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Abstract

We show how the Moyal product of phase-space functions, and the Weyl correspondence
between symbols and operator kernels, may be obtained directly using the procedures of ge-
ometric quantization, applied to the symplectic groupoid constructed by “doubling” the phase
space.

1 Introduction
Over the last two decades, several approaches to quantization of classical systems have been
developed. The most mathematically thorough of these is the so-called method of geometric
quantization [1–4], which seeks to manufacture the quantum-mechanical Hilbert space from the
symplectic manifold of classical states. Other quantization procedures may be refined and extended
by recasting them in the geometric quantization framework; thus, for example, the recent work of
Tuynman [5] on BRST symmetry. The relations between different quantization schemes continue
to merit attention [6, 7].

That the Moyal or phase-space approach to quantization [8–10] can be explicitly derived from
the geometric quantization scheme was pointed out by Weinstein [12]. However, we are not aware
of an explicit treatment in the literature; this note attempts to fill that gap. We spell out how these
two approaches may be related, in the simplest case of a linear phase space. The idea needed to
bridge the gap between both quantization schemes is the concept of symplectic groupoid, developed
by Weinstein and co-workers [11–14].

The article is arranged as follows. In Sec. 2 we recall the definition of symplectic groupoid, and
in Sec. 3 we briefly review the theory of pairings in geometric quantization, in order to establish the
context. In Sec. 4 we show that the Weyl correspondence between Weyl symbols of Hilbert–Schmidt
operators on 𝐿2(ℝ𝑛) and their kernels, is given by a pairing of real polarizations of a particular
symplectic groupoid, namely two copies of the flat phase-space ℝ2𝑛. We then show, in Sec 5, that
the Moyal product of phase-space functions arises directly from the groupoid structure of the double
phase space.
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Two further applications of this viewpoint are given. In Sec. 6, we rederive the integral
transformation introduced by Daubechies and Grossmann [15] to effect quantization in the coherent-
state picture, from a pairing of a real and a complex polarization on the aforementioned groupoid.
Finally, it is shown in Sec. 7 that the appearance of the ordinary Fourier transformation as a power
of the Weyl correspondence map can be understood geometrically as a property of symplectic
transformations on that groupoid.

2 Symplectic groupoids
If 𝑀 is a manifold with symplectic form 𝜔, we will denote by 𝑀 the symplectic manifold (𝑀,−𝜔).
A groupoid is a set with a partially-defined associative multiplication. We recall the definition of a
symplectic groupoid, as set forth in [12].

A symplectic groupoid consists of a pair of manifolds (𝐺,𝐺0), where 𝐺 has a symplectic form
Ω and a partially defined multiplication with domain 𝐺2 ⊂ 𝐺 × 𝐺, together with two submersions
𝛼 : 𝐺 → 𝐺0, 𝛽 : 𝐺 → 𝐺0, and an involution 𝑥 ↦→ 𝑥∗ of 𝐺, such that:

(1) the graph M = { (𝑥, 𝑦, 𝑥𝑦) : (𝑥, 𝑦) ∈ 𝐺2 } of the multiplication is a Lagrangian submanifold
of 𝐺 × 𝐺 × 𝐺;

(2) the set of “units” 𝐺0 may be identified with a Lagrangian submanifold of 𝐺 (also denoted
by 𝐺0);

(3) for any 𝑥 ∈ 𝐺, we have 𝛼(𝑥)𝑥 = 𝑥 = 𝑥𝛽(𝑥); and 𝛼(𝑥) = 𝑥𝑥∗, 𝛽(𝑥) = 𝑥∗𝑥; moreover,
(𝑥, 𝑦) ∈ 𝐺2 if and only if 𝛽(𝑥) = 𝛼(𝑦);

(4) the graph 𝐼 = { (𝑥, 𝑥∗) : 𝑥 ∈ 𝐺 } of the involution is a Lagrangian submanifold of 𝐺 ×𝐺; and

(5) whenever (𝑥, 𝑦) and (𝑦, 𝑧) ∈ 𝐺2, then (𝑥𝑦, 𝑧) and (𝑥, 𝑦𝑧) lie in 𝐺2, and (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧).

As consequences of these postulates, we find that 𝛼(𝑥∗) = 𝛽(𝑥); that 𝛼(𝑥)∗ = 𝛼(𝑥) = 𝛼(𝑥)2

and 𝛽(𝑥)∗ = 𝛽(𝑥) = 𝛽(𝑥)2; that 𝑥𝑥∗𝑥 = 𝛼(𝑥)𝑥 = 𝑥; that 𝛼(𝛼(𝑥)) = 𝛼(𝑥) and 𝛽(𝛽(𝑥)) = 𝛽(𝑥).
Moreover, if (𝑥, 𝑦) ∈ 𝐺2, then

𝛼(𝑥𝑦) = 𝑥𝑦𝑦∗𝑥∗ = 𝑥𝛼(𝑦)𝑥∗ = 𝑥𝛽(𝑥)𝑥∗ = 𝑥𝑥∗ = 𝛼(𝑥),

and also 𝛽(𝑥𝑦) = 𝛼(𝑦∗𝑥∗) = 𝛼(𝑦∗) = 𝛽(𝑦).
As a notational convention, we write 𝐺 ⇒ 𝐺0 to denote a symplectic groupoid, if 𝛼 and 𝛽 are

understood.
Two general examples of symplectic groupoids deserve mention. One is the groupoid𝑇∗𝐻 ⇒ h∗,

where 𝐻 is a Lie group and h∗ is the dual of its Lie algebra. The maps 𝛼 and 𝛽 are given by right,
resp. left, translation of a cotangent vector to the cotangent space at the identity of 𝐻.

Another example is that of the fundamental groupoid 𝜋(𝑀) ⇒ 𝑀 of a symplectic manifold
(𝑀,𝜔). Its elements are homotopy classes of smooth paths 𝜎 : [0, 1] → 𝑀 , with the usual
concatenation product of paths whose endpoints match; reversing the path gives the involution.
Here 𝛼( [𝜎]) = 𝜎(0), 𝛽( [𝜎]) = 𝜎(1) are the endpoint assignment maps. The manifold 𝑀 embeds
in 𝜋(𝑀) as the submanifold of constant paths, which is Lagrangian with respect to the symplectic
structure Ω = 𝛼∗𝜔 − 𝛽∗𝜔 on 𝜋(𝑀).
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When 𝑀 is simply connected, [𝜎] is determined by its endpoints, and the fundamental groupoid
may be re-expressed as

𝑀 × 𝑀 ⇒ 𝑀.

We can then write 𝛼(𝑞, 𝑝) = 𝑞, 𝛽(𝑞, 𝑝) = 𝑝, and identify 𝑀 with the diagonal submanifold
{ (𝑞, 𝑞) : 𝑞 ∈ 𝑀 }. The multiplication and involution are given by:

(𝑞, 𝑝) · (𝑝, 𝑟) = (𝑞, 𝑟); (𝑞, 𝑝)∗ = (𝑝, 𝑞).

One can check that the graph of the product M = { (𝑞, 𝑝; 𝑝, 𝑟; 𝑞, 𝑟) : 𝑞, 𝑝, 𝑟 ∈ 𝑀 } is Lagrangian in
𝐺 × 𝐺 × 𝐺.

We now specialize further to the case 𝑀 = ℝ2𝑛, with 𝜔 a nondegenerate alternating bilinear
form on ℝ2𝑛. Writing 𝜔̂(𝑢) : 𝑣 ↦→ 𝜔(𝑢, 𝑣) gives a skewsymmetric invertible map 𝜔̂ : ℝ2𝑛 → ℝ2𝑛∗.
One obtains

Ω((𝑥, 𝑦), (𝑧, 𝑤)) = 𝜔(𝑥, 𝑧) − 𝜔(𝑦, 𝑤)

= 𝜔̂(𝑥 − 𝑦)
[ 𝑧 + 𝑤

2

]
− 𝜔̂(𝑧 − 𝑤)

[𝑥 + 𝑦
2

]
.

On the other hand, ℝ2𝑛 × ℝ
2𝑛 can be identified with the cotangent bundle 𝑇∗(ℝ2𝑛). If (𝑢, 𝜉),

(𝑣, 𝜂) are elements of ℝ2𝑛 × ℝ2𝑛∗, regarded as local coordinates of covectors in 𝑇∗(ℝ2𝑛), the
cotangent symplectic structure of 𝑇∗(ℝ2𝑛) reduces to the alternating bilinear form:

Σ((𝑢, 𝜓), (𝑣, 𝜒)) = 𝜒(𝑢) − 𝜓(𝑣).

Thus ℝ2𝑛 ×ℝ
2𝑛 can be identified with 𝑇∗(ℝ2𝑛) as symplectic manifolds by the linear isomorphism

Φ : (𝑥, 𝑦) ↦→
( 1

2 (𝑥 + 𝑦), 𝜔̂(𝑥 − 𝑦)
)

(1)

for which Φ∗Σ = Ω.

3 Pairing in geometric quantization
We briefly recall here, in order to fix notation, those aspects of geometric quantization that we shall
need to address.

Prequantization of an 2𝑛-dimensional symplectic manifold (𝑀,𝜔) proceeds by finding a real-
linear map 𝑓 ↦→ 𝑓 from the Poisson algebra of smooth functions on 𝑀 to an algebra of operators
on the Hilbert space of 𝐿2(𝑀), for which 1̂ = 1 and { 𝑓1, 𝑓2}̂= (𝑖/ℏ) [ 𝑓1, 𝑓2]. The right recipe is
𝑓 = 𝑓 − 𝑖ℏ∇𝑋 𝑓

, where 𝑋 𝑓 is the Hamiltonian vector field of 𝑓 and the covariant derivative ∇ is
locally given by

∇𝑋 = 𝑋 − (𝑖/ℏ) 𝜃 (𝑋). (2)

Here 𝜃 is a symplectic potential, i.e., a one-form for which 𝑑𝜃 = 𝜔. When 𝜔 is not exact, local
potentials must be patched together so that ∇ becomes a linear connection on a Hermitian complex
line bundle 𝐿 → 𝑀 , whose curvature form is (−𝑖/ℏ)𝜔, as is well-known. The elements of the
prequantization Hilbert space are sections 𝑠 ∈ Γ𝐿 of this line bundle.

Geometric quantization then involves finding a positive polarization of (𝑀,𝜔), i.e., a subbundle
𝐹 of the complexified tangent bundle 𝑇∗𝑀ℂ, which is maximally isotropic for 𝜔, with 𝐹 ∩ 𝐹 of
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constant rank; which is integrable in the sense that both 𝐹 and 𝐹 ∩ 𝐹 are closed under the Lie
bracket; and which is positive in that −𝑖𝜔(𝑌,𝑌 ) ⩾ 0 whenever 𝑌 is a section of 𝐹.

A polarized section is any 𝑠 ∈ Γ𝐿 for which ∇𝑌 𝑠 = 0 whenever 𝑌 ∈ Γ𝐹. The quantizable
observables are those 𝑔 ∈ 𝐶∞(𝑀) for which ad(𝑋𝑔) preserves Γ𝐹. Then one checks that 𝑔̂
preserves the space Γ𝐹𝐿 of polarized sections. The remaining difficulty is to endow Γ𝐹𝐿 – or
some modification thereof – with a suitable inner product, in order that the quantizable observables
be represented as operators on a Hilbert space. This is done by using the idea of a half-form
pairing [16].

We follow the very precise treatment of pairings by Rawnsley [17, 18]. The canonical line
bundle of 𝐹 is 𝐾𝐹 = Λ𝑛𝐹0, where 𝐹0 ⊂ 𝑇∗𝑀ℂ denotes covectors which vanish on 𝐹. For example,
if 𝑀 is a Kähler manifold with local holomorphic coordinates (𝑧1, . . . , 𝑧𝑛), and 𝐹 is spanned by
𝜕/𝜕𝑧1, . . . , 𝜕/𝜕𝑧𝑛, then 𝐾𝐹 is spanned by 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛; in this case we have 𝐹 ∩ 𝐹 = 0. A
contrasting example, for which 𝐹 is a real polarization, that is, 𝐹 = 𝐹, is obtained by taking
local Darboux coordinates (𝑞1, . . . , 𝑞𝑛; 𝑝1, . . . , 𝑝𝑛) for 𝑀 , with 𝐹 spanned by 𝜕/𝜕𝑝1, . . . , 𝜕/𝜕𝑝𝑛,
whereupon 𝐾𝐹 is spanned by 𝑑𝑞1 ∧ · · · ∧ 𝑑𝑞𝑛.

Suppose there are two positive polarizations 𝐹 and 𝑃; it turns out that 𝐾𝐹 and 𝐾𝑃 are isomorphic
as line bundles over 𝑀 and that 𝐾𝐹 ⊗ 𝐾𝑃 is a trivial bundle. There is an obvious map from this
bundle to Λ2𝑛𝑇∗𝑀ℂ (replace tensor by exterior product), which is an isomorphism iff 𝐹 ∩ 𝑃 = 0.
The Liouville volume 𝜆 = (−1)𝑛(𝑛−1)/2𝜔∧𝑛/𝑛! trivializes the latter bundle. Thus there is a pairing
⟨𝛼, 𝛽⟩ of 𝛼 ∈ Γ𝐾𝐹 and 𝛽 ∈ Γ𝐾𝑃 defined by

𝑖𝑛⟨𝛼, 𝛽⟩ 𝜆 = 𝛼̄ ∧ 𝛽 (3)

provided 𝐹 ∩ 𝑃 = 0. In particular, if 𝐹 ∩ 𝐹 = 0, then ⟨·, ·⟩ is an inner product on Γ𝐾𝐹 .
Matters are less straightforward if 𝐹 ∩ 𝑃 ≠ 0. Here 𝐹 ∩ 𝑃 = 𝐷ℂ where 𝐷 is an isotropic

subbundle of 𝑇𝑀 . If 𝐷⊥ is the symplectic orthogonal of 𝐷, then 𝐷⊥/𝐷 becomes a symplectic
vector bundle (with an induced symplectic form 𝜔𝐷), of which 𝐹/𝐷 and 𝑃/𝐷 are non-overlapping
maximal-isotropic subbundles; thus we may apply the previous recipe to get a pairing of 𝐾𝐹/𝐷
and 𝐾𝑃/𝐷 .

We can try to pull back to a pairing of 𝐾𝐹 and 𝐾𝑃 by suppressing the common real directions
in 𝐷. Suppose that the foliation of 𝑀 induced by 𝐷 has a smooth space of leaves 𝑀/𝐷, that 𝐷
is spanned locally by 𝜕/𝜕𝑦1, . . . , 𝜕/𝜕𝑦𝑘 , and that (𝑥1, . . . , 𝑥𝑘 ) are conjugate local coordinates to
(𝑦1, . . . , 𝑦𝑘 ); if

𝛼 = 𝑎 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑘 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛−𝑘 ∈ Γ𝐾𝐹 ,

𝛽 = 𝑏 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑘 ∧ 𝑑𝑤1 ∧ · · · ∧ 𝑑𝑤𝑛−𝑘 ∈ Γ𝐾𝑃,

where the coefficient functions do not depend on the 𝑦 𝑗 , then we can define 𝛼̃ = 𝑎 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛−𝑘
in Γ𝐾𝐹/𝐷 , 𝛽 = 𝑏 𝑑𝑤̃1 ∧ · · · ∧ 𝑑𝑤̃𝑛−𝑘 in Γ𝐾𝑃/𝐷 , where the tildes denote corresponding coordinates
on 𝑀/𝐷, and we can try to set ⟨𝛼, 𝛽⟩ = ⟨𝛼̃, 𝛽⟩. It turns out, of course, that this recipe is coordinate-
dependent, and in fact (after incorporating a correction factor of 𝜆2) the change of variables formula
shows that the result is a 2-density on the leaf space 𝑀/𝐷.

Since we could integrate a 1-density over 𝑀/𝐷 to get a scalar-valued inner product, we abandon
𝐾𝐹 in favour of the vector bundle 𝑄𝐹 of “half-forms” on 𝑀 which is defined by the requirement
that 𝑄𝐹 ⊗ 𝑄𝐹 = 𝐾𝐹 ; if 𝛼 ∈ Γ𝐾𝐹 , we write

√
𝛼 = 𝜇 ∈ Γ𝑄𝐹 if 𝜇 ⊗ 𝜇 = 𝛼. It can then be shown that
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𝑄𝐹 ⊗ 𝑄𝑃 carries a pairing, whose values are 1-densities on 𝑀/𝐷, determined (up to a sign) by the
requirement that ⟨

√
𝛼,

√
𝛽⟩2 = ⟨𝛼, 𝛽⟩.

[We tiptoe past the crucial question of the existence of 𝑄𝐹 , for which there is a topological
obstruction: (𝑀,𝜔) must “admit metaplectic structures”. This obstruction has been ingeniously
overcome by Robinson and Rawnsley [3] by replacing metaplectic structures by 𝑀𝑝𝑐-structures,
which always exist; the procedure is akin to passing from spin structures to spin𝑐 structures on
Riemannian manifolds.]

The final touch is to replace the prequantization bundle 𝐿 by 𝐿 ⊗ 𝑄𝐹 , and let Γ𝐹 (𝐿 ⊗ 𝑄𝐹)
denote its polarized sections (those killed by ∇𝑌 for 𝑌 ∈ Γ𝐹). The pairing of two sections
𝑠 ⊗

√
𝛼 ∈ Γ𝐹 (𝐿 ⊗ 𝑄𝐹), 𝑡 ⊗

√
𝛽 ∈ Γ𝑃 (𝐿 ⊗ 𝑄𝑃) is given by

⟨𝑠 ⊗
√
𝛼, 𝑡 ⊗

√︁
𝛽⟩ =

∫
𝑀/𝐷

(𝑠, 𝑡) ⟨
√
𝛼,

√︁
𝛽⟩, (4)

where (·, ·) is the Hermitian metric on 𝐿. When 𝐹 = 𝑃, the geometric quantization Hilbert space
H𝐹 is obtained by completing Γ𝐹 (𝐿 ⊗ 𝑄𝐹) with respect to this inner product.

4 Pairings and the Weyl correspondence
On the symplectic manifold 𝐺0 = ℝ2𝑛, we take coordinates (𝑥′, 𝑥′′) ≡ (𝑥′1, . . . , 𝑥

′
𝑛, 𝑥

′′
1 , . . . , 𝑥

′′
𝑛 ), so

that 𝜔 = 𝑑𝑥′∧ 𝑑𝑥′′ ≡ ∑
𝑘 𝑑𝑥

′
𝑘
∧ 𝑑𝑥′′

𝑘
. (To avoid index clutter, we will henceforth just take 𝑛 = 1.) We

can regard𝜔 as a bilinear symplectic form on ℝ2, with𝜔(𝑥, 𝑧) = 𝑥′𝑧′′−𝑥′′𝑧′. Then 𝜔̂(𝑥) = (−𝑥′′, 𝑥′)
in the dual space ℝ2∗.

The symplectic groupoid𝐺 = ℝ2×ℝ2 has coordinates (𝑥′, 𝑥′′; 𝑦′, 𝑦′′), with which its symplectic
form may be written as

Ω = 𝜋∗1𝜔 − 𝜋∗2𝜔 = 𝑑𝑥′ ∧ 𝑑𝑥′′ − 𝑑𝑦′ ∧ 𝑑𝑦′′. (5)

Thus (𝑥′, 𝑦′; 𝑥′′,−𝑦′′) are Darboux coordinates for 𝐺.
On the cotangent bundle 𝑇∗ℝ2, we use Darboux coordinates (𝑞1, 𝑞2, 𝑝1, 𝑝2); the symplectic

form is Σ = 𝑑𝑞1 ∧ 𝑑𝑝1 + 𝑑𝑞2 ∧ 𝑑𝑝2. The symplectomorphism Φ of (1) is given explicitly by

𝑞1 =
𝑥′ + 𝑦′

2
, 𝑞2 = 𝑥′ − 𝑦′, 𝑝1 = 𝑥′′ − 𝑦′′, 𝑝2 =

𝑥′′ + 𝑦′′
2

. (6)

We consider the following two real polarizations of 𝐺. Set

𝐹 := span
{
𝜕

𝜕𝑥′′
,
𝜕

𝜕𝑦′′

}
, 𝑃 := span

{
𝜕

𝜕𝑝1
,
𝜕

𝜕𝑞2

}
. (7)

From (6), it follows that

𝜕

𝜕𝑝1
=

1
2

(
𝜕

𝜕𝑥′′
− 𝜕

𝜕𝑦′′

)
,

𝜕

𝜕𝑝2
=

𝜕

𝜕𝑥′′
+ 𝜕

𝜕𝑦′′
,

so we can rewrite 𝐹 = span{𝜕/𝜕𝑝1, 𝜕/𝜕𝑝2}. Therefore 𝐹∩𝑃 = 𝐷ℂ, where 𝐷 is spanned by 𝜕/𝜕𝑝1.
By a slight abuse of notation, we can regard {𝑞1, 𝑞2, 𝑝2} as local coordinates for the (affine) leaf
space 𝐺/𝐷, and the pairing Γ𝑄𝐹 × Γ𝑄𝐹 → D1(𝐺/𝐷) is determined by

⟨
√︁
𝑑𝑥′ ∧ 𝑑𝑦′,

√︁
𝑑𝑞1 ∧ 𝑑𝑝2⟩ = 𝑑𝑞1 𝑑𝑞2 𝑑𝑝2.
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The polarized sections in Γ𝐹𝐿 are of the form 𝑓 𝑠0, where 𝑓 ∈ 𝐶∞(𝐺) and 𝑠0 is a nonvanishing
section of 𝐿 satisfying ∇𝑋 𝑠0 = −(𝑖/ℏ) Θ𝐹 (𝑋)𝑠0 and (𝑠0, 𝑠0) = 1. The symplectic potential Θ𝐹 for
(𝐺,Ω) may be taken to vanish on 𝐹; and so

Θ𝐹 = −𝑥′′ 𝑑𝑥′ + 𝑦′′ 𝑑𝑦′ = −𝑝1 𝑑𝑞1 − 𝑝2 𝑑𝑞2.

In this case 𝑓 𝑠0 ∈ Γ𝐹𝐿 if and only if 𝑋 𝑓 = 0 for 𝑋 ∈ 𝐹, that is, 𝑓 = 𝑓 (𝑥′, 𝑦′). Likewise, if 𝑡0 is a
section of 𝐿 satisfying ∇𝑋 𝑡0 = −(𝑖/ℏ) Θ𝑃 (𝑋)𝑡0 and (𝑡0, 𝑡0) = 1, with

Θ𝑃 = −𝑝1 𝑑𝑞1 + 𝑞2 𝑑𝑝2

being the symplectic potential which vanishes on 𝑃, then a typical element of Γ𝑃𝐿 is of the form
𝑔𝑡0 with 𝑔 = 𝑔(𝑞1, 𝑝2).

Clearly 𝑡0 = 𝜙0𝑠0 for a nonvanishing 𝜙0 ∈ 𝐶∞(𝐺); indeed, from ∇𝑋 𝑡0 = (𝑋𝜙0)𝑠0 + 𝜙0 ∇𝑋 𝑠0 we
obtain

𝑑𝜙0
𝜙0

=
𝑖

ℏ
(Θ𝐹 − Θ𝑃) = − 𝑖

ℏ
𝑑 (𝑞2𝑝2),

and so 𝜙0 = 𝐶 exp(−𝑖𝑞2𝑝2/ℏ) for some positive constant 𝐶. Since (𝑠0, 𝑡0) = 𝜙0, we can now
compute the half-form pairing of 𝛼 = 𝑓 (𝑥′, 𝑦′)𝑠0 ⊗

√︁
𝑑𝑥′ ∧ 𝑑𝑦′ and 𝛽 = 𝑔(𝑞1, 𝑞2)𝑡0 ⊗

√︁
𝑑𝑞1 ∧ 𝑑𝑝2

as

⟨𝛼, 𝛽⟩ = 𝐶
∫

𝑓 (𝑥′, 𝑦′) 𝑔(𝑞1, 𝑝2) 𝑒−𝑖𝑞2𝑝2/ℏ 𝑑𝑞1 𝑑𝑞2 𝑑𝑝2

= 𝐶

∫
𝑓 (𝑥′, 𝑦′) 𝑔

(
𝑥′ + 𝑦′

2
, 𝑝2

)
𝑒𝑖𝑝2 (𝑦′−𝑥′)/ℏ 𝑑𝑝2 𝑑𝑥

′ 𝑑𝑦′

= ⟨ 𝑓 , 𝑇𝑔⟩𝐿2 (ℝ2) ,

where
𝑇𝑔(𝑥′, 𝑦′) := 𝐶

∫
𝑔

(
𝑥′ + 𝑦′

2
, 𝜁

)
𝑒𝑖𝜁 (𝑦

′−𝑥′)/ℏ 𝑑𝜁 (8)

is the kernel of the operator – on 𝐿2(ℝ) – whose Weyl symbol is 𝑔 [19]. Unitarity of 𝑇 is achieved
by taking 𝐶 = (2𝜋ℏ)−1.

In other words: the pairing of the non-transverse polarizations 𝐹 and 𝑃 of the symplectic
groupoid ℝ2 × ℝ

2 yields the well-known correspondence between kernels of Hilbert–Schmidt
operators on 𝐿2(ℝ) and the Weyl symbols of these operators. Thus the groupoid forms a bridge
between conventional quantum mechanics and the phase-space formalism. It remains only to see
how the symbol product may be obtained directly from this starting point.

5 The Moyal product from geometric quantization
The importance of symplectic groupoids in general is that the partial multiplication in𝐺 induces an
associative product of polarized sections, so that the geometric quantization Hilbert space becomes
in fact a Hilbert algebra. By suitably modifying its topology, one can obtain a𝐶∗-algebra. This is in
the spirit of noncommutative geometry [20–22]. Indeed, in [13,23], a symplectic groupoid structure
on the torus 𝕋 2, which depends on an irrational parameter, is shown to yield the “noncommutative
torus” algebra considered by Rieffel and others [21, 24].
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On the other hand, the basic idea of Moyal quantization is that by working with functions
on phase space, rather than wave functions, one may describe both states and observables of
quantum-mechanical systems in classical terms; thus phase-space functions are to be equipped with
a noncommutative product which give the quantum formalism directly without invoking a Hilbert
space a priori. In Ref. [12] it is claimed that the Moyal product of phase-space functions is inherited
from the groupoid structure of ℝ2 × ℝ

2
⇒ ℝ2, equipped with the polarization 𝑃 of (7). We next

verify this claim in detail.
For any groupoid 𝐺, we may define a convolution product of two functions 𝑓 , 𝑔 on 𝐺 by

( 𝑓 ∗ 𝑔) (𝑧) :=
∫
{𝑥𝑦=𝑧}

𝑓 (𝑥)𝑔(𝑦) 𝑑𝜆𝑧 (𝑥, 𝑦),

where 𝜆𝑧 is some suitable measure on the set { (𝑥, 𝑦) ∈ 𝐺2 : 𝑥𝑦 = 𝑧 }. For the symplectic groupoid
𝐺 = 𝑀 × 𝑀 , this simplifies to:

( 𝑓 ∗ 𝑔) (𝑥, 𝑦) :=
∫
𝑀

𝑓 (𝑥, 𝑡)𝑔(𝑡, 𝑦) 𝑑𝜆(𝑡),

where 𝜆 = 𝜆𝑥,𝑦 is (a multiple of) the Liouville volume on 𝑀 .
When 𝐺 has a real polarization with a regular leaf space, the polarized sections are represented

(locally) by functions covariantly constant along the leaves; in general their convolution products
will fail to be covariantly constant. To obtain a new polarized section, one must average over the
leaves (by integration); by projection, one recovers a twisted product of functions on the leaf space.

In the case of 𝐺 = ℝ2 × ℝ
2, the diagonal Δ = { (𝑥′, 𝑥′′; 𝑥′, 𝑥′′) ∈ 𝐺 : (𝑥′, 𝑥′′) ∈ ℝ2 } is a

Lagrangian submanifold of 𝐺 which is transverse to the leaves 𝑞1 = const1, 𝑞2 = const2 of the
polarization 𝑃; thus a polarized section is determined by its values on Δ, and we may identify Δ

with the leaf space 𝐺/𝑃.
Let us now regard Eq. (6) as a linear change of variables; we wish to rewrite the groupoid

product
(𝑥′, 𝑥′′, 𝑦′, 𝑦′′) = (𝑥′, 𝑥′′, 𝑡′, 𝑡′′) · (𝑡′, 𝑡′′, 𝑦′, 𝑦′′) (9)

in a more suitable form; we substitute

𝑞 = 1
2 (𝑥

′ + 𝑦′), 𝑞′ = 1
2 (𝑥

′ + 𝑡′), 𝑞′′ = 1
2 (𝑡

′ + 𝑦′);
𝑝 = 1

2 (𝑥
′′ + 𝑦′′), 𝑝′ = 1

2 (𝑥
′′ + 𝑡′′), 𝑝′′ = 1

2 (𝑡
′′ + 𝑦′′);

𝜉 = 𝑥′′ − 𝑦′′, 𝜉′ = 𝑥′′ − 𝑡′′, 𝜉′′ = 𝑡′′ − 𝑦′′;
𝜂 = 𝑦′ − 𝑥′, 𝜂′ = 𝑡′ − 𝑥′, 𝜂′′ = 𝑦′ − 𝑡′. (10)

Now Eq. (9) takes the form

(𝑞, 𝑝, 𝜉, 𝜂) = (𝑞′, 𝑝′, 𝜉′, 𝜂′) · (𝑞′′, 𝑝′′, 𝜉′′, 𝜂′′), (11)

determined by the four relations

𝑞 = 1
2 (𝑞

′ + 𝑞′′) − 1
4 (𝜂

′ − 𝜂′′), 𝜉 = 2(𝑝′ − 𝑝′′),
𝑝 = 1

2 (𝑝
′ + 𝑝′′) + 1

4 (𝜉
′ − 𝜉′′), 𝜂 = 2(𝑞′′ − 𝑞′). (12)
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Now 𝛼(𝑞, 𝑝, 𝜉, 𝜂) = (𝑞 − 1
2𝜂, 𝑝 +

1
2𝜉) and 𝛽(𝑞, 𝑝, 𝜉, 𝜂) = (𝑞 + 1

2𝜂, 𝑝 −
1
2𝜉) in the new coordinates,

so the partial product (11) is subject to the compatibility conditions:

𝑞′ + 1
2𝜂

′ = 𝑞′′ − 1
2𝜂

′′, 𝑝′ − 1
2𝜉

′ = 𝑝′′ + 1
2𝜉

′′. (13)

We may interpret the coordinate change (10) thus: the parameters (𝑞, 𝑝) label points of the leaf
space 𝐺/𝑃 (since Δ is the submanifold 𝜉 = 𝜂 = 0), while (𝜉, 𝜂) are parameters along the leaves.
Since (𝑥′, 𝑥′′, 𝑦′, 𝑦′′) = (𝑞 − 1

2𝜂, 𝑝 + 1
2𝜉, 𝑞 + 1

2𝜂, 𝑝 − 1
2𝜉), each leaf carries a natural volume form

2−4 𝑑𝜂 ∧ 𝑑𝜉.
The pointwise product of two functions on 𝐺 representing sections in Γ𝑃 (𝐿 ⊗ 𝑄𝑃) is

(2𝜋ℏ)−2𝑔(𝑞′, 𝑝′)𝑒−𝑖𝑝′𝜂′/ℏ ℎ(𝑞′′, 𝑝′′) 𝑒−𝑖𝑝′′𝜂′′/ℏ,

which is of the form
𝑓 (𝑞, 𝑝, 𝑞′, 𝑝′, 𝑞′′, 𝑝′′) 𝑒−𝑖𝑝𝜂/ℏ

with

𝑓 (𝑞, 𝑝, 𝑞′, 𝑝′, 𝑞′′, 𝑝′′) = (2𝜋ℏ)−2𝑔(𝑞′, 𝑝′) ℎ(𝑞′′, 𝑝′′) exp
(
− 𝑖
ℏ
(𝑝′𝜂′ + +𝑝′′𝜂′′ − 𝑝𝜂)

)
= (2𝜋ℏ)−2𝑔(𝑞′, 𝑝′) ℎ(𝑞′′, 𝑝′′)

× exp
(
−2𝑖
ℏ
(𝑝𝑞′ − 𝑞𝑝′ + 𝑝′𝑞′′ − 𝑞′𝑝′′ + 𝑝′′𝑞 − 𝑞′′𝑝)

)
, (14)

since the relations Eqs. (12) and (13) imply

𝜂 = 2(𝑞′′ − 𝑞′), 𝜂′ = 2(𝑞′′ − 𝑞), 𝜂′′ = 2(𝑞 − 𝑞′).

The twisted product (𝑔×ℎ) (𝑞, 𝑝) is thus an integral of the expression (14) over: (a) the parameter
region (𝑡′, 𝑡′′) ∈ ℝ2 determined by (13) which underlies the (prequantized) convolution product,
and (b) the leaf of 𝑃 through the point (𝑞, 𝑝) ∈ Δ, which is parametrized by (𝑞 − 1

2𝜂, 𝑝 +
1
2𝜉). Since

𝑑𝑡′ ∧ 𝑑𝑡′′ ∧ (2−4 𝑑𝜂 ∧ 𝑑𝜉) = 1
4𝑑 (𝑞

′ + 𝑞′′) ∧ 𝑑 (𝑝′ + 𝑝′′) ∧ 𝑑 (𝑞′′ − 𝑞′) ∧ 𝑑 (𝑝′ − 𝑝′′)
= 𝑑𝑞′ ∧ 𝑑𝑞′′ ∧ 𝑑𝑝′ ∧ 𝑑𝑝′′,

we finally arrive at

(𝑔 × ℎ) (𝑞, 𝑝) = (2𝜋ℏ)−2
∫
ℝ4
𝑔(𝑞′, 𝑝′) ℎ(𝑞′′, 𝑝′′)

× exp
(
−2𝑖
ℏ
(𝑝𝑞′ − 𝑞𝑝′ + 𝑝′𝑞′′ − 𝑞′𝑝′′ + 𝑝′′𝑞 − 𝑞′′𝑝)

)
𝑑𝑞′ 𝑑𝑞′′ 𝑑𝑝′ 𝑑𝑝′′,

which is the Moyal product [8, 10] of the symbols 𝑔 and ℎ. Thus the geometric quantization data
(𝐺,Ω, 𝑃) indeed incorporate the essentials of Moyal quantization in the linear case.
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6 The Daubechies–Grossmann transform
Some years ago, Daubechies and Grossmann [15] discovered an integral transformation similar
to the well-known one of Bargmann and Segal [25], but more directly adapted to quantization in
that it intertwined classical observables (i.e., functions on phase space) directly with the coherent-
state transitions of the corresponding quantized operators. They noted that the new transformation
differed from Bargmann’s in two respects: the transformed operators acted on a space with double the
usual number of variables, and that some mixing of the variables had occurred. We now show how
these phenomena may be simply elucidated in terms of the symplectic groupoid ℝ2𝑛 ×ℝ

2𝑛
⇒ ℝ2𝑛.

The idea is to pair the “Moyal polarization” 𝑃 of Eq. (7) with a certain complex polarization 𝑅.
Specifically, write 𝑧 = 𝑥′ + 𝑖𝑥′′, 𝑤 = 𝑦′ + 𝑖𝑦′′, and take

𝑅 = span
{
𝜕

𝜕𝑧
,
𝜕

𝜕𝑤

}
.

Then 𝑃 ∩ 𝑅 = 0, and 𝐾𝑅 is spanned by 𝑑𝑧 ∧ 𝑑𝑤̄. From Eq. (5), Ω = 𝑖
2 (𝑑𝑧 ∧ 𝑑𝑧 − 𝑑𝑤 ∧ 𝑑𝑤̄), and

the symplectic potential vanishing on 𝑅 is

Θ𝑅 = − 𝑖
2 (𝑧 𝑑𝑧 + 𝑤 𝑑𝑤̄).

Elements of Γ𝑅𝐿 are of the form ℎ(𝑧, 𝑤̄) 𝑟0, where ℎ is holomorphic in (𝑧, 𝑤̄) and ∇𝑋𝑟0 =

−(𝑖/ℏ) Θ𝑅 (𝑋)𝑟0. Thus 𝑟0 = 𝜓0𝑡0 with 𝑑𝜓0/𝜓0 = (𝑖/ℏ) (Θ𝑃 − Θ𝑅). It is convenient to use the
complex notations on the symplectic groupoid 𝑢 = 𝑞1+𝑖𝑝2, 𝑣 = 𝑞2+𝑖𝑝1, and to write 𝑑2𝑢 = 𝑑𝑞1 𝑑𝑝2,
etc. We thus get

𝜓0 = 𝐶 exp{−(𝑧𝑧 + 𝑤𝑤̄ + 𝑢̄𝑣 − 𝑢𝑣̄)/4ℏ}.
One finds that ⟨

√︁
𝑑𝑞1 ∧ 𝑑𝑝2,

√
𝑑𝑧 ∧ 𝑑𝑤̄⟩ = 1, so if 𝛾 = ℎ(𝑧, 𝑤̄)𝑟0 ⊗

√
𝑑𝑧 ∧ 𝑑𝑤̄, then

⟨𝛽, 𝛾⟩ = 𝐶
∫

𝑔(𝑢)ℎ(𝑧, 𝑤̄) 𝑒−(𝑧𝑧+𝑤𝑤̄+𝑢̄𝑣−𝑢𝑣̄)/4ℏ 𝑑2𝑢 𝑑2𝑣

= 𝐶

∫
𝑔(𝑢)ℎ(𝑢 + 1

2𝑣, 𝑢̄ −
1
2 𝑣̄) 𝑒

−(2𝑢𝑢̄+𝑢̄𝑣−𝑢𝑣̄+ 1
2 𝑣𝑣̄)/4ℏ 𝑑2𝑢 𝑑2𝑣

= ⟨𝑔, 𝑆ℎ⟩𝐿2 (ℝ2) ,

with

𝑆ℎ(𝑢) = 𝐶
∫

ℎ(𝑢 + 1
2𝑣, 𝑢̄ −

1
2 𝑣̄) 𝑒

−(2𝑢𝑢̄+𝑢̄𝑣−𝑢𝑣̄+ 1
2 𝑣𝑣̄)/4ℏ 𝑑2𝑣

=

∫
𝐾 (𝑧, 𝑤; 𝑢)ℎ(𝑧, 𝑤̄) 𝑒−(𝑧𝑧+𝑤𝑤̄)/2ℏ 𝑑2𝑧 𝑑2𝑤,

where 𝐾 is computed from the reproducing kernel property of Gaussian integrals:

𝐾 (𝑧, 𝑤; 𝑢) = 𝐶

(2𝜋ℏ)2

∫
exp

(
𝑧(𝑢 + 1

2𝑣) + 𝑤(𝑢̄ −
1
2 𝑣̄)

2ℏ
−

2𝑢𝑢̄ + 𝑢̄𝑣 − 𝑢𝑣̄ + 1
2𝑣𝑣̄

4ℏ

)
𝑑2𝑣

=
2𝐶
𝜋ℏ

exp
(
−2𝑢𝑢̄ + 2𝑧𝑢 + 2𝑤𝑢̄ − 𝑧𝑤

2ℏ

)
.
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If 𝑒𝑎̄,𝑏 (𝑧, 𝑤̄) = exp{(𝑎̄𝑧+𝑏𝑤̄)/2ℏ} denote coherent-state vectors in (𝑧, 𝑤̄)-space, one checks that
∥𝑆𝑒𝑎̄,𝑏∥ = 2𝐶 (2𝜋ℏ)3/2∥𝑒𝑎̄,𝑏∥, so the normalization 𝐶 = 1

2 (2𝜋ℏ)
−3/2 makes 𝑆 unitary. Moreover,

𝑆−1 is given by the conjugate kernel:

𝑄(𝑧, 𝑤̄; 𝑢) = 2
(2𝜋ℏ)5/2 exp

(
−2𝑢𝑢̄ + 2𝑧𝑢̄ + 2𝑤̄𝑢 − 𝑧𝑤̄

2ℏ

)
.

Apart from Gaussian-integral conventions, this is precisely the kernel of the Daubechies–Grossmann
transformation which takes a Weyl symbol 𝑔 to the coherent-state transition matrix:

⟨𝑤 | 𝑄𝑔 | 𝑧⟩ =
∫

𝑄(𝑧, 𝑤̄; 𝑢) 𝑔(𝑢) 𝑑2𝑢.

Thus the symplectic groupoid picture shows that this arises from the pairing of the polarizations 𝑃
and 𝑅.

The comparison with the double Bargmann transformation, explored in [15], may now be
clarified. The double Bargmann transformation is obtained from the pairing of the polarizations 𝐹
and 𝑅; the “mixing” of variables noted in [15] comes from the combination of this pairing with that
of Sec. 4.

7 Iteration of pairings
In [26] we proved, by a lengthy functional-analytic argument, that the Weyl transform is of finite
order 24. We now show that this comes in fact from a simple identity among linear symplectomor-
phisms of the groupoid.

Let us write 𝑞 (0)1 = 𝑥′, 𝑞 (0)2 = 𝑦′, 𝑝 (0)1 = 𝑥′′, 𝑝 (0)2 = −𝑦′′, and considering the symplectic linear
map Ψ given by:

𝑞
(1)
1 =

𝑞
(0)
1 + 𝑞 (0)2√

2
, 𝑞

(1)
2 =

𝑝
(0)
1 − 𝑝 (0)2√

2
, 𝑝

(1)
1 =

𝑝
(0)
1 + 𝑝 (0)2√

2
, 𝑝

(1)
2 =

𝑞
(0)
2 − 𝑞 (0)1√

2
, (15)

which is related to Eq. (6) by 𝑝2 ↦→ 𝑞2, 𝑞2 ↦→ −𝑝2 and a rescaling by
√

2 factors. The pairing
of the polarizations 𝐹 ( 𝑗) = span{𝜕/𝜕𝑝 ( 𝑗)1 , 𝜕/𝜕𝑝 ( 𝑗)2 } ( 𝑗 = 0, 1) yields the unitary transformation of
operator kernels:

𝑊𝑔(𝑞 (0)1 , 𝑞
(0)
2 ) = 1

2𝜋ℏ

∫
𝑔

(
𝑞
(0)
1 + 𝑞 (0)2√

2
, 𝑡

)
𝑒𝑖𝑡 (𝑞

(0)
1 −𝑞 (0)2 )/

√
2ℏ 𝑑𝑡,

which is essentially the Weyl transformation: compare Eq. (8).
It should be noted that 𝑊 maps symbols 𝑔 on position-momentum space to kernels 𝑊𝑔 in a

doubled position space, and by iterating𝑊 we implicitly identify these two interpretations of phase
space. It is with respect to this identification that we establish the periodicity of the Weyl transform.

After three iterations of (15), the variables decouple in two pairs:

𝑞
(3)
1 =

𝑞
(0)
1 + 𝑝 (0)1√

2
, 𝑝

(3)
1 =

−𝑞 (0)1 + 𝑝 (0)1√
2

, 𝑞
(3)
2 =

𝑞
(0)
2 + 𝑝 (0)2√

2
, 𝑝

(3)
2 =

−𝑞 (0)2 + 𝑝 (0)2√
2

,
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and Ψ6 becomes simply:

𝑞
(6)
𝑗

= 𝑝
(0)
𝑗
, 𝑝

(6)
𝑗

= −𝑞 (0)
𝑗
, ( 𝑗 = 1, 2),

which is a complex structure on ℝ4. The pairing of 𝐹 (0) and 𝐹 (6) yields the (inverse) Fourier
transformation in the variables (𝑞 (0)1 , 𝑞

(0)
2 ).

The Fourier transformation on 𝐿2(ℝ𝑛) is the image, under the metaplectic representation of
the symplectic group Sp(2𝑛,ℝ), of the complex structure 𝑞 ↦→ 𝑝, 𝑝 ↦→ −𝑞 acting on Darboux
coordinates on ℝ2𝑛. Now the symplectic group acts transitively on the set of real polarizations of
ℝ2𝑛, and the unitary representation of the symplectic group given by pairing real polarizations is
precisely the metaplectic representation. To be fully explicit, this is the projective representation of
the symplectic group [3, 27–29], which is defined up to a phase factor; there ensues a U(1)-valued
group cocycle. The restriction of this cocycle to any given unitary subgroup can be made trivial.
[The more customary choice of a (±1)-valued cocycle [30] is “double-valued” even on unitary
subgroups.] Now the commutant of the complex structure Ψ6 is a unitary subgroup of Sp(2𝑛,ℝ),
containing Ψ. In selecting positive constants in formulas such as (8), we are following a consistent
procedure. Thus the result of [26] is now seen to be the metaplectic image of the elementary
geometric fact that Ψ6 is a complex structure on the symplectic groupoid ℝ2 ×ℝ

2, and thus Ψ24 is
the identity map.

Acknowledgments

Heartfelt thanks to Philippe Blanchard for his warm hospitality at the BiBoS Research Centre of
the University of Bielefeld, where this work was begun. Support by the Deutsche Akademische
Austauschdienst of a visit there by JCV is gratefully acknowledged. Support was also given by the
Vicerrectorı́a de Investigación of the University of Costa Rica.

References
[1] B. Kostant, “Quantization and unitary representations”, in Lectures in Modern Analysis and Applications III,

Lecture Notes in Mathematics 170. Springer, Berlin, 1970; pp. 87–207.

[2] A. A. Kirillov, “Geometric quantization”, in Dynamical Systems III, V. I. Arnold, ed., Springer, Berlin, 1989;
pp. 137–172.

[3] P. L. Robinson and J. H. Rawnsley, The Metaplectic Representation, 𝑀𝑝𝑐 Structures and Geometric Quantization,
Memoirs of the AMS 410, American Mathematical Society, Providence, RI, 1989.

[4] N. M. J. Woodhouse, Geometric Quantization, 2nd edition, Clarendon Press, Oxford, 1991.

[5] G. M. Tuynman, “Geometric quantization of the BRST charge”, Commun. Math. Phys. 150 (1992), 237–265.
G. M. Tuynman, Commun. Math. Phys. 150, 237 (1992).

[6] M. Bordemann, E. Meinrenken and M. Schlichenmaier, “Toeplitz quantization of Kähler manifolds and 𝑔𝑙 (𝑁),
𝑁 → ∞ limits”, Commun. Math. Phys. 165 (1994), 281–296.

[7] D. Borthwick, S. Klimek, A. Lesniewski and M. Rinaldi, “Matrix Cartan superdomains, super Toeplitz operators,
and quantization”, J. Funct. Anal. 127 (1995), 456–510.

[8] J. E. Moyal, “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc. 45 (1949), 99–124.

11



[9] F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz and D. Sternheimer, “Deformation theory and quantization.
I”, Ann. Phys. 111 (1978), 61–110;
F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz and D. Sternheimer, “Deformation theory and quantization. II:
Physical applications”, Ann. Phys. 111 (1978), 111–151.

[10] J. M. Gracia-Bondı́a, “Generalized Moyal quantization on homogeneous symplectic spaces”, in Deformation
Theory and Quantum Groups with Applications to Mathematical Physics, J. Stasheff and M. Gerstenhaber, eds.,
American Mathematical Society, Providence, RI, 1992; pp. 93–114.

[11] A. Weinstein, “Symplectic groupoids and Poisson manifolds”, Bull. Amer. Math. Soc. 16 (1987), 101–104.

[12] A. Weinstein, “Noncommutative geometry and geometric quantization”, in Symplectic Geometry and Mathemat-
ical Physics, P. Donato, C. Duval, J. Elhadad and G. M. Tuynman, eds., Birkhäuser, Basel, 1991; pp. 446–461.
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