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Abstract

Purpose — This paper aims to propose a study on the static behavior of prismatic tensegrity structures and
an innovative form for determining the effect of mechanical properties and geometric parameters on the
minimal mass design of these structures.

Design/methodology/approach — The minimal mass design in this paper considers a stable class-two
tensegrity tower built through stable models. Using the proposed structures, comprehensive parametric
studies are performed to examine the mass (in which the masses of joints are ignored), the mass ratio between
a class-two tensegrity tower and a single element, both having the same diameter and length and afterward
determine a reliable mass saving structure under various circumstances.

Findings — The simulations show that the mass ratio versus the number of units is a nonlinear regressive
curve and predicts that the proposed model outperforms the standard model when the variation parameter
considered is a vertical force. The difference in mass between these structures is visible when the gap
gradually decreases while the number of units increases. On the geometrical aspect, the gap between the
masses is not significant.

Originality/value — This paper helps to understand the influences of geometric parameters and the
mechanical properties on the design of cylinder tensegrity structures dealing with a compressive force.

Keywords Configuration, Typology, Equilibrium formulation, Mass ratio, Structural comparison

Paper type Research paper

1. Introduction

A tensegrity structure is a system in a self-stable state comprising a set of compressed
components inside of tensioned components (René Motro, 2003). More precisely, the cables
and bars serve for the tension and compression forces, respectively. The connection of these
components focuses on a specific network of strength resistant to small disturbances (it is
the perturbation occurred when the applied force vanishes) and making the design of stable
structures more relevant. Indeed, the design may consist of: assessing the stability under
external forces to minimize the mass by adjusting the shape and topology to prevent the
materials from buckling (Goyal et al., 2020); finding the feasible prestress through multi
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Figure 1.

Varieties of self-
equilibrated three-
struts tensegrity

systems

self-stress states of predefined geometry (Chen ef al, 2018, 2020); and setting admissible
forces through the positions of nodes, known as configuration, and a specific system
connecting cables to struts in such a way that further similar configurations provide self-
balanced structures.

For instance, the prismatic tensegrity has been studied extensively for its most
straightforward principle of connecting the polygons located into two different planes.
Figure 1 illustrates an example of self-stable tensegrities with the same number of bars but
built with a different system of cables. The triangular prism sSystem merges into a star
tensegrity system by connecting the horizontal cables to the center (Zhang et al., 2010);
this requires extra nodes vy overlapping the top and the bottom center of the cylinder
[Figure 1(a)]. The values of y # O entail an increase in the number of cables or bars
depending on the state of stress, respectively [Figure 1(b)]. Also, the algorithm proposed in
Vumiliya et al (2018) creates a stable system in which, without any adjustment, the
structure obtained gives an illustration of a half-star in Figure 1(c). However, to maintain the
rigidity of the new three-bars tensegrity proposed in Liu ef al. (2018), the number of nodes
and cables was increased in the configuration of a triangular model as in Figure 1(c).

Taking into consideration the properties of the different ways to connect cables to struts,
one can design a structure with a specific response for predefined conditions. Therefore, this
work proposes a new form of prismatic tensegrity characterized by an increase in the nodes
on horizontal cables. The extra nodes lead to omit the vertical cables and replace them with
additional cables. The proposed structure, inspired by the prismatic system, gives numerous
advantages such as geometric symmetry, ease of construction, deformability and reduced
volume. To determine further advantages, the proposed and standard models are compared
through the design of a mass-saving structure under a compressive force. Various
parameters affecting the performance are investigated in-depth; in this process, the large-
scale tensegrities are obtained by the assembly of unitary models.

The outline of the paper is divided into six sections, as follows: Section 2 reviews the
literature of recent work on prismatic tensegrities and illustrates used approaches to
generate a structure with minimal mass. Section 3 presents the single pattern of the new
structure obtained through the configuration of a single layer and classifies the components

(b) © (@

Notes: (a) Three struts tensegrity star; (b) three struts tensegrity star with an additional cable in
spired by a model with an extra bar; (c) half-star three struts tensegrity; (d) a new three
bars tensegrity unit



into different categories. Section 4 gives the analytical formulation for the equilibrium where
the expressions of self-stress are established by finding the force densities in members in
terms of existing configuration and topology. Follows the use of the results in Section 4 for
determining the mass of the above structures under a compressive force in Section 5. Section
6 gives a structural behavior comparison conducted through the mass ratio and the
coefficient of reduction/amplification of mass. Finally, Section 7 briefly concludes the study
of these cylinder models.

2. Survey of prismatic tensegrities

The term prismatic tensegrity stands on the fact that the structure has regular polygons
located on parallel planes. Inspired by their regularity, various types of multi-unit
tensegrities have originated from connecting prismatic cells and some assembly strategies
can be found in Fazli and Abedian (2011), Liu et al. (2017); Xu and Luo (2010). However, their
practical uses might lead to modifications of the prisms to achieve a given purpose
(Caluwaerts et al., 2016; Iscen et al., 2013; Kim et al., 2020). It is distinguished in Kawaguchi
and Lu (2002) a pair of cones of a three-strut tension system constructed to support the
structures for a membrane roof. Similarly, a tensegrity dome for humanitarian aid was built
using three conic units (Gonzalez et al, 2017). Furthermore, the six-bar robot system
SUPERball, used as a space exploration structure, combines two three-bar units with
different radius (Agogino et al., 2013). The above research studies have the common aspect
of finding the relative stress of self-balanced structures. Consequently, multiple static and
dynamic approaches were deployed for both regular and irregular tensegrities (Koohestani,
2017; Sultan et al., 2002; Zhang et al., 2018). See Tibert and Pellegrino (2003) and Zolesi et al.
(2013) for an extensive review of these aspects.

However, the applications in structural engineering show the search for light structures,
and new forms have become more relevant in recent decades (Averseng and Dubé, 2012;
Fraddosio et al.,, 2019; Ma et al., 2019). For this, different approaches and experiments were
conducted in the response of modeling the material and strategic assembly of different
materials (Amendola et al., 2014; Goyal et al., 2020). Such studies show the comprehensive
behavior in transfer from stiffening to softening under a large displacement influenced by
geometry and prestress. In addition to this, a dynamic study performed based on masses
establishes the feasible limit on the formation and propagation of the solitary wave
(Fraternali et al., 2012). Also, in Chen and Skelton (2020) a general approach is presented for
the design of minimal mass of tensegrities using solid and hollow bars while ensuring the
equilibrium condition. Skelton and De Oliveira (2010) focus on the concept of tensegrities as
lightweight structures; they suggest using iterations of self-similar structures from the
perspective of achieving a minimal mass with invariant compressive strength. It implies
using the complexity of T-Bar and D-bar, where the system proposed reduces the mass
compared to a single bar of the same length. Similarly, these structures are also proposed as
mass-efficient energy absorption systems by reducing the impact in planetary landing
(Goyal et al, 2019) and further designed to improve their application as support of
compressive forces in Goyal et al. (2020), Skelton et al. (2016). Besides this, the tensegrity
towers and plates were also the subjects of study, where they are used as the physical mass
saving structure according to the defined compressive force (De Oliveira et al., 2008; Skelton
and De Oliveira, 2010). These proposals treat the optimal complexity with a finite number of
iterations under a vertical load. Despite the above results, still, some questions remain
unanswered:

¢ Whether the self-similar prismatic unitary structure holds the character of mass
saving structure given the number of layers at any magnitude of applied force.
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Figure 2.
Configuration of a
tensegrity strut in the
global coordinate
systemNotes: (a)
Barycentric
coordinates; (b)
prismatic tensegrity
structure; and (c)
novel tensegrity.

¢ Whether the minimum mass can be parameterized considering the geometry (height
and the radius of the cylinder).

¢ Whether it exists a structure that can outperform the prismatic tensegrity structure
at the present applied force.

To this, the work proposed in this paper studies the static behavior of the prismatic
tensegrity and the innovative tensegrity form for answering these unsolved questions.

3. Configuration and topology

Mainly four parameters contribute to the definition of nodal coordinates of the tensegrity
structure: the radius 7, the height /2 separating two planes, ¢ = 27/g, the angle between two
consecutive nodes located on the same horizontal plane, where g is the total number of bars
and a twist angle « relating a rotation between the bottom and top prism. The nodal position
of the k-th strut in Figure 2(b) and 2(c) is expressed by a tridimensional vector by, given as:

i % k=1,2
b={y|-(5) {i:j’:k"”g 1)
Zi Zj

in which (¥; ¥; z) = {cose, sing, 0) is the bottom node and (v;, ¥j, z) = (cos8, sind, //7) is the top
node rotated about the z-axis an angle & = ¢ + «. However, 7 and / are variable while « is the
main characteristic defining a self-stable prismatic tensegrity (Luo ef al, 2018) given as:

a:§*§ @

Figure 2(b) represents a strut of a prismatic tensegrity, which serves as a connection
framework for horizontal (s;) and vertical (s,) cables, while Figure 2(c) is the same
configuration of the strut as in Figure 2(b) with additional nodes on the horizontal cables,
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Notes: (a) Barycentric coordinates; (b) prismatic tensegrity structure; (c) novel tensegrity



resulting in additional cables (Sq; Sq) When the vertical cables are suppressed. The
additional nodes divide the horizontal cables into two cables s,;and s;;on top and in s,; and
s;; on bottom, respectively. The additional bottom and top nodes on the horizontal cables are
established through the barycentric coordinates. Figure 1(a) illustrates the example of the
barycentric coordinates used to express the position of any point L located inside the
triangle of vertices L1, L, and Ls. The node L is computed using the following expression:

L=c1Ls+coly+cly 3)

in which ¢y, ¢; and ¢ are real numbers such that ¢;+c¢o+c = 1. From this, the scalar ¢ can be
found as ¢ = 1-¢;-¢5, which implies ¢; + ¢ < 1. Hence, by replacing the value of the scalar ¢ in
equation (3), the point L becomes:

L=cls+cly+ (1 —c —c2)y 4)

Applying the same concept to the prismatic tensegrity, the additional nodes of the new
tensegrity are given as:

{di=c(xa vy za) +e(w)+(Q-a-c)(u ¥ z)d=c(y vy z)
+ea(Xir iz ) + (1 —c3—cq) (x2) ©)

The prismatic structure is attained by closing the patterns of nodes as follows: horizontal
cables connect the bottom and top vertex on each plane. The vertical distance that connects
the top and the bottom node of two different bars defines relative height /z between two
planes; therefore, 3g (with g > 3) is the maximum number of cables needed to build a
prismatic tensegrity structure. However, with the removal of vertical cables, the prototype of
the novel tensegrity structure requires additional cables. In this view, the novel structure
requires in total of 6 g cables.

Table 1 gives the characterization of components and classifies them into different
categories based on the connection and the element’s location (for instance, a prismatic
tensegrity has two regular polygons formed by horizontal cables on two parallel planes
which are considered as one category of cables).

4. Equilibrium formulation

This section presents formulas for self-balanced tensegrities based on nodal location and
force density of components. The purpose is to find the right prestress congruent with the
configuration (Koohestani and Guest, 2013; Zhang et al.,, 2018); consequently, one seeks to
determine the self-stress satisfying the following equilibrium equation:

Q[ex €y ez]:O ©6)

in which Q e R” * " (: number of nodes) is the force density matrix and ey, ey, and e,
represent column vectors of nodal locations in x- y- and z-direction, respectively. The force
density matrix is expressed using the addition operation (Tran and Lee, 2010) where the

Starting node i+1 (i) d;(a) d;(d)) di (d) i
End node ] i+1(j-1) iG-1) i+1(j) 0] j
Vector notation s, s, S, (Sy)) s (sp) Sy (Sai) by

Appellation vertical horizontal right cable left cable additional strut
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elements Q(;,)) are the sum of force densities of all  components meeting at 7 such / =7 and
becomes a negative force density of a component that connects /and ¢ for / # i

> 8y ifi=1
Qiy =14 —8, ifi#landpconnectslandi @
0  otherwise

The set of nodal coordinates found by solving equation (6) should respond to the prototype
of the configuration set in Section 3. However, the homogeneous system of equation (6)
requires a nontrivial solution to guarantee the singularity and semi-positive definitiveness
of the force density matrix. For this, the rank is #-4 for a three-dimensional structure; the
null space of the force density matrix has a dimension of four. It is one of the well-known
super-stability conditions of a three-dimensional tensegrity.

4.1 Self-stress of unitary tensegrity structures

From the classification made in Table 1, the horizontal cable, vertical cable and strut of a
prismatic tensegrity are assigned the force densities as §;, 8, and &, respectively. The
strategy of finding stresses implemented using equation (6), where the variable / in Q(;
considers only the p members connected to the node (x;, y; z,):

[ Qi [ex ey e,]
i—1 —dy, ! X1 Vel Fi1

i 26,+6,+ 6y X; Vi 2 ®)
i+1 -8 Yiy1 Vil Zin =0
j—1 -4, X1 Y1 Za1

J =J Xj Yj Zj

gives the self-stress congruent with the geometry as:

O _ x,-(b‘v—i—b‘b)—be—xj,lSv Zj6b+(zi+l +Zi71)8h +Zz'(5b+26h)
S5, ) Xir1— 21X, zi +2jq

©)

The value in equation (9) holds for the twist angle given in equation (2); otherwise, the
structure may not return to its initial configuration after unloading the system. Concerning
the new tensegrity, the consideration of a symmetrical configuration leads to an assumption
of symmetrical equilibrium at each node numbered with the same subscript i and j.
Consequently, the internal forces in cables are defined as 8,; (8,), 65 (8;) and 8, (8,),
compatible with Table 1. However, the sequence of members for closing the pattern in
Figure 2(c) increases on the bottom and top elements, which leads to a trivial solution for
solving the homogeneous equilibrium system of p members that connect / to a node (x; v; ,):

/ Q(i,l) [ €x € € }

i i+ 8+ 84u+8\ " Xi Vi z;

J —8) ooy 3 (10)
di1 Ji di1 dy dy1 | =0

d; —5, di  dy  dy

d . d; d;  dy

Therefore, the additional nodes are rewritten in the local coordinates system (Figure 3) to
overcome the trivial solution by reducing the number of unknowns.



(xi, J’i)lc

(xi+1 ,J/i+1)lc

Note: The superscript /c represents the corresponding nodes in the local
planar system

AsinLiu et al. (2018), the nodes djl“ and d/* are written as:

{ dj, = i + e

o _ e _ e
d]l; Czyj_g_l 7x§c Ovyﬁ an] 0

11

in which the subscript x and y represents the respective axis direction. The relationship
between the force densities and the local nodal coordinates is obtained by using the equation
representing the homogeneous linear system of equilibrium where on node d]—k isas:

(s —dt) 85+ (o —dt ) 85— 3 = 0

lc _dlc 8__d1€6__d1€5_70 (12)
(yj—l jy) W 40— &y 0ai =

Then, by substituting equation (11) into equation (12) and, after simplification, it is deduced:

{x§61(5,7' — 625,7‘ — 6251]‘ — 625(”') +X§C(51j — 6151]' — 615,7' — 6‘15‘”‘) =0 13)

yﬁ{l(ﬁ,j — (,‘28,7' — 6251]' — 625(11’) =0

Knowing the local nodal coordinates are non-null values, the relationship between force
densities is:

€104
i\ _[1-c—c
((Sy]) - Czaai (14)
1 — (1 — (2

Following the same algorithm, by considering node (x; yj)l” as the origin, the expression for
the forces density satisfying the equilibrium of node 4 is:
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Table 2.

Value of force
density in different
members

€384

1- C3 — C4
1, (15)

1—63—()4

(3)-

The above expressions result from the local nodal coordinates and help to reduce the
unknowns where equation (10) can be rewritten as:

! Qi) [ex ey o]
i -84 ;r S+ 85\ X i z;
dz‘]q Lﬁ;& dz& dj;il djj—l =0 (16
_ 1, . . ,
6o
and gives &, in the z-direction as:
Op=—(c1+¢2)84 — (c3+¢4)84 17

However, using the same algorithm at the node (x;, y;, 2;) in the z-direction, the same force
density leads to:

8p=—(c34¢1)84 — (c1 +2)04 (18)

To keep the structure in a self-balanced condition based on the symmetric assumptions
(lengths and positions of elements), the equations (14), (15), (17) and (18) lead to:

a1+ =c3+ciand 64 = 64 (19)
The internal forces in Table 2 of a three bars system (¢ = 3) with the barycentric coordinates

¢1 =¢;=0.1and ¢y = c3 = 0.5, give the self-stable structures in Figure 4 where the constants
result from equations (9), (14), (15), (17) and (18).

Type of structure
Components Prismatic Innovative
Horizontal cables &, -8y -
Vertical cables &, 0.57746,, -
Struts Sb - Bh - 1205511
Right cables 6,; - 0.2568 4
Right cables §,; - 1.256 4
Left cables 6, - 1258 4
Left cables 6 -

0.256 ,;
Additional cables 6, = 8, - 84




@) (b) (©) (@

Notes: (a) Prismatic simulation; (b) prismatic real model; (c) novel simulation; (d) novel real
model

4.2 Self-stress of class two tensegrity towers
The class of a tensegrity is related to the number of struts meeting at a node. The class-two
tensegrity refers to a structure that has two struts meeting at a node. The method for
obtaining a class-two tower is connecting “#” units by transferring the height % of units
linearly and rotating the bottom prism the angle «. The connection of the unitary cells might
use a regular shape, same material and size.

The observations made in Masic and Skelton (2005) for tensegrity towers are: the unitary
properties remain valid even in the case of loaded towers; in which case, the solutions found
in the previous section can be used to characterize the equilibrium configuration and the
force densities in all members of the tower structure. Therefore, the overall structure is
always stable when the unitary structure is stable.

5. Mass design of tensegrity structures
Being p the mass density and A, and A,, the cross-section areas of the k-th strut and the w-
th cable, the mass of struts and cables is:

me = pAl[bell; 7m0 = pAdullsull (20)

From equation (20), the minimal mass can be reached by designing the cross-section area of
components according to the constraint of failure. The failure of the structure occurs in two
ways: the material may fail (material yields, both struts and cables) or the structure may
buckle (material bends: struts). Consequently, the critical cross-section areas for a given
uniaxial stress o of strut and cable subjected to yielding constraint are:

S sl[Sull

1)
Ay > M and A,y > 1)

According to the Euler buckling formula (De Oliveira et al, 2008), a strut of length ||by],
force density 64, and young modulus £, under a compressive force f, = 8 ||by|| buckles if:
) ’7T37 k4

Sl [Del| = ——%
4][bg]”

(22)
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in which 7, is the radius of the strut. From equation (22), it is deduced a cross-section area
ensuring the strut does not buckle as:

8 v/ |brl|

A > 2|[bg| o

23)

Thus, by substituting the section areas in equation (20) with those of equation (21) and
equation (23), the masses 1, and my,, of a single strut in yielding and buckling failure
modes are:

8 | [bell”

Sul|b
2 bk| Dk
My 2= P 5 My = 2|[be|"p DIl

59“} Sw 2
 Saulsal o

and myy, =
for a cable in yielding constraint.

The mass of the overall structure having the same material is the sum of the components’
mass given as:

my, = (Tky + Ty ) with Ty, = Z Suellbel? Ty = Ssullsull® 25)
w

for yielding constraint and for buckling constraints
T
my = (T +o 1TM) with Ty = Z \/ 8ol b2l (26)

The next sub-section determines the force of members of loaded structures in Figure 6 to
evaluate the mass; this consists of finding the prestress in the components under a defined
condition. For this, the tensegrities treated in this paper are compressed with a vertical force
fevenly distributed on different top and bottom nodes of struts f, = f/g.

5.1 Mass of a unitary tensegrity structure subjected to a compressive force

The internal forces of struts in Table 2 are negative and appear in equations (25) and (26).
Therefore, for a more realistic analysis of the mass, it is considered that all force densities
are positive, and the system is subject to the same configuration in both loaded and
unloaded conditions. For persevering the twist angle between the bottom and top polygons
consistent with equation (2), the proposed algorithm in De Oliveira and Skelton (2009,
p. 108); Skelton and De Oliveira (2010) uses a small displacement of vertical cables. With a
vertical force f, on the top node of a strut, the related force in a member that counteracts the
applied force produced by the displacement of cables must equal zero. The distribution of
forces in different members as represented in Figure 6 are given as

fo =M, =0 system of Fig.6(a)

fi= (= —c)h(8a+ 85+ 8,) =0 '
{fz — (=3 =c)(845+ 84 +8,)=0 systemof Fig.6(0)

27

From the relationship between prestresses in the self-balanced system (Table 2) and
equation (27), the internal forces in members of the structure subjected to a compressive
force are:



o, = Sb*écmdﬁh—05774fz (28)
n n
51]' _ 8,7' o 1.25/1171](2 o -1
(671-) = (Sh‘) = (025%% and 8,=1.21 ", 29)

Introducing equations (26) and (27) into equations (23) and (24), the mass of tensegrities is:

1
P = g (T + Ti™™) 3 m™ = p <2\/ —plmt o T, pm)

(30)

in which the superscript “prsc” and “imn” denote the prismatic and innovative structures
respectively. While, due to the configuration, it is implied that the struts of both structures
have the same constants 7}, and 7}, given as:

= fln [y
Ty = /a2 by|°

and the constants 7,,,”"* and T, are

31)

Tl = fs"”‘ii; o = ol +2 x 0.5774] s
T innov _ imwi . mm - 195 0.25 112 112 112 112
" = 6 s lIs511” + llsill? ) +0.25([1s11” + llsall*) + I8l + [Isasll

(32)

5.2 Mass of compressed class two tensegrity structures

Consider now the class two towers in Figure 5 subject to a total compressive load 7. The
overall height of the structure is /,, where it is deduced the length of each unit as 2; = £,/u.
In a class two tensegrity structure based on a regular unitary cell, the observation is that fis
the vertical load applied to the tower, then £ is the vertical force evenly applied at each unit.
Therefore, the total mass of struts and cables is:

Mypm = % (Tky + Twymsc) 5 Mb[)m = u\p/— ( ka +— \/_ Ty ? N)
Mymnv _ % (]-ZTky + Twyinm}) : sz'mw _ \P/_ < /1 2 ka \/vaymm/>

33)

6. Analysis: mass ratio and structural comparison
Let us mention that this analysis does not concern the structures subject to yielding
constraints due to the following fact: the mass ratio is a function of the geometric parameters
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Figure 5.
Tensegrity class-two
towers made by
stacking three
unitary cells

(@) (b)

Notes: (a) Prismatic class two tensegrity tower; (b) innovative
class two tensegrity tower

and does not offer an overall prospect on the variation of applied forces. As an illustration,
the mass ratio of a prism tensegrity subjected to yielding constraints is:
2
prsm | |bk| | + CSMSC

y = Ul (34)

6.1 Mass ratio

From the equations of minimal mass in Section 5, the mass ratio is given as the mass of a
tensegrity system versus the mass of a single element (m; = 2ph, (f/mE)": strut subject to
buckling constraint), both having the same width (27) and length (%,). In particular, once the
consideration is the buckling constraint, the evaluation of the mass ratio is made possible by:

‘ 0.5¢,7s Vbl P (yae) ™!
2™ = VB, + x Cs ) ||| (712 Y= %

e T ()

(35



7. £ i £ J: Design of

l £ prismatic
| tensegrity
cylinder
hy
’ e
z
J: f Loy
(a) (b) Figure 6.
Notes: (a) Three struts prismatic tensegrity under a compressive Tensegr 1ty system
force f; (b) a compressed three struts innovative tensegrity by a loaded with a vertical
force f. The height of the structure is noted as /4, instead of 4 force f
2y
18f:
g
g
s
0.2
0 o "
2 3 4 5 6 7 8 9
Number of units () Number of units (u)
(a) (b) Figure 7.
Notes: (a) Simulated mass ratio considering the variable 7 fixed; (b) mass ratio of prismatic Comparative graphs
and innovative tensegrity with variable y fixed. The dotted lines represent the regressive curve Ef massbratlofversus
of 5™, and the continuous lines represent 7, the number of stages

0 5Csz'nnv

7 iy __ /3.6¢ +x
' ' (hyu)®

(36)

leading to anticipate that at a certain number of units, both tensegrities reduce their mass
via the number of struts and cells, which can be perceived in Figure 7.



EC

Figure 8.

The regressive curve
of the mass
reduction/
amplification factor

4 ‘ oz =182 1105 07=0.0930
0 2 =382 or=0.1
- oz =582 1.104 27=0.1081
2ot ) %=004
- N e I I 1.103 1 T T
1.102
I
0.6f T \
0.4 \ \“\
] 1

0.2 — 1.099f \
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02 3 4 5 6 7 8 9 10 11 12 1’0982 3 4 10 11 12

6 7 8
Number of units () Number of units (u)

@) (b)

Notes: (a) Simulated mass ratio considering the variable 7 fixed; (b) mass ratio of prismatic and
innovative tensegrity with variable y fixed

1.101

Mass reduction/ amplification
factor (1)
Mass reduction/ amplification
factor (1)
=
A
=

1/

The first analysis condition illustrated by setting the radius ratio and the height of a unitary
cell as a constant (7 = 7/l;7) and varying y demonstrates the mass of both structures reaches
the minimum value when the number of units increases [Figure 7(a)]. However, it is
observed that, under a defined load condition, the proposed model outperforms the
triangular prismatic tensegrity. The next sub-section overcomes this by a structural
comparison with a mass reduction/amplification factor for determining the best performance
in terms of reduction of mass between the two systems.

Although the constants y and 7 are fixed, the variation of the total height /,, to obtain the
ratio 7 = 7/h,, shows that the mass of tensegrities decreases till the minimum value (marked
with square symbols) and afterward increases with the number of stages [Figure 7(b)]. The
minimum mass of 7 = {0.0930, 0.1, 0.1081} is reached for the number of units equal to =
{6, 6, 7}; in this perspective, the number of iterations which gives the minimal mass value
increases with the geometric parameters 7.

Furthermore, the regressive curves of mass ratio show that mass linearly decreases with
7 and in the opposite decreases with the linear increment of y. For instance, in Figure 7(b),
the radius of the structure can be fixed and adjust the total height to meet the desired design.

6.2 Structural comparison
Even though both structures seem to outperform a single element, there is still doubt about
their mass saving performance. For this, it is introduced a mass reduction/amplification

factor as the ratio between 7,”"" and n,/”* calculated as:

nbimw
o= 37

The reliability of the new tensegrity system as a mass saving structure can be illustrated
with u < 1;in the opposite, it becomes an amplification factor.

The gap between the masses of the structures is more visible for the factor u when the
variable 7 is fixed compared to the gap of the nonlinear regressive curve u when the
variable y is fixed and this explains the foremost influence factor between y and 7. It is
observed through Figure 8(a) that the curves converge to the same value, and in Figure 8(b),
the curves diverge after a fourth stage.



The innovative tensegrity plays a mass amplification role for y = {3.82, 5.82} by where
u < {3, 4} [Figure 8(a)] and keeps the same properties in circumstances of y constant and 7
variable.

7. Conclusions

This paper aimed to analyze the influence of the geometry and external forces on the
minimal mass design of two tensegrity systems. The methodology used in this work yields
in the determination of prestress distribution and parameterizes the mass in buckling failure
mode under a compressive force. The analysis conducted, when the consideration is the
geometry, shows that the mass ratio decreases with an increase of stages and afterward
increases after the minimum mass is reached. In the view of external force, it is seen that
when the cells increase the most, the structure’s mass decreases compared to a single
element. In the same mode of failure (buckling mode), one can use the proposed model to
save mass if the variation considers the external forces. On the other hand, the prismatic
tensegrity is reliable as a mass saving structure when the mechanical properties of materials
and forces ensure that y is less than or equal to 0.04.
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