The metaplectic representation and boson fields
Loading...
Files
Date
Authors
Gracia Bondía, José M.
Várilly Boyle, Joseph C.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We construct explicitly the infinite-dimensional metaplectic representation and show how its use simplifies and rigorizes several questions in bosonic Quantum Field Theory. The representation permutes Gaussian elements in the boson Fock space, and is necessarily projective. We compute its cocycle at the group level, and obtain Schwinger terms and anomalies from different versions of the cocycle; for instance, the Virasoro anomalous terms are obtained in this manner. We show how the choice of a complex structure on the space of solutions of a wave equation is related to the covariant Feynman propagator methods. We then show how the metaplectic representation allows one to compute exactly the S-matrix for bosons in an external field from the classical scattering operator.
Description
El Center for Particle Physics, antiguo centro de investigación de la Universidad de Texas en Austin emitía preprints en forma impresa en 1991. No hay un archivo en línea para ese año.
Keywords
Representación metapléctica, Cuantización, Teoría cuántica de campos, MATEMÁTICAS