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Abstract

Let T ∗ be the theory of lattice-ordered subrings, without minimal (non zero)
idempontents, convex in von Neumann regular real closed rings that are divisible-
proyectable and sc-regular (cf. [12]). In this paper, a local divisibility binary relation
is introduced in order to prove the elimination of quantifiers of the theory T ∗ in the
language of lattice-ordered rings adding the divisibility relation, the radical relation
associated to the minimal prime spectrum (cf. [20]) and this new local divisibility
relation.

1 Introduction.

Real closed rings, in one of its general presentation, were introduced by Niels Schwartz in
[23]. Some aspects of the model theory of real closed rings has been studied. Leaving aside
the case of real closed fields, the first model theoretic results concerning real closed rings
was the model completeness of the von Neumann regular real closed rings without (non
zero) minimal idempotents in the language of lattice-ordered rings, proved by Macintyre
in [17]. The elimination of quantifiers of this theory has evolved in many different ways.
It was firstly proved by Weispfenning in [28] in the language of lattice-ordered rings where
an unary function symbol ∗ was added to the language. This ∗ function represents the
cuasi-inverse in von Neumann regular rings. This same result was proved later using
simpler techniques by Boffa-Cherlin in [5]. In [20], this elimination of quantifiers result
was improved by Prestel-Schwartz where this unary function symbol ∗ was replaced by
a binary radical relation; precisely the radical relation associated to the minimal prime
spectrum. Examples of integral real closed rings that are not fields are real closed valuation
rings; this theory was introduced and well studied from the model theoretic point of view
by Cherlin and Dickmann in [8]; it was showed there the elimination of quantifiers in the
language of ordered rings with an extra binary relation symbol for the divisibility.

It is a well know fact that von Neumann regular rings are Boolean products of fields.
Boolean products of real closed valuation rings has been caracterized in [12] as real closed
projectable rings satisfying the first convexity property (i.e.: ∀a∀b(0 < a < b→ b | a)) that
are sc-regular and divisible-projectable. Following the type of elimination of quantifiers
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for von Neumann regular real closed rings proved by [28] and [5], the author gave in [12]
an elimination of quantifiers for this theory (of Boolean products of real closed valuation
rings, without non cero minimal idempotents) in the languaje of lattice-ordered rings with
an extra binary function symbol div(a, b) representing (locally) the quotient of b by a if it
exists and 0 if not.

In this paper, the elimination of quantifiers for this last mentioned theory is improved
as this function symbol div(·, ·) can be replace by the radical relation associated to the
minimal prime spectrum (as Prestel and Schwartz did in [20]) and by adjoining to the
languaje a binary relation that represents local divisibility (the “global” divisibility is
also in the languaje). In the following section, all basic notions and facts needed will be
presented. Also, the local divisibility relation will be introduced in this section, and its
basics properties. In the third section, the model completeness of the considered theory will
be stated in the languaje of lattice-ordered rings considering the radical relation and the
local divisibility. In the fourth section, universal theories (considering different languajes)
will be giving, and therefore a model companion result will be stated. The local divisibility
as introduced at the beginning of this paper it is not sufficient to prove the elimination of
quantifiers. The divisible-projectability turns out to be crucial (ones again) to redefine the
local divisibility as a maximal local divisibility relation, this is the aim of the fifth section.
This new maximal local divisibility relation gives an optimal control of the idempotent
where the local divisibility is carried out, and this permits us to prove the elimination
of quantifiers through the amalgamation property of the universal theory (in the precise
languaje); this is carried out in the last section.

The author spent the months of june and july of the present 2022 year at the Logic
team of the University of Paris-Cité. During those months the author had fruitful and
enlightening conversations with Max Dickmann, that helped him in the elaboration of
the fifth and sixth sections of this paper. In addition, the ideas of those sections were
germinanted by valuable comments given by Francoise Delon and Francoise Point during
a sesion of the Delon-Dickmann-Gondard seminar at the begining of june 2022 where
sections 2 to 4 of the present work were presented. The author wishes to express his
gratitud to the persons and institutions mentioned in this paragraph.

2 First notions and a local divisibility relation.

The principal interest in this section is to introduce the reader the basic facts and notions
about the theory T ∗ of real closed rings considered in this paper.

Lor = {0, 1,+, ·, <} will be the languaje of ordered rings and Llor = {0, 1,+, ·,∧} will
be the languaje of lattice-ordered rings. From now on, all rings will be conmutative with
unity.

An f-ring is a subdirect product of totally ordered rings. This notion can be expressed
by a first-order formula in Llor (see [4, 9.1.2]). For an f -ring A, the absolute value of
a ∈ A is |a| = a ∨ −a; two elements a, b ∈ A are orthogonal if |a| ∧ |b| = 0 (we denote
this by a ⊥ b); the polar of a ∈ A is a⊥ = {b ∈ A : a ⊥ b} and the bipolar of a is
a⊥⊥ = {b ∈ A : b ⊥ c for all c ∈ a⊥}. An f -ring A is projectable if A = a⊥ + a⊥⊥,
for all a ∈ A. Note that this notion is expressed by a first order formula in Llor. A ring
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is reduced if it doesn’t have nilpotent elements other than cero. By [4, 9.3.1], if A is a
reduced f -ring, then ∀x∀y(x ⊥ y ↔ xy = 0) is valid formula in A, and therefore:

b ∈ a⊥⊥ ⇐⇒ a⊥ ⊆ b⊥ ⇐⇒ Ann(a) ⊆ Ann(b),

for any a, b ∈ A.

Let L be a first-order language, {Ax : x ∈ X} a family of L-structures and A a L-
structure. We say that A is a Boolean product of {Ax : x ∈ X} in L, denoted by
A ∈ Γa

L

(
X, (Ax)x∈X

)
, cf. [6], if the following conditions holds:

(i) X is a Boolean space.
(ii) A is a subdirect product of {Ax : x ∈ X}.
(iii) For every atomic L-formula Φ(v1, . . . , vn) and every a1, . . . , an ∈ |A|,[[

Φ(a1, . . . , an)
]]

=def

{
x ∈ X : Ax |= Φ

(
a1(x), . . . , an(x)

)}
is a clopen subset of X.

(iv) Patchwork property: For every a, b ∈ A and any clopen set N of X, the element
c = a�N ∪ b�X\N defined by

c(y) =

{
a(y) if y ∈ N
b(y) if y ∈ X \N,

belongs to |A|. We say that A is an elementary Boolean product of {Ax : x ∈ X} in
L, denoted by A ∈ Γe

L

(
X, (Ax)x∈X

)
, if A is a Boolean product of {Ax : x ∈ X} in L and

condition (iii) is verified for all L-formulas Φ(v1, . . . , vn). Those notation comes from [6].
If A is a (unitary) reduced and projectable f -ring, then [16, 6.12] says that:

A ∈ Γa
Lor
(
πA, (A/p)p∈πA

)
,

where πA = {p ∈ Spec(A) : p is a minimal prime ideal} = Specmin(A). In that case:

b ∈ a⊥⊥ ⇐⇒
[[
b 6= 0

]]
⊆
[[
a 6= 0

]]
⇐⇒ supp(b) ⊆ supp(a)

⇐⇒
[[
a = 0

]]
⊆
[[
b = 0

]]
⇐⇒ ∀p ∈ πA (a ∈ p⇒ b ∈ p).

Radical relations were introduced in [19] and used in [20] in order to study the model
theory of von Neumann regular real closed rings (cf. [23] or [22]) without minimal idem-
potents different from zero. Radical relations are defined in [20] by:

(1) a� a, for all a ∈ A;

(2) if a� b and b� c then a� c, for all a, b, c ∈ A;

(3) if a� c and b� c then a+ b� c, for all a, b, c ∈ A;

(4) if a� b then ac� bc, for all a, b, c ∈ A;

(5) a� 1, for all a ∈ A and 1 6� 0;

(6) b� b2, for all b ∈ A.
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The original definition in [19] was the previous one but reversed. In this context, it
is proved in [19] that for any radical relation � , there exists a subset X ⊆ Spec(A) such
that:

a� b⇐⇒ ∀p ∈ X (a /∈ p⇒ b /∈ p).
This radical relation is denoted by �X . The case where X = πA is a relevant one studied
in [20] and it is proved there that:

a� πAb ⇐⇒ Ann(b) ⊆ Ann(a)

⇐⇒ ∀x(bx = 0→ ax = 0)

⇐⇒ ∀x(ax 6= 0→ bx 6= 0).

Therefore the radical relation � πA has all these possible definitions:

a� πAb ⇐⇒ Ann(b) ⊆ Ann(a)

⇐⇒ ∀x(bx = 0→ ax = 0)

⇐⇒ ∀x(ax 6= 0→ bx 6= 0)

⇐⇒ ∀p ∈ πA (a /∈ p⇒ b /∈ p)
⇐⇒ ∀p ∈ πA (b ∈ p⇒ a ∈ p)
⇐⇒

[[
b = 0

]]
⊆
[[
a = 0

]]
⇐⇒

[[
a 6= 0

]]
⊆
[[
b 6= 0

]]
⇐⇒ supp(a) ⊆ supp(b)

⇐⇒ b⊥ ⊆ a⊥

⇐⇒ a ∈ b⊥⊥.

From now on, this radical relation associated to πA will be denoted by � . In [20], the
elimination of quantifiers of the theory of von Neumann regular real closed rings without
minimal idempotents non-zero is given in the languaje Llor ∪ {�} of lattice-ordered rings
with this radical relation.

Notation 2.1 Let A be any ring and a, b ∈ A, we will denote a =s b if a� b and b� a.

According to [8], a real closed valuation ring is an ordered domain that satisfies
the intermediate value property for polynomials in one variable that it is not a field. In
[8], the autors showed that this theory is complete and admits elimination of quantifiers
in the languaje Lor ∪ {|} of ordered rings with the divisibility relation.

In [12, Definition 2.5], a lattice ordered ring A is called divisible-projectable if

∀x∀y
(
y 6= 0→ ∃z∃w

(
x = z+w & z ⊥ w & y | z & ∀w′(w′ 6= 0 & w′ ⊥ (w−w′)→ y - w′)

))
is a valid in A. In [12, Definition 2.8], a ring A is called sc-regular if there exists an
element u ∈ A such that Ann(u) = {0} (or 1�u) and u - e for every non-zero idempotent
e ∈ A. By [12, Proposition 3.4 (i), Corollary 2.11 and Proposition 2.6], a ring A is a
projectable real closed ring with the first convexity property that satisfies the sc-regularity
and divisible-projectability if and only if

A ∈ Γe
Lor∪{|}

(
πA, (A/p)p∈πA

)
,
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where A/p is a real closed valuation ring, for every p ∈ πA.

Let T ∗ be the theory of projectable real closed rings with the first convexity property
that satisfies the sc-regularity and divisible-projectability properties, and without minimal
idempotents non-zero. By [13, Theorem 10], a ring A is a model of T ∗ if and only if A
is a convex lattice-ordered subring of a von Neumann regular real closed ring, and A
satifies the divisible-projectability and sc-regularity properties and it is without minimal
idempotents non-zero.

By [12], the theory T ∗ admits quantifier elimination in Llor ∪{div(·, ·)}, where div(·, ·)
is a binary function symbol defined by:

T ∗ ` div(x, y) = c ←→ c ∈ y⊥⊥ ∧ ∃z∃w
(
x = z + w ∧ z ⊥ w ∧ cy = z ∧

∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′)
)
.

Observe that the definition of this binary funcion symbol div(·, ·) can be written using
the radical relation � by:

T ∗ ` div(x, y) = c ←→ c� y ∧ ∃z∃w
(
x = z + w ∧ z ⊥ w ∧ cy = z ∧

∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′)
)
.

In order to study the theory T ∗ from the point of view of existencial formulas or model
completeness, it will be usefull to introduce the following binary predicate:

R(y, w)←→ ∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′),

that express the fact that y does not divide locally w. It will be more pleasant to have it
in a positive form and then:

y |loc w ←→ ¬R(y, w)←→ ∃w′(w′ 6= 0 ∧ w′ ⊥ (w − w′) ∧ y | w′).

Observe that the last expression on the right is a formula in the languaje Llor and it will
be preferable to express it just in the languaje of rings by:

R(y, w)←→ ∀w′(w′ 6= 0 ∧ w′(w − w′) = 0→ y - w′),

and
y |loc w ←→ ¬R(y, w)←→ ∃w′(w′ 6= 0 ∧ w′(w − w′) = 0 ∧ y | w′).

For the “global” divisibility relation y | w one has that y | 0. But see that if y |loc 0 in a
reduced ring A then there exists w′ ∈ A with w′ 6= 0, w′(−w′) = 0 and y | w′. Therefore
w′ 6= 0 and w′2 = 0; a contradiction because A is reduced. So it is better to redefine:

y |loc w ←→ w = 0 ∨ ∃w′(w′ 6= 0 ∧ w′(w − w′) = 0 ∧ y | w′).

The following proposition gives some elementary properties of this new local divisibility
relation.

Proposition 2.2 Let A be any ring and let y, w, c ∈ A and n ∈ N∗ = N r {0}. The
following properties are valid in A.
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(i) if y | w then y |loc w,

(ii) y |loc 0 and 1 |loc w,

(iii) if 0 |loc w then w = 0,

(iv) if cy |loc w then y |loc w,

(v) if yn |loc w then y |loc w,

(vi) y |loc y
n,

(vii) y |loc w if and only if −y |loc w, if and only if y |loc −w, if and only if −y |loc −w,

(viii) if A is a domain, then y | w if and only if y |loc w.

Proof: All these properties are showed by routine verifications.
�

One needs to prove a previous lemma in order to prove one more property on “local
divisibility”.

Lema 2.3 Let A be any lattice-ordered ring and let w,w′ ∈ A such that w′ ⊥ w − w′.
Then |w′| 6 |w|.

Proof: By the definition of ∧ one has that |w′| ∧ |w| 6 |w′| and |w′| ∧ |w| 6 |w|. Observe
that one has the following inequality:

|w′| = |w′| ∧ |w′| = |w′| ∧ |w′ − w + w| 6 |w′| ∧
(
|w′ − w|+ |w|

)
=

(
|w′| ∧ |w′ − w|

)
+
(
|w′| ∧ |w|

)
.

Since w′ ⊥ w − w′, then |w′| ∧ |w − w′| = 0 and therefore one obtains:

|w′| 6 0 +
(
|w′| ∧ |w|

)
= |w′| ∧ |w| 6 |w′|.

Then |w′| ∧ |w| = |w′|, and this shows us that |w′| 6 |w|.
�

The previous lemma help us to prove the following proposition:

Proposition 2.4 Let A be any lattice-ordered ring and let y, w1, w2 ∈ A. If y |loc w1 and
y |loc w2 with w1 ⊥ w2 then y |loc w1 + w2.

Proof: Let us suppose that y |loc w1 and y |loc w2 with w1 ⊥ w2. There are various cases:

• If w1 = 0, since y |loc w2 then y |loc w1 + w2.

• If w2 = 0, since y |loc w1 then y |loc w1 + w2.

• if w1 6= 0 and w2 6= 0. If w1 + w2 = 0 then by definition one has that y |loc w1 + w2.

Let us suppose that w1 +w2 6= 0. Since y |loc w1 and w1 6= 0 then there exists w′1 ∈ A,
w′1 6= 0 such that w′1 ⊥ w1 − w′1 with y | w′1. Since y |loc w2 and w2 6= 0 then there exists
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w′2 ∈ A, w′2 6= 0 such that w′2 ⊥ w2 − w′2 and y | w′2. Let us see that w′1 + w′2 6= 0. If
w′1 + w′2 = 0 then w′2 = −w′1 and therefore:

|w′1| ∧ |w′2| = |w′1| ∧ | − w′1| = |w′1| ∧ |w′1| = |w′1|.

By the lemma 2.3 one has that |w′1| 6 |w1| and |w′2| 6 |w2|. Then:

|w′1| ∧ |w′2| 6 |w1| ∧ |w2|.

Since w1 ⊥ w2 then |w1| ∧ |w2| = 0 and by the previous inequality one has |w′1| ∧ |w′2| = 0.
By the asumption one should have that |w′1| = 0, meaning that w′1 = 0; which is impossible
since w′1 6= 0.

Once we stated that w′1 + w′2 6= 0, we want to see that:

w′1 + w′2 ⊥ (w1 + w2)− (w′1 + w′2).

We have the following inequalities :

0 6
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 + w2)− (w′1 + w′2)
∣∣

=
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 − w′1) + (w2 − w′2)
∣∣

6
∣∣w′1 + w′2

∣∣ ∧ (|w1 − w′1|+ |w2 − w′2|
)

6
(
|w′1|+ |w′2|

)
∧
(
|w1 − w′1|+ |w2 − w′2|

)
=

(
|w′1| ∧ |w1 − w′1|

)
+
(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
+
(
|w′2| ∧ |w2 − w′2|

)
= 0 +

(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
+ 0

=
(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
6

(
|w′1| ∧

(
|w2|+ |w′2|

))
+
(
|w′2| ∧

(
|w1|+ |w′1|

))
=

(
|w′1| ∧ |w2|

)
+
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
+
(
|w′2| ∧ |w′1|

)
=

(
|w′1| ∧ |w2|

)
+ 2
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
.

Using one more time the lemma 2.3, since w′1 ⊥ (w1 − w′1) and w′2 ⊥ (w2 − w′2); one has
that |w′1| 6 |w1| and |w′2| 6 |w2|. Coming back to the inequalities one obtains:

0 6
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 + w2)− (w′1 + w′2)
∣∣

6
(
|w′1| ∧ |w2|

)
+ 2
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
6

(
|w1| ∧ |w2|

)
+ 2
(
|w1| ∧ |w2|

)
+
(
|w2| ∧ |w1|

)
= 4

(
|w1| ∧ |w2|

)
= 4 · 0
= 0,

for w1 ⊥ w2. This shows that
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 + w2) − (w′1 + w′2)
∣∣ = 0. One then has

that (w′1 +w′2) ⊥ (w1 +w2)− (w′1 +w′2). Since y | w′1 and y | w′2 then clearly y | w′1 +w′2.
Declaring w′ = w′1 + w′2, we had achieved that w′ 6= 0, w′ ⊥ (w1 + w2) − w′ and that
y | w′. This means that ∃w′

(
w′ 6= 0 ∧ w′

(
w′ − (w1 + w2)

)
∧ y | w′

)
is a valid formula in

A. Precisely one has that y |loc w1 + w2.
�
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Let A be any reduced f -ring. The sc-regularity of A states the existence of an element
u ∈ A such that 1�u and satisfying that ∀e(e 6= 0 ∧ e2 = e→ u - e). Observe that:

u |loc 1 ←→ ∃w′(w′ 6= 0 ∧ w′(w′ − 1) = 0 ∧ u | w′)
←→ ∃w′(w′ 6= 0 ∧ w′2 − w′ = 0 ∧ u | w′)
←→ ∃e(e 6= 0 ∧ e2 = e ∧ u | e)

.

Therefore:
u -loc 1←→ ∀e(e 6= 0 ∧ e2 = e→ u - e).

So the condition of sc-regularity can be rewritten as there exists u ∈ A with 1�u and
u -loc 1. Namely, A is sc-regular if and only if A |= ∃u(1�u ∧ u -loc 1).

3 Model completeness.

In this sextion the languaje considered is L = Llor∪{� , |loc}. Let A and B be two reduced
f -rings satisfying the first convexity property and let us suppose that A is a substructure
of B in the language L; in particular A is a lattice-ordered subring of B.

Let us denote i : A ↪→ B the inclusion and the functorial (continuous) map:

Spec(i) : Spec(B)→ Spec(A), q 7→ i−1(q) = q ∩A.

Since A ⊆L B and the radical relation � belongs to the language then:

a�Aa
′ ⇐⇒ i(a)�Bi(a

′),

for all a, a′ ∈ A. Let us denote πB = Specmin(B) = {q ∈ Spec(B) : q is a minimal prime
ideal } ⊆ Spec(B) and similarly πA = Specmin(A) = {p ∈ Spec(A) : p is a minimal prime
ideal} ⊆ Spec(A). Using [20, Theorem, p. 23] and [20, Proposition (a) y (b), p. 22] one
has:

i∗ = Spec(i)�πBcon : πB
con → πA

con
,

where πB
con

and πA
con

are the closures of πB and πA in the constructible topology; and
i∗ is surjective. If one consider that the (unitary) f -rings A and B are projectable, then by
[16, 6.11], one should have that the spaces πB and πA are compact (and Hausdorff). By
[26, Corollary 2.7], the subspaces πB and πA are proconstructible and therefore πB

con
=

πB and πA
con

= πA. In the case that A and B are reduced projectable f -rings, then one
has:

i∗ = Spec(i)�πB : πB → πA,

and i∗ is surjective.

From now on, A and B will be reduced and projectable f -rings. For q1, q2 ∈ πB, let
us declare q1 ∼ q2 if and only if q1 ∩ A = q2 ∩ A, if and only if i∗(q1) = i∗(q2). Clearly
∼ is an equivalence relation on πB. Since the function i∗ : πB → πA is surjective, then
πA can be consider with the quotient topology πB induced by i∗ or by the equivalence
relation ∼. By [29, Theorem 9.2, p. 60] one has that the original topology of πA and
the induced topology by i∗ (or by the equivalence relation ∼) coincide if i∗ is an open or
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closed function. Since the f -rings A and B are projectable, then by [16, 6.11], one should
have that the spaces πA and πB are compact (and Hausdorff). Since i∗ : πB → πA is a
continuous function with πB compact and Hausdorff, then, by [29, p. 120], one has that
i∗ is a closed function. Therefore the original topology on πA and the quotient topology
on πB induced by the equivalence relation ∼ are the same. Therefore:

j : πB/∼ → πA, q/∼ 7→ i∗(q),

is a homeomorphism of topological spaces and Boolean spaces.

Now let p ∈ πA and q ∈ (i∗)−1
(
{p}
)
. That is to say that i∗(q) = q ∩ A = p. Let us

consider:
hpq : A/p→ B/q, a+ p 7→ a+ q.

Since p ⊆ q ∩A, then hpq is well defined for if a+ p = a′+ p with a, a′ ∈ A then a− a′ ∈ p
and a−a′ ∈ q∩A, that carries to a+ q = a′+ q. Since q∩A ⊆ p then hpq is injective for if
a, a′ ∈ A are such that hpq(a) = hpq(a

′), then a+q = a′+q and a−a′ ∈ q, so a−a′ ∈ q∩A;
that is to say that a− a′ ∈ p. Then a+ p = a′ + p. This proves the injectivity of hpq. It
is clear that hpq is a ring homomorphism. Therefore:

hpq : A/p→ B/q, a+ p 7→ a+ q,

is a well defined injective ring homomorphism.

Let us see now that hpq respects the order. Let a, a′ ∈ A such that a + p 6 a′ + p
in A/p. Then there exists c ∈ p such that c > 0 and a + c 6 a′ en A. Since A is an
L-sub-structure of B and the order is in the language L then a + c 6 a′ in B. Since
p ⊆ q ∩ A then c ∈ q with c > 0 and a + c 6 a′ in B. That is to say that a + q 6 a′ + q
in B/q. Then hpq(a) 6 hpq(a′) in B/q. One should prove the other implication, that is: if
hpq(a) 6 hpq(a′) in B/q then a+ p 6 a′ + p in A/p. But since the orders on A/p and B/q
are total then the implication needed to be proved can be immediately deduced from the
one we just proved. Therefore hpq : A/p→ B/q is an injective homomorphism of ordered
rings. In this context, one has the following proposition:

Proposition 3.1 Let A and B be two reduced projectable f -rings satisfying the first con-
vexity property such that A ⊆L B where L = Llor ∪ {� , |loc}. If in addition one suppose
that A and B are divisible-projectable then for p ∈ πA and q ∈ (i∗)−1

(
{p}
)
, the homomor-

phism of ordered rings hpq : A/p→ B/q, a+ p 7→ a+ q respects divisibility.

Proof: We must prove: for any a, a′ ∈ A one has that:

a+ p | a′ + p in A/p if and only if a+ q | a′ + q in B/q.

(⇒) Let us suppose that a + p | a′ + p en A/p. Then there exists c + p ∈ A/p such
that (a+ p)(c+ p) = a′ + p. Therefore ac− a′ ∈ p. Since p ⊆ q ∩A then ac− a′ ∈ q, what
this means is that (a+ q)(c+ q) = a′ + q. In fact a+ q | a′ + q en B/q.

(⇐) Let us suppose that a+ q | a′ + q in B/q. One has to show that a+ p | a′ + p in
A/p.

9



• If a′ + q = 0 then a′ ∈ q. Since a′ ∈ A then a′ ∈ q ∩ A = p. So a′ + p = 0 and
therefore a+ p | a′ + p en A/p.

• If a′ + q 6= 0 then a′ /∈ q. Then a′ /∈ p and so a′ + p 6= 0. Let us suppose in this case
that a+ p - a′ + p en A/p. Consider N =

[[
a - a′

]]
πA ∩

[[
a′ 6= 0

]]
πA which is a clopen set

of πA. (Here we using the fact that A is divisible projectable, see [12, Proposition 2.6]).
See that p ∈ N and therefore N 6= φ. Let us define α′ = a′�N ∪ 0�πArN ∈ A. Since N 6= φ
then α′ 6= 0.

Now suppose that A |= a |loc α
′. Since α′ 6= 0 then:

A |= ∃w′(w′ 6= 0 ∧ w′(w′ − α′) = 0 ∧ a | w′).

Since w′ 6= 0 then there exists p̄ ∈ πA such that w′(p̄) 6= 0. Since w′(w′ − α′) = 0 then
w′(p̄) = α′(p̄). By the definition of α′ and the fact that w′(p̄) 6= 0, one has that p̄ ∈ N
and that α′(p̄) = a′(p̄). Since a | w′, there exists c ∈ A such that ac = w′. That is to say
that a(p̄)c(p̄) = w′(p̄) = α′(p̄) = a′(p̄), so a(p̄) | a′(p̄) in A/p̄; but this contradicts the fact
that p̄ ∈

[[
a - a′

]]
πA. Therefore one has:

A |= a -loc α
′.

Since A is an L-substructure of B and |loc belongs to the language, then B |= a -loc α
′.

Since α′ 6= 0 then:

B |= ∀w′(w′ 6= 0 ∧ w′(w′ − α′) = 0→ a - w′).

Our initial assumption was that a+ q | a′ + q in B/q. Therefore q ∈
[[
a | a′

]]
πB. We are

also in the case that a′ + q 6= 0, that is to say that q ∈
[[
a′ 6= 0

]]
πB. Since p ∈ N then

α′(p) = a′(p), that is to say that α′+p = a′+p. Since p = q∩A then α′+q = a′+q in B/q
and therefore q ∈

[[
α′ = a′

]]
πB. Putting M =

[[
a | a′

]]
πB ∩

[[
a′ 6= 0

]]
πB ∩

[[
α′ = a′

]]
πB,

one has that M is a clopen set of πB with q ∈ M and M 6= φ (here we also used that B
is divisible-projectable).

Now let us consider w′′ = α′�M ∪ 0�πBrM ∈ B. Since M 6= φ, for q̄ ∈ M one has that
w′′(q̄) = α′(q̄) = a′(q̄) 6= 0. Then w′′ 6= 0. Let us see that w′′(w′′−α′) = 0. Let q̄ ∈ πB. If
q̄ ∈ πB rM then w′′(q̄) = 0 and so

[
w′′(w′′ − α′)

]
(q̄) = w′′(q̄)(w′′ − α′)(q̄) = 0. If q̄ ∈M

then w′′(q̄) = α′(q̄) by the definition of w′′, and so (w′′ − α′)(q̄) = 0; that is to say that[
w′′(w′′ − α′)

]
(q̄) = 0. In any case we obtain that

[
w′′(w′′ − α′)

]
(q̄) = 0 (for all q̄ ∈ πB).

Then w′′(w′′ − α′) = 0. Since w′′ ∈ B is such that w′′ 6= 0 and w′′(w′′ − α′) = 0, then
a - w′′ en B.

On the other hand, for q̄ ∈ πB one has the following:

• if q̄ ∈ πB rM then w′′(q̄) = 0 and therefore a(q̄) | w′′(q̄) in B/q̄.

• if q̄ ∈M then q̄ ∈
[[
a | a′

]]
πB ∩

[[
α′ = a′

]]
πB and consequently one has a(q̄) | a′(q̄) =

α′(q̄) en B/q̄. Therefore a(q̄) | w′′(q̄) in B/q̄.

Therefore a(q̄) | w′′(q̄) in B/q̄ for all q̄ ∈ πB. For each q̄ ∈ πB, there exists cq̄ ∈ B
such that a(q̄)cq̄(q̄) = w′′(q̄). Then:

πB =
⋃
q̄∈πB

[[
acq̄ = w′′

]]
πB.
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By the compactness of πB, one can distinguish a finite number of cq̄’s and by the patchwork
property of B, it is easy to construct an element c ∈ B such that ac = w′′. Then it has
been proved that a | w′′ en B. But we had from below that a - w′′ en B, a contradiction.
Therefore we proved that a+ q | a′ + q in B/q implies that a+ p | a′ + p in A/p.

�

Let A and B be two models of T ∗ such that A ⊆L B where L = Llor ∪ {� , |loc}. It is
known that i∗ : πB → πA, q 7→ q∩A is a continuous surjective map such that πA ∼= πB/ ∼
where ∼ is the equivalence relation given by q ∼ q′ if and only if i∗(q) = q ∩A = q′ ∩A =
i∗(q′). Furthermore, for all p ∈ πA and q ∈ (i∗)−1({p}), there exists hpq : A/p → B/q,
a+ p 7→ a+ q an injective homomorphism of ordered rings respecting the divisibility.

Let us denote B(πA) and B(πB) the Boolean algebras of clopen sets of πA and πB
respectively. Therefore:

j = (i∗)−1 : B(πA)→ B(πB),

is an injective homomorphism of Boolean algebras.

We want to show that A≺LB. Let φ(x1, . . . , xn) be an L-formula and a1, . . . , an ∈ A.
By [9, Theorem 1.1], there exists an acceptable sequence ζ = 〈Φ, θ1, . . . , θm〉 of formulas
where θ1, . . . , θm are L-formulas with the same free variables of φ(x1, . . . , xn) and Φ is a
formula in the Boolean algebra’s language with m free variables such that:

A |= φ(a1, . . . , an)⇐⇒ B(πA) |= Φ
([[
θ1(a1, . . . , an)

]]
A, . . . ,

[[
θm(a1, . . . , an)

]]
A

)
,

where
[[
θj(a1, . . . , an)

]]
A =

{
p ∈ πA : A/p |= θj(a1 + p, . . . , an + p)

}
, for all j = 1, . . . ,m.

Since A and B are models of T ∗ then A/p and B/q are real closed valuation rings,
for all p ∈ πA and q ∈ πB. Therefore, for p ∈ πA and q ∈ (i∗)−1

(
{p}
)
, one has that

hpq : A/p → B/q, a + p 7→ a + q is an elementary monomorphism in view of 3.1 and [8].
Therefore:

hpq : A/p≺B/q.

Then:

j
([[
θl(a1, . . . , an)

]]
A

)
=

{
q ∈ πB : B/q |= θl

(
hpq(a1), . . . , hpq(an)

)
con p = q ∩A

}
=

[[
θl(a1, . . . , an)

]]
B.

Since B(πA) are B(πB) are atomless Boolean algebras (A and B are models of T ∗) then:

j : B(πA)≺B(πB),

is an elementary monomorphism. Then one has:

B(πA) |= Φ
([[
θ1(a1, . . . , an)

]]
A, . . . ,

[[
θm(a1, . . . , an)

]]
A

)
⇐⇒ B(πB) |= Φ

(
j
([[
θ1(a1, . . . , an)

]]
A

)
, . . . , j

([[
θm(a1, . . . , an)

]]
A

))
⇐⇒ B(πB) |= Φ

([[
θ1(a1, . . . , an)

]]
B, . . . ,

[[
θm(a1, . . . , an)

]]
B

)
.
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By [9, Theorem 1.1] one also has:

B |= φ(a1, . . . , an)⇐⇒ B(πB) |= Φ
([[
θ1(a1, . . . , an)

]]
B, . . . ,

[[
θm(a1, . . . , an)

]]
B

)
.

Therefore we just have seen that:

A |= φ(a1, . . . , an) if and only if B |= φ(a1, . . . , an).

This proves that:
A≺LB.

We can therefore state:

Theorem 3.2 The theory T ∗ is model complete in L = Llor ∪ {� , |loc}. �

4 Universal theories.

In this section, universal theories of T ∗ will be given in different languajes. At the begin-
ning of this section, it will be discuss how a reduced projectable f -ring satisfying the first
convexity property can be embedded in a model of T ∗ in the languaje Llor ∪ {� , |, |loc}.
The proyectability is not a universal axiom, it will be substitute at the last part of this
section by other universal axioms, one for each symbol in {|, |loc}.

Let A be a reduced and projectable f -ring satisfying the first convexity property. Since
A is a reduced f -ring, then A ⊆

∏
p∈πAA/p, where πA is the space of minimal prime ideals

of A and A/p is a totally ordered integral domain, for each p ∈ πA. Clearly this inclusion
is in the languaje Llor.

The projectabilitiy of A permits to prove that divisibility is respected. For the first
implication the projectability is not neded for if a, b ∈ A such that b | a, then there exists
c ∈ A with bc = a; therefore (b + p)(c + p) = bc + p = a + p, for all p ∈ πA. That is
b+ p | a+ p, for all p ∈ πA, or:

(b+ p)p∈πA | (a+ p)p∈πA in
∏
p∈πA

A/p.

In the other direction, if a, b ∈ A are such that (b + p)p∈πA | (a + p)p∈πA then there
exists (cp + p)p∈πA ∈

∏
p∈πAA/p with (b+ p)p∈πA · (cp + p)p∈πA = (a+ p)p∈πA. Therefore

bcp + p = a + p, for all p ∈ πA. Since A is a subdirect product, there exists c̃p ∈ A such
that c̃p(p) = cp, and this for every p ∈ πA. Considering Xp = [[ b · c̃p = a ]] , one has that
p ∈ Xp, for all p ∈ πA. Then:

πA =
⋃
p∈πA

Xp

where this is a clopen covering. By compactness of πA and the glueing property of A,
there exists c ∈ A such that πA = [[ b · c = a ]] . Then (bc) + p = a+ p, for all p ∈ πA. That
is bc− a ∈

⋂
p∈πA p. Since A is reduced then

⋂
p∈πA p = {0} and therefore bc = a. That is

b | a in A.
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Then A ⊆
∏
p∈πAA/p in the languaje Llor∪{|}, where A/p is a totally ordered integral

domain. As A satisfies the first convexity property then A/p also satisfies it, for all p ∈ πA;
see lema 2.3 in [12]. Therefore A/p is a totally ordered domain satisfying the first convexity
property, for all p ∈ πA. Following the notation in [2], one has A/p is a model of the theory
COVDD (Convexely ordered valuation rings) or a model of OFD (Ordered fields), for every
p ∈ πA. By theorem 1(i) in [2], there exists Rp a real closed valuation ring (not beeing a
field) such that A/p ⊆ Rp in the languaje Lor ∪ {|}, and for all p ∈ πA. Therefore:∏

p∈πA
A/p ⊆

∏
p∈πA

Rp,

in the languaje Llor ∪ {|} since the divisibility is respected coordinated by coordinated.
Now for each p ∈ πA, consider Cp a copy of the Cantor space and observe that Rp ⊆ RpCp ,
by x 7→ (x)Cp the constant inclusion. It is clear that this inclusion can be considered in
the languaje Lor ∪ {|}. Therefore (cf. [17]), one has:

A ⊆
∏
p∈πA

A/p ⊆
∏
p∈πA

Rp ⊆
∏
p∈πA

Rp
Cp , (∗)

in the languaje Llor∪{|}. Since the theory of real closed valuation rings, denoted by RCVR,
admits elimination of quantifiers in Lor ∪ {|}, then this theory has the Joint Embedding
Property (JEP) in the languaje Lor ∪{|}. Therefore there exists R a real closed valuation
ring (not a field) such that: ∏

p∈πA
Rp

Cp ⊆ RC , (∗∗)

where C =
∏
p∈πACp is a product of Cantor spaces. This inclusion can be considered in

the languaje Llor ∪ {|}. By the theorem 2.1.(b) in [6], one has that RC ∈ Γe
L′(RCVR).

This means that B = RC is a model of T ∗ where A ⊆ B.

The inclusions in (∗) and in (∗∗) respects the radical relation. Since the radical relation
b� a is given by the universal formula ∀x(ax = 0→ bx = 0), it is clear that this relation
goes down in each inclusion. It will be shown that in each of this inclusion, the radical
relation goes up. Consider:

ι : A→
∏
p∈πA

A/p, a 7→ (a+ p)p∈πA.

Let a, b ∈ A and suppose that A |= a� b. We want to see that
∏
p∈πAA/p |= ι(a)� ι(b).

Let c̃ = (cp + p)p∈πA ∈
∏
p∈πAA/p such that ι(b)c̃ = 0. Then bcp + p = 0, for all p ∈ πA.

Therefore bcp ∈ p, for all p ∈ πA. Since a� b in A and cp ∈ A then acp� bcp for every
p ∈ πA. Recall that a� b is equivalent to ∀p ∈ πA(b ∈ p ⇒ a ∈ p). Therefore acp ∈ p,
for all p ∈ πA. Then acp + p = 0, for all p ∈ πA. That is ac̃ = 0. It is showed that
∀c̃ (ι(b)c̃ = 0⇒ ι(a)c̃ = 0) in

∏
p∈πAA/p. That is ι(b)� ι(a) is valid in

∏
p∈πAA/p.

1

Let’s see now that in the second inclusion of (∗), the radical relation is respected.
Let ã = (ap + p)p∈πA and b̃ = (bp + p)p∈πA be in

∏
p∈πAA/p such that ã� b̃, that is:

∀x(b̃x = 0→ ãx = 0). We want to see that ã� b̃ is valid in
∏
p∈πARp. In order to see this,

1Observe that in this paragraph the only condition used for A is to be a reduced f -ring.
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let x̃ = (xp)p∈πA with xp ∈ Rp for all p ∈ πA, such that b̃x̃ = 0. That is, (bp + p)xp = 0
for all p ∈ πA. Fixing p ∈ πA, one has that bp + p = 0 or xp = 0 for Rp is an integral
domain. If xp = 0 then clearly one has (ap + p)xp = 0. If bp + p = 0 then bp ∈ p. Taking

x ∈
∏
p∈πAA/p given by x(q) = δpq =

{
1 if p = q
0 if p 6= q

, one has that b̃x = 0 in
∏
p∈πAA/p

and by the hypothesis one has ãx = 0 in
∏
p∈πAA/p, that is ap + p = 0 and therefore

(ap + p)xp = 0. This is satisfied in all p ∈ πA and therefore one has ãx̃ = 0. It has been
showend that ∀x(b̃x = 0⇒ ãx = 0) is valid in

∏
p∈πARp, i.e.:

∏
p∈πARp |= ã� b̃.

For the third inclusion in (∗), let us consider r, s ∈
∏
p∈πARp given by r = (rp)p∈πA

and s = (sp)p∈πA, and such that r� s in
∏
p∈πARp. We have to take into account that

for each p ∈ πA, the inclusion Rp ↪→R
Cp
p is given by r 7→ (r)Cp where (r)Cp is a Cp-uple

constantly equal to r. We want to see that ∀x(sx = 0→ rx = 0) is true in
∏
p∈πARp

Cp .

Let’s take x ∈
∏
p∈πARp

Cp such that sx = 0 with x = (xp)p∈πA and xp = (xip)i∈Cp . Since

s ∈
∏
p∈πARp then s = (sp)p∈πA, and sx = 0 is spx

i
p = 0,for all p ∈ πA and for all i ∈ Cp.

Let’s fix p ∈ πA, the one has spx
i
p = 0, for all i ∈ Cp. Since r� s in

∏
p∈πARp then taking

xp ∈
∏
p∈πARp given by xp(q) = δpq =

{
1 if p = q
0 if p 6= q

, one has (sxp = 0 ⇒ rxp = 0).

That is, (sp = 0⇒ rp = 0). Now we have two cases:

• if sp = 0 then rp = 0 and therefore rpx
i
p = 0, for all i ∈ Cp.

• if sp 6= 0 then xip = 0 for all i ∈ Cp and therefore rpx
i
p = 0, for all i ∈ Cp.

We have showed (spx
i
p = 0⇒ rpx

i
p = 0), for all i ∈ Cp and for all p ∈ πA. This is exactly

r� s in
∏
p∈πARp

Cp . 2

Concerning the last inclusion in (∗∗), one has by model completeness of the real closed
valuation rings theory d (cf. [8]) that Rp ≺ R, for all p ∈ πA. By Feferman-Vaught
theorem, [11], one has: ∏

p∈πA
Rp

Cp≺RC . (†)

Then clearly the radical relation (and also local divisibility) is preserved by this last
inclusion.

We have seen so far that any reduced f -ring satisfying the first convexity property can
be embedded in a model of T ∗ in the languaje Llor ∪ {�}. In addition, if the ring A is
projectable, then the divisibility relation can be added to the languaje.

Now we are going to see, under the assumption that the reduced f -ring is projectable,
that the local divisibility relation is preserved by all the inclusions in (∗). The local
divisibility is preserved under the inclusion (†) as it is an elementary one. The local
divisibility is expressed by an existencial formula in the languaje Llor, and so it goes up
in any extension. We only have to prove that the local divisibility goes down in each
inclusion from (∗).

For the first inclusion in (∗), let a, b ∈ A such that b |loc a is true in
∏
p∈πAA/p. We

have to see that it is true in A. This is clear if a = 0. Let’s suppose that a 6= 0. Then there

2Observe that the only complication that arise in this third inclusion is about notation, since everything
is reduced to prove that for each p ∈ πA, the inclusion Rp ↪→R

Cp
p preserves the radical relation. That is

obvious since this inclusion is a constant function.
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exists w ∈
∏
p∈πAA/p such that w 6= 0, w(w−a) = 0 and b | w in

∏
p∈πAA/p. Since w 6= 0,

there exists p0 ∈ πA such that wp0 6= 0. Therefore a(p0) = wp0 6= 0 and b(p0) | wp0 = a(p0)
in A/p0. Therefore there exists cp0 ∈ A/p0 such that b(p0)cp0 = a(p0). Let c ∈ A such that
c(p0) = cp0 and then b(p0)c(p0) = a(p0). Therefore p0 ∈

[[
bc = a

]]
∩
[[
a 6= 0

]]
= N 6= φ

is a clopen set of πA. Since A is projectable, let w̃ ∈ A defined by w̃ = a�N ∪ 0�πArN .
Then w̃ 6= 0 and clearly w̃(w̃ − a) = 0. It is easy to see that b | w̃ in A as you can take
d ∈ A given by d = c�N ∪ 0�πArN ∈ A and satisfying bd = w̃. It has been showed that
A |= ∃w(w 6= 0 ∧ w(w − a) = 0 ∧ b | w). That is, A |= b |loc a.

Now let’s consider the second inclusion:
∏
p∈πAA/p ⊆

∏
p∈πARp. In order to simplify

notation let X = πA with Ax = A/p adn Rx = Rp for all x ∈ X. Let a = (ax)x∈X and
b = (bx)x∈X in

∏
x∈X Ax such that b |loc a in

∏
x∈X Rx. If a = 0 then clearly b |loc a in∏

x∈X Ax. Let’s suppose that a 6= 0. Then there exists w = (wx)x∈X ∈
∏
x∈X Rx such

that w 6= 0, w(w − a) = 0 and b | w in
∏
x∈X Rx. For each x ∈ X one has wx = 0 or

wx = ax ∈ Ax. Then w = (wx)x∈X ∈
∏
x∈X Ax. Since b, w ∈

∏
x∈X Ax, then b | w in∏

x∈X Rx permits us to see that b | w in
∏
x∈X Ax. We have found w ∈

∏
x∈X Ax such

that w 6= 0, w(w − a) = 0 with b | w in
∏
x∈X Ax. That is, b |loc a in

∏
x∈X Ax.

For the last inclusion we should consider
∏
x∈X Rx ⊆

∏
x∈X Rx

Cx , let a = (ax)x∈X and
b = (bx)x∈X in

∏
x∈X Rx such that b |loc a in

∏
x∈X Rx

Cx . If a = 0, then obvioulsy b |loc a
in
∏
x∈X Rx. Let’s suppose that a 6= 0. Then there exists w = (wcx)x∈X,c∈Cx such that

w 6= 0, w(w − a) = 0 and b | w in
∏
x∈X Rx

Cx . For each x ∈ X, if there exists c ∈ Cx
with wcx 6= 0 then wcx = ax 6= 0. In that case, one can redefine w ∈

∏
x∈X Rx

Cx in such a
way that wcx 6= 0 by declaring wcx = ax 6= 0, for all c ∈ Cx. And if for some x ∈ X one has
wcx = 0 for all c ∈ Cx then there is nothing to redefine. Therefore w is in

∏
x∈X Rx and

one has w 6= 0, w(w − a) = 0 and b | w in
∏
x∈X Rx

Cx . Ya se ha visto que también b | w
en
∏
x∈X Rx. Now it is clear that b |loc a in

∏
x∈X Rx.

We have seen that all inclusions in (∗) and (∗∗) respects local divisibility. All these
previous argumentations can be sumarized up in the following result.

Proposition 4.1 Let A be a reduced f -ring that satisfies the first convexity property.
Then there exists B |= T ∗ such that A ⊆L B where L = Llor ∪ {�}. If in addition A is
assumed to be projectable, then this inclusion remains true where L = Llor ∪ {|, � , |loc}.

�

As noted before, the projectability is not adequate for our purposes since it is not a
universal axiom. In the sequel of this section, we replace the projectability by a universal
axiom for each symbol in {|, |loc}. The following lema goes in that direction.

Lema 4.2 Let A be a reduced and projectable f -ring, then A satisfies:

∀a∀b∀c1 · · · ∀cn
(
(bc1 − a) · · · (bcn − a) = 0→ b | a

)
,

for each n ∈ N.

Proof: By our hypothesis we have that A ∈ Γa
Lor
(
X, (Ax)x∈X

)
, where X is a Boolean

space and (Ax)x∈X is a family of totally ordered integral domains. Let a, b, c1, . . . , cn ∈ A
such that (bc1 − a) · · · (bcn − a) = 0. Then we have that:(

b(x)c1(x)− a(x)
)
· · ·
(
b(x)cn(x)− a(x)

)
= 0,

15



for all x ∈ X. For each i ∈ {1, . . . , n}, let’s declarte:

Ni =
[[
bci − a = 0

]]
= {x ∈ X : b(x)ci(x)− a(x) = 0},

clopen subsets of X. Since the Ax’s are integral domain then:

X =
n⋃
i=1

Ni.

Without loosing generality, we can suppose that the Ni’s are pairwise disjoint and not
empty (in the case some set is empty then eliminate the corresponding ci). We therefore
can write:

X =

n⋃
i=1

· Ni.

By the patchwork property of A one has:

c = c1�N1
∪ · · · ∪ cn�Nn ∈ A.

Clearly b(x)c(x) − a(x) = 0, for all x ∈ X. That is bc = a with c ∈ A. This proves that
b | a in A.

�

Corollary 4.3 Let B be a reduced and projectable f -ring, and let A be a substructure of
B in the languaje Llor ∪ {|}. Then A satisfies:

∀a∀b∀c1 · · · ∀cn
(
(bc1 − a) · · · (bcn − a) = 0→ b | a

)
,

for all n ∈ N.

Proof: It is clearly deduced by the lema 4.2.
�

In the same sense one has:

Corollary 4.4 Let B |= T ∗ and A be a substructure of B in the languaje Llor∪{|}. Then
A satisfies:

∀a∀b∀c1 · · · ∀cn
(
(bc1 − a) · · · (bcn − a) = 0→ b | a

)
,

for each n ∈ N.
�

In view of our previous results, we established the following definition.

Definition 4.5 Let A be any ring. We say that A satisfies the divisibility glueing
axioms or property if A satisfies:

∀a∀b∀c1 · · · ∀cn
(
(bc1 − a) · · · (bcn − a) = 0→ b | a

)
,

for all n ∈ N.
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This divisibility glueing axioms is a universal system of formulas and the proposition 4.1
can be proved in the languaje Llor∪{� , |} if we replace it by the projectability assumption.
Since the space πA need not be necessarily compact, we will consider its closure in the
constructible topology of some spectral space (and being consistent with the nature of
the radical relation � , cf. [20]). We will recall some considerations on spectral spaces in
general and in the case of reduced f -rings. Let’s recall that a topological space X is a
spectral space (cf. [10, Definition 1.1.5]) if:

(i) X is quasi-compact and T0,

(ii) X has a base of quasi-compact subspaces that are closed by finite intersections.

(iii) every non-empty irreducible closed subset Y of X is the closure of a unique point.
A subset is an irreducible closed subset if it is not the union of two proper closed subsets.

In [4, (8.4.1)], the irreducibles l-ideals are defined and [4, (10.1.6)] says that if A is
an f -ring with unity then Specl(A) the set of irreducibles l-ideals of A is a quasi-compact
space. It is clear that Specl(A) is T0 (for if p, q ∈ Specl(A) with p 6= q then there exists
a ∈ A with a ∈ q and a /∈ p, or a /∈ q and a ∈ p; in the first case p ∈ S(a) and q /∈ S(a) and
in the second case q ∈ S(a) and p /∈ S(a)). By [4, 10.1.4] the base

{
S(a) : a ∈ A

}
of open

sets of Specl(A) is formed by quasi-compacts subsets that are closed by finite intersections.
So the definition of (i) and (ii) of spectral spaces are satisfied by Specl(A). The condition
(iii) is essentially [4, 10.1.7], except for the irreducibility. Let’s see this in detail. Let F be
a non-empty closed irreducible subset of Specl(A). By [4, 10.1.7] one has that F = H(p)
with p an l-ideal of A, where H(p) = Specl(A) r S(p) and S(p) = {q ∈ Specl(A) : p 6⊆ q}.
We want to see that p is irreducible. Let a and b be two l-ideals of A such that a∩ b = p.
Then F = H(p) = H(a) ∪H(b), cf. [4, 10.1.11(ii)]. Since F is irreducible then H(a) = F
or H(b) = F . If H(a) = F = H(p) then S(a) = S(p) and by [4, 10.1.3] one has that
a = p. Similarly if H(b) = F = H(p), then b = p. This shows that F = H(p) = {p},
with p ∈ Specl(A). In short, section (10.1) of [4, chapter 10] establish that Specl(A) is a
spectral space if A is an f -ring with unity.

The result [4, (9.1.5)] says that if A is an f -ring and p ∈ Specl(A) then A/p is a totally
ordered ring. Nevertheless, if A is reduced then not necessarily A/p is an intregral domain.
In order that those quotients will be integral domains with restrict to the subspace:

Y =
{
p ∈ Specl(A) : p is prime

}
,

see the section [4, (9.2)] and in particular [4, (9.2.5)]. Therefore, for each p ∈ Y one has
that A/p is a totally ordered integral domain.

Is Y as a topological subspace of Specl(A) a spectra space ? By [10, 2.1.3], it is
sufficient to see that Y is proconstructible in Specl(A). Or equivalently that Specl(A)rY
is an open set in the constructible topology of Specl(A). To see this, let p0 ∈ Specl(A)rY .
Then p0 is an irreducible l-ideal that it is not a prime ideal. There exists a, b ∈ A such
that ab ∈ p0 with a /∈ p0 and b /∈ p0. Let O = V (ab) ∩ D(a) ∩ D(b) an open set in the
constructible topology of Specl(A), so that p0 ∈ O and O ⊆ Specl(A) r Y (none p ∈ O
will be prime). Therefore Y =

{
p ∈ Specl(A) : p is prime

}
is also a spectral space.

Summarizing one has that if A is a (reduced) f -ring, there exists Y ⊆ Specl(A) a
spectral space such that A/p is a totally ordered integral domain, for all p ∈ Y . Let’s
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observe that by [12, Lemma 2.3], if A is an f -ring satisfying the first convexity property
then A/p also satisfies this property, for all p ∈ Y . We are ready to announce and prove
the following proposition.

Proposition 4.6 Let A be a reduced f -ring satisfying the first convexity property and the
divisibility glueing axioms. Then there exists B |= T ∗ such that A is a substructure of B
in the languaje Llor ∪ {|}.

Proof: Let A be a reduced f -ring satisfying the first convexity property and the divisibility
glueing property. Let’s consider Y any spectral space in such a way that A/p is a totally
ordered integral domain, for all p ∈ Y . Let X be any proconstructible subspace of Y
containing πA (by [4, 9.3.2] one has that πA ⊆ Y ). In particular X can be πA the closure
of πA in the constructible topology of Y .

Let’s consider ι : A →
∏
p∈X A/p, a 7→ (a + p)p∈X . Clearly ι is an homomorfism

of lattice-ordered rings. Since A is reduced and X contains πA, then ι in an embedding.
Therefore ι : A ↪→

∏
p∈X A/p is a monomorfism of lattice-ordered rings. Clearly, if a, b ∈ A

such that b | a in A then ι(b) | ι(a) in
∏
p∈X A/p. We want to see the inverse implication.

Let a, b ∈ A such that ι(b) | ι(a) in
∏
p∈X A/p. Let’s denote Ax = A/p for x ∈ X. Then

b(x) divides a(x) in Ax, for all x ∈ X. There exists cx ∈ Ax such that b(x) = cx = a(x),
for all x ∈ X. Since A is an f -ring, there exists c̃x ∈ A such that c̃x(x) = cx, for all x ∈ X.
Then b(x)c̃x(x) = a(x), for all x ∈ X. Therefore x ∈

[[
bc̃x = a

]]
= Nx a clopen set in the

constructible topology of X. Therefore:

X =
⋃
x∈X

Nx,

and by compactness of X, there exists x1, . . . , xn ∈ X such that:

X =
N⋃
i=1

Nxi .

Let’s dentote ci = c̃xi and Ni = Nxi , for all i = 1, . . . , n. We have that X =
⋃n
i=1Ni

and therefore every x ∈ X satisfies b(x)ci(x) = a(x) for some i ∈ {1, . . . , n}. Then(
b(x)c1(x)− a(x)

)
· · ·
(
b(x)cn(x)− a(x)

)
= 0, for all x ∈ X. That is:

(bc1 − a) · · · (bcn − a) = 0.

By the divisibility glueing property of A one has that b | a. We have proved that:

A |= b | a if and only if
∏
p∈X

A/p |= ι(b) | ι(a).

Therefore ι is a lattice-ordered monomorphism ring that respects the divisibility relation.
Note that

∏
p∈X A/p is a reduced and projectable f -ring, then by proposition 4.1, there

exists B |= T ∗ such that
∏
p∈X A/p ⊆ B in the languaje Llor ∪ {|}. Therefore A can be

embedded in B a model of T ∗ in the languaje Llor ∪ {|}. �
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In the previous proof, the space X could have been the whole Y =
{
p ∈ Specl(A) :

p is prime
}

. Or also it could have been X = πA
con

where πA it is seen as a subspace of
Sper(A) the real spectrum of A. Or also, even πA could have been seeing as a subspace
of RCVR-Spec(A), cf. [21]. We can now establish the following propostion.

Proposition 4.7 The universal theory of T ∗ in the languaje Llor ∪ {|} is the theory of
reduced f -rings satisfying the first convexity property and the divisibility glueing property.

Proof: This result is deduced by corolary 4.4 and by propostion 4.6.
�

In the last part of this section, we exhibit the universal theory of T ∗ adding the local
divisibilty and considering as well the radical relation in the languaje. The following
proposition goes in that sense.

Proposition 4.8 Let A be a reduced and projectable f -ring. Then A satisfies:

∀a∀b∀c(a 6� bc− a→ b |loc a). (?)

Proof: Let A be a reduced and projectable f -ring. Then A ∈ Γa
Lor
(
X, (Ax)x∈X

)
, where

X = πA is the space of minimal prime ideals and (Ax)x∈X is a family of totally ordered
integral domains. Let a, b, c ∈ A such that a 6� bc−a. By the equivalent way to express the
radical relation in termos of X, there exists x ∈ X such that a(x) 6= 0 and (bc−a)(x) = 0.
Let’s declare N = [[ a 6= 0 ]] ∩ [[ bc−a = 0 ]] . Therefore x ∈ N and N is a non-empty clopen
set. By the patchwork property in A, there exists w ∈ A such that w = a�N ∪ 0�XrN .
Let’s put c′ = c�N ∪ 0�XrN ∈ A. By the definition of N one has that w 6= 0, w(w − a) = 0
and bc′ = w. We have proved that ∃w(w 6= 0 ∧ w(w − a) = 0 ∧ b | w) en A, and this is
precisely that b |loc a.

�

It is clear that a 6= 0 in the context of the previous proof. In general, if the formula
(?) is valid for any radical relation � then a 6= 0. For if a = 0 then 0 6� bc, and this is a
contradiction since 0� d, for all d ∈ A. We have the following corolaries.

Corollary 4.9 Let B be reduced and projectable f -ring, with A a substructure of B in the
languaje Llor ∪ {� , |loc}. Therefore A satisfies:

∀a∀b∀c(a 6� bc− a→ b |loc a).

Proof: It is obviously deduced from proposition 4.8.
�

Corollary 4.10 Let B |= T ∗ with A a substructure of B in the languaje Llor ∪ {� , |loc}.
Therefore A satisfies:

∀a∀b∀c(a 6� bc− a→ b |loc a).

�
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The formula ∀a∀b∀c(a 6� bc−a→ b |loc a) establish a compatibility between the radical
relation � and the local divisibility.

Definition 4.11 Let A be any ring. We say that A has the local divisibility property
if A satisfies ∀a∀b∀c

(
(a 6� bc− a)→ b |loc a

)
.

We are in measure to prove the following proposition.

Proposition 4.12 Let A be any reduced f -ring satisfying the first convexity property and
the local divisibility property. Therefore there exists B |= T ∗ such that A ⊆ B as a
substructure in the languaje Llor ∪ {� , |loc}.

Proof: Let A be a reduced f -ring satisfying the first convexity property and the local
divisibility property. Let’s consider, as in the proposition 4.6, a spectral space Y ⊆
Specl(A) such that A/p is a totally ordered integral domain, for all p ∈ Y . Let’s consider
also a proconstructible subset X of Y containing πA; in particular X can be πA

con
the

closure of πA in the constructible topology of Y .

As in the proposition 4.6, let’s consider ι : A →
∏
p∈X Ap the lattice-ordered ring

homorphism given by ι(a) = (a + p)p∈X . Since X contains πA and A is reduced, then ι
is a monomorphism. Also ι respects the radical relation for X contains πA and therefore
defines � . We want to see that ι respects the local divisibility. Let a, b ∈ A. If b |loc a in
A then clearly ι(b) |loc ι(a) in

∏
p∈X Ap. Let’s suppose now that ι(b) |loc ι(a) in

∏
p∈X Ap.

If ι(a) = 0 then a = 0 and clearly b |loc a in A. Let’s suppose that ι(a) 6= 0. Let’s denote∏
p∈X Ap =

∏
x∈X Ax, where Ax is a totally ordered integral domain, for all x ∈ X and

X is a Boolean space (since it is a closed subset in the constructible topology). We have
that ι(a) =

(
a(x)

)
x∈X 6= 0. Then there exists w = (wx)x∈X ∈

∏
x∈X Ax such that w 6= 0

and w
(
w− ι(a)

)
= 0 with ι(b) | w in

∏
x∈X Ax. Then there exists c = (cx)x∈X ∈

∏
x∈X Ax

such that ι(b)c = w. Since w 6= 0, there exists x0 ∈ X such that wx0 6= 0. Therefore
wx0 = a(x0) for w

(
w − ι(a)

)
= 0. There exists c ∈ A tsuch that c(x0) = cx0 and then we

have b(x0)c(x0) = a(x0) with a(x0) 6= 0. That is a(x0) 6= 0 and (bc − a)(x0) = 0. Since
the radical relation is defined by πA or by any proconstructible subset that contains it,
one has that a 6� bc− a in A. Since A satisfies the local divisibility property, then b |loc a
in A. We have showned that ι : A→

∏
p∈X Ap respects the local divisibility.

Since A satisfies the first convexity property, then Ax satisfies it, for all x ∈ X. Claearly
one has that

∏
p∈X Ap satisfies the first convexity property as well. Then

∏
p∈X Ap is a

reduced and projectable f -ring satisfying the first convexity property. By proposition 4.1,
there exists B |= T ∗ such that

∏
x∈X Ax ⊆ B in the languaje Llor ∪ {� , |loc}. Finaly one

has that A ⊆ B in the languaje Llor ∪ {� , |loc}. �

By proposition 4.7, corollary 4.10 and proposition 4.12, it is obvious to deduce the
following result.

Proposition 4.13 The universal theory of T ∗ in the languaje Llor ∪ {|, � , |loc} is the
theory of reduced f -rings satisfying the first convextiy property, the divisibility glueing
property and local divisibility property.

�
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By theorem 3.2, T ∗ is also model complete in the language Llor ∪ {� , |, |loc}. In view
of proposition 4.13, we have the following result.

Theorem 4.14 The theory T ∗ is the model companion of the theory of reduced f -rings
satisfying the first convexity property, the divisibility glueing axioms and the local divisi-
bility property in the language Llor ∪ {� , |, |loc}.

�

5 The maximal local divisibility relation.

In this section, we study equivalent forms of the local divisibility relation valid in the
theory of reduced projectable and divisible-projectable f -rings (and so in the theory T ∗).
One of this forms will be distinguish since it permits us to have the appropiate control over
the fibers where the divisibility is carried out, locally speaking. We start with a simple
fact.

Fact 5.1 Let A be any ring. Then for all a, b ∈ A one has that:

b |loc a↔ a = 0 ∨ ∃w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
.

Proof: (⇐) is clear.
(⇒) It is obvious if a = 0. If not, there exists w 6= 0 such that w(w− a) = 0 and b | w.

Let’s see that w� a, that is: ∀p ∈ πA(a ∈ p ⇒ w ∈ p). Let p ∈ πA tsuch that a ∈ p.
Then wa ∈ p. Since w(w − a) = 0 then w2 = wa and therefore w2 ∈ p. Then w ∈ p.

�

Observation 5.2 Let A be any ring and let a, b ∈ A such that ∃e(e2 = e ∧ ae 6=
0 ∧ e� a ∧ b | ae) then ∃w

(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
.

Proof: Let’s declare w = ae 6= 0. Note that w(a − w) = ae(a − ae) = a2e(1 − e) = 0.
Since for all x ∈ A one has that x� 1, then e� 1 and by the (4) in the definition of radical
relations ea� a, and then w� a. Clearly b | w.

�

Observation 5.3 Let A be a reduced and projectable f -ring. Let a, b ∈ A such that
∃w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
then ∃e(e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae).

Proof: Let’s suppose there exists w ∈ A such that w 6= 0, w(a−w) = 0, w� a and b | w.
The idempotent e ∈ A is the support of w: it is constructed using the projectability of
A, for: 1 = c + d, where c ∈ w⊥ and d ∈ w⊥⊥, (see [15, Lema 3.3]). Then c · w = 0
and d�w. Observe that d�w and w� a implies d� a. Since w · c = 0 then c · d = 0.
Therefore c = c · 1 = c(c + d) = c2 + cd = c2 + 0 = c2. Then c is an idempotent and
d = 1 − c is also an idempotent. Let’s declare e = d. We want to see that ad 6= 0. Let’s
suppose by contradiction that ad = 0. Since w� a then Ann(a) ⊆ Ann(w), and since
ad = 0 then d ∈ Ann(a), and therefore d ∈ Ann(w), that is: dw = 0. Since d�w, then
Ann(w) ⊆ Ann(d); therefore d = d2 = 0. Then c = 1 and w = 0, a contradiction since by
hypothesis one has that w 6= 0. Therefore ad 6= 0. One has initially that d�w. Let’s see
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that also w� d, that is: Ann(d) ⊆ Ann(w). Let x ∈ A such that dx = 0. Since (1−c)x = 0
then x = cx. Since wc = 0 then wx = wcx = 0. We have seen that ∀x(dx = 0⇒ wx = 0),
that is: w� d. One has that d�w ∧ w� d. Then w =s d.

Since w� a then wd� ad and observe that w = w ·1 = w(c+d) = wc+wd = 0+wd =
wd. Then w� ad. Also d�w and then ad� aw = w2. Therefore ad�w, for if w2�w
then w� 1. Then w� ad and ad�w, that is: w =s ad.

Now let’s see that w = ad. For this we are going to use that the ring A is reduced.
Let p ∈ πA. If w /∈ p then a− w ∈ p for w(a− w) = 0 ∈ p. Then (a− w)d ∈ p. And see
that (w − a)d = wd − ad = w(1 − c) − ad = w − ad ∈ p. If w ∈ p, since w =s ad then
ad ∈ p, and in particular w − ad ∈ p. Therefore one has w − ad ∈

⋂{
p : p ∈ πA

}
= {0},

because A is reduced. Then w = ad and therefore b | ad. We have showed that ∃d(d2 =
d ∧ ad 6= 0 ∧ d� a ∧ b | ad).

�

Proposition 5.4 Let A be a reduced and projectable f -ring and a, b ∈ A. The following
assertions are equivalent:

(i) ∃w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
,

(ii) ∃e(e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae).

Proof: This is comes from observations 5.2 and 5.3.
�

Proposition 5.5 Let A be a reduced and projectable f -ring and a, b ∈ A. The following
assertions are equivalent on A:

(i) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

∀w′(w′ 6= 0 ∧ w′(a− w′) = 0 ∧ w′� a ∧ b | w′ → w′�w)
]
,

(ii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e)
]
.

Proof: Let’s first prove that (ii)⇒(i): Let’s suppose (ii) and let’s declare w = ae. Clearly
w 6= 0 and w(a − w) = 0 is the same calculation on previous proposition. It is clear tha
w� a for e� 1 and multiplying by a one obtains the result. Evidently b | w. Let w′ 6= 0
with w′(a − w′) = 0, w′� a and b | w′. As in the previous proposition we set 1 = c′ + d′

with c′ · w′ = 0 and d′�w′. Then c′ are d′ idempotents. Since d′�w′ and w′� a then
d′� a. Similarly as in the previous proposition, one sees that ad′ 6= 0. It can also be
showed that w′� d′, and therefore w′ =s d

′. In a similar way it is showed that w′ = ad′

and evidently b | ad′. As we are supposing (ii) the one has that d′ 6 e, that is d′� e. Then
ad′� ae, that is w′� ae = w.

Let’s prove now (i)⇒(ii): Let’s suppose (ii) and let w ∈ A satisfying (i). We set 1 = c+d
with cw = 0 and d�w. As before, c and d are idempotents such that w = ad 6= 0 and
d� a with b | ad. In fact, one has that w� d and therefore d =s w. The idempotent we
are looking for e = d. Let e′ be an idempotent such that ae′ 6= 0, e′� a and b | ae′. Let’s
put w′ = ae′ 6= 0 and see that w′(a− w′) = 0 with w′� a and b | w′. Then w′�w. That
is ae′� ad. We want to show that e′ 6 d. Let p ∈ πA such that e′ /∈ p, that is e′ − 1 ∈ p.
Since e′� a then a /∈ p. Therefore ae′ /∈ p. Since w′ = ae′ then w′ /∈ p and therefore
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w = ad /∈ p. That means a /∈ p and d /∈ p, in particular d− 1 ∈ p. We have showed for all
p ∈ πA, if e′ /∈ p then d /∈ p. Then e′� d, that is e′ 6 d.

�

The following proposition gives differents equivalent assertions of statement (ii) in
proposition 5.5:

Proposition 5.6 Let A be a reduced and projectable f -ring and a, b ∈ A. Then the
following assertions are equivalent on A:

(i) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))]
,

(ii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ af 6= 0 ∧ f � a(1− e)→ b - af

))]
,

(iii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ ∀w′
(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

))]
.

Proof: (i)⇒(ii): Let’s suppose (i). Let e ∈ A satisfying (i). Obviously e satisfies the first
five conjunctions of (ii). Let’s see the last one. Let’s suppose that a(1 − e) 6= 0 and let
f ∈ A be such that f2 = f , af 6= 0 and f � a(1 − e). Then ef � a(1 − e) · e = 0 and
ef = 0. Therefore a(1 − e)f = a(f − ef) = af 6= 0 and b - af . Therefore e satisfies all
conjonctions of (ii).

(ii)⇒(iii): Let’s suppose there is e ∈ A satisfying the six conjonctions of (ii). Let’s put
w = ae. Then w 6= 0, w(a− w) = 0, w� a (cause e� 1, and ae� a) and b | w.

If a − w = 0 then a − ae = a(1 − e) = 0 and by (ii) one has b | a. If a − w 6= 0 then
a(1− e) = a− w 6= 0 and therefore:

∀f
(
f2 = f ∧ af 6= 0 ∧ f � a(1− e)→ b - af

)
.

We want to see if ∀w′
(
w′ 6= 0 ∧ w′

(
(a − w) − w′

)
= 0 ∧ w′� a − w → b - w′

)
is true

in A. Let w′ ∈ A be such that w′ 6= 0, w′
(
(a − w) − w′

)
= 0 and w′� a − w. Since

A is projectable then 1 = c′ + d′ with c′ · w′ = 0 and d′�w′. Since w′� a − w then
d′� a−w = a−ae = a(1− e). Therefore ed′� ea(1− e) = a(1− e)e = 0 and consequently
ed′ = 0; that is d′ 6 1 − e (or e 6 1 − d′). One also has, as before, that c′d′ = 0 and
c′, d′ are idempotents. Similarly one sees that w′� d′ because Ann(d′) ⊆ Ann(w′); for if
x ∈ A is such that d′x = 0 then xc′ = x and therefore xw′ = xc′w′ = x0 = 0; that is
x ∈ Ann(w′). Then w′ =s d

′.

Let’s see now that w′ = a(1−e)d′. Let p ∈ πA. If w′+p = 0 then w′ ∈ p, consequently
d′ ∈ p and also a(1−e)d′ ∈ p; that is a(1−e)d′+p = 0. In that case w′+p = a(1−e)d′+p.
Now, if w′+p 6= 0, since w′

(
(a−w)−w′

)
= 0 ∈ p then w′+p = (a−w)+p = a(1−e)+p;

in that case d′+ p 6= 0 and therefore d′+ p = 1 + p. Then w′+ p = a(1− e)d′+ p. We have
seen that w′+p = a(1−e)d′+p, for all p ∈ πA. Since A is reduced, one has w′ = a(1−e)d′.
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We have that d′2 = d′ and see that 0 6= w′ = a(1 − e)d′ = a(d′ − ed′) = ad′, since
ed′ = 0. Then ad′ 6= 0 and one also has d′� a(1− e). Then b - ad′. Since a(1− e)d′ = ad′

then b - a(1− e)d′. That is b - w′.

(iii)⇒(i): Let’s suppose there exists w 6= 0 satisfying (iii). By projectability on the
ring A one has that 1 = c+ d wiht c ·w = 0 and d�w. In fact we also had w� d, that is
d =s w. It is showed that d� a and w = ad as before (A is reduced). Let’s put e = d and
one has w = ad 6= 0 and b | ad. Clearly if a(1− d) = 0 then b | a. Now if a(1− d) 6= 0, we
want to see:

∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))
is true in A. Let f ∈ A satisfying the first tree conjunctions. Let’s put w′ = a(1−e)f 6= 0,
and see that w′

(
(a−w)−w′

)
= w′

(
(a−ad)−w′

)
= w′

(
a(1−d)−w′

)
= w′

(
a(1−e)−a(1−

e)f
)

= w′
(
a(1−e)(1−f)

)
= a(1−e)fa(1−e)(1−f) =

(
a(1−e)

)2
f(1−f) =

(
a(1−e)

)2
0 = 0.

Now see that w′ = a(1− e)f � a(1− e) cause f � 1 and multiplying by a(1− e) each side
the result is obtained. By (iii) one has that b - w′, es decir b - a(1− e)f .

�

In the following proposition we will show that the assertions using idempotentes in
propositions 5.5 and 5.6 are equivalents.

Proposition 5.7 Let A be any ring and a, b ∈ A. Then the following assertions on A are
equivalent:

(i) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e)
]
,

(ii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))]
.

Proof: (i)⇒(ii): Let e ∈ A satisfying (i). We want to show the las two conjunctions of
(ii).

• If a(1− e) = 0 then a = ae and evidently b | a.

• If a(1 − e) 6= 0. We want to see the last conjunction. For this, let f ∈ A such that
f2 = f , a(1 − e)f 6= 0 and f � a(1 − e). We suppose by contradiction that b | a(1 − e)f .
Observe that multiplying f � a(1 − e) by e on both one has consequently ef = 0. Then
a(1 − e)f = af . Therefore af 6= 0 and b | af . Since f � a(1 − e), then multiplying by f
on both sides ones has that f2� a(1 − e)f , tha is: f � af . Since f � 1, then af � a and
by transitivity one has f � a. One gets f2 = f , af 6= 0, b | af and f � a. Therefore by (i)
one gets f 6 e. Then f2 6 ef , that is: f 6 ef = 0. So f = 0. But this contradicts one of
our initial assumptions: af 6= 0. So, we must have b - a(1− e)f .

(ii)⇒(i): Let e ∈ A satisfying (ii). It is clear that e satisfies the first four conjonctions
of (i). We want to see that e satisfies the fifth one. Let e′ ∈ A be such that e′2 = e′,
ae′ 6= 0, e′� a and b | ae′. We should see e′ 6 e, or equivalently e′(1− e) = 0.

• If a(1−e) = 0 then 1−e ∈ Ann(a). Since e′� a then Ann(a) ⊆ Ann(e′) and therefore
1− e ∈ Ann(e′), that is: e′(1− e) = 0.
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• If a(1− e) 6= 0. We have by (ii):

∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))
.

Let’s suppose by contradiction that e′(1 − e) 6= 0. Let’s see that a(1 − e)e′ 6= 0: for if
a(1 − e)e′ = 0 then (1 − e)e′ ∈ Ann(a), and since e′� a then (1 − e)e′ ∈ Ann(e′), and
therefore (1 − e)e′ · e′ = (1 − e)e′2 = (1 − e)e′ = 0. Then we have that a(1 − e)e′ 6= 0.
Let’s put f = (1− e)e′, obviously f2 = f . See also that a(1− e)f = a(1− e)e′ 6= 0. Since
e′� a, then e′(1 − e)� a(1 − e), that is f � a(1 − e). Then we have b - a(1 − e)f . But
a(1 − e)f = a(1 − e)(1 − e)e′ = a(1 − e)e′ = ae′ − aee′. Since b | ae′ then b | aee′ and
since b | ae′, then b | ae′ − aee′ = a(1 − e)e′. We have come to that b | a(1 − e)e′ and
b - a(1− e)e′, a contradiction. Therefore e′(1− e) = 0 and e′ 6 e.

�

Observation 5.8 Proposition 5.7 can be formulated in the following terms: in any ring
A and for any a, b, e ∈ A, the following assertions are equivalents:

(i) e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧ ∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e),

(ii) e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧
(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))
.

Observe by the proof of proposition 5.7 that the element e ∈ A satisfying (i) and (ii) is
the same one. And observe also that the element e given by proposition 5.7 (i) is unique;
for if ē1 and ē2 are two idempotents satisfying (i), then ē1 6 ē2 and ē2 6 ē1. Therefore
ē1 = ē2. [In fact, by condition (i) it is evidently that this element e ∈ A is unique.]

�

Corollary 5.9 Let A be a reduced and projectable f -ring, and let and a, b ∈ A. Then the
following assertions are equivalents:

(i) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

∀w′(w′ 6= 0 ∧ w′(a− w′) = 0 ∧ w′� a ∧ b | w′ → w′�w)
]
,

(ii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ ∀w′
(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

))]
.

Proof: It is deduced by propositions 5.6, 5.7 y 5.5.
�

The previous corollary 5.9 was deduced easily using some propositions under the hy-
pothesis of projectability and reducibility of the ring. The author thinks this equivalence
may be proved directly under more general assumptions. The following proposition uses
the divisible-projectability of the ring and proves that the local divisibility is equivalent
to one of it previous “stroger” forms.

Proposition 5.10 Let B be a reduced and divisible-projectable f -ring, and let a, b ∈ B.
The following assertions are equivalents:

(i) b |loc a and a 6= 0,
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(ii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ ∀w′
(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

))]
.

Proof: (ii)⇒(i) is obvious. Let’s do (i)⇒(ii). Let’s suppose that b |loc a and a 6= 0. Then
b 6= 0. Since B is divisible-projectable then there exists a1, a2 ∈ B such that a = a1 + a2,
a1 · a2 = 0, b | a2 and, b -loc a2 or a2 = 0. Observe that if a1 = 0 then a2 = a and then
b -loc a, since a 6= 0. Therefore a1 6= 0 and a1 · a2 = 0 says that a1(a − a1) = 0 with
b | a1. From a1(a− a1) = 0 one has that a1� a. Then there exists w = a1 6= 0 such that
w(a−w) = 0, w� a and b | w. If a2 = 0 then a− a1 = a−w = 0 and a1 = a with b | a. If
a2 6= 0 then a2 = a − a1 6= 0 and one gets b -loc a − a1. This non local divisibility means
by fact 5.1 that ∀w′

(
w′ 6= 0 ∧ w′

(
(a − w) − w′

)
= 0 ∧ w′� a − w → b - w′

)
. We have

showned (ii).
�

The following proposition resumes all equivalent forms of local divisibility in the re-
duced projectables and divisible-projectables f -rings.

Proposition 5.11 Let A be a reduced projectable and divisible-projectable f -ring ; and
let a, b ∈ A. The following assertions are equivalent:

(i) b |loc a ∧ a 6= 0,

(ii) ∃w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
,

(iii) ∃e(e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae),
(iv) ∃e

[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e)
]
,

(v) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

∀w′(w′ 6= 0 ∧ w′(a− w′) = 0 ∧ w′� a ∧ b | w′ → w′�w)
]
,

(vi) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e)
]
,

(vii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))]
,

(viii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ ∀w′
(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

))]
.

Proof: It is deduced by all previous propositions and observations.
�

6 Quantifier elimination.

In the previous section we saw different equivalents ways of expressing the local divisibility
in reduced projectable and divisible-projectables f -rings, and in particular in models of
the theory T ∗. Hopefully, one of this maximal local divisibility expression will permit
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us more control over the fibers where the divisibility is carried out in order to prove a
quantifier elimination result. In that sense, we define:

Definition 6.1 Let A be any ring and let a, b ∈ A. We define a binary relation called
maximal local divisibility by:

b |mloc a↔ a = 0 ∨ ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))]
.

If A is any ring, then clearly:

A |= ∀a∀b
(
b |mloc a→ a = 0 ∨ ∃e

(
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae

))
,

and by observation 5.2, one has that:

A |= ∀a∀b(b |mloc a→ b |loc a).

If in addition A is a reduced, projectable and divisible-projectable f -ring, then the equiv-
alence between (i) and (vii) of proposition 5.11 permits us to write:

A |= ∀a∀b(b |mloc a↔ b |loc a).

It’s worth noting that the previous formula is valid in any model of T ∗, that is:

T ∗ ` ∀a∀b(b |mloc a↔ b |loc a).

In this section we are considering the languaje L = Llor ∪ {|, � , |mloc}. First of all, we are
going to adapt the characterizations of the universal theories in the differents languajes
given in section 4 to this new languaje L. In that sense we have:

Proposition 6.2 Let B be reduced, projectable and divisible-projectable f -ring. Then:

B |= ∀a∀b∀c(a 6� bc− a→ b |mloc a).

Proof: Observe that this follows by previous comments and by proposition 4.8.
�

Corollary 6.3 Let B be a reduced, projectable and divisible-projectable f -ring and let A
be any ring such that A ⊆ B as a substructure in the languaje L. Then:

A |= ∀a∀b∀c(a 6� bc− a→ b |mloc a).

Proof: It is evidently since the formula in question is universal.
�

Corollary 6.4 Let B |= T ∗ and A a ring such that A ⊆ B as a substructure in the
languaje L. Then:

A |= ∀a∀b∀c(a 6� bc− a→ b |mloc a).
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Proof: In particular B satisfies the hypothesis of corollary 6.3.
�

This formula is going to be suficient, with all the previous ones, in order to prove the
inclusion in models of T ∗ and in this new languaje.

Definition 6.5 Let A be any ring. We say that A has the maximal local divisibility
property if:

A |= ∀a∀b∀c(a 6� bc− a→ b |mloc a).

Proposition 6.6 Let A be a reduced f -ring satisfying the first convexity property, the
divisibility glueing axioms and the maximal local divisibility property. Then there exists
B |= T ∗ such that A ⊆ B in the languaje L.

Proof: Since A satisfies the maximal local divisibility property and ∀a∀b(b |mloc a →
b |loc a), then A satisfies the local divisibility property. By proposiction 4.13, there exists
B |= T ∗ such that A ⊆ B in the languaje Lan−re ∪ {� , |, |loc}. We want to show that for
all a, b ∈ A, one has that A |= b |mloc a if and only if B |= b |mloc a.

(⇒) Let’s suppose A |= b |mloc a. Then A |= b |loc a. By the construction of B, one has
B |= b |loc a. Since B is a model of T ∗, then B |= b |mloc a.

(⇐) Let’s suppose B |= b |mloc a. If a = 0, evidently A |= b |mloc a. Now let’s suppose
a 6= 0. Since B |= b |mloc a then B |= b |loc a. Since A is a substructure of B in the
languaje Llor ∪ {� , |, |loc} then A |= b |loc a. Since a 6= 0, there exists w ∈ A, w 6= 0,
w(a − w) = 0 and b | w. Then there exists c ∈ A such that bc = w. Since w 6= 0 and A
is reduced, there exists p ∈ πA such that w + p 6= 0. Then w + p = a+ p 6= 0. Therefore
bc+ p = w+ p = a+ p. That is bc− a ∈ p and a /∈ p. Then a 6� bc− a in A for a, b, c ∈ A.
Since A satisfies the maximal local divisibility property then A |= b |mloc a.

�

Proposition 6.7 The universal theory of T ∗ in the languaje Llor∪{|, � , |mloc} is the theory
of reduced f -rings satisfying the first convexity property, the divisibility glueing axioms and
maximal local divisibility property.

Proof: This comes from the propositions 6.6, 6.4 and 4.13.
�

The following definition has the purpose of expressing in a consice way the relation an
idempotent e has in terms of a and b in the proposition 5.7 and in the observation 5.8:

Divloc(b, a, e) ↔def (e2 = e ∧ ae 6= 0 ∧ b | ae ∧ e� a)

∧ ∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ b | ae′ ∧ e′� a→ e′ 6 e).

The following proposition reinforces the fact that an idempotent e satisfying Divloc(b, a, e)
is unique. Nevertheless, what we are interested in is to show that this idempotent controls
where the divisibility (locally speaking) is carried out.

Proposition 6.8 Let B be a reduced, projectable and divisible-projectable f -ring. Let
a, b, e ∈ B be such that B |= Divloc(b, a, e). Let B ∈ Γa

Lor∪{|}
(
X, (Bx)x∈X

)
, where X is a

Boolean space and (Bx)x∈X is a family of totally ordered integral domains. Then:[[
e = 1

]]
=
[[
b | a

]]
∩
[[
a 6= 0

]]
.
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Proof: Let x ∈ X such that x ∈
[[
e = 1

]]
. Then e(x) = 1, and since e� a then a(x) 6= 0.

Since b | ae then b(x) | a(x)e(x) = a(x). Therefore x ∈
[[
b | a

]]
∩
[[
a 6= 0

]]
. We proved

that
[[
e = 1

]]
⊆
[[
b | a

]]
∩
[[
a 6= 0

]]
. Let’s suppose

[[
e = 1

]]
(
[[
b | a

]]
∩
[[
a 6= 0

]]
. Then:

M =
[[
b | a

]]
∩
[[
a 6= 0

]]
r
[[
e = 1

]]
6= ∅.

Let e′ ∈ B defined by e′ = 1�M ∪ 0�XrM . Clearly e′2 = e′, ae′ 6= 0 since M 6= ∅. One has
that b | ae′ by the compactness of X and by the patchwork property of B. Clearly e′� a.
Since B |= Divloc(b, a, e) then e′ 6 e. But for every x0 ∈ M one has that e′(x0) = 1 and
e(x0) 6= 1, i.e.: e(x0) = 0. Then we can not have e′ 6 e, contradicting the strict inclusion.
So we have showed: [[

e = 1
]]

=
[[
b | a

]]
∩
[[
a 6= 0

]]
.

�

The following proposition shows the interest of introducing the |mloc relation symbol
in the languaje since this permits to show that the divisibility is respected by the local
morphisms.

Proposition 6.9 Let A |= T ∗∀ in the languaje Llor ∪ {|, � , |mloc} and let B be a reduced,
projectable and divisible-projectable f -ring. Let f : A → B be a monomorphism in the
languaje Llor ∪ {|, � , |mloc}. For q ∈ πBcon

and p ∈ πAcon
such that f̃(q) = p = f−1(q),

one has that fpq : A/p→ B/q is a monomorphism in the languaje L′ = {0, 1,+, ·,6, |}.

Dm: Clearly fpq : A/p→ B/q, fpq(a+p) = f(a)+q, is a monomorphism of totally ordered
integral domains. We only have to show that fpq respects the divisibility relation. Let
a, b ∈ A, we have to see that A/p |= b+ p | a+ p if and only if B/q |= f(b) + q | f(a) + q.
The direction (⇒) is clear. Therefore we are going to see (⇐). If f(a) + q = 0 then
f(a) ∈ q and a ∈ f−1(q) = p, therefore a + p = 0. In that case, evidently b + p | a + p
in A/p. Let’s suppose that f(a) + q 6= 0. Since B/q |= f(b) + q | f(a) + q then there
exists c ∈ B such that (f(b) + q)(c + q) = f(a) + q. Therefore f(b)c − f(a) ∈ q. So
we have f(a) /∈ q and f(b)c − f(a) ∈ q. Then f(a) 6� f(b)c − f(a). By proposition 6.2
one has that f(b) |mloc f(a) and f(a) 6= 0. By definition 6.1, there exists ē ∈ B such
that ē2 = ē, f(a)ē 6= 0, f(b) | f(a)ē and ē� f(a); also

(
a(1 − ē) = 0 → b | a

)
and(

a(1 − ē) 6= 0 → ∀f
(
f2 = f ∧ a(1 − ē)f 6= 0 ∧ f � a(1 − ē) → b - a(1 − ē)f

))
. Observe

that the conclusion of this last implication is that f(b) -loc f(a)(1 − ē) is satisfied in B.
Since B/q |= f(b) + q | f(a) + q ∧ f(a) + q 6= 0, by the proposition 6.8 one has ē− 1 ∈ q,
that is ē+ q = 1 + q. Since |mloc is in the languaje then A |= b |mloc a and a 6= 0. Then there
exists eA ∈ A an idempotent such that eA

2 = eA, aeA 6= 0, b | aeA y eA� a; besides that(
a(1− eA) = 0→ b | a

)
and(

a(1− eA) 6= 0→ ∀e′
(
e′2 = e′ ∧ a(1− eA)e′ 6= 0 ∧ e′� a(1− eA)→ b - a(1− eA)e′

))
.

Observe that last formula can be written as a(1−eA) 6= 0→ b -loc a(1−eA), in A. Aplying
the monomorphism f to this five first formulas, we obtain f(eA)2 = f(eA), f(a)f(eA) 6= 0,
f(eA)� f(a), f(b) | f(a)f(eA) and f(a)

(
1 − f(eA)

)
= 0 → f(b) | f(a). Now let’s see

that we also have f(a)
(
1 − f(eA)

)
6= 0 → f(b) -loc f(a)

(
1 − f(eA)

)
in B. If not, we
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should have f(a)
(
1 − f(eA)

)
6= 0 and f(b) |loc f(a)

(
1 − f(eA)

)
in B. Since B is a

reduced, projectable and divisible-projectable f -ring, by proposition 5.11 one should have
f(b) |mloc f(a)

(
1 − f(eA)

)
in B. Since the |mloc relation symbol is in the languaje then

b |mloc a(1−eA) in A. And therefore b |loc a(1−eA) should be valid in A with a(1−eA) 6= 0.
That contradicts that the formula a(1− eA) 6= 0→ b -loc a(1− eA) is true in A. Therefore
we have that the formula f(a)

(
1 − f(eA)

)
6= 0 → f(b) -loc f(a)

(
1 − f(eA)

)
is valid in

B. We have showed that ē and f(eA) are elements of B satisfying the same formula
(ii) in the observation 5.8, that is equivalent to the predicate Divloc, with respect to
f(a) and f(b). That is, Divloc

(
f(b), f(a), ē

)
and Divloc

(
f(b), f(a), f(eA)

)
are true in B.

Therefore f(eA) = ē. Since ē − 1 ∈ q, then f(eA) − 1 = f(eA − 1) ∈ q. And then
eA−1 ∈ f−1(q) = p. That is: eA+p = 1 +p. Remind that we have b | aeA in A.Therefore
(b+ p) | (a+ p)(eA + p) = (a+ p)(1 + p) = a+ p en A/p. We have achieved to prove that
A/p |= b+ p | a+ p.

�

The proposition 6.9 will permit us to achieve the proof of the elimination of quantifiers
of the theory T ∗ in the languaje Llor∪{|, � , |mloc}, that will be made using the amalgamation
property in the models of the universal theory T ∗∀ . But fisrt it will be needed a well known
fact that we state as a lemma, and give its proof although it is quite obvious.

Lema 6.10 If (Ai)i∈I is a family of totally ordered integral domains, then

A =
∏
i∈I

Ai

is a reduced, projectable and divisible-projectable f -ring.

Proof: Clearly A is an f -ring. Since the Ai’s are integral domains, for all i ∈ I; then A
is reduced. Let’s see now that A s projectable. Let a = (ai)i∈I ∈ A and b = (bi)i∈I ∈ A.
Let’s define I0 = {i ∈ I : ai = 0} and I1 = I r I0. Let’s also define c and d in A by

c(i) =

{
b(i) si i ∈ I0

0 si i ∈ I1,

and

d(i) =

{
0 si i ∈ I0

b(i) si i ∈ I1.

It is obvious that b = c+ d and that c · a = 0. It is easy to see that d� a.

Now let’s see that A is divisible-projectable. Let x, y ∈ A with y 6= 0. Let’s declare
I0 = {i ∈ I : y(i) | x(i)} and I1 = I r I0 = {i ∈ I : y(i) - x(i)}. Let’s define now z, w ∈ A
by:

z(i) =

{
x(i) si i ∈ I0

0 si i ∈ I1,

and

w(i) =

{
0 si i ∈ I0

x(i) si i ∈ I1,

Clearly one has that z ·w = 0, x = z+w and y | z. Now let’s see that ∀(w′ 6= 0 ∧ w′(w′−
w) = 0 → y - w′). Let w′ ∈ A such that w′ 6= 0 and w′(w′ − w) = 0. There exists i ∈ I
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such that w′(i) 6= 0. Then w′(i) = w(i) 6= 0, since Ai is an integral domain. Then i ∈ I1

since w(i) 6= 0. Therefore y(i) - x(i) = w(i). This implies that y - w′; if not there exists
c ∈ A such that yc = w′ and therefore y(i)c(i) = w′(i) = w(i), giving a contradiction.
Therefore y - w′ and A is divisible-projectable.

�

Proposition 6.11 The theory T ∗∀ has the amalgamation property in Llor ∪ {|, � , |mloc}.

Proof: Let A,B,C |= T ∗∀ such that there exists f : A→ B and g : A→ C monomorphisms
in the languaje Llor ∪ {|, � , |mloc}. Iniatilly we have the following diagram:

B

A

C

g

f

We may replace B and C by extensions that are models of T ∗. That is important since we
are going to use proposition 6.9 and we need that B and C will be reduced, projectables
and divisible-projectables f -rings.

And we want to show that there exists D |= T ∗∀ and monomorphisms h : B → D and
k : C → D such that the following diagram is conmutative:

B

A � D,

C

h

g

f

k

that is: h ◦ f = k ◦ g.

In section 4 we have been able to observe that models A of T ∗∀ are described by πA
con

and the family of totally ordered integral domains
(
A/p

)
p∈πAcon . As the radical relation is

in the languaje, by [20, Theorem, pág. 23] and [20, Proposition (a) y (b), pág. 22], there
exists f̃ : πB

con → πA
con

and g̃ : πC
con → πA

con
continuous surjectives functions; that is:

πB
con

πA
con
.

πC
con

f̃

g̃

Since we are asuming that B and C are models of T ∗, then B and C are in particular
(unitary) projectables f -rings; by [16, 6.12] one has that πB are πC are Boolean spaces.

31



In particular πB and πC are quasi-compacts. Then πB and πC are proconstructibles, cf.
[26, Corollary 2.7]. Then πB

con
= πB and πC

con
= πC. By this we have:

πB

πA
con
.

πC

f̃

g̃

In order to complete (dually) this diagram, we use the pullback of πB and πC over πA
con

,
given by:

X = πB ×πAcon πC =
{

(q1, q2) ∈ πB × πC : f̃(q1) = g̃(q2)
}
.

We then have the following diagram:

πB

X � πA
con
.

πC

f̃π1

π2 g̃

The spaces πA
con
, πB and πC are all of them Boolean spaces. Therefore πB × πC is

a Boolean space, cf [18, Corollary 3.14, page 1249]. It is straighforward to prove that
πB×πAconπC is a Boolean space. 3 Summarizing we have that the spaceX = πB×πAconπC
is a Boolean space. Then q ∈ X is an element of the form q = (q1, q2) ∈ πB×πC such that
f̃(q1) = g̃(q2); where f̃ : πB → πA

con
and g̃ : πC → πA

con
are continuous and surjective

functions. Let’s put p = f̃(q1) = g̃(q2) ∈ πAcon
.

Any p ∈ πAcon ⊆ Spec(A) is a prime ideal. In order to see that p is an l-ideal, it is
suficient by [4, (8.2.1) and (2.2.1)(5)] to see that p is convex and closed by absolute value.
Since A satisfies the first convexity property, then p is convex. It is easy to see that p is
closed by absolute value: let x ∈ p and

(
x − |x|

)(
x + |x|

)
= 0 is true in A since A is an

f -ring. Since p is prime then x−|x| ∈ p or x+ |x| ∈ p. In any case, |x| ∈ p. Therefore p is
a prime l-ideal of A. By [4, (9.2.5)] one has that A/p is a totally ordered integral domain.

By the proposition 6.9, one has that fpq1 : A/p → B/q1 and gpq2 : A/p → C/q2 are
monomorphisms in the languaje Lor ∪ {|}. Since A is a reduced f -ring satisfying the first
convexity property, then A/p |= COVR ∪ OF, where COVR is the theory tof convexely
ordered valuation rings and OF is the theory of ordered fields, both in the languajes
Lor ∪{|} (cf. [2, Theorem 1]). Observe that B/q1 and C/q2 are real closed valuation rings
(RCVR), as B and C are models of T ∗ (cf. [12, Corollary 2.11 and Proposition 2.4]). By
the elimination of quantifiers of RCVR (cf. [8]) in Lor ∪ {|}, there exist Rq a real closed
valuation ring and there exists hq : B/q1 → Rq and kq : C/q2 → Rq two monomorphism in
the languaje Lor ∪ {|} such that:

3Even in the general case, it is possible to prove that πB
con×πAcon πC

con ⊆ πBcon×πCcon
is a Boolean

space.
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B/q1

A/p � Rq,

C/q2

hq

gpq2

fpq1

kq

the diagram is conmutative; that is: hq ◦ fpq1 = kq ◦ gpq2 .

Now let’s consider:
D =

∏
q∈X

Rq,

and let h : B → D and k : C → D given by:

h(b) = (hq(b+ q1))q∈X and k(c) = (kq(c+ q2))q∈X ,

for all b ∈ B and c ∈ C, where q = (q1, q2) ∈ X.

Let’s see that h is a monomorphism in the languaje Llor ∪ {|, � , |mloc}. By lema 6.10,
D is a reduced, projectable and divisible-projectable f -ring and it is easy seen h is a
morphism of lattice-ordered rings. Let’s observe also that when q runs over X then q1

runs over πB, as f̃ is surjective. Therefore h is injective, and therefore a monomorphism
of lattice-ordered rings (or f -rings).

Now let’s see that h preserves the radical relation, namely: for all b, b′ ∈ B, we should
see that b� b′ if and only if h(b)�h(b′). The direction (⇐) is clear as � it is expressed
by a universal formula. Let’s suppose that b� b′. Let x = (xq)q∈X such that h(b′)x = 0.
Then hq(b

′ + q1)xq = 0 for all q ∈ X. Therefore hq(b
′ + q1) = 0 or xq = 0, for all q ∈ X.

Since hq is injective, then b′ ∈ q1 or xq = 0, for all q ∈ X. Since b� b′ in B, then b ∈ q1 or
xq = 0, for all q ∈ X. That is hq(b + q1)xq = 0, for all q ∈ X. Then h(b)x = 0. We have
showed that h(b)�h(b′) in D.

Let’s recall that B is a reduced, projectable and divisible-projectable f -ring. We want
to see that the divisibility and the maximal local divisibility are respected by h. Let’s first
see that the divisibility is rspected. For this, let b, b′ ∈ B, we want to see that B |= b | b′
if and only if D |= h(b) | h(b′). The implication (⇒) is clear since the formula definying
the divisibility is existential. Now let’s suppose that h(b) | h(b′) in D. This means that
hq(b+ q1) | hq(b′ + q1) in Rq, for all q ∈ X; or for all q1 ∈ πB. Since each hq respects the
divisibility, then we have b+ q1 | b′ + q1 in B/q1, for all q1 ∈ πB. Since B is projectable,
by the compacity of πB and the patchwork property of B one has that b | b′ in B.

Now let’s see that the maximal local divisibility is respected by h, that is: for b, b′ ∈ B
one should see that B |= b |mloc b

′ if and only if D |= h(b) |mloc h(b′). Let’s first see that
if D |= h(b) |mloc h(b′) then B |= b |mloc b

′. Let’s first observe that, since h(b) |mloc h(b′)
then h(b) |loc h(b′). If h(b′) = 0 then b′ = 0 and therefore b |mloc b

′ in B. If h(b′) 6= 0,
then there exists w ∈ D with w = (wq)q∈X 6= 0 such that w

(
h(b′) − w

)
= 0 and h(b) | w

in D. Therefore there exists q ∈ X such that wq 6= 0. Then wq = h(b′)q = hq(b + q1),
where q = (q1, q2) ∈ X. Since h(b) | w in D, then there exists c = (cq)q∈X such that
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h(b)c = w. Then h(b)qcq = wq = h(b′)q, that is: hq(b + q1)cq = hq(b
′ + q1). Therefore

hq(b+ q1) | hq(b′+ q1) in Rq. Since hq respects the divisiblity then b+ q1 | b′+ q1 in B/q1.
Then there exists c′ ∈ B such that bc′ − b′ ∈ q1. See that b′ /∈ q1. Therefore b′ 6� bc′ − b′
in B. Since B |= T ∗∀ , then B has the maximal local divisibilidad property: i.e. B satisfies
∀a∀b∀c(a 6� bc− a→ b |mloc a). Then b |mloc b

′ in B. We have showed that the maximal local
divisibility goes down from D to B. In particular we showed that b |loc b

′ in B.

Let’s observe that in the previous paragraph we showed that if D |= h(b) |loc h(b′)
then B |= b |loc b

′. Now let’s see that the maximal local divisibility goes up from B to D.
Let’s suppose that b |mloc b

′ in B. We want to see that h(b) |mloc h(b′) in D. By hypothesis,
there exists e ∈ B such that e2 = e, b′e 6= 0, e� b′, b | b′e and if b′(1 − e) = 0 then b | b′;
besides that if b′(1 − e) 6= 0 then b -loc b

′(1 − e). Since h is an f -ring monomorphism
that preserves the radical relation � and the divisibility |, one has that h(e)2 = h(e),
h(b′)h(e) 6= 0, h(e)�h(b′), h(b) | h(b′)h(e) and if h(b′)

(
1−h(e)

)
= 0 then h(b) | h(b′). For

the last implication, recall that we saw that the local divisibility goes down from D to B,
consequently the negation of the lcoal divisibility goes up from B to D. Then we have that
if h(b′)

(
1 − h(e)

)
6= 0 then h(b) -loc h(b′)

(
1 − h(e)

)
. We have showed that h(b) |mloc h(b′).

Therefore we have showed that h respects the maximal local divisibility.

Similarly, k : C → D is a monomorphism in the languaje Llor ∪ {|, � , |mloc}. We then
have that h : B → D and k : C → D are monomorphisms in the languaje Llor∪{|, � , |mloc}.
Let’s see that h ◦ f = k ◦ g. Let a ∈ A, then:

(h ◦ f)(a) = h
(
f(a)

)
=
(
hq
(
f(a) + q1

))
q∈X

=
(
hq
(
fpq1(a+ p)

))
q∈X

=
((
hq ◦ fpq1

)
(a+ p)

)
q∈X

=
((
kq ◦ gpq2

)
(a+ p)

)
q∈X

=
(
kq
(
gpq2(a+ p)

))
q∈X

=
(
kq
(
g(a) + q2

))
q∈X

= k
(
g(a)

)
= (k ◦ g)(a).

By the lema 6.10, one has that D is a reduced, projectable and divisible-projectable f -
ring. It is easy to see that D satisfies the first convexity property. By the lema 4.2, one
has that D satisfies the divisibility glueing axioms. By the proposition 6.2 one has that
D satisfies the maximal local divisibility property. Therefore we have that D |= T ∗∀ with
the following conmutative diagram:

B

A � D

C

h

g

f

k
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We have showed the amalgamation property of T ∗∀ in the languaje Llor ∪ {|, � , |mloc}. �

We can then state our main result:

Theorem 6.12 T ∗ admits elimination of quantifiers in the languaje Llor ∪ {|, � , |mloc}.

Proof: By the theorem 3.2, T ∗ is model complete in the languaje Llor ∪ {� , |loc}. Then
T ∗ is model complete in the languaje Llor ∪ {|, � , |loc}. Since T ∗ ` ∀a∀b(b |loc a ↔
b |mloc a), then T ∗ is model complete in Llor ∪ {|, � , |mloc}. By proposition 6.11, T ∗∀ has the
amalgamation property in Llor ∪ {|, � , |mloc}. By [7, Proposition 3.5.19.], the theory T ∗

admits elimination of quantifiers in Llor ∪ {|, � , |mloc}. �

Corollary 6.13 T ∗ admits elimination of quantifiers in the languaje Llor ∪ {|, � , |loc}.

Proof: Since T ∗ ` ∀a∀b(b |loc a ↔ b |mloc a), replace each appearance of |loc by |mloc.
Then uses the theorem 6.12 to find an equivalent quanfitier-free formula in the languaje
Llor ∪ {|, � , |mloc}. Now replace each appearance of the |mloc by |loc, in order to obtain a
quantifier-free formula in the languaje Llor ∪ {|, � , |loc}. �

Corollary 6.14 The theory T ∗ is the model completion of the theory of reduced f -rings
satisfying the first convexity property, the divisibility glueing axioms and the local divisi-
bility property.

Proof: This is deduced by [7, Proposition 3.5.19.].
�
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Matemática Mexicana 19 (1974), 78-85.

[10] M. A. Dickmann, N. Schwartz, M. Tressl Spectral Spaces, New mathematical
monographs: 35, Cambridge University Press, Cambridge, 2019.

[11] S. Feferman, R.L. Vaught, The first order properties of products of algebraic
systems, Fundamenta Mathematicae 47 (1959), 57-103.

[12] J. I. Guier, Boolean products of real closed valuations rings and fields, Annals of
Pure and Applied Logic 112 (2001), 119-150.

[13] J. I. Guier, Convex Lattice-Ordered Subrings of von Neumann Regular f -Rings,
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