 10 M x N 2 0 0 1 3 No No Classification
et al.,

2006[35]

Song et al., 2 Train-test- 2 0 0 2 3 No No Classification
2010[38] validation

Mittas and 6 K-fold 0 O 0O O 11 No No Absolute
Angelis, error
2012[39]

Keungetal., 11 Leave-one- 7 0 0 3 9 No No Relative
2013[40] out error
Song et al., 3 Online 0O O 0 O 4 Auto No Absolute
2013[14] learning error
Minku et al., 1 Train-test 0 O 0O O 3 Manual Yes Absolute
2015[91] error
Minku et al., 3 K-fold 0 3 0 0 2 Auto Yes Absolute
2017[89] error
Murillo- 1 MxN 8 O 0 5 15 No Yes Absolute
Morera error
et al.,

2017[90]

Minku, 1 Online 0 6 0 O 10 Auto Yes Absolute
2019[12] learning error
Quesada- 1 MxN 3 0 0 5 15 Manual Yes Absolute
Lopez et al., error
2019[33]

one decreases the other—and in some cases it is better to sacrifice precision to achieve
high recall.

An extension to the benchmark framework by Menzies et al. is presented by Song
et al. [38]. Their contribution is twofold: (1) their framework draws conclusions
for each machine learning scheme (combination of data transformation, attribute
selection, and learning algorithm) instead of individually for each learning algorithm,
and (2) their framework uses a two-step process to measure the “true”, unbiased
performance of the best model. The two-step process of the proposed framework
involves splitting data into a training and a validation set. The first step is the same
as the framework by Menzies et al., using only the training set. The second step is the
validation of the best model. This step re-trains the best model using all of the training
set, and predicts the data of the validation set, measuring model performance. The
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idea is to simulate a real situation, in which the selected scheme is used against new,
unseen data. One important conclusion of the study was that there was no best
universal scheme that overshadows all the others, but rather different schemes work
on different data.

An evaluation framework for software cost (effort) estimation was proposed by
Mittas and Angelis [39]. Their framework is different from Menzies et al. in two
main aspects: (1) they only consider learning algorithms, and (2) they perform k-
fold cross validation instead of M x N-cross validation. Their main contribution is
not in the framework steps, but rather in the analysis of the results of the obtained
framework. In their work, they employ clustering of techniques, using Tukey tests
and the Scott-Knott algorithm. Their results suggest that it may be better to search
for a set of best estimation models, instead of a single best model.

Keung et al. [40] apply their previous knowledge of machine learning in defect
prediction [35] for effort estimation. They propose an evaluation framework for ef-
fort estimation to try to reach conclusion stability. In their framework, they evaluate
combinations of data transformation techniques and learning algorithms across dif-
ferent datasets. In a manner similar to Mittas and Angelis, they use Wilcoxon-signed
rank and the win, tie, loss algorithm to rank the different combinations. The study
concludes that stability can be reached.

Song et al. [14] perform a study on the impact of hyper-parameter tuning of differ-
ent machine learning algorithms. In their study, they train and evaluate four different
machine learning algorithms using all possible combinations of hyper-parameter val-
ues defined across a range. This technique would be later known as grid search. To
measure the impact of tuning these hyper-parameter values, the study compares the
best setting against the worst and default settings. One of the main conclusions of
the study is that the value of tuning depends on the technique, as some algorithms
are more sensitive to hyper-parameter values than others.

Minku et al. approach SEE research from an application perspective. On 2015,
Minku et al. [91] used the Dycom approach to adapt cross-company data to make
within-company predictions. The objective of this approach is to minimize the amount
of WC data necessary to build a model, as this data is expensive to gather for most
organizations. In 2017, Minku et al. [89] continue this research trend by adapting
the Dycom model to use an online learning approach, and to include data clustering
to focus on CC data that is most similar to the WC data. In 2019, Minku [12] incorpo-
rates automated hyper-parameter tuning into the Dycom approach, which is the first
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proposal of hyper-parameter tuning procedure for online models in software effort
estimation.

Murillo-Morera et al. [90] employ a genetic algorithm to automatically find the
best machine learning schemes: combinations of data pre-processing, attribute se-
lection, and learning algorithms. This genetic approach is compared against an
exhaustive framework, and the proposal outperforms this baseline. Based on this
study, Quesada-Lopez et al. [33] perform an exhaustive evaluation of these previous
schemes on the ISBSG dataset, using different models for projects measured in IF-
PUG FPA and COSMIC FFP, and performing manual hyper-parameter tuning for the
learning algorithms. In their study, they compare complete models against simplified
models using functional size in terms of their accuracy. Both studies reach similar re-
sults regarding the learning algorithms: regression-based techniques tend to perform
well for the majority of scenarios.

Optimally, results obtained by these frameworks should be comparable. To achieve
this, baseline metrics can be incorporated into these frameworks, allowing comparis-
son across different studies.

2.4.1 Baseline SEE frameworks

A recurring problem in SEE literature using machine learning is that—across all SEE
studies—there is no optimal technique, but rather each study obtains different con-
clusions; even ones that are contradictory with previous studies, depending in the
dataset that is used [18]. Thus, a fair, unbiased way to compare different prediction
systems for SEE was necessary, even across different machine learning processes [41].
Several studies have proposed evaluation frameworks that employ a baseline, which
allows the comparison of results across different SEE studies.

Initially, effort estimation studies that used baselines employed statistical metrics
of the predicted variable. For instance, Jgrgensen [34] employed as a baseline the
mean productivity multiplied by estimated size. In other study, Mendes and Kitchen-
ham employ the sample median as a baseline [16].

On of the first SEE frameworks to propose a baseline based on an estimation
technique was done by Shepperd and MacDonnel [41]. In their proposal, they suggest
using random guessing—from all of the target metrics, taking one value randomly—
as a baseline estimator p,. For all of the evaluated schemes p;, an accuracy metric such
as the mean absolute residual (MAR, also known as mean absolute error or MAE) is
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collected. This accuracy metric will depend on the data set that was used, and could
vary between studies. Shepperd and MacDonnel suggest using the same accuracy
metric on the baseline predictor p, to create a baseline metric. The study proposes
two baseline metrics: standardized accuracy (SA) and an adaptation of Glass’s effect
size (A). Standardized accuracy is a ratio of how much any estimator p; is better
than randomly guessing values of the dataset. Because an obtained SA value could be
due to factors other than the estimators, Shepperd and MacDonnel suggest using the
effect size A as a metric of how significant is the relationship (difference) between
the estimator p; and the baseline estimator pj.

Based on Shepperd and MacDonnel, Langdon et al. [42] propose an extension
to the baseline estimation metric M AR, used to calculate SA. In their work, they
argument that the baseline estimator p, is biased, as it has a tendency of randomly
encountering the right answer by chance and thus overestimates. While this would
be no problem in large data sets, as M AR,, would converge into the mean value,
effort estimation data sets are often small. Langdon et al. propose using a determin-
istic version of M AR,, when the data set has less than these 2000 observations (to
produce an unbiased, denoised baseline), and Shepperd and MacDonnel’s proposed
M ARy, when the data set has enough observations. This version of the Standardized
Accuracy would become one of the most used metrics in the later SEE framework
proposals, and the basis for following baseline proposals. For example, since the year
2015 this metric has been employed by Minku et al. [91, 89, 12], Murillo-Morera et
al. [90], Quesada-Lopez et al. [33], among others.

Dolado et al. [43] propose another baseline metric, based on Shepperd and Mac-
Donnel’s SA. The novel metric is based on the concept of hypothesis testing, particu-
larly intervals of equivalence. They define the minimum interval of equivalence (MIE)
as the interval in which difference of the values of a metric (such as SA) of two pre-
dictors would need to fall into, such that they can be considered equal (i.e. having
the same accuracy). Based on this, they propose the MIEratio: a metric that measures
how far apart is an estimator from the baseline prediction p,. While SA measures how
many times is the predictor better than the baseline, the MIEratio measures how close
is the prediction to the real values.

Lavazza and Morasca [44] propose their own baseline metric, based on Shepperd
and MacDonnel [41] and on Langdon et al. [42] In contrast to the standarized ac-
curacy, which is calculated from the average errors of two estimators, the individual
absolute residuals (IARA) is a metric that compares paired predictions, such as those
between the prediction model and the baseline model, and measures the probability



23

of them having different performance.

Usage of these metrics would allow two independent studies to be compared,
assuming they employ the same data and baseline. This is an improvement over the
previous state of the art, in which the way to compare two models was through a
replication study. In addition, currently there are baseline metrics for both single
point estimates and interval estimates.

2.5 Machine learning

This section introduces the concept and theoretical foundations of machine learning,

ending with some of the open problems and considerations.

Machine learning is, in essence, programming computers so that they are able
to “learn” from data inputted to them [11]. In the context of ML, learning refers to
converting experience-based information into knowledge, a process called generaliza-
tion [92]. There are two machine learning approaches for generalization: instance-
based learning and model-based learning [92]. Instance-based learning functions by
memorization of the data, and generalizes this data to new cases by using a similarity
measure. Model-based learning builds an intermediate representation of the data: a
model. This model is used in conjunction with a set of prediction rules to generalize
to new instances. Machine learning algorithms cannot purely rely on information;
and instead a balance between domain knowledge and information is necessary to
construct a learner that generalizes to both known and unseen data [11].

Learning problems cover a wide domain, but can be generally classified by 4 di-
mensions: interaction, role, teaching, and protocol [11]. The interaction dimen-
sion refers to the interaction between the learner and the environment from which
it learns. There are two types of interaction: supervised learning and unsupervised
learning. Supervised learning is performed with a specific goal or task, while un-
supervised learning is performed in an exploratory manner to summarize or group
data.

The role dimension refers to the role played by the learner in the process [11].
Similarly, there are two roles: active and passive. An active learner directly interacts
with the environment at the time of training. Particularly, active participation involves
altering factors in the environment and measuring changes in the relevant variables.
As such, active learners are closer in process to an experimental design. In contrast, a
passive learner does not influence the environment, and limits itself to only observing.
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In empirical research, passive learning is closer to a case study.

The teaching dimension refers to the entity that oversees or guides the learning
process [11]. In general terms, there are two types of teaching: passive teacher, and
adversarial teacher. A passive teacher presents data as-is, without any alterations. In
the case of machine learning, such data is usually obtained from a random process.
An adversarial teacher follows an iterative process, in which the teacher adds noise
in order to “mislead” the learner. The objective of this type of teacher is to perform
in a worst-case scenario basis, so that the learner is able to differentiate even in the
most difficult cases.

The protocol dimension refers to the timing of the learning [11]. Again, two types
of learning protocols exist: online and batch. Online learning can be better described
as a ‘real-time’ exercise, in which the learner is presented information, and has only a
limited amount of time to process it and generate knowledge. This knowledge is then
validated and the cycle repeats itself. A batch learner, in contrast, has a larger amount
of training data, as well as more time to process it before generating knowledge.

While machine learning can cover any combination of these four learning dimen-
sions, it favors itself more closely to passive role learning using a batch learning
protocol [11]. So, in general, most machine learning problems are either classified
as supervised learning or unsupervised learning. Supervised learning is the main
approach in the context of software effort estimation.

Most machine learning process can be described with a simple learning frame-
work. Four elements comprise this framework [11]: input, output, model, and mea-
sures (or metrics). Figure 2.2 shows an example of this framework. The learning
process starts with training the learner with the input data so that it is able to gen-
erate an output that describes the data correctly. This description is usually referred
to as a rule that maps the input data to a specific feature or value: a prediction. To
assess the effectiveness of this description, measures of success are used to determine
the degree of errors in the prediction.

The input of the learning model refers to the data that the model has available to
make its prediction [11]. The training data is comprised by a set of instances: cases
of the problem at hand being studied. Each instance is defined as a vector of fea-
tures. Each feature represents a characteristic or attribute of the instance. In general
terms, there are two types of features: numerical and categorical. Numerical features
correspond to a numerical value, either discrete or finite and optionally within a de-
fined range. Categorical features correspond to non-numerical labels that function
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Figure 2.2: Simple machine learning framework [11].

to group data. The input data is often seen as a matrix, in which rows correspond
to the instances and columns to the features. In supervised learning, one or more
such features are chosen as the target feature(s), which the model aims to describe
or predict in terms of the rest.

The output of the learning model refers to a prediction or classification rule that
is the result of the model training [11]. The goal of the training process is to obtain
this output, so that it be used to predict the target features for new data. Usually, the
predicted features are hard to obtain, or can only be obtained at the end of a process.

The learning model proper is a representation or hypothesis on how does the
studied phenomena functions, particularly how the features explain or relate to the
target features [11]. At the beginning of the learning process, the model starts as an
empty or with a random hypothesis. The learning process modifies and refines this
model so it better explains the relation between features. Because the data obtained
is subject to some degree of randomness (or noise), it can be represented using a
statistical model. A learning model thus attempts to infer or represent this statistical
model.

The measures of success are a metric of how effective is the prediction produced
by the trained model [11]. The error of a classifier is the probability that it does not
predict the correct value (either categorical or numerical) of a new instance.

A machine learning model produces as its output a prediction of one or more tar-
get features, based on input information [11]. Depending on the type of the target
feature, a machine learning problem may be classified as either a classification prob-
lem or a regression problem. The type of the task limits the applicable problems, as
there are classification and regression models.

A classification task deals with determining a categorical feature of a new instance.
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As its name implies, classification tasks deals with problems such as categorizing or
labeling new data. A regression task deals with predicting a numerical feature of a
new instance. The machine learning model creates a pattern or function that related
the input variables with the target variable.

Insufficient quantity of training data Training a machine learning algorithm re-
quires a large amount of instances. Many real world problems, such as natural lan-
guage processing, are subject to complex and intricate interactions of factors. As
such, these phenomena can only be explained with complex models or rules. How-
ever, the data used to train a model may not be representative enough of the real-
world problem [93]. No matter how powerful the machine learning algorithm is, it
will not generalize well enough to unseen cases if the amount of data is too small
with respect to the complexity of the real-problem. Thus, it is important to balance
the amount of resources used to develop a machine learning approach against the
amount of resources used to gather new data [93, 92].

Overfitting and underfitting A machine learning model may acquire an excellent
performance in the training data, but it also might be unsuitable to new data. This
phenomenon is called overfitting, and it happens when the model is overly trained
with a noisy or small dataset [92]. For instance, a model trained with noisy data may
detect patterns on uninformative features; thus drawing relations or conclusions that
do not generalize well to real, unseen data. Some solutions to this problem include
reducing the amount of features used to train, increasing the amount of training data,
or correcting the noise in the training data. Another approach is to select a simpler

model; for example using a linear regression instead of a polynomial regression.

Similarly, underfitting is a phenomenon that happens when the model is too sim-
ple to explain the underlying structure of the data [92]. Solutions to this problem in-
clude selecting a more complex model, or by “releasing” the constraints of the model,
such as increasing the value of a hyper-parameter.

Testing and validation The only way to ‘truly’ evaluate a ML model is to try to
generalize unseen cases, using this model to predict new data. However, releasing
a model with unknown performance is a risk. Instead, the model should be first
evaluated (and adjusted, if necessary). One approach to do this is to split the data
into two sets: training and validation [92]. As its name implies, the data is trained
using the training set. The validation set functions as this unseen, novel data that



27

can be used to evaluate the model. This approach emulates the release of the model
into the world to evaluate its performance, but without the risk of using an untested
model in a real environment. This can be used to detect overfitting: when training
error is low, but testing error is high. Similarly, underfitting can be detected when
model performance is bad in the training set.

The no-free-lunch theorem The no-free-lunch theorem states that there is no uni-
versal learning model that fits all problems or scenarios [11]. Formally, the theorem
states that, for each learner, there is at least one task in which that learner fails. That
task can be, however, accomplished by another learner. Thus, different learning mod-
els function for different problems or different contexts. The no-free-lunch theorem is
related to another issue named the bias-complexity tradeoff [11]. This tradeoff deals
with the benefits of using no prior knowledge against using prior knowledge. Using
too much domain knowledge in a machine learning problem biases the learner (as it
potentially misses important feature relationships) and could result in underfitting.
Using no domain knowledge would make the learner find any explanation for the
target feature, which could result in overfitting.

The following subsections introduce each of the components used in the appli-
cation of machine learning. Section 2.5.1 contains data transformations that are
commonly applied to datasets. Section 2.5.2 introduces attribute (feature) selection
techniques. Section 2.5.3 shows the concept clustering and how can it be applied to
machine learning. Section 2.5.4 covers some of the validation approaches used to
maintain conclusion stability. Section 2.5.5 details some of the most used machine

learning algorithms in the literature.

2.5.1 Data transformation techniques

Data transformation (also known as feature manipulation or normalization) are sim-
ple transformations applied to each one of the features of a dataset, with the objective
of decreasing approximation errors of a particular model [11]. Data transformations
are also applied so that the data satisfies requisites of learners, most notably the
constraint of following a normal distribution. Another reason for applying data trans-
formation is to transform each feature to the same scale. However, in some cases
transformation might actually decrease performance. Thus, the transformation that
should be applied to the data will depend on the context and the model being used.
Examples of data transformations are centering, unit range, standardization, clipping,
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sigmiodal, and logarithmic.

Centering: Centering transforms each feature so its mean is 0, which is achieved by
subtracting the mean to each value: y; = y; — 7, being i the mean of feature .

Unit range: The unit range transformation, also known as normalization or min-
maxing, bounds a feature to a numeric interval. For example, the unit range
0 to 1, and unit range -1 to 1 changes each feature to either of the ranges
[0,1) or [—1,1]. The first transformation is achieved with the formula y; =
(Yi — Ymin)/ (Ymaz — Ymin), While the second one is achieved with y; = 2 * (y; —

ymin)/(ymax - ymm) — 1.

Standardization: Standardization converts each feature into a standard normal dis-
tribution by applying the transformation y; = (v; — ¥)/s,, being y the mean of
feature y and s, the standard deviation of feature y.

Clipping: Clipping functions similarly to the minimum or maximum feature. For
each feature, the user specifies a maximum value b. Each instance with a value
higher than b is set to b: y; = max(y;,b). The same transformation can be
applied for a minimum value c: y; = min(y;, ¢).

Sigmoidal: The sigmoidal transformation applies the sigmoid function to each fea-
ture, which functions as a “soft” version of clipping: y; = (1+exp(by;)) ', having
b as an user hyper-parameter.

Logarithmic: The logarithmic transformation applies the natural logarithm function
to each feature: y; = log(b + y;), being b an user hyper-parameter. This trans-
formation is used to transform data that has an exponential pattern to instead
resemble a normal distribution. Moreover, the logarithm spreads out data points
that are too close together.

One-hot encoding: Also known as one-of encoding, this transformation converts a
categorical feature with n unique values into n binary (numerical) features,
each unique value associated with a column. For each project, the column cor-
responding to the original value is set to 1 and the rest to 0.

Binary encoding: Similarly to one-hot encoding, the binary encoding transformation
converts a categorical feature into a set of binary features. However, binary
encoding reduces the amount of new columns by encoding each unique value
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into a binary number. A categorical feature with n unique values is converted
into [logs(n)| binary features.

Binning: The binning transformation converts a numerical feature into a category,
by dividing the feature in ranges and assigning values. For example, features
above certain threshold can be classified as “high”, and those below as “low”.

Box Cox: The Box Cox transformation shapes numerical features to resemble a nor-
mal distribution. The features are transformed using the function 3 = (y* —
1)/\, where )\ is an adjustment factor that has to be found for each feature.
Values of A can range from -5 to 5. If A = 0, then the transformation ¢’ = In(y)

is used.

K-means clustering: The K-means clustering algorithm is presented and explained
in section 2.5.3. While clustering algorithms can be used to divide a dataset,
they can also function to generate a new feature. In the case of using K-means
clustering as a data transformation, each project is assigned a number or iden-
tified of the cluster they belong to.

2.5.2 Feature selection techniques

Not all features on a dataset are relevant or informative to the machine learning
task. Using a dataset with only a minimal subset of features brings benefits such as a
reduction in the required training time and memory, and reducing the possibility of
overfitting. Because less information is used to build the model, there is some impact
to the accuracy of the model.

Feature (or attribute) selection is an optimization problem that attempts to find a
minimal subset of features that have good performance compared to a model using
the full dataset [11]. Moreover, reducing or removing the non-informative features
can make it easier for the machine learning algorithm to identify the underlying pat-
tern in the data [92]. One approach for feature selection is to try all possible subsets
of features, train the model, and evaluate which one has the best performance. How-
ever, this exhaustive search is often not computable in reasonable time. Thus, feature
selection methods have been developed to search for a good (although not optimal)
feature subset.

There are three general approaches for attribute selection: filters, wrappers, and
embedded [94, 95]. Filter methods select a subset of all features, based only on
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properties of the data. In most cases, each feature is evaluated using a score, and
only those features with high scores are selected. Advantages of filter methods include
their computational speed and simplicity, and good scaling to higher-dimensionality
datasets. In addition, filter methods need only to be performed once, and then the
new dataset can be used in multiple models.

In contrast, wrapper methods work in conjunction with the learning model. Wrap-
per techniques rely on the selection of a subset of data, training the model with said
subset, and evaluating the model; repeating with different subsets until a solution is
found. In other words, wrappers are filters that use the model accuracy as their train-
ing function. Wrappers methods have the advantage of taking into consideration the
interactions of the data and the model, as well as interaction between features. Thus,
wrappers could potentially achieve a subset that fits better for each individual model,
rather that one that fits “good” for all models. However, wrappers require more
computational resources and have the problem of overfitting. Examples of attribute
selection techniques include Pearson’s correlation, forward selection, and backward
elimination.

Embedded methods combine the advantages of both filters and wrappers by per-
forming feature selection in conjunction with training of the model [94]. Embedded
methods retain the benefits of being able to find the best feature set for the machine
learning algorithm of wrappers, while also retaining the higher speeds of filters. Ex-
amples of embedded methods are tree-based machine learning models like Classifica-
tion and Regression Trees (CART), as these models perform feature discrimination as
part of their training process.

Exhaustive Search: The most basic approach to feature selection is exhaustive search,
in which every possible combination of features (i.e. power set) is tried. A
model is built using each combination, and the one that maximizes a metric (or
minimizes a loss function) is selected. The approach is exhaustive, as there are
2" combinations for n features.

Variance threshold: Variance thresholding is a basic feature selection approach, based
on the idea that low variance features could be less useful than high variance
features [96]. A feature with a single value (univariate) is not useful to predict
effort, while a feature with a wider variety of values may aid in the identification
of cases in which effort may be high, low, or in between. The variance threshold
method calculates the variance of each feature, and then drops all those whose
variance is under the threshold.
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Pearson’s correlation: An example of a filter technique is the Pearson’s correlation
coefficient [11]. This metric assigns a score to each feature based on how well
it fits a linear relationship with the target feature. Most features would, how-
ever, not follow a linear relationship with the target variable alone; but could
potentially do so in conjunction with other features. The technique can take this
into consideration and also evaluates how well each feature along with other
features fit a linear relationship with the target variable.

Forward selection: One example of a wrapper technique is forward selection [11].
Forward selection starts having a set with no features. Then, for each not in-
cluded feature, it builds a model with the current set and that feature, and
evaluates its performance. The feature which improves the performance the
most is added to the set. This process is then repeated until a stop condition is
reached—usually number of features.

Backward elimination: Another example of a wrapper technique is backward elim-
ination, which is a greedy search algorithm [11]. Backward elimination func-
tions by having the entire subset as the starting point, and removing one feature
at a time. The subset with the best performance is then selected, and the algo-
rithm repeats itself recursively, until a stop condition is reached.

Genetic algorithm: Genetic algorithms can be adapted for feature selection. In such
cases, a chromosome contains a binary digit for each feature, which represents
if the feature is included or excluded. The genetic algorithm then finds the
feature combinations that maximize some function (i.e. accuracy).

RReliefF: Relief for regression, known as RReliefF, is a feature selection algorithm
that identifies and considers the interaction between features. To accomplish
this, the algorithm randomly selects data instances and determines the “closest”
neighbors through a similarity function. For each feature, the values of the
instance and their neighbors are compared. If the values are similar, the weight
of the feature increases, and the weight decreases if they are similar. Only those
features with their final weight above a threshold are selected.

Particle Swarm Optimization: The particle swarm optimization is presented and ex-
plained in section 2.5.6. Similar to clustering approaches, a set of features can
be represented using binary encoding and PSO can be used to find an optimal
set of features.
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Principal Component Analysis: More than a feature selection algorithm, principal
component analysis functions as a way to represent the data using less features.
The technique works by transforming the data to a new coordinate system. The
most meaningful “vector” (the one in which data varies the most) is used as the
first dimension. The second and further dimensions are similarly obtained by
“removing” the previous dimensions from the data and determining the vector
for which the data has the most variance. This can be repeated an amount of
times equal to the number of features. In general terms, the first features hold
more information (variance) than the last ones, and thus less PCA features can
be used.

2.5.3 Clustering techniques

Exploratory data analysis is an exercise performed previous to any machine learning
application. The objective of such analysis is to become better acquainted with the
data and its properties, in order to take better decisions on how to approach this
data. One method of exploratory analysis is clustering, which consists of grouping a
set of data instances—projects, in SEE—such that similar instances are in the same
group, and different instances in different groups [11]. Most clustering algorithms
are based on the concept of ‘distance’ between data points. This distance represents
the notion that similar projects are ‘closer together’ and different projects are ‘farther
away’. These distances can be defined mathematically, using functions. Examples of
these are the Euclidean, Manhattan, and Minkowsky distance.

Clustering can be used as a part of the machine learning process, post exploratory
analysis. One such utility of clustering is to approach the problem of heterogeneity
in the data. In the case of effort estimation, data heterogeneity can come from differ-
ences between project instances. For example, if project data is taken from two differ-
ent companies, A and B, they may follow certain patterns or tendencies. It is possible
that the new company for which the estimation is being performed, C, has conditions
more similar to A. A prediction model built using both data from companies A and
B would induce prediction errors due to the differences between companies B andC;
and it would be possible that a model using only data from company A would have
better performance. A solution to this issue consist of employing clustering to split
data into two separate sub sets, train two separate models with each sub set, and test
which model offers better accuracy [89]. Some examples of clustering techniques are
linkage-based clustering, k-means clustering, and spectral clustering.
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Linkage-based clustering: Linkage-based algorithms are the intuitive approach of
clustering. Each data point starts as its own cluster, and iteratively the closest
clusters are joined together. Each round the amount of clusters decreases, and
the amount of data points per cluster increases. If the algorithm continued
unbounded, it would reach one cluster which contains all of the data points. To
avoid this, a condition to stop the algorithm (such as number of clusters) must
be determined.

K-means clustering: K-means clustering is an approach to split a set of data into k
different groups, so that some cost (i.e. distance) is minimized. Given that this
problem is NP-hard, there are several algorithms that approximate a solution.
One such algorithm consists of creating & cluster centroids randomly in the data
space, and cyclically repeat 1) assigning each data point to the closest cluster
and 2) re-setting each centroid as the mean of all data points in the cluster. This
is repeated until a certain number of iterations, or until no changes occur.

Spectral clustering: Another approach for clustering problems is using a graph no-
tation: each vertex representing a data point, and each edge containing the
distance between a pair of vertices. With this representation, a clustering prob-
lem is reduced into finding a partition of the graph that minimizes within-group
weights and maximizes between-group weights. A similarity graph—higher
weights indicating more similar instances—can be used for the same purpose,
reversing the goals of the partition algorithm. This approach is known as spec-
tral clustering.

2.5.4 Validation approaches

A machine learning task can result in multiple models, all of which can have very
similar performance metrics. Nonetheless, we are interested in selecting the one that
consistently has the highest generalization capabilities. In addition, we can increase
the generalization and performance of the model, as well as reducing overfitting, by
adjusting the hyper-parameters of the algorithm [14, 21]. However, tuning of these
hyper-parameters results in selecting the best values for the particular data, and may
not generalize well to unseen data.

A solution to this problem is through use of a validation approach. The validation
approach—also known as cross-validation—relies on evaluating the trained model
using new, unseen data. Because we are working with a bounded dataset, the vali-
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dation approach splits the dataset into two sets: the training set and the validation
set. After defining these subsets, all models are trained using the training set, and
their performance is measured using the validation set. Some examples of validation
techniques are hold-out set, k-fold cross validation, and train-validation-test split.

One additional problem may rise when training a machine learning model. The
data used to train the model may not be representative of the real world: a problem
known as data mismatch [92]. This problem can be detected by using data that
is as representative as possible for the validation set. However, there are now two
possible explanations for high accuracy on the training set and low on the validation
set: either overfitting or data mismatch. A solution to this problem is to use another
split of the training set, called the development set [92]. If the model does not fit
to the development set, the problem is due to overfitting, as both the training and
development set have the same data origin. If the model does not fit to the validation
set, the problem is due to data mismatch, as the validation set uses real-world data.

Hold-out set: The hold-out set validation scheme, also known as hold-out validation,
is he simplest way to perform validation. This is the same scheme described in
general for validation: the dataset is randomly partitioned into two parts: train-
ing and validation. The training set inputted to the model, while the validation
set is held out of the learning process. The model is then used to predict, using
the information in the validation set. The predicted values are then compared to
the true values in the dataset. The validation set can also referred to as training
set.

K-fold cross validation: The k-fold cross validation approach is used to make a more
“efficient” use of the available data. The original dataset is split into i subsets
(folds) of similar size. One fold is taken as the validation set, and the remainders
are taken as the training set. The same training and evaluation process as hold-
out set is then applied, resulting in one set accuracy metrics. This process is then
repeated with the remaining £ — 1 folds, each acting as the validation set once.
This would result in k& sets of accuracy metrics, which are averaged to obtain
the final accuracy metrics. The special case in which k equals the number of

instances in the dataset is called leave-one-out cross validation.

Train-development-validation split: The train-validation-test split approach, as its
name suggest, splits the data into three sets with those names. The first two sets,
training and development, are used to train and select the best model among
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all possible options while avoiding the problem of over and underfitting. Once
the best model is selected, its ‘true’ accuracy is evaluated using the validation
set. This final evaluation mitigates the risk of data mismatch, as well as offering
an estimate of its performance in unseen data.

Bootstrapping: Bootstrapping is a cross-validation approach that consists of re-sampling
the dataset with replacement [97]. For a dataset with n projects, out-of-sample
bootstraping samples n projects with replacement, meaning that a project can
be selected more than once. The sampled projects are then assigned to the
training set, and those projects that were not sampled conform the testing set.
On average, the test set will contain 36.8% of the total projects. This procedure
can be repeated multiple times, each time with a different sample of training
projects. Repeated bootstraping has the advantage of determining confidence
intervals of an estimator, as well as being more stable and least biased than
other cross-validation methods [98].

Online: While not strictly a cross-validation approach, online effort estimation can
be viewed and treated as such. Online effort estimation works by simulating a
real estimation environment, in which a development entity has an initial set
of projects which are used to predict effort for a new project. When this new
project is completed, it can join the project database and work to predict future
projects.

2.5.5 Machine learning algorithms

The central part of the machine learning process is the machine learning algorithm or
model. A machine learning model has a base algorithm, which has a base hypothesis
or formula to estimate effort, and an adjustment or training algorithm. The specific
model instance is a set of weights or model parameters related to this formula. Es-
timation of effort is produced by combining the input data and model parameters
into this formula. The training process of the model uses the algorithm to perform
predictions on the training data, and adjusts the model parameters of the model to
minimize the prediction error [11]. Machine learning algorithms can be customized
further by setting values known as hyper-parameters, which adjust the process of
training the model [21]. Examples of machine learning models are linear models,
k-nearest neighbors, decision trees, support vector machines, and neural networks.

Linear models: Linear models—also known as linear predictors—are one of the most
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useful families of hypothesis classes [11]. Many of the most complex learning
algorithms are based on linear models, or use linear models as a part of them-
selves. Linear models assume there is a function that maps the features to the
target feature. Such function can be linear, polynomial, exponential/logarith-
mic, or take any form. For this reason, multiple linear models exist. These
techniques, based on the input data, try to determine the optimal values for the
underlying function that best predict the target variable. For example, in the
case of a linear regression, the technique models the problem as a linear func-
tion: y; = By + fixl; + ... + Baxny, being x1, ..., xn the features of the data. The
linear regression model will find the values for the variables fy, 3, ..., 8, that
minimize the prediction error. Other types of linear models include polynomial
regression and logistic regressions.

K-nearest neighbors: The k-nearest neighbors (kNN) model functions on the basis
that “things that look alike must be alike” [11]. This algorithm forms a dimen-
sional feature space, each instance of the dataset being a point inside this space.
When a new instance is given to the model, the model searchers for one or more
points in space that are the closest to the new point. The model then predicts the
value of the new instance by combining the values of the existing points, usually
using an average, median, or other function. A kNN model can be built using
different definitions of distance, the most common being euclidean distance—
the distance between two points in space. The number of instances % that the

model uses to create the estimation can also be configured.

Decision trees: The decision tree model functions by the divide-and-conquer strat-
egy [11]. A tree model functions by recursively splitting a dataset, so that
homogeneous—in terms of the target feature—groups are formed. A tree model
starts at its root node with the base dataset. The learner algorithms finds the
feature that best splits the dataset according to the target feature—for instance,
if the value to predict is a category, the split will try to make a group for each
value. Two new subsets are formed: each becoming a child node of the cur-
rent node. This definition is applied recursively until either all nodes become
homogeneous, or some stopping criteria is reached.

Support vector machines: Support vector machines (SVM) are a type of model use-
ful in high dimensional feature spaces [11]. This technique searches for a
boundary that splits the data based on the target feature. In the case of cate-
gories, for example, the support vector machine will try to adjust this boundary
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so it splits data by their category. The technique obtains its name because it
searches for a set of vectors, the support vectors, that separate the data. Be-
cause not all problems are linearly separable, modern SVM implement a higher
dimension transformation known as the kernel method, to have additional di-
mensions to find this separation margin.

Neural networks: The artificial neural network model is a machine learning tech-
nique inspired by the neurons of the brain [11]. A neural network is a graph
whose edges correspond to neurons, and edges to connections between neu-
rons. Each neuron has multiple inputs and one output. As an input, the neuron
receives the output of other neurons, and outputs a signal. In addition, the neu-
ron has a weight for each of its inputs, and a threshold value for its output. This
signal is often computed as the weighted sum of the inputs of the neuron. If
this signal exceeds the threshold value, the signal is sent; and if not, no signal
is sent. Neural networks are trained by adjusting this set of weights, using an
algorithm known as the backpropagation algorithm.

Case Based Reasoning: Case Based Reasoning is a family of techniques that deter-
mine the effort value of a project based on similarities with past projects. One
such approach is analogy based estimation, in which the project(s) most similar
(using a distance function) to the current are selected, and their effort value is
combined (by averaging or using other function) to give an estimate.

Naive Bayes: A Bayesian model or Naive Bayes model is a probabilistic approach for
machine learning. The model functions by determining the probability of the
predicted value based on the value of the features.

Ensembles: Each machine learning technique has advantages and disadvantages,
and functions differently depending on the characteristics of the dataset. En-
semble approaches try to offset this by using multiple machine learning mod-
els and combining their resulting effort values. An ensemble may be hetero-
geneous, in which each of their inner models are different, or homogeneous,
meaning the ensemble uses the same model, but with different input data or

hyper-parameters.

Bagging: Bootstrap aggregating is a specific type of homogeneous ensemble that
tries to improve the stability of a base machine learning model. Bagging per-
forms n bootstrap samplings of the original dataset and trains a models for each

of them.
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Stacking: Stacking is a specific type of ensemble that uses an additional machine
learning algorithm as an aggregation function. After training the members of
the ensemble, the second model is trained based on the predictions of these
ensembles to predict the actual effort. Thus, the prediction method usually
assigns weights to each of the models, depending on how accurate their results
are.

2.5.6 Hyper-parameter tuning approaches

A machine learning model is given a set of data to train. This training consists of ad-
justing the internal values (parameters) of a machine learning model so that a metric,
usually prediction error, is minimized. In contrast, hyper-parameters are values of the
training algorithm (not the model) that must be set before the training begins, and
remain constant through the training process [21, 92]. In a typical machine learn-
ing process, the researcher manually determines the value of these hyper-parameters,
trains the model, and verifies that the prediction accuracy is satisfactory. If it is not,
the process is repeated using a different set of hyper-parameters. When performed
manually, this process is labor intensive and can take hundreds of iterations [21].
Examples of hyper-parameters include the amount of instances & for the k-Nearest
Neighbors algorithm, the amount of layers in an Artificial Neural Network, and the
kernel in a Support Vector Machine.

Researchers have proposed automatic selection methods for hyper-parameter val-
ues, to make machine learning algorithms more accessible [21]. These methods—also
known as (hyper-)parameter tuning approaches—have the goal of quickly finding an
effective combination of hyper-parameter values that maximizes accuracy or other
metric. Hyper-parameter tuning approaches automatize the iterative process while
requiring no skill set in machine learning, and can achieve equally good or better
results than manual tuning [27, 99, 100].

Luo classifies hyper-parameter tuning approaches into two categories: indepen-
dent of previous machine learning problems, and dependent on expert knowledge [21].
Independent methods iterate over a series of possible hyper-parameter configurations
and selects the one which results in better accuracy. This involves building and train-
ing a model using these hyper-parameters. Dependent methods instead use informa-
tion on previous machine learning problems (including algorithm, hyper-parameter
values, data properties, and accuracy) to predict the best hyper-parameter configu-

ration. This, in turn, is a machine learning problem of its own; but doesn’t require
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repeatedly training models with different settings.

Model parameters are adjusted in the training process automatically, but hyper-
parameters can be manually adjusted or automatically tuned. As such, this thesis will
use the terms hyper-parameters and parameters interchangeably, referring always to
the hyper-parameters of the model. In addition, this thesis focuses solely on inde-
pendent methods, to make the proposed methodology more accessible to software
engineering practitioners, requiring less knowledge of machine learning. Examples
of hyper-parameter tuning approaches used in SEE literature include grid search,
random search, particle swarm optimization [21], genetic algorithms, Tabu search,
supervised online tuning, Caret tuning, and Dodge.

Grid search: The grid search technique is an exhaustive approach of hyper-parameter
tuning [29]. This technique requires the definition of a series of values for each
hyper-parameter. Based on this, the method forms the search space by assem-
bling each combination of values of these hyper-parameters.

Random search: Random search is a method based on grid search, which searches
on a subset of the search space instead of all possible combinations. This tech-
nique provides a level of accuracy improvement similar to grid search, with the
benefit of not being as computationally costly [29].

Particle swarm optimization: Particle swarm optimization (PSO) is an algorithm
that simulates the behavior of birds flocking to find food in an area [77]. In
PSO, each single solution (hyper-parameter values) is a particle in the search
space. A fitness function is calculated for all of these particles, to determine
which is closest to the optimal solution. After determining which is the clos-
est, the remainder particles “fly” closer to the optimal solution. This process
is repeated until a stop condition is reached, either quality of the solution, or
number of iterations.

Genetic algorithms: Genetic algorithms (GA) are a global optimization method based
on the theory of natural selection. GA generates an initial set of random individ-
uals, called chromosomes. The ‘fitness’ of each individual is evaluated—usually
by a metric or fitness function. A percentage of the most apt individuals is kept,
and the remainder is discarded. A process of reproduction is then applied to
the surviving individuals. A set of new individuals is generated by applying
crossover and mutation operators to the current population. This process is re-
peated for several generations, or until a satisfactory solution is found [101].
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In SEE research, Oliviera et al. [102] employ genetic algorithms to perform si-
multaneous feature selection and hyper-parameter tuning for machine learning
algorithms. Their chromosome design is divided into two parts: the hyper-
parameter values of the machine learning technique (as numerical or text val-
ues), and the input features of the dataset that will be used (as binary values).

Compact genetic algorithm: The compact genetic algorithm (CGA) was proposed
as a less memory-intensive variation of the traditional GA [103]. Instead of
storing all individuals of a population, the population itself is represented as a
probabilistic vector from which the new individuals are sampled. In return, the
best individuals of each generation modify the population vector, making the
distribution more likely to contain similar individuals. While CGA offers less
usage of memory, traditional GA can achieve better results when the user has
knowledge of the problem space.

1+1 Genetic algorithm: One of the potential problems when employing a genetic
algorithm approach is setting its parameter values [104]. In the case of tuning
this goes twofold, as it would be necessary to configure the parameters of the
optimizer, as well as the base model hyper-parameters. The one plus one (1+1)
genetic algorithm simulates a chain of individuals, starting from a single value.
The first individual generates a mutant offspring, and the best of the two values
is conserved. This process is repeated, one individual at a time (hence its name).
1+1 is a self-adaptive method: instead of relying on a set value for mutation
rate, the mutation rate used in each iteration is randomized, sampled from a
distribution [105].

Bayesian optimization: Bayesian optimization (BO) is an iterative algorithm that
determines the next point to be explored using the information obtained by
previous hyper-parameters [99]. As an optimization method, BO finds a set of
values that minimize an error function. BO employs a probabilistic model to pre-
dict the performance of future values using all available information. Advanced
BO models balance the choice between exploration and exploitation when valu-
ing the next point, where exploration refers to evaluating points away from the
visited space, and exploitation to visit the most promising values as predicted
by the model [106, 107].

Tabu search: Tabu search is a search algorithm proposed by Glover in order to over-
come shortcomings of local search [108]. Tabu search requires four precon-
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ditions: 1) the representation of possible solutions, 2) the definition of local
transformations (i.e. moves) to explore neighbor solutions, 3) an objective func-
tion, and 4) the definition of the Tabu list size, and aspiration and termination
criteria. The algorithm starts by exploring an initial solution and neighboring
solutions, using the transformations. The current solutions are evaluated and
the best of these is used in the next iteration to search for promising neighbor-
ing solutions. To avoid repetition and encourage diversity of solutions, recently
visited solutions are marked as ‘taboo’ and are stored in a Tabu list. This is
repeated until a stop condition is found, which usually is a certain amount of
iterations. In software effort estimation, Coraza et al. have performed two
studies [49, 22] on the impact of Tabu search for support vector regression.

Harmony search: Harmony search (HS) is a nature-based heuristic algorithm that
mimics the search for musical harmony [109]. HS works in “improvisation
sessions”, in which the algorithms determines a random set of hyper-parameters
and evaluates their performance. A harmony memory keeps track of the best
sessions encountered, and uses their values for future improvisations. To avoid
local optima, a pitch adjustment mechanism may be introduced. Similar to the
mutation rate of a genetic algorithm, the pitch adjustment rate determines with
some probability if each selected value is shifted up or down.

Supervised online tuning: Minku [12] proposed the first hyper-parameter tuning
procedure for online software effort estimation. The procedure accounts for
changes in the project data as new project information is recorded. The online
tuning approach uses a technique similar in essence to grid search: all pos-
sible hyper-parameter settings are used to build and evaluate an initial set of
models. However, instead of keeping the best solution, all model instances are
maintained. When new within-company projects are added to the database, all
models are retrained with the new data, and the model with the best predictive
performance for the new WC projects is chosen to estimate new projects. This
instance is used to estimate effort of new projects, until new training data is
received and the process is repeated.

Dodge: Agrawal et al. [52] propose the DODGE approach to as a simple approach
that generates learners with accurate predictions, lowering the order of mag-
nitude of runtime by avoiding redundant hyper-parameter settings. The al-
gorithm is based on the concept of avoiding hyper-parameter settings whose
performance score falls within e of previously explored tuners. Dodge employs
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a weighted tree to store the explored hyper-parameters. This tree is initialized
with N; randomly sampled hyper-parameter values. These are evaluated, and
those which fall within e of other settings are deprecated (their weight low-
ers) while the others are endorsed (their weight increases). For N, iterations,
the algorithm then explores mutations of those settings with higher weights.
These mutations are basic operations on the existing hyper-parameters, such
as increasing or decreasing a numerical parameter using a random value, or

selecting the best categorical value of previously explored settings.

Flash: Flash is a sequential model-based optimization algorithm, similar to Bayesian
optimization [54]. Such approaches are useful when a problem is unknown in
nature, and consists of (1) analyzing the known information about the problem,
and (2) selecting the next step using that information. Flash employs machine
learning techniques, a classification and regression tree, to (1) model the behav-
ior of the explored hyper-parameter space as well as to predict the values of new
points. To determine which points are worth exploring next, Flash employs (2)
random sampling of possible points in the search space, predicting their perfor-
mance with the behavior model. Flash learns about the optimization problem
and nature of the search space as it explores more values.

Differential Evolution: Differential evolution (DE) is a simple, yet effective evolu-
tionary algorithm [110]. Initially, the algorithm evaluates random individuals
from a population, and determines a “frontier” that includes the most fit individ-
uals. Each iteration, DE generates a new individual from three randomly sam-
pled members of the frontier, by mutating and combining their hyper-parameter
values. The new individual is added to the frontier if its fitness is better than at
least one of the individuals of the frontier.

Hyperband: The hyper-bandit (hyperband) algorithm balances fine- and coarse-grained
exploration of a space. Hyperband is based on the concept of “halving a space”,
exploring a set amount of evenly-distanced values and discarding the worst
half [111]. The method divides the allocated exploration budget B into n
pieces, evenly allocating the budget (B/n). As there is a trade off of using a
larger n (many configurations with less training) or a small n (few configura-
tions with more training), hyperband uses successive halving to select the most
promising n values.

Beam search: Beam search is originally an graph search algorithm that can be used



Bees

43

to prune nodes [112]. Based on the current position, the algorithm determines
the most promising vertex by using breadth-first search, with a limited amount
of explored edges per iteration. This technique has been adapted for hyper-
parameter tuning by representing each possible model as a vertex in a graph,
and each edge as a transformation [113].

algorithm: The bees algorithm is a bio-inspired method that simulates the be-
havior of foraging bees. The algorithm uses a number of scout bees in the
search space, and selects a subset of sizes (space around the scouts) to send
additional bees to explore, which may find better or worse conditions. A subset
of these bees is selected, and again additional bees are sent to explore nearby
places. This process is repeated for an amount of iterations, a search budget is
exhausted, or a threshold fitness is achieved.

Hill climbing: Hill climbing is a term for optimization techniques that start from an

initial solution, and perform changes to that solution that improve fitness, until
the solution cannot be improved. One such example in hyper-parameter tuning
is Expectation-Maximization [114], which tunes a single hyper-parameter by
starting from the lowest possible value. A model is constructed using the fol-
lowing value, and if the fitness increases, this process is repeated. The algorithm
ends when increasing the value does not cause an increase in fitness.

Immune algorithm: The immune algorithm for hyper-parameter tuning [115] is a

bio-inspired algorithm that represents candidate solutions as antibodies. An ini-
tial random set of antibodies is generated, and their affinity (similarity) is calcu-
lated against other antibodies and the antigen (target function). The antibodies
with the highest affinity with other antibodies are removed to avoid duplicate
solutions. Lastly, the antigens with the highest affinity with the antigens are
proliferated with mutation. This process is then repeated for a set number of
iterations.

Satin bowerbird optimizer: The satin bowerbird optimizer is a hyper-parameter tun-

ing algorithm proposed for SEE [116], and it was designed for adaptive neuro-
fuzzy inference system models. The algorithm is based on the way male satin
bower birds attract females. An initial population of male birds is generated as
random hyper-parameter values. The probability (fitness) of each male is calcu-
lated, and one is selected as the elite. The algorithm then performs a series of
cycles until a stop condition is met. Inside the cycles, a new individual is created
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for the population by combining them with other members. Every new and old
individual is then mutated, and their fitness is re-calculated. At the end of each
cycle, the best half of the population is kept, the remainders are discarded, and
the elite solution is updated.

2.6 Empirical methodologies in software engineering

This section presents the design science methodology (section 2.6.1) and the two em-
pirical methodologies that will be used in this thesis: systematic mapping study (sec-
tion 2.6.3), and controlled experiments (section 2.6.4).

2.6.1 Design science methodology for information systems and

software engineering

The design science methodology for information systems and software engineering
was followed for the development of this thesis. Design science is a research method-
ology that focuses on the design and investigation of artifacts in a particular con-
text [61]. Design science is composed of two parts, design and investigation, which
correspond to the two research problems of design science, design problems and
knowledge questions. Design problems are the necessity of a change in the real world,
which require a design that satisfies some stakeholder goals. Knowledge questions are
the necessity of knowledge of the current state of the world. A research problem on
software engineering is a set of both design problems and knowledge questions.

To solve a research problem, design science employs two types of cycle: design
cycles and empirical cycles. Design cycles propose artifacts that satisfy design prob-
lems, and empirical cycles propose answers that satisfy the knowledge questions. The
design cycle is composed of three parts: problem investigation, treatment design and
treatment validation. The procedure of such cycle is to find a potential point of im-
provement, propose a solution artifact, and evaluate how does it aid the problem.

In contrast, the empirical cycle is composed of five parts: research problem analy-
sis, research and inference design, validation of design, and data analysis. The typical
execution is to find and define the knowledge problem, propose how will this prob-
lem be solved, validate this solution, execute the proposed solution, and evaluate the
knowledge obtained.

Figure 2.3 summarizes the design science approach and its general framework.
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Figure 2.3: Summary of the design science approach. Adapted from Wieringa [61].
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When a research problem is defined (Part I), the design problems are approached
using the design cycle (Part II), and the knowledge questions are approached using
the empirical cycle (Part IV). Both cycles are aided by background theories, and in
turn both cycles can add to these theories (Part III).

In this thesis, we will approach the design problem of an implementation of a
hyper-parameter tuning framework, and the knowledge problem of the efficacy as-
sessment of the existing hyper-parameter tuning approaches. We will thus employ
design cycles to implement this framework, and empirical cycles to evaluate the
hyper-parameter tuning approaches using this framework.

2.6.2 Empirical software engineering

Research in software engineering can be performed by taking four methodical ap-
proaches: scientific, engineering, empirical, and analytical [117]. Empirical software
engineering can be defined as a research method in which a model is proposed and
evaluated through empirical studies—studies based on evidence.

Empirical software engineering divides research into primary studies and sec-
ondary studies. Primary studies are empirical studies that aggregate evidence to soft-
ware engineering literature, while secondary studies compile the evidence of primary
studies [64].

Secondary studies can be divided into systematic literature reviews and system-
atic literature mappings [64]. A systematic literature review is a study that collects
and synthesises empirical evidence, guided by research questions that are focused on
the outcomes of the primary studies. Systematic literature mappings are secondary
studies that are similar in form to literature reviews, but the scope of the research
questions is more general and oriented to determine the state of the art. We select
the systematic literature mapping as the strategy for a study that is part of this thesis,
as our objective is to unveil the state of the art in the existing hyper-parameter tuning
approaches and other machine learning techniques.

Primary studies can be further divided into surveys, case studies, and experiments;
depending on their level of control [64]. Surveys are an empirical study that is used
to take a snapshot of a situation, and can be used, for example, to determine the
effects of a new technique or tool. Case studies are conducted in a real environment
to investigate a particular phenomenon, and is usually applied in industrial contexts.
Experiments are an empirical strategy that is used when control over a situation is
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desired, at the expense of some degree of realism. We select the experiment as the
strategy of a study that is part of this thesis, as our objective is to compare hyper-
parameter tuning approaches under different circumstances. Such study requires
high degree of control over the factors that affect the performance of these methods.

2.6.3 Systematic mapping studies

Systematic mapping studies are empirical studies that are designed to give an overview
of a research area through classification and counting of research contributions [62].

They involve searching the literature in order to know what topics have been covered

in the literature, and where the literature has been published.

Petersen et al.’s guidelines for conducting systematic literature mappings describe
how to conduct a mapping process for empirical software engineering—covering the
search, study selection, analysis, presentation of data, and validity evaluation, among
others. While systematic literature reviews are intended to synthesize evidence for
a specific research area, systematic literature mappings aim for structuring and sum-
mary of a broader research area [62]. Literature surveys and mapping overlap in
protocol, but differ in the reach of their objectives and conclusions.

Kitchenham et al.’s guidelines for systematic literature reviews are the predecessor
to Petersen et al.’s guidelines, and specify how to conduct a more in-depth review. In
terms of steps and parts of the protocol, both guidelines offer the same content, but
differ in depth of this content. Petersen et al.’s guidelines are built into the foundation
of Kitchenham et al.’s guidelines, and thus we reference them in the mapping process.

The systematic study guidelines follow a three step process: (1) planning, (2) con-
ducting, and (3) reporting the mapping process. Figure 2.4 summarizes this process.

Planning The mapping planning comprises the election of all decisions relevant for
conducting the mapping, and results in a mapping protocol. The process starts
with identifying a need—an open question or topic about a research area—and
selecting an adequate scope to approach this need. After this identification, one
or more pertinent research questions are presented. These questions will drive
the mapping process, and the aim of the process should culminate in answer-
ing these questions. Following this, a strategy or protocol defines the strategy
for identifying the relevant studies, assessing their quality, extracting relevant
information, synthesizing the results, and evaluating potential threats to valid-
ity. Lastly, the protocol is validated among peers—to asses that the process is



. Identifying need of research

. Defining research questions

. Developing mapping protocol

. Validation of protocol

. Selection of studies

. Study quality assessment

. Data extraction

. Data synthesis

Phase 1
Planning '

Phase 2
Conducting g

Phase 3
Reporting '

. Writing of mapping report

10.

Evaluation of mapping report

48

Figure 2.4: Systematic literature review and mapping process. Adapted from Kitchen-

ham et al. [118].
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unbiased and answers properly to the research questions.

Conducting The conduction of the mapping follows the process specified in the pro-
tocol to obtain the results that should satisfy the need for the mapping. Fol-
lowing the strategy defined in the protocol, the first step is the identification of
those studies relevant to answer the research questions. The identified studies
are then evaluated and ranked according to their quality and relevance regard-
ing the mapping. A researcher may opt to exclude studies based on this criteria.
Once identified and selected, the information that is relevant to the mapping is
extracted from the studies. As this information should be described in a synthe-
sized form, an analysis and presentation process is performed—usually with the
aid of visualization. The mapping process is iterative: newfound information in
the conduction may require changes in the planning, which would then require
another iteration of the process.

Reporting The mapping reporting deals with the presentation of the mapping pro-
tocol and results in an orderly manner. This process culminates in a mapping
report or research paper. One such way of presenting the results of a mapping
would be: introduction, related work, research method, results, and discussion.
Lastly, the report is evaluated among peers, usually aided with a checklist of all
the content that the review should cover.

2.6.4 Controlled experiments

A controlled experiment in software engineering is an empirical enquiry that manip-
ulates one factor or variable of the studied setting. Based in randomization, differ-
ent treatments are applied to or by different subjects, while keeping other variables
constant, and measuring the effects on outcome variables. In human-oriented exper-
iments, humans apply different treatments to objects, while in technology-oriented
experiments, different technical treatments are applied to different objects [64].

Wohlin et al.’s [64] book on software experimentation describes how to conduct
experiments (and quasi-experiments) for empirical software engineering. Compared
to other types of empirical study, experiments are performed in controlled environ-
ments to compare the effect of different factors—or combinations of those—have an
effect on a measurable outcome. Experiments have more control on both the execu-
tion and measurement of the experiment when compared to other types of empirical
study, albeit they demand a higher investigation cost. A quasi experiment is an exper-
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imental process in which subjects cannot be randomly assigned treatments. Empirical
experiments describe how does a set of variables influence a particular phenomenon.
A series of hypotheses on the influence of these variables is established at the begin-
ning of the experiment, and the purpose of the experiment is to gather evidence to
support or reject these hypotheses.

The experimental process consists of five activities: (1) scoping, (2) planning,
(3) orientation, (4) analysis and interpretation, and (5) presentation and package.
Similarly to iterative development, the experimental process is not a one-pass pro-
cess. Rather, its nature is iterative, as newfound evidence may go against or require
changes in the experimental design. Figure 2.5 shows the empirical experiment pro-

cess.

Scoping The scoping activity defines the objectives and goals that will drive the ex-
periment. The objective of this activity is defining a framework that defines:
what is studied (objective), the intention of the study (purpose), which effect is
studied (quality focus), from whose view is it studied (perspective), and where
is the study conducted (purpose). In addition, a set of hypothesis may be pro-
posed at this point.

Planning The planning activity lays out the foundation of the experiment. This ac-
tivity produces an experimental design: a document that defines the details of
what will be studied, how will the study be performed, and how does the ex-
periment reduce bias or undesired effects in order to produce solid, conclusive
evidence. A typical experimental design covers: context selection, hypothesis
formulation, variables selection, selection of subjects, choice of design type, in-
strumentation, and validity evaluation.

Operation The operation activity consists in carrying out the experiment, particularly
the process up to the recollection of data. It consists of three parts: prepara-
tion, execution, and data validation. The preparation step consists of preparing
everything needed for the collection of data, including study subjects and instru-
ments. The execution step deals with the collection of the data, and generally
follows the design of the experiment. The data validation step ensures that the
collected data is correct and provides a valid picture of the experiment.

Analysis and interpretation The analysis and interpretation activity has two objec-
tives: describing the collected data, and drawing conclusions from said data.
The activity is similarly comprised by descriptive statistics, data set reduction,
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and hypothesis testing. A general overview and visualization of the data is first
performed by using descriptive statistics, so the researcher can better under-
stand the nature of this information and what can be concluded. After this
process, it is usually concluded that only a subset of information is relevant
for the hypothesis testing. Thus, a data set reduction process is performed, in
which either features or data points are removed from the data set. Once this
is performed, hypothesis testing can be performed. In this process, inferential
statistics are used to test a series of hypotheses, mostly those described in the
experimental design. One important aspect of this process is interpretation and
reasoning on the results of this hypothesis testing, and how do these results

impact future research.

Presentation and package The presentation and package activity of the process deals
with presenting the results of the experiments, either in a publication paper, a
report, presentation, or other medium. In addition to the results of the experi-
ment, a report should also clearly present the experimental design to aid future
replication.

2.7 Software engineering methodologies

A software process is a set of detailed activities that lead to the production of a soft-
ware system [63]. All software processes contain four fundamental activities: speci-
fication, development, validation, and evolution. Because there are different types of
software, there is no universal software process. Instead, multiple software processes
are defined, and one should be selected accordingly to the nature of the software to
be produced [63].

Sommerville’s definition of incremental software development explain the process
of a software development project that is performed in multiple iterations that are
comprised by a waterfall-like process [63]. Each incremental iteration is comprised of
specification, development and validation activities; with the goal of delivering a new
version of the system. The incremental model is better for software with constantly
changing requirements, which is apt for development parallel with the execution of
the systematic literature mapping.

There are three activities performed in the incremental software engineering pro-
cess: (1) specification, (2) design and implementation, and (3) validation. Figure 2.6

shows the incremental development process and its relation to these three activities.
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Figure 2.6: Incremental development process. Adapted from Sommerville [63].

Specification Software specification—also known as requirements engineering—is
the process of understanding and defining what new functionality or character-
istics are required from the system. The general procedure for a specification
activity is to collect, document and validate a set of requirements.

Design and implementation Software design and implementation is an activity that
consists of two sub-activities: design and implementation. The software design
is a description of the structure of the software to be implemented. The software
implementation process converts this design into an usable system. These two
activities may be preformed sequentially or interleaved.

Validation Software verification and validation is the process that demonstrates that
the system both conforms its specification, and meets he expectations of the
stakeholders. Software validation can be applied to both product and process.
Systems should be tested on different levels: unit, integration, system, and ac-
ceptance. In the case of incremental development, new functionality should be
tested as it is implemented.
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Chapter 3

Hyper-parameter tuning for machine
learning software effort estimation: a
systematic literature mapping

This chapter presents the results of a systematic mapping study to address the first
specific objective of this thesis: to characterize the existing machine learning hyper-
parameter tuning approaches in the context of software effort estimation.

3.1 Study design

The systematic mapping study was conducted using the guidelines by Petersen et
al. [62] and Kitchenham and Charters [119], as described in section 2.6.3. The ob-
jective of the mapping study was to characterize machine learning hyper-parameter
tuning approaches for software effort estimation. We analyze them in terms of cross-
validation approaches, data transformations, feature selectors, machine learning al-
gorithms, parameter tuning approaches, datasets, evaluation metrics, and analysis
techniques.

A preliminary version of this study [120] was published as a paper at the 4th In-
ternational Conference on Information Technology & Systems (ICITS’21). This article
is available on full text form on appendix C.
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3.1.1 Research questions

Research questions of a mapping study aim to structure the current knowledge in the
research area, and show the distribution of research papers [62]. These questions are
answered by classifying the selected primary studies [62]. We proposed the following
research questions:

RQ1 Which approaches are used in machine learning hyper-parameter tuning for
SEE?

To answer this question, we characterized the most used cross-validation ap-
proaches, data transformations, feature selectors, machine learning algorithms,
and hyper-parameter tuning approaches in hyper-parameter tuning machine
learning SEE.

RQ2 What datasets are used in machine learning hyper-parameter tuning for SEE?

To answer this question, we identified the datasets that were used to evaluate
hyper-parameter tuning machine learning SEE approaches.

RQ3 What performance metrics are used in machine learning hyper-parameter tun-

ing approaches for SEE?

To answer this question, we identified the most used evaluation metrics and
analysis procedures to evaluate the performance of SEE approaches and deter-
mine the impact of hyper-parameter tuning.

3.1.2 Control studies

We defined a set of 15 control papers [8, 12, 14, 22, 24, 49, 50, 57, 102, 121, 122,
123, 124, 125, 126] to construct and validate the study design, as well as the results
of the search process. These studies comprise primary evaluations of SEE that use
one or more hyper-parameter tuning approaches. The studies were used to perform
a preliminary version of the study design, aiding in the creation and validation of the

current protocol.

3.1.3 Search strategy

The search strategy of a systematic literature mapping is a group of activities that al-
lows selection of research that is relevant to answer the proposed research questions.
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In our case, this strategy was built based on the research questions and the control
studies. This study used an automated search process and inclusion and exclusion
criteria to find the relevant primary articles.

To guide the automated search process, a PICO analysis was performed based on
the keywords of the control studies [119]. Based on this analysis, we proposed a
search string for the automated search. Table 3.1, shows the four PICO clusters and
the search string.

Table 3.1: PICO clusters and search string.

Population Software effort estimation, software cost estimation

Intervention = Machine learning, machine learning schemes, parameter tuning, parameter opti-
mization

Comparison -

Outcome Data sets, cross-validation approaches, data transformation, feature selection, ma-

chine learning algorithms, parameter tuning approaches, evaluation metrics, re-
sults, challenges

Search string  (“software” AND (“effort estimation” OR “effort prediction” OR “cost estimation”
OR “cost prediction”) ) AND (“tuning” OR “optim*” OR “setting*” OR “combinat*”
OR “ensemble*” OR “scheme*”)

The automated search was performed in the following databases: Scopus, IEEE
Xplore, Web of Science, and ScienceDirect. The string was adapted to the format of
each database. Furthermore, results for Scopus were limited to those belonging to
computer science or engineering.

3.1.4 Inclusion and exclusion criteria

The inclusion and exclusion (I/E) criteria determined which of the studies identified
by the automated search process were relevant for this study. The I/E process evalu-
ated each of the identified papers based on their title, abstract and keywords. If these
elements did not provide enough information to decide whether to include or exclude
a paper, this process was performed on the full paper text.

To be included in the mapping study, a paper must have met all of the inclusion
criteria and none of the exclusion criteria. We defined four inclusion criteria: The
paper is a primary study (I1), in the field of SEE (I12), that uses machine learning for
SEE (I3), and uses hyper-parameter tuning (I4). We decided to exclude those papers
that are not in English (E1), and whose full text is not available (E2).

The inclusion and exclusion criteria resulted in a total of 79 papers. The main
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Figure 3.1: Systematic mapping study steps and results.

reason for the exclusion of studies in the process was the (I4) criterion, as the majority
of papers did not use hyper-parameter tuning approaches; using default or hand-

picked parameters, or not reporting how were hyper-parameters were selected.

3.1.5 Selection process

Figure 3.1 shows the steps and results of the systematic mapping process. The auto-
mated search process retrieved a total of 1,310 papers from the four databases. After
performing an automated removal of duplicates (based on author, title, and year),
the amount of studies was reduced to 978. The inclusion and exclusion criteria fur-
ther dwindled this number to a total of 79 papers. Table A.1 in appendix A shows
the complete list of articles, including their year, title, authors and publication venue.
Each paper was assigned an ID consisting of the letter S plus a number (e.x. paper
S1).

3.1.6 Quality assessment

As part of the recommended systematic literature mapping process, we evaluated the
quality of the selected articles to determine their level of detail in reporting. We set
five quality criteria in the form of questions: (Q1) Does the study report its goal or
main objective? (Q2) Does the study report research questions? (Q3) Does the study
report the datasets that were used? (Q4) Did the study measure accuracy with an un-
biased metric? (Q5) Did the study analyze the obtained results? Each question was
answered with using a Yes, Partial, or No scale; which granted 1, 0.5, and O points
respectively. The total score was the sum of the scores of the five criteria, for a max-
imum possible score of 5 points. We did not use the quality score to exclude studies
but it is a reference for researchers interested in the reporting quality of studies in
SEE.
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The distribution of the quality scores for the 79 papers ranged from 2 to 5, with
a median score of 3.0, a mean score of 3.3, and a standard deviation of 0.94. This
indicates that the studies have an acceptable level of quality to answer the research
questions. The average lowest scores were on Q2 and Q4, which indicates that many
studies did not report their research questions nor used unbiased metrics. Table A.2
in appendix A shows the individual and total scores per paper.

3.1.7 Data extraction and analysis

For each research question, the relevant information to answer it was manually ex-
tracted from the selected articles. Table 3.2 shows the categories and fields that were
extracted from each paper, mapped to each research question. The data we obtained
from each extraction field was numerical or categorical. Numerical data corresponds
mainly to the results obtained per study, and the parameter values for the machine
learning techniques. Categorical data corresponds to the names of the obtained tech-
niques, datasets, evaluation metrics, and challenges. Figure 3.2 shows a classification
scheme for the cross-validation approach, data transformation, feature selection, pa-
rameter tuning, dataset and evaluation metrics. These scheme was built using the
keywording technique described by Petersen et al. [62] applied to the control studies.
The studies were extracted in chronological order, from most recent to least recent.

Table 3.2: Data extraction fields.

RQ Fields

General Study type, main objective, research questions, study focus, online/offline estimation,
type of estimation (CC/WC), experimental design, threats to validity, future work, main

results

RQ1 Cross-validation approach, data transformations, feature selectors, machine learn-
ing algorithms, parameter tuning approaches; for each: sub-types, parameters, sub-
techniques

RQ2 Datasets, origin, CC

RQ3 Evaluation metrics (category and sub-category), data analysis techniques

The following strategies were applied for analysis and synthesis of the extracted
information. The information of each extracted element was tabulated into the data
extraction form. An analysis process was performed on each category on elements to
respond each research question.

To answer research question 1, we classified, grouped, and counted the techniques
of the machine learning parameter tuning process that we encountered for each pa-
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Figure 3.2: Classification scheme for extracted fields.

per, based on the keywording technique [62]. These techniques were clustered into

families (i.e. multilayer perceptrons and recurrent neural networks both count as a

neural network) so that we could present a general overview of machine learning

techniques on SEE. We performed a descriptive analysis of the techniques found and

the frequency of their use in the included papers. In addition, complemented this

analysis with bubble and other types of frequency plots.
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To answer research question 2, we counted the datasets that each paper used to
build and evaluate models to estimate software effort. We counted splits or partitions
of datasets as their original set. We performed a descriptive analysis of the datasets
found and the frequency of their use in the included papers and complemented this
analysis with bubble and other types of frequency plots.

To answer research question 3, we grouped and counted the evaluation or perfor-
mance metrics used to assess effort estimation models. We grouped these techniques
by their base formulas. For example, the metrics mean absolute error (MAR) and
median absolute error (MdAR) were categorized as absolute error metrics. Moreover,
we grouped and counted the analysis techniques used to process the metrics collected
by SEE studies. Such techniques comprised descriptive analysis and statistical tests.
We performed a descriptive analysis of the evaluation metrics and analysis techniques
that were found, and their frequency in the included papers, complimenting this anal-
ysis with bubble and other types of frequency plots.

Potential threats to validity include the threat of missing relevant studies due to
the automated search process, researcher bias in the inclusion/exclusion and data
extraction process, and the generalizability of results to the broad machine learning
SEE literature.

3.2 Results

Next we present the results of the systematic mapping study. Section 3.2.1 presents
the hyper-parameter tuning and machine learning techniques reported in the studies.
Section 3.2.2 shows the SEE datasets. Section 3.2.3 presents the evaluation metrics
and analysis techniques reported in the studies. Appendix A contains tables with
additional information than those shown in this chapter. The extraction form and
results of this literature mapping can be found online!.

Thttp://tiny.cc/hpt-sim
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3.2.1 RQ1: Hyper-parameter tuning approaches used in machine
learning SEE

3.2.1.1 Hyper-parameter tuning

We encountered 12 different hyper-parameter tuning approaches in machine learn-
ing SEE literature. Table 3.3 shows the hyper-parameter tuning approaches and their
related studies, and figure 3.3 shows the use of these approaches through the years.
The most used technique was grid search, with a total of 60 studies. Many of these
studies did not explicitly report usage of this technique, but instead reported using
all possible parameter combinations. Thus, we counted such cases as using the grid
search technique. The second most used technique was genetic algorithms, with a
total of 14 studies. Particle swarm optimization (PSO) was the third most used tech-
nique, with 6 studies. The tabu search approach was researched in three studies, and
random search was covered in two papers. Lastly, the beam search, bee’s algorithm,
hill climbing, immune algorithm, online supervised tuning, and satin bowerbird op-
timization approaches were studied in only one paper. One study reported utilizing
k-fold as a hyper-parameter tuning approach. even though this technique was usually
employed for cross-validation.

This distribution shows that SEE studies favor exhaustive approaches such as grid
search. Grid search is an effective method that can find the optimal hyper-parameter
combination from a pre-defined grid. Grid search has two limitations: 1) it relies on
a pre-defined search grid, and 2) it can be computationally expensive depending on
the size of the grid. This is not a problem for models like analogy-based estimation
which often relied on three categorical parameters. On the other hand, a model like
neural network may not be viable to be grid-searched, as it relies on a combination of
categorical an numerical attributes. Thus, one possible explanation for the increased
use of grid search could be a relative simplicity of the hyper-parameter search space.
Moreover, many hyper-parameter tuning studies may employ the approach as a base-
line for comparison with other heuristic tuners. From figure 3.3 we see that, while
grid search and genetic algorithms were predominantly used up until the year 2012,
from there onward SEE studies have started to explore alternative tuners.

We analyzed the “study focus” of the 79 studies in order to determine how are
these tuners used. We categorized the studies under two dimensions regarding their
focus: object focus and evaluation focus. The object focus dimension determines

which part of the machine learning process is being evaluated. For instance, one
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Table 3.3: Hyper-parameter tuning approaches and related SEE studies.

Type N Studies

Grid Search 60 S12, S20, S30, S33, S51, S41, S40, S44, S55,

S66, S1, S3, S4, S5, S6, S8, S10, S11, S14, S15,

S17, S18, S19, S22, S23, S24, S26, S27, S28,

S29, S31, S32, S34, S35, S36, S39, S38, S42,

S43, S46, S47, S48, S49, S50, S52, S56, S57,

S58, S59, S60, S62, S63, S65, S68, S69, S70,

S73, S75, S78, S79

Genetic Algorithm 14 S37, S53, S66, S18, S42, S45, S54, S67, S70,

S71, S72, S74, S76, S77

Particle Swarm 6 S12, S37, S2, S13, S25, S31
Optimization

Tabu Search 3 S40, S64, S2

Random Search 2 S40, S21

Beam Search 1 S79

Bee’s Algorithm 1 S61

Hill Climbing 1 S7

Immune Algorithm 1 S68

K-Fold Cross-Validation 1 S16

Online Supervised Tuning 1 S7

Procedure
Satin Bowerbird 1 S25

Optimization
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Figure 3.3: Hyper-parameter tuning approaches and usage through time.

study may focus on the comparison of a tuned against an untuned model, while
another may compare two models that use tuning. We considered the first study to be
tuning focused, and the second to be machine learning focused. The evaluation focus
dimension determines whether the study is performing a benchmark (evaluation of
multiple state-of-the-art) or a proposal (evaluation of a novel technique against some
state-of-the-art). Table 3.4 shows the 10 unique focus combinations we identified and
papers with that focus.

The majority (67 out of 79, or 85%) of the selected studies research on two ob-
jects: machine learning algorithms and hyper-parameter tuning. Only 10 studies had
other types of technique as an object focus, including feature selection, data pre-
procesing, and clustering. Two studies undertook a multi-technique approach and
tried to determine the best combination of learning algorithms, parameter tuning,
pre-processing, and feature selection. Out of the 79 studies, 53 (67%) performed
benchmarks of existing techniques and 26 (33%) proposed and evaluated novel tech-
niques.

Regarding the use of tuning in SEE, the distribution of study focuses has several
implications. First, SEE studies primarily utilize tuning to evaluate other parts of
the machine learning process (often learning algorithms). This indicates that hyper-
parameter tuning has been considered as part of the machine learning process, and
these studies compared their techniques on their optimal configurations. However,
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Table 3.4: Study focus and related SEE studies.

Focus N Studies

Learning algorithm - Benchmark 28 S1, S3, S6, S8, S9, S12, S14, S17, S24,
S27, S28, S30, S36, S41, S42, S43, S47,

S48, S49, S52, S55, S56, S58, S61, S62,

S63, S67, S73

Parameter tuning - Benchmark 18 S11, S18, S23, S26, S29, S31, S33, S37,
S38, S39, S40, S44, S45, S46, S51, S64,

S65, S66

Learning algorithm - Proposal 17 S2, S10, S16, S19, S22, S25, S32, S35,
S53, S57, S59, S60, S70, S71, S76, S77,

S78

Parameter tuning - Proposal 4 S7, S68, S72, S74
Feature selection - Benchmark 3 S4, S5, S20
Data pre-processing - Benchmark 2 S34, S50
Data pre-processing - Proposal 2 S13, S75
Feature selection - Proposal 2 S69, S79
Multiple - Benchmark 2 S15, S54
Clustering - Proposal 1 S21

this also shows that relatively few studies (22 out of 79, 28%) have evaluated the
impact of hyper-parameter tuning in SEE. Moreover, out of the 22 tuning-focused
studies, 10 use only grid search (S11, S23, S26, S29, S33, S38, S39, S46, S51, S65
), 5 use grid search and at least one other tuner (S18, S31, S40, S44, S66), and 7
use non-grid search tuners (S7, S37, S45, S64, S68, S72, S74). Thus, only a small
fraction of studies have compared the effect of a particular tuning against an exhaus-
tive baseline like grid search. We recommend future SEE researchers to evaluate their
proposed tuning approaches against a baseline tuner, as well as to utilize other tuning
approaches besides grid search.

In addition to hyper-parameter tuning approaches, SEE studies employed other
techniques of the evaluation scheme: machine learning algorithms, feature selection,
data pre-processing, and cross-validation approaches. Figure 3.4 shows the distribu-
tion of usage of these approaches through the years. All papers used at least one
machine learning algorithm, and cross-validation approach. Only one paper did not
employ hyper-parameter tuning, but they reported that it will be done in a follow-up
study. For data pre-processing, we encountered a total of 44 studies reported using at
least one pre-processing method. Only 24 papers used feature selection methods.
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Figure 3.4: Categorization of techniques of the evaluation scheme and usage through
time.

3.2.1.2 Machine learning algorithms

Table 3.5 shows the machine learning algorithms used across the studies, and fig-
ure 3.5 shows the use of these techniques through the years. In total, 21 differ-
ent types of machine learning algorithm were encountered. These techniques were
categorized by their general type of algorithm. For example, linear regression and
ridge regression both count as a regression-type technique. The complete detail of
techniques by sub-type, including supporting studies and counts, is available on Ap-
pendix A, in table A.3.

Table 3.5: Machine learning algorithms and related SEE studies.

Type N Studies
48 83, S5, S6, S8, S9, S10, S11, S12, S15, S17, S18,
Neural Network S19, S20, S22, S23, S25, S27, S29, S30, S32,

S33, S34, S36, S41, S42, S46, S47, S49, S51,
S53, S54, S55, S58, S59, S60, S61, S63, S66,
S67, S69, S70, S71, S72, S74, S76, S77, S78,

S79

Continued on next page
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Table 3.5: Machine learning algorithms and related SEE studies. (Continued)

Regression Tree

Regression

Support Vector
Regression

Case Based Reasoning

Ensemble

K Nearest Neighbors

Bagging

Random Forest
Boosting

Stacking

Bayesian Model

Mean

Median

Rule Based Estimation

Gaussian Process

38

36

33

32

17

17

12

= N W W W A O ®

S1, S3, S5, S6, S7, S8, S10, S11, S12, S14, S15,
S18, S19, S20, S22, S23, S25, S28, 529, S30,
S32, S34, S35, S41, S43, S46, S47, S51, S55,
S57, S59, S60, S61, S62, S63, S66, S69, S74

S2, S3, S6, S7, S8, S9, S10, S11, S14, S15, S17,
S19, S22, S23, S25, S28, S29, S32, S35, S40,
S41, S43, S49, S50, S55, S58, S59, S60, S61,

S64, S65, S71, S74, S75, S78, S79

S3, S5, S6, S8, S9, S10, S11, S12, S15, S16, S17,

S18, S19, S20, S22, S28, S30, S31, S38, S39,
S40, S42, S53, S54, S55, S60, S64, S66, S67,
S68, S69, S71, S72

S4, S8, S13, S18, S21, S22, S24, S26, S28, S29,
S32, S34, S35, S37, S40, S43, S44, 545, S47,
S48, S50, S52, S55, S56, S59, S61, S62, S64,

S65, S69, S74, S79

S4, S5, S6, S12, S14, S20, S22, S30, S41, S42,
S46, S47, S49, S52, S57, S59, S63

S3, S5, S6, S9, S10, S12, S14, S15, S20, S22,
S23, S28, S30, S41, S46, S51, S73

S7, S8, S10, S22, S46, S47, S51, S53, S63, S67,
S71, S72

S1, S3, S6, S8, S11, S18, S22, S28
S3, S6, S8, S11, S22, S60

S6, S8, S28, S62

S6, S22, S28

S22, 5S40, S64

S7, S40, S64

S22, S46

S22

Continued on next page
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Figure 3.5: Machine learning algorithms and usage through time.

Table 3.5: Machine learning algorithms and related SEE studies. (Continued)

Genetic Algorithm 1 S2
K-Means Clustering 1 S28
Learning Automata 1 S2
Particle Swarm 1 S2
Optimization

Relevance Vector 1 S10
Machines

The most used technique were neural networks, with a total of 48 studies. Of
these, the most used type of network were multi-layer perceptrons with 21 stud-
ies (S3, S5, S8, S9, S10, S12, S18, S19, S20, S22, S29, S30, S42, S46, S47, S51,
S54, S55, S61, S63, S66). Other reported types of neural networks were radial ba-
sis function networks (13 studies, S15, S19, S22, S29, S46, S47, S54, S55, S60,
S63, S69, S71, S72), general regression neural networks (S11), GMDH polynomial
neural network (4 studies, S11, S76, S77, S78), morphological-rank-linear percep-
trons (3 studies, S19, S53, S67), self-organized neuro-fuzzy networks (3 studies,
S76, S77, S78), adaptative neuro-fuzzy interface system (2 studies, S25, S42), neuro-
fuzzy networks (2 studies, S76, S77 ), particle swarm optimization neural network (2
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studies, S23, S27), probabilistic neural networks (S11), cascade-correlation neural
network (S11), general regression neural network (S11), genetic algorithm particle
swarm optimization neural network (S27), genetic algorithm neural network (S36),
multilayer dilation-erosion-linear perceptron (S19), recurrent neural network (S54),
and error back propagation networks (S33). Neural network models have been pop-
ular through all the years of SEE research. The second most used technique were
regression trees, with a total of 38 studies. The regression tree category covers tech-
niques such as classification and regression trees (16 studies, S3, S8, S15, S23, S25,
S29, S32, S34, S35, S41, S43, S55, S59, S60, S69, S74), M5P trees (4 studies, S18,
S22, S30, S55, S61, S66), M5 trees (2 studies, S22, S55), REP trees (4 studies, S22,
S46, S57, S63), C4.5 (S28), chaid decision tree (S28), J48 (S22), M5Prime (S30),
and J48 trees (S22). While regression trees were not used in the first years of SEE
tuning research, their use has seen an increase in the latest years, with a maximum
of 7 studies in 2019. Regression approaches were employed in 36 studies, in many
cases as a base for comparison, and were the third most used technique. The regres-
sion algorithms that used in more than one study were ordinary least-squares regres-
sion (15 studies, S2, S3, S6, S8, S9, S14, S15, S19, S22, S35, S41, S50, S55, S60,
S71), step-wise regression (12 studies, S23, S25, S29, S32, S35, S41, S43, S59, S61,
S64, S65, S74), multiple regression (10 studies, S17, S23, S25, S29, S32, S43, S49,
S58, S59, S75), ridge regression (4 studies, S3, S6, S8, S55), logistic regression (3
studies, S19, S22, S28), least median squares regression (2 studies, S22, S55), and
morphological-rank-linear filter regression (2 studies, S60, S71). Similar to neural
networks, regression models have been frequently used in SEE.

Regarding the remaining single-model techniques, support vector regression (SVR)
was used in 33 studies, making it the fourth most used model. Similar to CART, SVR
models were not used in the initial tuning studies, but rose in popularity through the
years. Case-based reasoning was employed in 32 studies, of which 21 cases were vari-
ants of analogy-based estimation (S4, S8, S13, S18, S21, S24, S26, S29, S32, S35,
S43, S44, S45, S47, S48, S50, S56, S59, S62, S69, S74). The peak use of case based
reasoning was in 2013, and it has not been as used as other techniques in the more
recent years. The k nearest neighbors technique was used in a total of 17 studies, with
varying values of the parameter &, mainly used from the year 2013 onward. Three
studies used the Bayesian model, and 2 employed rule-based estimation. Techniques
that were only used in one study are Gaussian process, genetic algorithms, k-means
clustering, learning automata, particle swarm optimization, and relevance vector ma-
chines. Lastly, 4 studies employed statistics of the dataset, such as mean an median,
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as baseline estimators.

Different types of combination models were studied in SEE literature. Of these,
ensemble methods were the most researched, with a total of 17 studies. Of these,
10 studies employed heterogeneous ensembles (S5, S6, S12, S14, S20, S22, S30,
S41, S42, S46), 3 used homogeneous ensembles (S4, S42, S49), and 8 studies used
one or more types of specialized ensemble (S6, S14, S22, S46, S47, S59, S57, S63).
Ensembles saw peak use in 2013, but have been used ever since. Other combina-
tion techniques include bagging (12 studies), random forests (8 studies), boosting (6
studies), and stacking (4 studies). One noteworthy observation of these techniques is
that hyper-parameter tuning has to account for the parameters of the individual tech-
niques. This was often performed in a two-step process: a first of hyper-parameter
tuning was performed to select the best parameters for the base models, and after-
wards the combined techniques were built using models with these parameters. If the
combined technique had parameters, such as the aggregation function in ensembles,
a second iteration of hyper-parameter tuning was performed.

With the exception of regression-type techniques, the most used techniques in
SEE share one common trait: they have more than three hyper-parameters that could
require tuning. This applies two-fold for combination techniques, as they must con-
figure both the parameters of the “inner” techniques as well as the “outer” parame-
ters of the ensemble itself. Moreover, the most used technique was neural networks,
which has many hyper-parameters, including: learning rate, momentum, amount
of hidden layers, activation functions (per layer), amount of hidden neurons (per
layer), batch size, training epochs, solver. Assuming a study configures all of these
hyper-parameters and using only 5 values (using a fixed size for the per-layer ones),
an exhaustive tuner like grid search would explore 5% = 390,625 hyper-parameter
combinations. Assuming each model requires 1 minute to train, grid search would
require 6,510 hours, or 271 days (almost three quarters of a year) to find an op-
timal hyper-parameter combination. Thus, future research could evaluate non-grid
search methods to explore if they are viable (equally or near-equally efficient) as a
less time-consuming alternative.

3.2.1.3 Cross-validation

Table 3.6 shows the cross-validation approaches used across the studies, and fig-
ure 3.6 shows the use of these techniques through the years. In total, 5 different
types of approaches were encountered. In some cases, studies employed different
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Table 3.6: Cross-validation approaches and related SEE studies.

Type N Studies
Leave-One-Out 38 S4, S5, S8, S11, S12, S13, S18, S19, S20, S21,
Cross-Validation S22, S23, S24, S26, S27, S29, S30, S35, S36,

S37, S40, S41, S44, S49, S50, S53, S55, S56,

S60, S62, S64, S66, S71, S72, S73, S76, S77,

S78

K-Fold Cross-Validation 28 S1, S3, S10, S11, S13, S14, S15, S16, S17, S18,
S19, S25, S27, S28, S31, S32, S38, S39, S40,

S43, S50, S54, S59, S61, S62, S65, S66, S74

Hold-out split 27 S1, S2, S3, S9, S17, S18, S33, S34, S38, S42,
S45, S46, S47, S52, S54, S55, S58, S63, S64,

S66, S67, S68, S69, S70, S72, S75, S79

Online 4 S7, 845, S51, S57
Blocked Cross-Validation S6

—_

validation approaches for different datasets. For example, S4 used leave-one-out
for datasets under 60 observations, and 10-fold cross validation otherwise. Cross-
validation approaches are only applicable to offline effort estimation. Online esti-
mation studies instead simulate a real estimation scenario by ordering the available
projects by date. We have labeled this technique as “online”.

The most used cross-validation was the leave-one-out approach, with a total of 38
studies. Leave-one-out has been consistently used through the years in SEE research.
The second most used approach was k-fold cross-validation, used in 28 studies. Of
these, 15 studies used 10-fold or repeated 10-fold (S1, S3, S10, S13, S14, S15, S17,
S18, S19, S28, S31, S32, S40, S50, S66), 8 studies used 3-fold (S18, S19, S43,
S59, S61, S62, S65, S74), and 5 studies used 5-fold (S11, S38, S39). While not
used in the very first years, studies have constantly employed k-fold as an alterna-
tive to leave-one-out. The hold-out split approach was used in 27 studies. Of these
10 employed a train-test split (S1, S2, S3, S9, S17, S18, S33, S64, S68, S79), 8
used a repeated train-test split (S45, S46, S47, S55, S63, S66, S72, S75), 5 used a
train-validation-test split (S34, S52, S67, S69, S70), and one used repeated train-
validation-test split (S58). In all cases, the amount of projects used for the test set
varied between 10% and 50%, except in S69 where the test set encompassed 80% of
the dataset. The amount of projects used for the validation set varied between 10%
and 33%. Similar to k-fold, hold out split has been employed constantly in SEE lit-
erature, surpassing both leave-one-out and k-fold in several years. Lastly, 4 studies
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Figure 3.6: Cross-validation approaches and usage through time.

used the online approach for effort estimation, and one study employed the blocked
cross-validation approach.

There is no predominant cross-validation approach from this distribution. There is
a trend in the amount of cross-validation iterations, as many of these studies employ
techniques with multiple iterations. Leave-one-out, k-fold, repeated hold-outs, and
online cross-validations all have at least two iterations, and as many as the size of
the dataset. This trend shows that SEE has shifted to searching for stability in their
results: instead of gathering results from one train-test round, these studies measured
the effectiveness of their models under different circumstances.

3.2.1.4 Data transformation

Table 3.8 shows the data transformation approaches used across the studies, and
figure 3.7 shows the use of these techniques through the years. In total, 10 different
techniques were encountered.

The most used data transformation was the unit range [0, 1] transformation, used
by 25 studies. This technique was often reported as normalization. We have chosen
the unit range [0, 1] name to avoid confusion with the standardization technique.
Unit range [0, 1] saw predominant use in the earlier SEE research years, but more re-
cent studies have employed alternative approaches. The second most used technique
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Table 3.7: Data transformations and related SEE studies.

Type N Studies

Unit Range [0,1] 25 S8, S15, 817, S19, S25, S26, S31, S32, S33, S34,
S37, S38, S39, S41, S43, S45, S46, S53, S60,
S62, S67, S69, S71, S74, S75

Logarithm 13 S8, S14, S15, S17, S35, S40, S41, S47, S50, S55,
S58, S61, S64
Principal Component 5 S3, S8, S27, S41, S42
Analysis
Standardization 5 S3, S10, S14, S15, S49
One-hot Encoding 4 S3, S10, S35, S55
Binning 2 S3, S66
BoxCox 2 S15, S55
Unit Range [-1,1] 2 S34, S58
Binary Encoding 1 S49
K-Means Clustering 1 S55

was the logarithmic transformation with a total of 13 papers. Logarithm transfor-
mation saw peak use between 2010 and 2013. After that, it was relative unused
until 2018. The third most used technique was a tie between principal component
analysis and standardization, with 5 studies each. Both are techniques that were not
employed before 2013 in tuning SEE studies. Standardization has been mostly used
in 2018 and 2019, and it indicates that the technique may be rising in popularity.
One-hot encoding (also called one-of-k representation) was applied in 4 studies. The
BoxCox, binning, and unit range [-1, 1] techniques were used in 2 studies. Lastly,
binary encoding and k-means clustering were used in one study each.

The trend in data transformations for SEE focuses mainly on numerical features,
as unit range [0, 1], unit range [-1, 1], BoxCox, and logarithm apply only to numbers.
Moreover, principal component analysis, one-hot encoding allow and binary encoding
allow the conversion of categorical features into numerical. This could imply that, for

SEE, numerical features are better predictors of effort.

3.2.1.5 Feature selection

Table ?? shows the feature selection approaches used across the studies, and figure 3.8
shows the use of these techniques through the years. In total, 10 different techniques

were encountered.
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Figure 3.7: Data transformation approaches and usage through time.

The most used technique were correlation based feature selections, with a total of
10 studies. Correlation based feature selection encompasses techniques as sequential
forward selection (S15, S24, S34, S41, S58), sequential backward selection (S15,
S34, S58), best-first (S4, S5), k best univariate (S6), greedy stepwise search (S63),
stepwise variable selection (S24). The trend in use in correlation-based FS started
from 2011, and has increased since 2017. Genetic algorithm feature selection was
used in 7 studies. Conversely, genetic algorithms were mainly used in the earlier years
of the covered studies. Feature selection based on Pearson correlation was employed
in 4 studies, 3 of which were in 2019. Similarly, RReliefF based feature selection
was used in 3 studies, 2 of which were also in 2019. Lastly, 2 studies used (filter)
backward feature elimination. Techniques used in only one study were case set selec-
tion, exhaustive search, particle swarm optimization, principal component analysis,
and regression. Feature selection techniques can be employed as filters or wrappers.
Eleven studies employed filter approaches (S4, S5, S6, S9, S15, S20, S24, S35, S40,
S41, S63), and eight used the more computationally expensive wrappers (S8, S15,
S18, S34, S53, S55, S66, S67).

Feature selection is often not used in conjunction with hyper-parameter tuning,
as 24 out of the 78 studies that use tuning. This could be due to the higher com-
putational requirements for some of these feature selectors, especially wrapper-type
techniques. Another possible explanation for the relatively low amount of feature
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Table 3.8: Feature selection and related SEE studies.

Type N Studies

Correlation Based Feature 10 S4, S5, S6, S15, S20, S24, S34, S41, S58, S63
Selection

Genetic Algorithm 7 S18, S42, S53, S66, S67, S69, S72
Pearson correlation 4 S4, S5, S9, S40
RReliefF Based Feature 3 S4, S5, S20
Selection
Backward Feature 2 S8, S55
Elimination
Case Set Selection 1 S79
Exhaustive Search 1 S35
Particle Swarm 1 S31
Optimization
Principal Component 1 S24
Analysis
Regression 1 S41
RReliefF Based Feature Selection:--- -------- -------- -------- >>>>>>>> ------ GD ------ ------ @@
Regeson 4y
Principal Component Analysis~~~§~~~~~§ ******** >>>>>>>> ~~~~~~~~ ******* ------ @ """ """" @
© Pearson correlation----- ******** ******** ******** ****** @ ******* ******** """" """ @
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Figure 3.8: Feature selection approaches and usage through time.
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selection studies is that some of the most used machine learning algorithms, such
as neural networks and regression trees, innately perform feature selection. Feature
selection remains an useful technique for some algorithms, like regression and case-
based reasoning. In addition, the use of feature selection saw a spike on 2019. This
could indicate that future studies could start considering using feature selectors.

3.2.2 RQ2: Datasets used in hyper-parameter tuning machine learn-
ing SEE

We identified 47 unique datasets that have been used in the literature of software ef-
fort estimation. We grouped these datasets into eight categories in accordance to their
availability or repository: PROMISE, ISBSG, open, Tukutuku, unidentified, artificial,
private, and IBM. Figure 3.9 shows the use of these dataset origins over the years.
The PROMISE category refers to the datasets publicly available in the PROMISE data
repository. Since 2008, datasets from the PROMISE repository have seen dominant
use in SEE studies. The ISBSG category refers to the dataset distributed by the In-
ternational Software Benchmarking Standards Group. Although this dataset is not
publicly available for free, there were some free versions of the dataset available in
the PROMISE repository, and has had a similar use trend to PROMISE. Similarly, the
Tukutuku category refers to the dataset of the same name that was publicly available.
The open category refers to other datasets that are publicly available, but not on the
PROMISE or Tukutuku repositories. Tukutuku has had two visible use periods: 2010-
2013, and 2018-2019. The private category refers to other datasets that are not
publicly available, or are not available for free. Lastly, IBM datasets refer to private
datasets that belong to the IBM company. The unidentified category refers to datasets
of which the authors do not give sufficient information to trace back to an origin. The
artificial datasets refer to datasets artificially generated, generally through probability
distributions. Table 3.9 shows the datasets grouped by their origin and their related
studies. Figure 3.10 shows the trend of usage of the PROMISE and ISBSG datasets,
the two most used origins, through the years.

Table 3.9: SEE datasets and related SEE studies.

Origin Dataset N Studies

Continued on next page
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Table 3.9: SEE datasets and related SEE studies. (Continued)

PROMISE Desharnais 47  S12, S20, S40, S44, S53, S55, S61, S66, S2,
S4, S5, S8, S9, S13, S14, S18, S19, S21, S22,

S23, S24, S26, S27, S29, S31, S34, S35, S42,

S45, S46, S47, S48, S50, S52, S56, S58, S59,

S62, S63, S65, S67, S68, S69, S70, S72, S73,

S74

Cocomo81 35 S12, 820, S37, S44, S53, S55, S61, S66, S1,
S2, S4, S5, S8, S10, S13, S14, S16, S18, S19,

S21, S23, S24, S26, S27, S35, S36, S42, 546,

S47, S48, S57, S62, S63, S67, S70

Albrecht 26 S12, S20, S30, S37, S40, S44, S53, S61, S66,
S4, S5, S8, S13, S18, S19, S22, 524, S25,
S26, S27, S35, S42, S48, S62, S69, S70

Kemerer 22§12, 520, S37, S40, S44, S53, S61, S66, S8,
S13, S14, S16, S18, S19, S21, S24, S25, S26,

S35, S48, S62, S70

Maxwell 20  S33, S37, S40, S44, S51, S55, S61, S8, S10,

S14, S21, S22, S23, S24, S26, S35, S42, 548,
S59, S62

CocomoNasa2 15 S37, S44, S61, S2, S8, S10, S17, S21, S22,
S24, S46, S47, S48, S57, S63

China 14 S12, S20, S33, S37, S40, S4, S5, S13, S21,
S24, S26, S35, S48, S62

Miyazaki94 14 S12, S20, S30, S40, S44, S4, S5, S8, S13,
S14, 524, S42, S48, S52

Telecom 8 S37, S40, S44, S61, S14, S26, S35, S48
CocomoSDR 7 S44, S8, S22, S24, 546, S47, S63
CocomoNasa 4 S55, S2, S22, S57
Kitchenham 4 S51, S10, S34, S48
USP0O5 3 S55, S34, S48

Continued on next page
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Table 3.9: SEE datasets and related SEE studies. (Continued)

ISBSG ISBSG R10 13 S7, S51, S61, S10, S26, S34, S35, S45, S46,
S47, S57, S62, S63

ISBSG RS 7 S12, S1, S4, S5, S13, S18, S50

ISBSG R11 6 S55, S3, S25, S29, S32, 543

ISBSG R? 2 S22, S54

ISBSG R9 2 S58, S70

Open NasaBailey 14 S53, S66, S19, S26, S27, S35, S60, S63, S65,
S71, S72,S76, S77, S78

Finnish 4 S40, S44, S8, S24

KotenGray 4 S53, S66, S8, S19

CF 2 S43, S56

Costagliola05 1 S39

Jodpimail8 1 S15

OUTS 1 S74

QUES 1 S74

Ziauddin12 1 S38

Tukutuku Tukutuku 5 S40, S41, S64, S1, S18
Unidentified  Unidentified 2 S16, S75
Bank 1 S50

JunLeeOl 1 S79

Stock 1 S50

Zakranil8 1 S11

Artificial Moderate 2 S29, S69
Severe 2 S29, S69

CoKem 1 S70

DeshRandO 1 S73

DeshRand1 1 S73

Private ESA 1 S55

Continued on next page
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Figure 3.9: Dataset origins and usage through time.

Table 3.9: SEE datasets and related SEE studies. (Continued)

Euroclear 1 S55
Experience 1 S55
IT University 1 S6
IVR 1 S16
Pail3 1 S49
IBM DPS 1 S43
RQM 1 S28
RTC 1 S28

We identified a total of 13 PROMISE datasets, and a total of 58 studies that use
them. The most used dataset was Desharnais, with a total of 47 studies, and saw
peak use in 2019. The second most used dataset is Cocomo81 with a total of 35
studies. The Albrecht dataset was used in 26 studies, and the Kemerer dataset in 22
studies. Both sets were not widely used in the first years, but saw an upward trend
starting from the year 2013. The Maxwell dataset is used in 20 different SEE studies,
following an use pattern similar to Albrecht and Kemerer. Other PROMISE datasets
employed in SEE include CocomoNasa2, China, Miyazaki94, Telecom, CocomoSDR,
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Figure 3.10: PROMISE and ISBSG datasets and usage through time.

CocomoNasa, Kitchenham, and USP0O5. The CocomoNasa2, China, Cocomo91, and
Miyazaki94 sets have seen frequent use through the years of SEE research. On the
other hand, CocomoNasa, Telecom, CocomoSDR, Kitchenham, USPO5 have fallen in
relative disuse, although recent studies (>2017) have covered all of them but USPO5.

Four different versions of the ISBSG dataset were identified in the literature, which
were used in 30 different studies. The most used version is the ISBSG release 10
dataset, being used in 13 studies. The ISBSG release 8 was used in 7 studies, the
release 11 was used in 2 studies, and the release 9 was used in 2 studies as well.
Lastly, two studies reported they used the ISBSG dataset, although they do not report
the release number, nor traits that allowed its identification. Somewhat counter in-
tuitively, the oldest ISBSG dataset (R8) has seen more use in recent years than the
ISBSG R10 and R11, perhaps due to availability. The ISBSG R10 still remains the
most used overall, but saw the peak of its use in the 2011-2016 period.

Nine different studies used open datasets not belonging to the PROMISE repos-
itory. These correspond to the NasaBailey, Finnish, KotenGray, CF, Costagliola05,
Jodpimail8, OUTS, QUES, and Ziauddin12 datasets. Similarly, the Tukutuku dataset
has seen use in 5 different studies. Artificial datasets were generated and used in
4 studies (529, S69, S70, S73): Modarate and Severe, which were generated using
arbitrary random distributions; and CoKek, DeshRand0O and DeshRand1, which were
generated using the feature distributions from the Cocomo and Kemerer, Desharnais,
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and Desharnais datasets respectively. Regarding private datasets, four studies (S6,
S16, S49, S55) employed six different private datasets: ESA, Experience, Euroclear,
IT University, IVR, and Pail3. One study employed a dataset obtained from IT projects
of an university (S6), and one study reported used a dataset named IVR (S16). Two
studies employed private datasets which originate from the IBM company. Lastly, five
datasets of unknown origin were encountered.

The literature in SEE favors datasets from two particular repositories: PROMISE
and ISBSG. Moreover, the four most used dataset origins, PROMISE, ISBSG, Open
and Tukutuku, have publicly available datasets. While this is positive for purposes of
open data and replicability of studies, these datasets contain data from old develop-
ment projects. As shown in figure 3.10, the “most recent” datasets were introduced
in 2013. It is also possible these datasets were used in even older studies, as this
mapping contemplates only hyper-parameter tuning. Software development practices
have changed in this 8 year (at minimum) period, and it is possible that estimations
produced with these datasets may not be as accurate for newer development projects.

3.2.3 RQ3: Performance metrics of hyper-parameter tuning ap-

proaches used in machine learning SEE

We identified 41 unique evaluation metrics that have been used in SEE literature.
These have been grouped into categories, in accordance with their base metric. We
have identified 10 different base metrics: relative error, absolute error, log error,
square error, prediction error, error, correlation, accuracy, interval, and meta metric.
The metrics were classified into a taxonomy of three levels. The first level is the base
metric. The second level is used to differentiate functions that are aggregated on the
base metric. For example, one relative error metric may use the relative error, while
another may use the magnitude of the relative error. Lastly, the third level adds the
statistical function used to calculate the concrete value for a metric. For example, the
MAIBRE metric employs a base metric of relative error, an aggregate metric of inverse
balance relative error, and a statistical function of median. Table 3.10 shows the
taxonomy of the existing metrics, as well as the studies that employ them. Figure 3.11
shows the trend of usage of the base metrics through the years.
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Table 3.10: Evaluation metrics and related SEE studies.

Level 1

Level 2

Metric

N

Studies

Relative
Error

Balanced
Relative Error

MBRE

MdBRE

13 S12, S20, S37, S41, S4, S5, S6, S8,

S15, S26, S34, S48, S50
S5, S15, S34

Estimate
Magnitude of
Relative Error

MEMRE

MdEMRE

6

S40, S41, S64, S8, S48, S50

S64, S50

Inverse Balanced
Relative Error

MIBRE

MdIBRE

3

S12, S20, S37, S41, 54, S5, S15,
S26, S48

S20, S5, S15

Magnitude of
Relative Error

MMRE

PRED(L)

MdMRE

EF
Epsilon

50 5S40, S41, S53, S61, S64, S66, S1,

43

21

1

S2, S11, S14, S16, S18, S19, S21,
S22, §25, S27, §29, S32, S35, S36,
S39, S38, S42, S43, S45, S46, S47,
S48, S49, S50, S52, S56, S58, S59,
S60, S62, S63, S65, S67, S68, S69,
S71, 872, S73, S74, S76, S77, S78,

S79

S12, S20, S30, S40, S41, S44, S53,
S55, S61, S64, S66, S1, S4, S5,
S11, S14, S17, S18, S19, S23, S25,
S27, S29, S32, S34, S35, S36, S42,
S45, S46, S47, S50, S52, S58, S59,
S60, S62, S63, S65, S67, S68, S69,
S72

S41, S44, S55, S61, S64, S1, S11,
S14, S18, S23, S29, 545, S47, S49,
S50, S52, S62, S63, S65, S69, S74

S42, S60, S67, S71
S73

Continued on next page
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Table 3.10: Evaluation metrics and related SEE studies. (Continued)

Rratio 1 S75

Relative Error MRE 4 S29, S58, S70, S75

RSD 2 S8, 524

VRE 1 S75

Absolute  Absolute Error MAE 24 S12, S20, S33, S40, S41, S44, S51,
Error S3, S4, S5, S6, S8, S10, S24, S32,
S34, S35, S47, S48, S56, S57, S62,

S65, S75

SA 13 S7, S12, S20, S30, S37, S4, S5, S8,

S10, S13, S26, S46, S57

Delta 11 S12, S20, S30, S37, S4, S5, S13,
S26, 546, S47, S57

MdAE 7 S20, S40, S66, S5, S10, S24, S47
PRED 5 S39, S38, S43, S71, S74
D 1 S51
SdAE 1 S66
SumAE 1 S66
VAE 1 S75
Absolute MAPE 2 S33, S31
Percentage Error
Log Error Log Error LSD 10 S12, S20, S37, S4, S5, S8, S10,
S24, S26, S47
Square Square Error RMSE 4 S33, S6, S16, S39
Error
NRMS 3 S39, S§58, S70
MSE 2 S33, S39
Prediction Prediction Error  AIC 1 S54
Error
MDL 1 S54

Continued on next page
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Figure 3.11: Evaluation metrics and usage through time.
Table 3.10: Evaluation metrics and related SEE studies. (Continued)
Error Error ME 1 S3
SD 1 S24
Error Tendency Sign 1 S70
Correlation Correlation R2 5 S9, S35, S39, S38, S50
R 4 S54, S58, S63, S70
Spearman 2 S55, S56
Accuracy  Accuracy Acc 1 S28
Interval Hit Rate Hit Rate 1 S10
Interval Width rWidth 1 S10
Meta Improvement imp ratio 5 S10, S34, S43, S52, S59
Metric

Of the 41 discovered metrics, 34 are based on the prediction error: the difference
between the predicted and actual effort values. Metrics based on relative error (RE)
were used in 68 studies, making them by far the most used type of metric. Relative
error metrics comprise metric that use the difference between predicted and actual
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effort values divided by an adjustment factor (usually either effort value). Five aggre-
gate metrics were encountered for the base metric: magnitude of relative error (MRE)
with 61 studies; balanced relative error (BRE) with 13 studies; inverse balanced rel-
ative error (IBRE) with 9 studies; estimate magnitude of relative error (EBRE) with 6
studies, and relative error with 6 study. Of these, the most used metric was the mean
MRE (MMRE), followed by the PRED(L) metric and the median MRE (MdMRE). Rel-
ative error metrics have seen healthy use through the years on SEE tuning research,
and still are the predilection of many SEE researchers.

Metrics based on absolute error (AE, also known as absolute residual) were used
in 37 studies. Two aggregate metrics were encountered for the base metric: abso-
lute error (AE) with 36 studies and absolute percentage error (APE) with 2 studies.
Similar with RE metrics, the most used metric was the mean absolute error (MAE).
Absolute error metrics were not popular in the 2001-2012 range, but they saw a boost
in their use since 2013 and onward. Many SEE researchers have chosen to report us-
ing both relative error and absolute error metrics. Metrics based on the logarithmic
error were used in 10 studies, with the only metric being the logarithmic standard
deviation (LSD). Log error metrics were introduced in 2013, and have seen steady
use until recently. Square error metrics were used in 6 studies. One study employed
“prediction error”, a combination of training error plus a complexity factor related to
neural network models. Lastly, 3 studies employed metrics based on the “pure” error:
mean error, standard deviation of the error, and the direction or sign of the error.

Seven metrics do not use the prediction error as base, but instead rely on other
properties of the predicted and actual values. Of these, three are metrics based on
correlation coefficients, and were used in 11 studies. Accuracy metrics apply only
when the target feature was categorical, which was the case in one study. Instead
of providing a single “point” data about the effectivity of a model, interval metrics
determine a reliable interval in for the predicted values. Lastly, meta metrics refer to
a metric which is built on another metric. We encountered only one meta metric: the
improvement ratio.

In addition to reporting results in terms of evaluation metrics, SEE studies used
analysis techniques to draw conclusions from the results. We identified three broad
types of analysis techniques in the surveyed papers: descriptive analysis, statistical
tests, and ranking methods. Table 3.11 shows the existing analysis techniques in SEE
literature and the studies that employ them.
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Table 3.11: Analysis techniques and related SEE studies.

Type Technique N Studies
Descriptive Descriptive 77 S1,S82,S3, S4, S5, S6, S7, S8, S9, S10, S11,
Analysis Analysis S12, S13, S14, S15, S16, S17, S18, S19, S20,
S21, S22, S30, S33, S37, S40, S41, S44, S51,
S53, S55, S61, S64, S66, S24, S25, S26, S27,
S28, S29, S31, S32, S34, S35, S39, S38, S42,
S43, S45, S46, S47, S48, S49, S50, S52, S54,
S56, S57, S58, S59, S60, S62, S63, S65, S67,
S68, S69, S70, S71, S72, S73, S74, S75, S76,
S77,S78, S79
Statistical ~ Wilcoxon 24  S6, S10, S13, S14, S15, S17, S21, S40, S51,
Tests sign-rank test S55, S64, S25, S26, S32, S34, S35, S46, S47,
S50, S57, S58, S62, S63, S65
Friedman’s test 9 S6, S10, S19, S22, S55, S46, S47, S50, S57
Mann-Whitney U 5 S1, S18, S61, S66, S58

test
T-test 4 S55, §27, S52, S63
Effect Size S6, S7, S10
Kolmogorov- 3 S4, S20, S26

Smirnov test

Correlation 2 S10, S63
Tukey test 2 S19, S22
ANOVA 1 S34
Brunner Test 1 S24
Permutation 1 S56

tests
Ranking Win-tie-loss 11 S8, S14, S15, S37, S41, S44, S24, 526, S34,
Method S35, S46
Scott-Knott S4, S5, S7, S12, S20, S30, S41
Borda count 4 S4, S5, S12, S20

Continued on next page
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Table 3.11: Analysis techniques and related SEE studies. (Continued)

Friedman 3 S46, S47, S57
ranking
Worse 1 S63

The descriptive analysis approach is used by all studies but two. This technique
consists of textually describing the results obtained by each studies technique, usually
aided by tables or figures that present the evaluation metrics. The descriptive analysis
also offers insights on the most successful techniques, as well as the scenarios in which
the studied techniques may or may not function adequately. This technique is mostly
employed as a complement to statistical tests and ranking methods, but there are also
studies that rely purely on descriptive analysis to draw conclusions.

The statistical tests approach is concerned on determining whether the studied
techniques have a large enough difference in performance to be considered differ-
ent. This is often performed by studies that focus on a particular approach. These
studies evaluate the main approach, as well as some previously existing techniques as
baselines. Afterwards, these statistical tests are used to confirm if the main approach
had different performance than the baselines. Studies that instead compare multiple
techniques can also employ statistical tests, but also tend to use ranking methods.
We identified 11 different statistical tests: Wilcoxon sign-rank test, Friedman’s test,
Mann-Whitney U test, t-test, effect size, Kolmogorov-Smirnov test, correlation, Tukey
test, ANOVA, Brunner test, and permutation tests.

The ranking method approach is concerned with determining a rank or ordering
of the machine learning approaches evaluated in a study. These ranking methods
are based on statistical tests, whose results are aggregated to determine either an
order relationship, equivalence groups, or a new metric altogether (primarily “win”
counts). We encountered 5 unique ranking methods. The Win-tie-loss technique was
used in 11 studies, and was the most used ranking method. Win-tie-loss compares
two different techniques or treatments by counting how many wins, ties, and losses
does a technique have across multiple iterations. The original win-tie-loss technique
employs the Friedman test to determine each case. If the test determines a significant
difference, the algorithm adds one point to the winner and subtracts one point from
the loser. Otherwise, it is counted as a tie for both sides. The Scott-Knott algorithm
was the second most used ranking method, with a total of 7 studies. Scott-Knott
uses hierarchical clustering and the analysis of variance test to group and rank tech-
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niques in equivalence clusters. This is thus used to determine a technique or group
of techniques with the best accuracy. However, this approach can only analyze one
evaluation metrics at a time. Three other counting methods were employed: Borda
count with 4 studies, Friedman ranking with 3 studies, and worse with one study.
Similar to win-tie-loss, these counting approaches rely on determining how many
“wins” does a technique have across multiple iterations. The counting approaches
over rankings (like Scott-Knott) is that they can be used to combine the results of
different evaluation metrics.

SEE studies have favored the use of metrics that rely on the prediction error. More-
over, the majority of studies employ a metric that is a variant of relative error. Many
researchers have also favored the use of absolute error metrics as an unbiased alter-
native. Going forward, it is possible that studies start reporting both RE and AE-type
metrics. Thirty-five studies (S2, S3, S9, S11, S16, S23, S28, S29, S31, S33, S36, S38,
S39, S42, S43, S45, S48, S49, S53, S54, S59, S60, S67, S68, S69, S70, S71, S72,
S73, S74, S75, S76, S77, S78, S79) have rejected the use of statistical and ranking
analysis techniques in favor of descriptive analysis. This is a problem for the reliabil-
ity of the obtained results, as the conclusions many of these studies have reached are
not backed from a statistical standpoint.

3.2.4 Discussion

In this section, we discuss the results obtained in the mapping study and the implica-
tions of these for research of software effort estimation. Section 3.2.4.1 summarizes
some of the challenges reported by the identified studies. Section 3.2.4.2 discusses
some of the open issues and possible venues of research based on the results and
the challenges obtained in this mapping study. Section 3.2.5 concludes this literature
mapping.

3.2.4.1 Challenges

To complement the results obtained from the systematic mapping study, we discuss
the current state of research in hyper-parameter tuning in SEE. To meet this end,
we identified the challenges reported by each paper and categorize them based on
the keywording approach [62]. We identified 28 unique categories of challenges
in the literature. Table 3.12 shows the identified challenge categories as well as the
studies that employ them, and figure 3.12 shows the trend of studies that report these
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Table 3.12: Challenge categories and related SEE studies.

Category N Studies

26 S1, S3, S9, S10, S11, S13, S15, S17, S19, S22,

Risks of inaccurate S25, S26, S27, S29, S42, S46, S47, S49, S50,

estimation S54, S60, S63, S67, S70, S71, S72

Limitations of a technique 23 S12, S20, S40, S55, S1, S2, S4, S6, S10, S13,

S16, S17, S18, S19, S24, S31, S32, S35, S45,

S69, S75, S78, S79

Selection of parameters 21 S7,S812, 520, S33, S37, S51, S40, S61, S66, S64,

S4, S11, S13, S16, S21, S26, S35, S45, S62, S63,

S74

No free lunch 20 S12, S20, S30, S41, S61, S1, S2, S5, S9, S14,

S15, S16, S18, S22, S24, S26, S42, S52, S63,

S70

Lack of research 16 S30, S51, S44, S8, S10, S11, S13, S15, S16, S17,

S18, S34, S50, S58, S63, S74

Quality of collected data 14 S7, S4, S6, S13, S16, S18, S24, S50, S59, S62,

S69, S73, S75, S78

Prediction stability 13 S12, S20, S37, S51, S41, S61, S66, S8, S17, S18,

S24, S26, S46

Computational Cost 12 S40, S44, S53, S14, S26, S32, S34, S45, S48,

S62, S67, S69

Reporting quality of 9 S51, S41, S55, S2, S24, S46, S57, S58, S63

studies

Adoption by the industry 7 S55, S53, S66, S2, S3, S16, S19

Accuracy of effort 6 S14, S16, S22, S32, S57, S78
estimates

Cost of data collection 5 S7, S44, S53, S47, S58

Evaluation metrics 5 S55, S66, S24, S35, S73

Continued on next page
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Table 3.12: Challenge categories and related SEE studies. (Continued)

Comparability of studies
Insufficient data

Lack of tuning
approaches

Online scenario

Complexity of effort
estimation

Generalizability of results
Interpretability of models
Lack of automation
Model obsolesence
Prediction uncertainty

Estimation through the
life cycle

Lack of techniques
Overcomplexity

Risks of point estimation

3
3
3

=N NN DNDN N

—_

S41, S55, S18
S24, S35, S57
S7, 812, 541

S7,S851, S57
S70, S76

S55, S9
S56, S78
S46, S47

S7,S857
S10, S28

S15

S16
S17
S10

The type of challenge most reported in the surveyed studies were the potential

risks of inaccurate effort estimation, with 26 studies. These risks are related with

the over- and under-estimation of effort, which can potentially cause loss of profit.

This challenge was reported often at the beginning of a paper, as a justification of

the research and use of machine learning as a more viable alternative to traditional

SEE approaches. There are two periods in which this challenge was reported: 2008-
2013, and 2016-2019. Both periods had, on their ending year, a spike of studies
that reported this challenge. The reason that this challenge is still being reported, as

well as the reasons SEE research is still active, is perhaps because the quality of effort

estimates is not satisfactory for real-life purposes. However, this is contrasted by the

null amount of practical case studies on real life effort estimation that we identified

as part of this mapping.

The limitations of a technique challenge has been mentioned in 23 different stud-
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ies, and was the second most mentioned challenge. As its name implies, this type of
challenge covers limitations about a specific machine learning technique. For exam-
ple, S40 describes that one drawback of the grid search technique is that the search
is always performed in the same (coarse grained) points, without taking into account
the dataset to guide the search. While it has been consistently reported through the
years, the amount of reports rose in the 2018 and 2019 years. This could perhaps
indicate that studies have shifted their focus to addressing limitations of existing es-
timation techniques.

Challenges about the complexity in the selection of parameters was reported in 21
studies. This challenge is the main concern of hyper-parameter tuning for software
effort estimation, and has been continuously reported across the years. As its name
implies, it deals with the difficulty of manually selecting parameter values for machine
learning approaches. This is often the focus of the researches studies, as they employ
hyper-parameter tuning techniques to address this challenge. Starting from 2008,
the challenge has been steadily reported over the years. This could indicate that,
despite the amount of tuning studies performed, hyper-parameter tuning remains as
a complex task that can be improved on.

The no free lunch theorem has been mentioned (although often not using this
name) in 20 studies. The theorem states that there is no best machine learning tech-
nique for all existing problems, but rather there are certain techniques that are better
for certain types of problem [11]. These studies have addressed this problem by
performing comparisons of existing machine learning approaches, although for a lim-
ited amount of datasets. This challenge is related to the generalizability of results
obtained from these studies to a real estimation scenario. This challenge has been es-
pecially reported in the 2016-2019 period. This could indicate that SEE studies could
shift from single-technique evaluates to more comprehensive ones: using more effort
estimation methods, more data, and more robust analysis.

The lack of research challenge has been reported in 16 studies. This challenge
describes that there is a need of research studies for a particular technique or knowl-
edge area, such as ensemble effort estimation (S30), evaluation of the impact of
tuning (S51), and use of kernel methods (S44). In many cases, these challenges are
reported as a justification of the research presented in the paper. Lack of research has
been especially reported in the latest years, and it is a good indicator that research on
hyper-parameter tuning for SEE has future work.

The quality of collected data challenge has been reported in 14 studies. These
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challenge deals with the characteristics of the datasets used in SEE literature, such as
heterogeneity of the software projects (S7, S16), missing values in the dataset (5S4,
S13), outliers (S4, S16, S18), and the accuracy of the recorded information (S6). The
quality of the collected data has been a concern for SEE since its initial years, but has
been a point of worry especially for the more recent studies.

The prediction stability challenge has been reported in 13 studies. This challenge
has two aspects: 1) the accuracy machine learning algorithms depends on several fac-
tors (datasets, data transformation, feature selection, hyper-parameters), and 2) pre-
vious studies have reached different results with respect to the performance of the
same machine learning approaches, arguably due to these factors. This challenge
goes in hand with selection of parameters, as hyper-parameters are one of the factors
that affect estimation, and thus stability. Initially, SEE studies focused on identified
the technique with the highest accuracy. However, this challenge has been reported
more and more by recent studies, as the research area matures and experimental
protocols become more settled, determining that stable results are important.

A total of 12 studies report on the computational cost challenge, which describes
the high dimensionality of the search space for some approaches, such as feature se-
lectors (S44, S53), machine learning algorithms (S44), hyper-parameter values (S40),
or overall amount of techniques (S14). The peak year for this challenge was 2013,
and it has been reported less since then. One possibility is that computation cost
becomes less of a worry as the computational power of researchers and practitioners
increase.

Challenges regarding reporting quality of studies, which were reported on 9 stud-
ies, explained problems with the completeness of the reported experimental protocols
in previous SEE studies. Many SEE studies let details out that difficult the replicabil-
ity of results. These details include hyper-parameter tuning ranges, pre-processing
applied to the dataset, specific metric calculations, among others. Such difficulty in
performing a replication and lack of reporting detail could potentially make a re-
searcher doubt the generalizability of the reported results. Contrary to prediction
stability, as the research area matures the perceived quality of results could go up, as
protocols and reporting procedures become more settled.

The adoption by the industry challenge has been reported in 7 studies. These
challenges reported that many projects failed in the effort estimation task and resulted
in delay or overbudget (S53, S66), as well as the preference of expert estimation over
machine learning approaches (S55). This challenge was first reported in the 2010-
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2012 period, but it has seen a rise in the most recent years. Perhaps somewhat related
to potential risks of inaccurate estimation, SEE researchers are realizing that there is
a lack of connection with practitioners.

Seventeen challenges have been reported in six or less studies. Accuracy of effort
estimates describes that the methods in the literature are unable to provide satisfac-
tory effort estimates. Cost of data collection explains the elevated cost of collecting
project data to construct new effort estimation datasets. This challenge is related
to the quality of collected data challenge, and helps explain the perceived lack of
high quality datasets. It was especially reported in 2012 and 2013, indicating that
there may have been an effort on those years to collect more SEE data. The evalua-
tion metrics challenge describes that there is no clear consensus on which metrics to
use (S55), or describe limitations or biases of some of the metrics used in literature,
like MMRE (S66). Related to this is the challenge of comparability of studies, which
reports on the difficulty, or outright impossibility, of comparing results of previous
studies. One of the reasons for this was use of different metrics, but lack of reporting
detail also hindered comparisons. Similar to the elevated cost of data collection, the
insufficient data challenge states that the small amount of SEE datasets, as well as
the amount of projects inside them, can reduce credibility of the results obtained in
the area. Lack of tuning approaches was reported for online estimation (S7), ensem-
ble estimation (S12), and interpretable methods (S41). Online scenario relates that
existing studies do not take into account that effort estimation applied to real-life
projects is a online problem. Other challenges include complexity of effort estima-
tion, generalizability of results, interpretability of models, lack of automation, model
obsolescence, prediction uncertainty, estimation through the life cycle, lack of ma-
chine learning techniques, overcomplexity of existing approaches, and potential risks
of point estimation (in contrast with interval estimation).

3.2.4.2 Open issues

Based on the results obtained in the literature mapping, as well as the identified
challenges, we discuss some open issues in hyper-parameter tuning SEE literature:

Use of tuning vs. research of tuning There is a need to compare the existing hyper-
parameter tuning approaches. Out of the 79 covered studies, only 4 focused on the
evaluation of multiple hyper-parameter tuning approaches (tuning benchmark), and
thus evaluated models using different tuners. The most used hyper-parameter tuning
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technique was the grid search, which is an exhaustive technique that can require
large computational resources, and requires manually determining a search space.
With the exception of genetic algorithms, other existing tuning approaches have been
used in six or less studies. Our recommendation is to empirically compare existing
hyper-parameter tuning approaches, in order to determine a set of techniques that
can effectively select the amount of hyper-parameters using less resources.

“Look before you leap” There is a particular paradox in the use of tuning for SEE,
as determined by the reported challenges. Several studies have warned about the
low amount of data of SEE datasets, as well as the low quality in said data. However,
the most used hyper-parameter tuning technique is still the most resource consum-
ing: grid search. Moreover, 12 studies reported on the higher costs of some of this
machine learning techniques, of which tuning would only exacerbate. Given such a
“simple” data and an elevated cost of tuning: is it really worth it to use grid search?
We recommend SEE researchers to first analyze the properties and complexity of the
dataset before using any tuning approach, and deciding whether to employ exhaus-
tive approaches, fast tuning, or no tuning at all.

Observations on machine learning approaches We have identified a total of 21
broad machine learning approaches in this study. The three of the four most used
approaches—regression trees, support vector regressions, and neural networks—have
also the largest amount of parameters. This result reflects the research interests of
hyper-parameter tuning studies in SEE: enhancing the accuracy of machine learning
models through appropriate hyper-parameters. However, this could also indicate that
these techniques have a better potential use in the broader areas of effort estima-
tion. One potential avenue for research are combined methods such as ensembles or
baggings, which have more hyper-parameters than single techniques.

Feature selection and tuning Recent studies in hyper-parameter tuning have not
employed feature selection approaches, even though these approaches can further
improve the accuracy of effort estimates. One possibility for lack of research in these
approaches are the size of the datasets in SEE literature, which is comprised by few
projects and even fewer features. Additionally, the more ‘complex’ machine learning
techniques like support vector machines and neural networks may not be as reliant
on the selected features as regression models. In this line, one possible solution is to
employ a hybrid approach, similarly to S53 and S66, in which hyper-parameter tun-
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ing and feature selection is performed by the same algorithm. Another direction for
research is to compare ‘complex’ machine learning techniques and hyper-parameter
tuning using feature selection.

Tried-and-tested datasets SEE research has focused on a particular body of datasets,
mostly comprised by those that belong to the PROMISE and ISBSG repositories. The
latest inclusion of a new free dataset was in 2013, with the Miyazaki94 dataset (which
contains projects from 1994). Effort estimation has not seen a new publicly used
dataset in more than 7 years. This is understandable, do to the elevated costs of data
collection of software development projects. Ideally, one solution to this problem, as
well as aiding with the adoption of these approaches, is to perform research in the in-
dustrial context. The academy could perhaps collaborate with software development
practitioners to apply the existing approaches to real-world scenarios, improving qual-
ity of effort estimates. In exchange, researches could gain access to novel project data.
Another possible solution is to use publicly available software repository data from
sites such as github.

Recommended metrics Absolute error and relative error based metrics have seen
widespread use in SEE research. Although critics have been made against the mag-
nitude of relative error metrics [41], their use in the studies has prevailed. However,
this use has been in conjunction with absolute error metrics. Studies continue to use
relative error metrics as a means to have compatibility with previous results in SEE
literature. On the other hand, baseline metrics like standardized accuracy have not
been adopted by a considerable amount of studies, even though they allow for better
comparability of results[41]. Our recommendation for researchers it to report their
results with the standardized accuracy in conjunction with their preferred metrics.

Online estimation Results obtained in this mapping have shed some light on the
open problems in hyper-parameter tuning for effort estimation. The area faces many
challenges, such as instability of results, lack of parameter tuning approaches for
certain areas, elevated cost of data collection, problems in the adoption of the pro-
posed approaches, limited generalization of results, model obsolescence, among oth-
ers. Compared to offline estimation scenarios, online estimation has been less re-
searched. Of the 79 covered papers, only 4 research online SEE. Research in this type
of estimation could help researchers see things from a different perspective, and find
solutions or alternatives to some of these problems. For instance, online studies could



96

develop novel approaches to perform hyper-parameter tuning, alleviate or aid with
model obsolescence, provide better stability. In addition, online approaches could
be more compatible with real estimation scenarios, which would benefit adoption of
these techniques. Moreover, as mentioned previously, collaboration in the industry
could result in new project data available.

3.2.5 Conclusions of the mapping study

This systematic literature mapping study characterized the machine learning hyper-
parameter tuning approaches used in software effort estimation. The mapping study
identified 79 primary studies that utilize hyper-parameter tuning for machine learn-
ing software effort estimation.

To answer our first research question, we identified and classified hyper-parameter
tuning approaches into 12 categories. Our results showed that grid search was the
most used tuning approach, even though it is the most exhaustive and computa-
tionally costly. The majority (56 out of 79) of studies utilized tuning as a way to
bolster the accuracy of SEE models, and only 22 studies evaluated the impact of tun-
ing. We identified 21 machine learning algorithms, 5 cross-validation approaches,
10 data transformation techniques, and 10 feature selection approaches. Neural net-
works, regression trees, regression models, and support vector machines were the top
4 most used models in the surveyed studies. The most used cross-validation approach
was leave-one-out. For data transformations, the predominant technique was unit
range[0, 1]. Only 24 papers employed feature selection approaches, and the most
used approach was correlation-based feature selection.

To answer our second research question, we identified and classified the datasets
by their repository and availability. We identified 8 origins for SEE datasets. The most
common repositories in the primary studies were PROMISE with 58 papers, ISBSG
with 30 papers, and (other) open data with 24 papers. The most used PROMISE
datasets were Desharnais, Albrecht, Kemerer, and Maxwell. For ISBSG, the most used
version was ISBSG release 10. The literature in SEE favored the use of open data,
increasing the replicability of the studies.

To answer our third research question, we identified and classified the evaluation
metrics used by the primary studies by the base metric (type of error, correlation, etc)
used. We identified 10 base metrics, and determined that SEE research favored the
use of relative error and absolute error metrics. Out of 79, a total of 68 used relative
error metrics. Of these, the most used were mean magnitude of relative error (MMRE)
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and Pred(L); even though relative error metrics are known to be biased [41]. Only
37 studies employed absolute error metrics, with the mean absolute error being the
most common. In addition to this, we identified and grouped the analysis techniques
that these studies employed to compare the SEE models based on these metrics. We
determined that almost every study (77 out of 79) utilized descriptive analysis to
draw conclusions. We identified 11 statistics tests and 5 ranking methods in SEE.
Many of the studies in SEE have reported their results using a biased metric, and
drawing conclusions that are not backed by a statistical analysis.

We identified and categorized the challenges reported by the primary studies, in
order to gain insights the state of research of hyper-parameter tuning machine learn-
ing SEE. Our analysis identified 28 categories of challenges, with the most often re-
ported being risks of inaccurate effort estimates, limitations of individual techniques,
complexity in the selection of hyper-parameters, and the no free lunch theorem (there
is no overall best SEE model). Our discussion of these topics covered some open is-
sues in the literature, including the way SEE studies have used tuning, the complexity
of the datasets versus the complexity of the tuners, the types and parameters of the
most used models, the relationship between feature selection and tuners, the current
SEE datasets, the case of the most used metrics, and the lack of research on online
estimation.

The state of hyper-parameter tuning research in SEE is currently active, as inter-
est over tuning has kept steady over the years. All of the surveyed papers employed
hyper-parameter tuning, although to varying degrees, which demonstrates that these
researchers understand the value of tuning. There is a lack of evaluation on the ef-
fectivity of hyper-parameter tuning approaches (against each other), as many studies
just employ grid search. Due to the quality of SEE dataset and the properties of the
most used datasets, different hyper-parameter tuning approaches could achieve bet-
ter or worse results. For future tuning studies, we recommend to utilize at least three
hyper-parameter tuning approaches for comparison: default hyper-parameters, grid
search, and any other non-exhaustive approach.
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Chapter 4

ChimeraHPT: an automated machine
learning hyper-parameter tuning
framework

This chapter presents the results of an iterative development process to address the
second specific objective of this thesis: to automate a hyper-parameter tuning pro-
cedure for machine learning in the context of software effort estimation (SEE). We
built a procedure and framework, called ChimeraHPT, that supports machine learn-
ing and hyper-parameter tuning techniques used by SEE researchers, as identified in
the literature mapping presented in chapter 3. Currently ChimeraHPT supports 40
total techniques across 5 categories: 15 hyper-parameter tuners, 8 machine learning
models, 7 cross-validators, 2 data transformations, and 8 feature selectors.

ChimeraHPT is a procedure and framework mainly built on the scikit-learn® li-
brary for the Python programming language, focusing on the task of tuning and eval-
uating prediction models. ChimeraHPT borrows hyper-parameter tuning technique
implementations from 8 additional machine learning libraries and repositories (see
table 4.4), adapting them to the scikit-learn interface. We implement data analy-
sis and statistical testing procedures for the analysis of the evaluation metrics of the
constructed SEE models using the R programming language.

The ChimeraHPT procedure supports three tasks, as shown in figure 4.1: (1) pre-
processing, (2) model training and evaluation, and (3) statistical analysis. Figure 4.2
shows the supported activities for each task, as well as the structure and process flow
of the framework. The data pre-processing task comprises a preliminary analysis of a

lhttps://scikit-learn.org
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Figure 4.1: Tasks of the ChimeraHTP procedure.

dataset and its characteristics, as well as its adaptation to serve as input data for a ma-
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