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Porphyromonas spp. have an extensive host range in ill and healthy individuals and an 1 
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ABSTRACT 12 

Studies on the anaerobic bacteria Porphyromonas, mainly focused on P. gingivalis, have 13 

revealed new bacterial structures, metabolic pathways, and physiologic functionalities. 14 

Porphyromonas are mainly described as being associated with mammals and involved in 15 

chronic oral infections and secondary pathologies such as cancers or neurodegenerative 16 

diseases. In this review, we collected and analyzed information regarding Porphyromonas 17 

isolation sites and associated conditions and showed that Porphyromonas are detected in 18 

numerous pristine and anthropic environments and that their host range appears wider than 19 

previously believed, including aquatic animals, arthropods, and birds, even if their predominant 20 

hosts remain humans, pets, and farm animals. Our analyses also revealed their presence in 21 

multiple organs and in a substantial proportion of healthy contexts. Overall, the growing 22 

numbers of microbiota studies have allowed unprecedented advances in the understanding of 23 

Porphyromonas ecology but raise questions regarding their phylogenic assignment. In 24 

conclusion, this systematic and meta-analysis provides an overview of current knowledge 25 

regarding Porphyromonas ecological distribution and encourages additional research to fill the 26 

knowledge gaps to better understand their environmental distribution and inter- and intra-27 

species transmission. 28 

 29 
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Introduction 32 

The study of anaerobic bacteria, one of the oldest life forms, could enhance our knowledge 33 

regarding life origins [1]. These microorganisms are characterized by atmospheric oxygen 34 

intolerance [2], which hinders their isolation and culture [3]. In addition, their high nutritional 35 

requirements and slow growth [4] hamper evaluation of their metabolism, physiology, genetics, 36 

and ecology. Nevertheless, recent studies of animal and environmental microbiota have 37 

emphasized the importance of generating and integrating knowledge about anaerobic 38 

microorganisms [5,6] owing to their prevalence [7] and roles in microbial communities [1,8]. 39 

The Bacteroidetes phylum is predominant among human [9] and veterinary-associated 40 

microbiota [10] and, to a lower extent, in environmental communities [11]. This group exhibits 41 

novel features [12] such as their type IX secretion system [13,14] and type V fimbriae [15], 42 

both described for the first time in genus Porphyromonas. In 1921, Oliver and Wherry 43 

described black colonies on solid medium containing blood and proposed the name Bacteroides 44 

melaninogenicum [16]. In the 1970s and 1980s, this species was divided into three subspecies: 45 

B. m. melaninogenicus, B. m. intermedius, and B. m. asaccharolyticus [17] along with two 46 

others termed B. m. macacae [18] and B. m. levii [19]. This group was then renamed 47 

Bacteroides levii, B. macacae, and B. asaccharolyticus and the latter subsequently subdivided 48 

into two subgroups: B. asaccharolyticus and B. gingivalis [19,20], and a fifth species, 49 

Bacteroides endodontalis, was later described [21]. 50 

In 1988, Shah and Collins proposed creating a new genus, Porphyromonas, to group 51 

Porphyromonas asaccharolytica, P. gingivalis, and P. endodontalis [22]; subsequently, both 52 

Porphyromonas macacae [23] and Porphyromonas levii [24] were reclassified into this genus. 53 

The taxonomy of P. macacae was confusing until the mid 1990s, with two close species 54 

designated as P. macacae isolated in 1980 from macaques [18] and P. salivosa isolated in 1987 55 

from cats [25]. These were considered as representing two distinctive heterotypic biovars 56 

[23,26,27], but are now considered a single species [28,29]. 57 

Between 1992 and 1994, six new species were described: P. circumdentaria [28], P. canoris 58 

[30], P. cangingivalis [31], P. crevioricanis, and P. gingivicanis [32]. Finally, a sixth non-59 

pigmented species initially called Oribaculum catoniae [33] was renamed Porphyromonas 60 

catoniae [34]. In 2001, Fournier et al. divided P. gingivalis into P. gingivalis (human strains) 61 

and P. gulae (animal strains) [35]. Finally, eight new species completed the list: P. uenonis 62 

[36], P. somerae [37], P. bennonis [38], P. pasteri [39], P. pogonae [40], P. bronchialis [41], 63 

P. loveana [42], and P. katsikii [43]. Notably, Falsiporphyromonas endometrii, described in 64 
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2014 [44], is considered as a Porphyromonas in this study. Moreover, P. canis [45], and P. 65 

cansulci [31] have been reassigned respectively to P. gingivicanis [46], and P. crevioricanis 66 

[47]. These changes may cloud the analysis of the species, especially when some recent 67 

publications still use the old names (e.g. see [48–50]). 68 

Most of the described Porphyromonas species are associated with mammal oral microbiota 69 

and implicated in pathological processes such as periodontitis [46,50,51]. Recently, P. 70 

gingivalis has been cited in a number of studies for its possible role in orodigestive cancers [52–71 

54]. Other studies suggest contributions of P. somerae in endometrial cancer [55], P. 72 

asaccharolytica in colorectal cancer [56,57], and P. endodontalis in gastric adenocarcinoma 73 

[58]. Notably, P. pasteri was inversely correlated with cancer progression in oral squamous cell 74 

carcinoma [59]. 75 

In this context, the purpose of this review was to clarify the ecological distribution of 76 

Porphyromonas. To address this issue, we analyzed 844 studies, focusing on the sites (e.g., 77 

organ, host, and environment) and associated conditions (e.g. pathologies vs health) of 78 

isolation. 79 

 80 

Material and methods  81 

The literature search was conducted in accordance with the PRISMA [60] using a four-82 

step strategy (Figure S1): 83 

 84 

Question formulation and checking for existing reviews 85 

When searching for reviews summarizing knowledge on the Porphyromonas genus, 86 

their hosts, infected organs, and associated pathologies, we noted that apart from P. gingivalis, 87 

no literature review existed. To our knowledge, this review is the first on this subject. 88 

 89 

Searching and selecting the relevant studies 90 

Three databases, PubMed, Google Scholar and Google image were searched to retrieve all 91 

records relevant to the study. The search was limited to publications after 1988, date of 92 

Porphyromonas-Bacteroides separation, with the exception of 2 articles describing P. 93 

circumdentaria and P. macacae [18,20]. Documents regarding P. gingivalis in the human oral 94 

sphere were excluded. The search was performed using key terms [All fields] in various 95 

combinations using a Boolean search technique as follows: 1) “Porphyromonas” AND one of 96 

the 20 species (e.g. “Porphyromonas” AND “gulae”); 2) “P.” AND one of the 20 species; 3) 97 
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“Porphyromonas” NOT gingivalis; and 4) “Porphyromonas” OR “P.” AND “gingivalis” NOT 98 

“oral”.  99 

Peer-reviewed studies were retrieved including scientific articles, poster (n=4), abstracts, 100 

and conference proceedings along with theses. Review articles, opinions, editorials, and blogs 101 

were not included. Only studies written in English and French (n=4) were considered. Relevant 102 

results were downloaded, and their reference lists manually checked to identify missing 103 

documents using the search terms mentioned above. Duplicate records were deleted. Finally, 104 

844 unique studies were included. 105 

 106 

Data extraction 107 

Information was organized in synthesis tables (Table S1 to S5) that included the 108 

Porphyromonas species name, organ or ecosystem as well as host or place of isolation, study 109 

authors and publication year, sample types, and situation of isolation (pathology or health 110 

status). Both authors independently assessed each study. Due to their very large number, 111 

references relating to these tables are not cited in this text but in the additional tables. 112 

 113 

Data analysis 114 

Hosts were categorized into three large taxonomic groups: most frequently mentioned hosts 115 

(humans, pets, farm animals and monkeys), aquatic animals, and less common hosts like 116 

rodents, birds, and arthropods. Organs were categorized into 9 major categories (Figure S2).  117 

Porphyromonas species names received an acronym (e.g. GUL for P. gulae, Figure 1 and Table 118 

S1). For the meta-analysis, bioinformatics and statistical analyses were carried out. The number 119 

of publications associated with a specific host, organ, and pathology were calculated for each 120 

Porphyromonas. The number of cases could not be utilized as this information is missing in the 121 

vast majority of articles. The statistical analysis was carried out using R Studio 1.2.5029 and R 122 

packages for correlation map and network generation (corrplot [61] and corrr R [62]); factorial 123 

correspondence analysis [63], hierarchical clustering [64] (FactoMineR [65] and factoextra 124 

[66]) and graphics generation (webr [67], wordcloud [68], and ggplot2 [69]). 125 

When nucleotide sequences were accessible, we checked the taxonomic assignment using 126 

BlastN or mapping against Porphyromonas 16S and whole-genome in-house databases. For 127 

16S rDNA analysis, sequences were extracted manually from each genome, the phylogenetic 128 

tree built using PhyML [70] (substitution model K80, bootstrap=20) based on MAFFT 129 

alignment [71] (algorithm: G-INS-1, scoring matrix: 200PAM/k=2), the evolutionary model 130 
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selected by Modeltest [72] (TPM3+I+G), and the corresponding distance matrix visualized 131 

using the superheat R package [73]. 132 

 133 

Results and discussion 134 

Information sources 135 

The 21 recognized Porphyromonas species are described in an extremely variable 136 

number of publications (Figure 1, Table S1). Over 90% of the documents focused on P. 137 

gingivalis in human oral pathologies. Consequently, the vast majority of current knowledge 138 

about Porphyromonas actually relates to human oral P. gingivalis, which is unlikely to 139 

represent the comprehensive genus biology. In the remaining 10% (844 documents), 407 140 

documents described Porphyromonas without attribution of species (termed P. spp.). The 437 141 

articles with species descriptions are also distributed unevenly with over half limited to three 142 

species: P. asaccharolytica, P. gingivalis in animal or non-oral human isolates, and P. 143 

endodontalis. Conversely, only the initial description is available for two species (P. 144 

bronchiolis and F. endometrii). 145 

Additionally, publication frequency for each species is uneven (Figure S3). P. gingivalis 146 

(in the oral human context) registers hundreds of publications per year, whereas publication 147 

frequency for other Porphyromonas is variable and often minimal (averaging <10 papers 148 

annually). Such differences lead to a bias in the knowledge of Porphyromonas biology, with 149 

little if any information being produced for 20 non-P. gingivalis species. Nevertheless, we 150 

observed a general trend of increased publication frequencies since 2014, which corresponds to 151 

the application of next generation sequencing (NGS) in Porphyromonas studies (Figure S4). 152 

This technology has become an invaluable tool for their ecological study, as discussed below. 153 

 154 

Environmental Porphyromonas 155 

Notably, 103 scientific articles state the presence of Porphyromonas in environmental 156 

samples, in the vast majority with no species assignment except in 13 articles that proposed a 157 

species name based on the “best match” (Table S2). To verify these “best hits”, we performed 158 

a new BlastN search and confirmed only P. gingivalis found on indoor climbing walls [74] and 159 

P. asaccharolytica in cow manure [75] whereas for three studies [76–78], we identified 160 

Macellibacteroides fermentans and Fermentimonas caenicola, respectively instead of 161 

Porphyromonas. However, most studies do not provide access to raw data and taxonomic 162 

designation cannot be verified. This highlights the importance of depositing sequencing data in 163 
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open databases to allow reproducibility and re-analysis, with the fast-growing databases 164 

enabling updates of the results. Moreover, when the “best hits” results are low, especially in the 165 

Porphyromonadaceae family for which taxonomy is frequently revised [79], it is therefore 166 

preferable to limit the description to the genus level. Owing to such possible errors in species 167 

assignment and lack of verification capability, we chose to consider environmental 168 

Porphyromonas as unknown species (P. spp.). 169 

A non-exhaustive description of the environmental diversity of Porphyromonas is presented 170 

in Figure 2 and Table S2. In pristine environments (27%), Porphyromonas have been isolated 171 

from air samples (4%); from soils (10%) like agricultural lands and crops, alpine meadows, 172 

sediments and subseafloor, and in fresh- and sea- water (13%). In anthropogenic environments 173 

(73%), Porphyromonas have been detected in healthcare facilities as well as in indoor buildings 174 

and transport systems that constitute potential sites for microbial transmission between human 175 

and animal populations. Additionally, Porphyromonas were detected in various personal use 176 

objects. Finally, the most important source of environmental Porphyromonas derives from 177 

waste-management settings. 178 

In summary, the environmental component of Porphyromonas is far from negligible. In 179 

some studies, Porphyromonas constitute “rare taxons” (< 1%) whereas in others they are 180 

abundant and described as part of the “core microbiome”. Such environmental detection of 181 

Porphyromonas raises issues including whether they result from cross-contamination or are 182 

persistent in the environment or continually transmitted by oral and/or fecal material. These 183 

questions are inherent in all studies carried out by detecting DNA (PCR or NGS) that do not 184 

guarantee viability of the identified bacteria. 185 

This review does not answer these questions but suggests that Porphyromonas have a 186 

capacity to persist in pristine and man-polluted environments, indicative of resistance to 187 

stressors such as atmospheric oxygen, UV radiation, or nutrient depletion, possibly via 188 

dormancy mechanisms leading to viable non-cultivable forms (VBNCs). It is also possible that 189 

in free-form, biotic interactions are harmful to Porphyromonas as these are not very competitive 190 

but in favorable situations such as biofilms, these bacteria are protected in a nutrient-rich 191 

microenvironment and may benefit from cooperation with other bacteria to maintain and/or 192 

thrive. Thus, environmental niches may be temporarily utilized by Porphyromonas, which then 193 

re-colonize and re-infect human or animal hosts. 194 

 195 

Host-associated Porphyromonas 196 
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All Porphyromonas species, except for P. bronchialis and Falsiporphyromonas described 197 

only a few times, are detected in both disease and health conditions, in various proportions 198 

(Figure 3). Until 2012, Porphyromonas research had been focused on clinical microbiology and 199 

therefore biased toward pathological contexts with scarce descriptions in healthy contexts. This 200 

bias gradually disappeared concomitant with recent “without a priori” NGS studies that 201 

reported proportions of Porphyromonas spp. (P. spp., Figure S3) at 58.7% in healthy states 202 

versus 41.3% in disease conditions. This may be interpreted as these species constituting not 203 

true pathogens (according to Pasteur or Koch) but rather key bacteria (“keystone pathogen” or 204 

“alpha bug theory” [80,81]), orchestrating, even at low abundance, host immune response or 205 

serving as pathobionts (“bacterial passengers theory” [82]) that profit from altered homeostasis 206 

to thrive and trigger disease. Evaluation of the frequency of the major pathologies described for 207 

all species (Figure 4) reveals the preponderance of inflammatory diseases (suffix "-itis"), 208 

followed by cancers, degenerative and autoimmune diseases. These observations confirm a 209 

complex pathological pattern for Porphyromonas including an assortment of primary diseases 210 

and secondary morbidities. 211 

In the literature, Porphyromonas host range is often dichotomic with opposing human and 212 

veterinary strains (e.g. see [83–85]), which may be interpreted as host specificity. However, it 213 

is important to reassess host range to address several major epidemiological issues including 214 

whether two or more Porphyromonas species can cohabite within a single microbiota, whether 215 

zoonosis is possible, and, if so, whether this provokes colonization, infection, adaptation, and 216 

propagation to new hosts or only transitory infection. Answers to these questions are necessary 217 

to assess the possible threat to public health and food safety. For example, the presence of 218 

Porphyromonas in bovine milk has been described [86,87] but it remains unknown whether its 219 

consumption may result in exogenous transmission. The possibility of Porphyromonas transfer 220 

between humans and pets is also unresolved. In order to reexamine Porphyromonas host range, 221 

we classified all animal isolation sources as minority/newly cited or main/historically known 222 

hosts, as follows. 223 

 224 

Minor or newly cited hosts of Porphyromonas 225 

Minor Porphyromonas hosts include aquatic wildlife (Table S3), arthropods, birds, 226 

small and/or wild mammals (Table S4). Briefly, in aquatic wildlife, Porphyromonas can 227 

survive and multiply in amoebas and endure physical and chemical stresses in their cysts. This 228 

intracellular existence can help Porphyromonas escape from macrophages in healthcare 229 
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facilities [88]. Marine life interactions have been noted in ciliates, corals, copepods, and oysters, 230 

playing a possible role in Porphyromonas survival and potential transfer along the food chain, 231 

as these bacteria are also found in fish, cetaceans, and penguins. This presence in aquatic 232 

animals should be contextualized with their presence in pristine aquatic environments. 233 

Porphyromonas were also detected in intestinal microbiota of arthropods (ectoparasites and 234 

insects), in birds’ intestinal and respiratory microbiota and appears frequent in the oral, genital, 235 

anal, ocular, and nasal microbiota of wild and captive marsupials and mammals. 236 

 237 

Frequent or frequently studied hosts of Porphyromonas 238 

The major studied hosts all constitute mammals; in descending order: humans, dogs, 239 

cats, cattle, sheep, pigs, and monkeys. Using a contingency table for each Porphyromonas 240 

species phenotypic marker (health status, host, and organ, Table S1), significant correlations 241 

were visualized as a correlogram (Figure 5A) which revealed six isolated species, alone or in 242 

pairs. With the exception of P. levii, we suspect that this was largely due to the small number 243 

of publications (from one to six). The segregated species are as follows. 244 

 245 

P. levii. Previously known as Bacteroides melaninogenicus subsp. levii then as Bacteroides 246 

levii [19] and reclassified as Porphyromonas in 1995 [24]. To avoid confusion, only 247 

publications after 1995 were considered for this species. However, some publications after 1995 248 

still used the old Bacteroides levii name [89] or the terminology P. levii-like organisms (PLLO) 249 

[90,91], which might correspond to P. somerae [27,37,92]. For example, only one publication 250 

recorded P. levii in human vaginitis [93], a typical isolation site of P. somerae; this may 251 

therefore be a case of misidentification. Considering only accurate P. levii designations, we 252 

found that this species is quite specific to ovine infections [94] (Table S1). Despite its high 253 

prevalence, P. levii distribution within lesions suggests its role as a secondary colonizer rather 254 

than a main etiologic agent [95]. Additionally, in some cases, its presence in non-affected 255 

animals has been described [96,97]. As this species was initially isolated from healthy cattle 256 

rumen [19,98] and is occasionally re-detected in this organ [99,100], it can be hypothesized that 257 

the skin and genital colonization might be due to fecal contamination and/or hematogenous 258 

propagation [101]. 259 

 260 

Falsiporphyromonas endometrii. Originally isolated from cow endometrium [44] and in 261 

intestinal microbiota from sows, this species had been relegated to a new genus at the time of 262 
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this publication as its phylogenetic distance from other Porphyromonas was deemed excessive. 263 

However, rebuilding the rRNA 16S tree and distance matrix (Figures 5B & 5C) indicated a 264 

Porphyromonas typical identity percentage. We therefore considered Falsiporphyromonas as 265 

a Porphyromonas in the absence of an official reclassification. Moreover, searching against 266 

BLAST gave Porphyromonas sp. 2069 and 2070 along with P. levii [102] and Porphyromonas 267 

sp. clone 1M9 [103] as best hits. 268 

 269 

P. katsikii. Published only once after its isolation from sheep with pneumonia. BLAST search 270 

using its 16S sequence (accession number: KM360064) revealed four hits (99% identity) 271 

corresponding to uncultured Porphyromonas sp. isolated from the uterus of healthy or metric 272 

cows [97]. 273 

 274 

P. loveana. Cited in three articles, two of which recorded five strains in Australian marsupials 275 

and one defining two strains in New Zealand sheep. Only partial 16S gene sequences are 276 

available from the Australian strains that form an Oceania endemic group (97 to 100% identity). 277 

 278 

P. pogonae. Described in six articles, first isolated from different polymicrobial infections in 279 

Pogona [104]. This species has also been described from the wounds of a crowned crane 280 

(Balearica sp.) and in human infections [40,105–107]. 281 

 282 

P. bronchialis. Only the initial description article for this species is available as a source of 283 

information, including four strains isolated from bronchial liquid from a single patient [41]. No 284 

nucleic acid sequence is available. 285 

 286 

For the remaining 15 species, correspondence analysis using a host contingency table 287 

(Figure 6A) revealed a clear separation in 4 clusters (axis 1, 80% variance) between species 288 

dominant in human versus those of pets (Figure 6B): 289 

Cluster 1 contains five species essentially described in humans: P. uenonis and P. somerae 290 

yet described in cattle infections [102,108], and P. asaccharolytica, P. catoniae, and P. 291 

endodontalis also described in pets, cattle, and primates. 292 

P. gingivalis, clusters with P. pasteri and P. bennonis in a strongly human-associated group 293 

(Cluster 2). However, P. pasteri (exclusively human) and P. bennonis (also cited in pig feces 294 

[109]) are poorly studied (Figure 1). 295 
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P. gulae, P. gingivalis closest relative (Figure 5B), grouped in Cluster 4 with P. macacae, 296 

P. canoris, and P. circumdentaria. As such, P. gingivalis and P. gulae appear as two ecotypes 297 

separated according to number of human and canine cases [110,111] and distinguishable by the 298 

catalase test, P. gulae being positive and P. gingivalis negative [35]. Nevertheless, these two 299 

species contain similar virulence factors [85,112]. P. gulae can invade human cells in vitro 300 

[113] but with less adherence to human cells than P. gingivalis [114].  301 

Some articles recorded P. gulae in humans. A study showed that its high prevalence in 302 

aborigines, may be associated with their traditional diet (primate meat) and/or use of capuchin 303 

as pets, facilitating transmission from primate to human. Notably, the authors hypothesize that 304 

P. gulae may be a competitor of P. gingivalis and that both species might rarely or inefficiently 305 

cohabit [115]. Yet, both species have been identified in biofilms from periodontitis [116]. 306 

Moreover, P. gulae have been detected in the oral cavities and skin of dog owners, which may 307 

potentially result from dog-to-human transfer [117,118], poster). Conversely, P. gulae was not 308 

detected in cat owners [119]. Additionally, P. gulae have been reported in fecal samples from 309 

patients with colorectal cancer [120] and with P. gingivalis in cervical microbiota from infertile 310 

women [121]. It is difficult to synthesize colonization of humans by P. gulae as few studies 311 

exist and as this species is highly similar to P. gingivalis. Therefore, several questions remain, 312 

such as whether the absence of co-detection is legitimate or owing to inadequate analyses that 313 

underestimate the presence of P. gulae in human microbiota, or, if such cohabitation is indeed 314 

rare. However, if both species can coexist in humans, the issue of P. gulae zoonotic transfer 315 

(Table S1; Fig 6B) should be addressed considering the involvement of Porphyromonas in 316 

oncologic and neurologic diseases. 317 

Correspondingly, P. gingivalis has been reported in animal oral cavities either with or 318 

without periodontitis, and in bite wounds and fecal material (Table S1). However, as P. 319 

gingivalis remains isolated predominantly from human medicine contexts, its study in animals 320 

is therefore necessary to elucidate whether these reports correspond to opportunistic 321 

colonization, occasional and transitory transfer from human to animals, or whether this species 322 

is not exclusively human-based. 323 

All canine and feline species clustered with P. gulae (Cluster 4, Fig 6B), and are also 324 

occasionally reported in humans (from 6 to 15% of cases). P. canoris in human skin (Table S1), 325 

P. circumdentaria in healthy liver biopsies [122] and in fecal and genital microbiomes 326 

[121,123]. P. macacae have been reported in breast cancer [124] and infected wound bites 327 
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[27,125,126], which was expected as this species is frequently identified in pet oral microbiota 328 

(Table S1).  329 

The last cluster (Cluster 3, Fig 6B) groups P. gingivicanis, P. crevioricanis, and P. 330 

cangingivalis, originally described in dog oral microbiota but also detected in cat, human, and 331 

cattle pathologies (Table S1). 332 

In conclusion, we found that Porphyromonas was present in almost all animal orders. This 333 

information raises new questions about their epidemiology and host-specificities. Indeed, the 334 

only studies regarding Porphyromonas host-to-host transmission are between humans, 335 

specifically interfamily transmission [127–135], and from oral sources, with saliva as the 336 

vehicle [136]. Epidemiological studies of Porphyromonas in animals do not appear to be a 337 

priority. However, domestic mammals (cattle, cats, and dogs) live in very close association with 338 

their owners and all their secretions (saliva, urine) are present in the everyday environment. 339 

This review thus highlights the necessity for a rigorous reassessment of Porphyromonas host 340 

specificities. 341 

Moreover, although numerous studies have associated these bacteria with clinical 342 

observations, mostly in human dentistry, NGS studies in the past decade have revealed a much 343 

wider host range. Prior to these approaches, classical culture-based have been insufficient to 344 

broaden our knowledge regarding Porphyromonas host diversity, as these bacteria are 345 

fastidious, slow growing, and produce low biomass. The presence of Porphyromonas across 346 

numerous and varied environments renders it necessary to determine whether they constitute 347 

generalist environmental pathogens or specialized opportunists that may briefly transfer to 348 

other reservoirs. To explore these issues, we reviewed Porphyromonas distribution in different 349 

organs, both in healthy and pathological conditions. 350 

 351 

Organ distribution of Porphyromonas 352 

The distribution of Porphyromonas in cellular compartments is likely indicative of their 353 

colonization mechanism. To summarize the information, we classified the anatomical sites in 354 

nine categories with associated pathological or healthy conditions (Figure S2).  355 

The objective of this investigation was to clarify and extend our knowledge regarding their 356 

cellular specificities. Generally, the scientific literature simplifies the findings and usually 357 

describes Porphyromonas species as expressly localized in specific body sites; e.g. P. gingivalis 358 

and P. endodontalis in the oral cavity, P. uenonis in the gut, and P. somerae in the genital tract. 359 

A contingency table registering the number of articles citing each of the nine organ categories 360 
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was used to generate a hierarchical clustering and waffle plots (Figure 7). Analysis of these 361 

plots revealed that none of the 15 species of Porphyromonas exhibits organ specificity but 362 

rather preferences for certain anatomical sites.   363 

P. asaccharolytica and P. gingivalis, the two most published Porphyromonas (Figure 1), 364 

are the only species to be found in all 9 sites, albeit at variable proportion. This suggested that 365 

the number and diversity of publications constitute important factors that likely bias the results 366 

of less-reported species. Nevertheless, currently available data reveal three different types of 367 

profiles. The first cluster (Figure 7) corresponds to “multiple organ” behavior involving P. 368 

asaccharolytica, P. somerae, P. bennonis, and P. uenonis. The second cluster includes P. 369 

macacae, P. cangingivalis, P. canoris, P. circumdentaria, and P. crevioricanis found in the 370 

oral cavity and skin. As these species are often isolated from pets, the hypothesis of secondary 371 

opportunistic infection of bite and scratches wounds by oral Porphyromonas after licking 372 

represents the most obvious route of transmission. Finally, the third group (Figure 7) includes 373 

essentially oral bacteria such as P. gulae, P. gingivalis, P. endodontalis, P. gingivicanis, P. 374 

catoniae, and P. pasteuri, which are also occasionally detected in other organs. 375 

This descriptive analysis suggested the capacity of Porphyromonas species to propagate in 376 

and on different body sites, thus allowing consideration of primary sites and various invasion 377 

routes allowing secondary colonization. However, the research needed to understand these 378 

routes of transmission is lacking. Although numerous analyses have been published regarding 379 

Porphyromonas adhesion to host cells, these are predominantly of P. gingivalis; 380 

complementary investigation must therefore be achieved for the other species. Mechanisms that 381 

allow the establishment and maintenance of an intracellular lifestyle along with the diversity of 382 

intracellular compartments used for Porphyromonas replication and crossing of host barriers 383 

need to be specifically studied in all species if possible. This knowledge would allow more 384 

precise definition of the threshold between Porphyromonas commensalism and pathogenicity, 385 

which constitutes a relevant issue as demonstrated in this review because these bacteria belong 386 

to the host microbiota and can therefore be considered commensal but can become pathogenic 387 

when they escape from their original niche or when their growth rate increases. 388 

 389 

Concluding remarks 390 

The initial objective of this review was to summarize the knowledge regarding the host and 391 

organ range in addition to associated conditions (pathological or healthy) for the 21 species of 392 

the Porphyromonas genus currently described. However, the marked heterogeneity in the 393 
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knowledge between P. gingivalis, the predominantly reported species with several studies per 394 

week and that of the large majority of species, associated with only 5 to 10 articles annually, 395 

along with the "exotic" species such as P. bronchialis or P. katsikii that have accumulated < 5 396 

papers over the past 20 years, was immediately apparent. We also observed that approximately 397 

half of the eligible studies described Porphyromonas spp. This inevitably resulted in “gray 398 

areas” and biases that rendered the interpretation of the results difficult and imprecise. 399 

However, the number of cases of cancers or systemic diseases associated directly or indirectly 400 

with Porphyromonas is accumulating, in addition to the previously well documented cases of 401 

infections and inflammations. A more thorough understanding of this bacterial genus therefore 402 

appears important for enhancing human and veterinary health with various complementary 403 

experiments, as discussed throughout this review, appearing necessary to clarify the taxonomic 404 

descriptions and refine the biological characterizations of the less-reported species. The 405 

summary schematic (Figure 8) showing their presence in numerous environments, hosts, and 406 

biological niches is thus incomplete and biased but nevertheless indicates the extremely 407 

widespread albeit poorly studied ecological distribution of this important bacterial genus. 408 

  409 
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Figure legends 420 

Figure 1. Number of documents (scientific articles, doctoral theses, posters, and conference 421 

abstracts; total = 437) related to Porphyromonas species. P. gingivalis studied in the human 422 

oral biotope (GIN_o) does not appear because its records exceeded 8000 documents. Only 423 

records citing this species in non-human (animals) or human non_oral contexts (GIN_no) are 424 

represented. Records for which the species was not identified, i.e. Porphyromonas spp. (P. 425 

spp.), are not presented (407 records). 426 

 427 

Figure 2. Pie chart sub-categorized with a donut diagram representing the proportion of the 428 

different environments in which Porphyromonas were detected. Pristine environments 429 

correspond to undisturbed ecosystems and thus unmodified by human activity as opposed to 430 

anthropogenic environments, reflecting those modified by human activities. 431 

 432 

Figure 3. Polar chart representing the proportion of records associated with each 433 

Porphyromonas species along with Porphyromonas spp. and either healthy (green) or disease 434 

(red) conditions. The total number of records corresponds to that presented in Figure 1. For P. 435 

gingivalis, the oral human records (GIN_o) were totaled using PubMed abstracts whereas oral 436 

and non-oral animal cases in addition to non-oral human cases (GIN_no) were fully analyzed 437 

similarly to the other Porphyromonas species. 438 

 439 

Figure 4. Word cloud representing all the pathologies and/or keywords associated with all 440 

Porphyromonas species as recorded in this analysis. The word size corresponds its number and 441 

is proportional to the total of pathologies/keywords mentioned; colors are used in accordance 442 

with the word size (from the most frequent to the least frequent: warm colors to cool colors). 443 

 444 

Figure 5. Relationship between Porphyromonas species phenotypic traits and phylogenetic 445 

relatedness. A. Top panel. Correlogram displaying the phenotypic correlation matrix (organ, 446 

host distribution, and pathology association). Color intensity and dot size indicate the Pearson 447 

coefficient values from light (0) to dark (1). Bottom panel. Correlation network to visualize 448 

pairwise correlations between Porphyromonas species inside each of the three clusters 449 

presented in the top panel. Each edge stands for a Spearman correlation > 0.90 (p < 0.05). Color 450 

of the edges is related to the coefficient of correlation from light to dark. Isolated species, alone 451 

or in pairs, are marked with an asterisk.  B. 16S rDNA phylogenetic tree. The number between 452 
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brackets corresponds to the number of strains used to generate each consensus sequence by 453 

species. Colors represent the clusters of correlograms in panel A. P. bronchialis is absent as its 454 

16S sequence is not available. C. Distance matrix used for the 16S rDNA phylogenetic tree in 455 

B. 456 

 457 

Figure 6. Major host distribution for the three Porphyromonas species clusters identified based 458 

on phenotypic traits. A. Factorial correspondence analysis of Porphyromonas species according 459 

to the number of cases for each category of major hosts (see details in the text). B. Host-range 460 

repartition detailed for each Porphyromonas species and each identified cluster. Green, Cluster 461 

I; red, Cluster 2; blue, Cluster 3; purple, Cluster 4. 462 

 463 

Figure 7. Hierarchical clustering of Porphyromonas species according to the isolation site or 464 

organ separated by category (see details in Figure S4). The waffle charts reflect the relative 465 

abundances in each organ group described above (one block = 1%). 466 

 467 

Figure 8. Overview of Porphyromonas isolation and/or description in all habitats including the 468 

environment and all its hosts. Within hosts, organs or body sites from which Porphyromonas 469 

have been described are detailed. 470 

 471 

Supplemental Figure S1. Preferred reporting elements for systematic reviews and meta-472 

analyzes (PRISMA), flowchart and checklist detailing documents search (from 01-1988 to 09-473 

2019) and selection process applied in this systematic review and meta-analysis about 474 

Porphyromonas ecology. 475 

 476 

Supplemental Figure S2. Categories used in this meta-analysis corresponding to the isolation 477 

site or organ in which Porphyromonas species have been described; a full description of all 478 

terms is presented for each category. 479 

 480 

Supplemental Figure S3. Number of records included in this study for each Porphyromonas 481 

species by year from 01–1988 until 09–2019. For P. gingivalis, the oral human records (GIN_o) 482 

were totaled using PubMed abstracts whereas oral and non-oral animal cases in addition to non-483 

oral human cases (GIN_no) have been referenced based on full records for the meta-analysis, 484 

as for the other Porphyromonas species. 485 
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 486 

Supplementary Figure S4. Number of records according to method of Porphyromonas 487 

identification and year. For each record included in this study, the identification method for any 488 

Porphyromonas isolate was classified into four categories: traditional identification and 489 

culturomics, immunologic or other wet lab method, specific 16S rDNA PCR to identify 490 

Porphyromonas species and related methods, and microbiota and metagenomics studies (NGS). 491 

  492 
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