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Abstract: Clostridium difficile induces antibiotic-associated diarrhea due to the release of toxin A
(TcdA) and toxin B (TcdB), the latter being its main virulence factor. The epidemic strain NAP1/027
has an increased virulence attributed to different factors. We compared cellular intoxication by
TcdBNAP1 with that by the reference strain VPI 10463 (TcdBVPI). In a mouse ligated intestinal loop
model, TcdBNAP1 induced higher neutrophil recruitment, cytokine release, and epithelial damage
than TcdBVPI. Both toxins modified the same panel of small GTPases and exhibited similar in vitro
autoprocessing kinetics. On the basis of sequence variations in the frizzled-binding domain (FBD),
we reasoned that TcdBVPI and TcdBNAP1 might have different receptor specificities. To test this
possibility, we used a TcdB from a NAP1 variant strain (TcdBNAP1v) unable to glucosylate RhoA but
with the same receptor-binding domains as TcdBNAP1. Cells were preincubated with TcdBNAP1v to
block cellular receptors, prior to intoxication with either TcdBVPI or TcdBNAP1. Preincubation with
TcdBNAP1v blocked RhoA glucosylation by TcdBNAP1 but not by TcdBVPI, indicating that the toxins
use different host factors for cell entry. This crucial difference might explain the increased biological
activity of TcdBNAP1 in the intestine, representing a contributing factor for the increased virulence of
the NAP1/027 strain.
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Key Contribution: Toxin B from the C. difficile epidemic strain NAP1/027 presents a receptor binding
specificity different from that of Toxin B from classic strains, a factor that might explain its increased
biological activity.
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1. Introduction

Clostridium difficile is a relevant nosocomial pathogen because of its role in antibiotic-associated
diarrhea and pseudomembranous colitis. These infections usually occur in hospitalized patients that
receive antibiotic treatment. Under these conditions the microbiota is altered, allowing the germination
and colonization by C. difficile. Upon proliferation, this bacterium releases two toxins responsible for
all the signs and symptoms of the disease, i.e., toxin A (TcdA) and toxin B (TcdB) [1]. Despite some
controversy, it has been proposed that TcdB is the main virulence factor of C. difficile [2,3]. These two
toxins are multi-domain proteins of high molecular weight from the family of Clostridial Glucosylating
Toxin (CGTs) and follow a multi-step strategy to intoxicate eukaryotic cells [4]. As for TcdB, it initially
binds to receptors located on the cell surface. Three different receptors have been identified for TcdB of
VPI 10463, i.e., the poliovirus receptor-like 3 (PVRL3), chondroitin sulfate proteoglycan 4 (CSPG4), and
certain Wnt receptors of the frizzled family (namely, FZD1, FZD2, and FZD7) [5–7]. Once the toxin
binds to these receptors, it enters the cell by receptor-mediated and clathrin-dependent endocytosis in
a compartment that undergoes acidification [8]. This condition triggers a conformational change in
the protein, allowing the insertion of hydrophobic domains and the translocation of the N-terminal
end to the cytosol. Exposure to inositol hexakisphosphate (InsP6) located in the cytoplasm activates
an autoprocessing activity that cleaves the protein and releases the enzymatic domain, which in turn
glucosylates, and thus inactivates, members of the family of small GTPases [1,9]. This sequential and
concerted action leads to the collapse of the actin cytoskeleton and to a generalized disruption of
signaling processes mediated by small GTPases of the Rho subfamily. In the intestine, this cytotoxicity
process is manifested by the disruption of the epithelial monolayer and the proinflammatory activation
of both epithelial and immune cells [1,10,11].

C. difficile is an extremely variable species, with a core genome reported to be as low as 30% [12,13].
This diversity is reflected in the emergence of strains with varying degrees of virulence, such as the
epidemic strain NAP1/027. This strain has been responsible of numerous outbreaks worldwide [14–17],
and its increased virulence has been attributed to a plethora of phenotypic and genotypic characteristics,
including increased toxin secretion, a mutation in the PaLoc negative regulator tcdC, production of a
binary toxin, increased sporulation, and production of a TcdB with increased biological activity [18–21].

In this report, we compared TcdB from the reference strain VPI 10463 (TcdBVPI) with the
corresponding toxin purified from a NAP1/027 strain (TcdBNAP1) at different steps of the intoxication
process. In addition, by using a variant NAP1 TcdB previously reported to differ only in the
glucosyltransferase domain (TcdBNAP1v) [22], we found evidence for differences in the exploitation of
host cell entry factors between TcdBVPI and TcdBNAP1. Thus, we postulate the existence of different or
additional receptors for TcdBNAP1, providing a possible explanation for its increased biological activity.

2. Results

2.1. TcdBNAP1 Has an Increased Biological Activity in the Intestine

A previous report indicated that TcdBNAP1 possesses an increased biological activity compared to
reference TcdB in the zebra fish model [19]. We tested whether the same was true in a mice model.
Purified toxins from the hyper-producing strains NAP1, NAP1v, and VPI 10463 were used for all the
experiments (Figure 1). Ligated intestinal loops were inoculated with 10 µg of TcdBNAP1, TcdBVPI, or
TcdBNAP1v and after 4 h the proinflammatory response was analyzed measuring the levels of ileal
cytokines. TcdBNAP1 induced a significantly higher release in the intestinal mucosa of IL-1β and
IL-6 than TcdBVPI and TcdBNAP1v (Figure 1). This increased activity of TcdBNAP1 was also seen when
epithelial damage was evaluated by histology (Figure 1). In the case of neutrophil migration, both
TcdBNAP1 and TcdBNAP1v showed an increased activity when compared to TcdBVPI (Figure 1).
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Figure 1. Toxin B (TcdB) from NAP1 induces a higher inflammatory influx and ileal disruption. The 

in vivo effect of various TcdBs was assayed in a murine ligated ileal loop model. (A) TcdBs were 

obtained from the supernatants of strains grown in a dialysis system culture and purified by ion-

exchange chromatography and gel filtration. The purity of the toxins was assessed after SDS-PAGE 

by Coomassie staining of a 7.5% gel loaded with 1.5 µg of TcdBVPI (VPI), TcdBNAP1 (NAP1), and 

TcdBNAP1v (NAP1v). Then, ileal loops were treated for 4 h with 10 μg of purified TcdBVPI (VPI), 

TcdBNAP1 (NAP1), and TcdBNAP1v (NAP1v); (B,C) The effect of the toxins on inflammatory cytokines 

was measured; (D,E) Neutrophil infiltration and epithelial damage induced by the toxins was also 

determined using a histopathological score (HS) scale from 1 (mild) to 3 (severe). Hepes was used as 

a negative control. Error bars represent means ± SEM (A,B) and median ± range (C,D), n ≥ 5; *p < 0.05 

compared to Hepes, #p < 0.05 compared to other groups (One-way ANOVA with Bonferroni’s 

correction, Kruskal–Wallis test, and Dunn’s multiple-comparison test). 
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than TcdBVPI (Figure 2C). These results demonstrate that the different cytotoxic potencies depend on 
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Figure 1. Toxin B (TcdB) from NAP1 induces a higher inflammatory influx and ileal disruption. The
in vivo effect of various TcdBs was assayed in a murine ligated ileal loop model. (A) TcdBs were obtained
from the supernatants of strains grown in a dialysis system culture and purified by ion-exchange
chromatography and gel filtration. The purity of the toxins was assessed after SDS-PAGE by Coomassie
staining of a 7.5% gel loaded with 1.5 µg of TcdBVPI (VPI), TcdBNAP1 (NAP1), and TcdBNAP1v (NAP1v).
Then, ileal loops were treated for 4 h with 10 µg of purified TcdBVPI (VPI), TcdBNAP1 (NAP1), and
TcdBNAP1v (NAP1v); (B,C) The effect of the toxins on inflammatory cytokines was measured; (D,E)
Neutrophil infiltration and epithelial damage induced by the toxins was also determined using a
histopathological score (HS) scale from 1 (mild) to 3 (severe). Hepes was used as a negative control.
Error bars represent means ± SEM (A,B) and median ± range (C,D), n ≥ 5; * p < 0.05 compared to Hepes,
# p < 0.05 compared to other groups (One-way ANOVA with Bonferroni’s correction, Kruskal–Wallis
test, and Dunn’s multiple-comparison test).

2.2. The Cytotoxic Potency of TcdBNAP1 Depends on the Cell Line Evaluated

To determine whether the increased biological activity induced by TcdBNAP1 was due to an
increased cytotoxic activity, we titrated the toxins in three cell lines. In HeLa cells, the three toxins
displayed a similar cytopathic titer (Figure 2A). In contrast, TcdBVPI had a significantly higher cytopathic
titer than TcdBNAP1 and TcdBNAP1v in 3T3 fibroblasts (Figure 2B). Interestingly, the opposite was found
in CHO cells, in which both TcdBNAP1 and TcdBNAP1v presented a higher cytopathic titer than TcdBVPI

(Figure 2C). These results demonstrate that the different cytotoxic potencies depend on the target cell
line rather than on an intrinsic characteristic of the toxins.



Toxins 2019, 11, 348 4 of 15Toxins 2019, 11, x FOR PEER REVIEW 4 of 15 
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cells in three independent experiments; *p < 0.05 (One-way ANOVA with Bonferroni ś correction). 

We next evaluated the ability of the three toxins to induce cell death using propidium iodide 

(PI)/anexin V double staining, which evaluates early apoptotic events (anexin V-positive) and late 

apoptotic or necrotic cell death (anexin V- and PI-positive). HeLa cells intoxicated with either of the 

three toxins for 24 h had a similar response, displaying a low percentage of cytotoxicity (below 20%) 

(Figure 3A). At the toxin concentrations used, the cells already showed a visible cytopathic effect after 

2 h of treatment (data not shown), indicating that none of the toxins had an increased ability to induce 

cell death even if they had fully modified their intracellular substrates with a similar dynamic, as 

shown by the glucosylation of Rac1 (Figure 3B). 

Figure 2. Cell rounding of distinct cell lines induced by TcdBs. (A) HeLa, (B) 3T3 fibroblasts, and (C)
CHO cells were treated with the indicated concentrations of TcdBVPI (VPI), TcdBNAP1 (NAP1), and
TcdBNAP1v (NAP1v). The percentage of round cells in each well was evaluated every hour for a period
of 12 h and then after 24 h from the start of the experiment. Error bars represent means ± SD of 100
cells in three independent experiments; * p < 0.05 (One-way ANOVA with Bonferroni´s correction).

We next evaluated the ability of the three toxins to induce cell death using propidium iodide
(PI)/anexin V double staining, which evaluates early apoptotic events (anexin V-positive) and late
apoptotic or necrotic cell death (anexin V- and PI-positive). HeLa cells intoxicated with either of the
three toxins for 24 h had a similar response, displaying a low percentage of cytotoxicity (below 20%)
(Figure 3A). At the toxin concentrations used, the cells already showed a visible cytopathic effect after
2 h of treatment (data not shown), indicating that none of the toxins had an increased ability to induce
cell death even if they had fully modified their intracellular substrates with a similar dynamic, as
shown by the glucosylation of Rac1 (Figure 3B).
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Figure 3. Cytotoxicity of TcdBs in HeLa cells. (A) HeLa cells were treated with 100 pM of TcdBVPI (VPI),
TcdBNAP1 (NAP1), and TcdBNAP1v (NAP1v) for 24 h. Cytotoxicity was analyzed by flow cytometry
using propidium iodide (PI)/anexin V double staining. Control cells were left untreated (mock). Error
bars represent means ± SD of three independent experiments; (B) Following the addition of 100 pM of
TcdB, the cells were lysed at the indicated time points, and the dynamics of Rac1 glucosylation was
monitored by immunoblot with a specific anti-Rac1 antibody that only recognizes the unmodified form
of this protein (ungluc.Rac1). Untreated cells (-) were included as a positive control for unglucosylated
Rac1, and immunodetection of beta-actin served as a loading control (β-actin). Shown are representative
western blot images from three independent experiments.

2.3. TcdBNAP1 and TcdBVPI Possess Similar Enzymatic Activities
Two enzymatic activities are crucial for the intoxication of cells by TcdB: (1) the autoprocessing

activity elicited by InsP6 and (2) the glucosyltransferase activity on small GTPases [4,9,23]. We compared
both activities to determine whether differences at this level might explain the increased biological
activity of TcdBNAP1. To this end, purified toxins were exposed in vitro to InsP6, and autoproteolysis
was followed by detection of a proteolytic product corresponding to residues 544–2366 [24]. Under
these conditions, the autoproteolytic event was initiated after only 2.5 min and proceeded efficiently in
the three toxins (Figure 4A). Quantitation of the process did not reveal statistical differences among the
autoprotolytic activities of the three toxins (Figure 4B).
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Figure 4. In vitro autoprocessing of TcdB. The in vitro processing of TcdBVPI (VPI), TcdBNAP1

(NAP1), and TcdBNAP1v (NAP1v) was evaluated in the presence of 10 mM of the co-factor inositol
hexakisphosphate (InsP6). The reactions were incubated at 37◦C for the indicated times, and toxins or
toxin fragments were then detected by Coomassie Blue staining. The enzymatic activity was determined
by the presence of full-length (FL) toxin (1–2366), which decreased over time, and processed toxin
(544–2366, PT), which increased over time. Shown in (A) is one representative SDS-PAGE gel from three
independent experiments; (B) The bands corresponding to the FL toxin and the PT were quantified by
densitometry. The autoprocessing activity of each toxin was determined by comparing the relative
amounts of both forms of the toxin, and the percentage obtained was plotted using nonlinear regression.
Error bars represent means ± SD of three independent experiments.
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The substrates modified by the three toxins were determined in vitro using recombinant small
GTPases and UDP-[14C]glucose. Both TcdBNAP1 and TcdBVPI glucosylated an identical panel of
substrates, with preference for Rho GTPases (Rho, Rac, and Cdc42) (Figure 5). On the other hand,
TcdBNAP1v glucosylated Ras GTPases (Rap, Ras, and Ral) and to a lower degree, Rac and Cdc42
isoforms (36% and 45% TcdBNAP1v-induced Rac1 glucosylation compared to glucosylation by TcdBVPI

and TcdBNAP1, respectively; 23% and 25% TcdBNAP1v-induced Cdc42 glucosylation compared to
glucosylation by TcdBVPI and TcdBNAP1 respectively), (Figure 5B), yet, it did not modify RhoA
(Figure 5A). These substrate specificities were confirmed ex vivo following the modification of Rho and
Rac with the use of glucosylation-sensitive antibodies or Cdc42 in GTPase activation assays (Figure 5B).
Since these results suggested that TcdBNAP1 and TcdBVPI modify the same intracellular substrates, we
applied a differential glucosylation approach to confirm this. Cells were intoxicated with TcdBNAP1,

TcdBNAP1v, or TcdBVPI until a full cytopathic effect (CPE) developed. Lysates were then prepared and used
as substrates for radioactive in vitro glucosylation. Both TcdBNAP1 and TcdBVPI were able to radioactively
label substrates in the lysates from TcdBNAP1v-intoxicated cells (Figure 5C). However, neither TcdBNAP1

nor TcdBVPI were able to label any GTPase in lysates from cells previously intoxicated by themselves,
demonstrating unequivocally that both toxins target the same GTPases ex vivo (Figure 5C).
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Figure 5. Glucosyltransferase activity of TcdBs. (A) The in vitro glucosylation of distinct recombinant
GTPases by TcdBVPI (VPI), TcdBNAP1 (NAP1), and TcdBNAP1v (NAP1v) was determined using
UDP-[14C] glucose as a co-substrate. The reactions were incubated for 1 h and then subjected
to SDS-PAGE. The radiolabeled bands were detected by phosphor imaging; (B) Following the addition
of 100 pM of TcdB, HeLa cells were lysed at the indicated times, and the glucosylation of Rac1 and RhoA
was monitored by immunoblot with specific anti-Rac1 and anti RhoA antibodies that only recognize the
unmodified form of the proteins (ungluc.Rac1 and ungluc.RhoA, respectively). The effect of TcdBs on the
activation state of Cdc42 was also evaluated. After intoxication, one part of the lysate was used as a control
for the total amount of GTPase, and the rest was incubated with Rho Binding Domain–GST-sepharose
beads. Cdc42 was detected by immunoblot with anti-Cdc42 antibodies; (C) HeLa cells were treated with
10 pM of TcdBVPI (VPI), TcdBNAP1 (NAP1), and TcdBNAP1v (NAP1v) for 12 h (TcdB cell pre-treatment).
The cells were lysed, and the lysate proteins were glucosylated in vitro by TcdBVPI (VPI) or TcdBNAP1

(NAP1), according to the conditions stated in (A) (TcdB cell lysate labelling). Untreated cells (-) in (B) and
(C) were included as a positive control for unmodified or activated proteins.
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These results altogether indicate that the difference in biological activity between TcdBNAP1 and
TcdBVPI toxins does not reside in intrinsic enzymatic factors.

2.4. TcdBNAP1 and TcdBVPI Exploit Different Host Factors for Cell Entry

Prompted by the previous results, we decided to focus on the receptor binding properties of
these toxins. We searched for differences at the amino acid level in their frizzled binding domain
region (FBD) of various TcdBs (Figure 6), which is involved in the palmitoleic acid (PAM)-mediated
interaction between the FBD of TcdBVPI and the frizzled receptor through the cysteine-rich domain
of this eukaryotic membrane protein (TcdB-FBD–CRD2) [25]. The results obtained were clearly
grouped into two distinguishable clusters (Figure 6; upper part), and considerable sequence variations
between TcdBNAP1 and TcdBVPI were obvious within the entire FBD (Figure 6; upper part). Residues
L1433, M1437, S1486, L1493, and S1495, which interact with the PAM tail protruding from the CRD2
groove, were conserved (Figure 6). By contrast, TcdBNAP1 and TcdBVPI differed in residue 1597, which,
according to a recent 2.5-Å-resolution crystal structure, stabilizes the middle part of PAM and is crucial
for PAM binding [25].
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Figure 6. Comparison of TcdB residues involved in frizzled receptor binding. Tree alignment of TcdB
sequences of strains VPI 10493, 1470 (reference TcdB variant strain), NAP9 (TcdB variant strain), 8864
(TcdB variant strain), NAP1v, R20291 (NAP1 reference strain), and NAP1. TcdBVPI was used as a
reference. Discrepancies are highlighted with black bars or colored-residue letters.

We speculated that TcdBNAP1 has a receptor specificity different from that of TcdBVPI following
these observations: (i) we did not find intrinsic differences in the enzymatic activities of the two toxins,
(ii) the relative cytotoxic potencies of the toxins depended on the cell line tested, and (iii) the toxins
present significant differences at the sequence level in the FBD, as explained above (Figure 6). To test our
hypothesis, we took advantage of the sequence similarity of the receptor-binding domains of TcdBNAP1

and TcdBNAP1v and of the fact that the latter does not glucosylate Rho. The receptors were blocked
in HeLa cells by preincubation with an excess of TcdBNAP1v at 4 ◦C to prevent toxin internalization.
The cells were then incubated with either TcdBNAP1 or TcdBVPI and switched to 37◦C to initiate the
intoxication process. At different time points, the successful entrance of the toxins was monitored
by western blotting using an antibody that recognizes only unglucosylated RhoA. In non-blocked
HeLa cells, RhoA was efficiently modified, with the same dynamics, by both TcdBNAP1 and TcdBVPI

(Figure 7A). On the other hand, in cells previously blocked with TcdBNAP1V, RhoA modification was
only exerted by TcdBVPI, whereas no glucosylation was detected in TcdBNAP1-intoxicated cells for
the duration of the experiment (Figure 7B). This experiment was repeated in 3T3 fibroblasts and
Raw 264.7 macrophages with identical results (data not shown). To independently demonstrate that
TcdBNAP1 and TcdBVPI use different receptors, we took advantage of a recombinant fragment we used
in previous works [26], encompassing residues 1349–1811 of TcdBVPI and referred to as Receptor
Binding Domain (RBD). HeLa cells were pre incubated with this fragment for 30 min at 4 ◦C to block
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toxin receptors. The cells were then treated with either TcdBNAP1 or TcdBVPI, and the percentage
of cells displaying characteristic CPE were monitored. Under these conditions, RBDVPI was able to
confer a statistically significant protection from TcdBVPI but not from TcdBNAP1 (Figure 7D), further
supporting the notion that both toxins use independent cell entry mechanisms.
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Figure 7. Uptake of TcdB from TcdBNAP1 is blocked by TcdBNAP1v. In order to determine whether
the different toxins use the same host cell entry factors, an uptake competition assay was performed
in HeLa cells. (A) The cells were treated with 10 pM of TcdBVPI (VPI) or TcdBNAP1 (NAP1) for the
indicated times at 37 ◦C. Following cell lysis, the uptake of each toxin was evaluated by western
blot using an antibody that only binds to the unglucosylated form of RhoA GTPase (ungluc.RhoA);
(B) The cells were treated with 1 nM of TcdBNAP1v (NAP1v) for 30 min at 4 ◦C to induce binding
of TcdBNAP1v to the cell but not its uptake (NAP1v blockade +). The cells were then treated with
10 pM of TcdBVPI or TcdBNAP1 and incubated for 30, 60, and 90 min at 37 ◦C (TcdB treatment). Toxin
uptake was determined by immunodetection of unmodified RhoA, as stated in (A). Untreated cells
(-) were included as a positive control for unglucosylated Rac1, and immunoblot of β-actin served as
a loading control (β-actin). Shown are representative western blot images from three independent
experiments; (C) The bar graph shows the amount of unglucosylated RhoA in intoxicated cells relative
to the unglucosylated RhoA amount in untreated cells, which was set to 100%. Error bars represent
means ± SD of three independent experiments; (D) 10 nM of recombinant Receptor Binding Domain
(RBDVPI) corresponding to TcdB1349-1811 of VPI 10463 was added to the cells, and these were incubated
for 30 min at 4 ◦C to block toxin receptors. Control cells were mocked-treated with the corresponding
volume of buffer and also incubated for 30 min at 4 ◦C (RBDVPI -). The cells were then treated with
100 pM of TcdBVPI or TcdBNAP1, and the percentage of round cells was evaluated after 60 min as
a parameter of full-length toxin uptake. Error bars represent means ± SD of 1000 cells in triplicate
samples; * p < 0.05 (Student t test). This experiment is representative of three independent experiments
with similar results.

3. Discussion

Early studies from Stabler and colleagues showed that TcdBs from NAP1/027 strains exhibit
significant sequence variation when compared to TcdBs produced by historical, non-epidemic strains
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(e.g., strain 630) [17]. Subsequent work in vitro [27], in the zebra fish model [19], and in mouse
intoxication assays [28] suggested that TcdB from C. difficile NAP1/027 strains is more cytotoxic
than TcdB from historical strains. Thus, it was hypothesized that a ‘hypertoxic’ TcdB variant might
contribute to the increased morbidity and mortality associated with ‘hypervirulent’ C. difficile NAP1/027
strains [28]. Lanis and colleagues suggested that the increased cytotoxic potential of TcdBNAP1 is
explained by its ability to enter into target cells more rapidly and at an earlier stage in endocytosis [19]
and by the fact that autoprocessing occurs more efficiently in TcdBNAP1 [29].

In the current study, we compared TcdB from the reference strain VPI 10463 (identical to TcdB from
the 630 strain) with its TcdB counterparts from a NAP1 and a NAP1v strain [22]. In agreement with
previous findings mentioned above, we also observed an increased biological activity of TcdBNAP1 in
our mouse ligated intestinal loop model. However, our in vitro intoxication experiments with cultured
cells revealed that TcdBNAP1 is not per se more cytotoxic than TcdBVPI. For instance, TcdBVPI was
capable of inducing cell rounding in 3T3 cells more efficiently than the TcdBNAP1 equivalent. This
contrasts with previous findings from Stabler and colleagues, where it was shown that TcdBNAP1 is
more cytotoxic than the reference TcdB in all tested cell lines, including 3T3 cells [27]. The authors
used the 630 strain for native preparation of the reference TcdB, which produces an identical TcdB to
that of the VPI 10463 strain. It is however of note that, in contrast to the VPI 10453 strain, the 630 strain
does not overproduce toxin B [30]. In our hands, native toxin preparations from strain 630 yielded
much less TcdB with decreasing activity due to ongoing degradation (data not shown). The latter
fact might explain the differing cytotoxic activity of the NAP1 and 630 TcdBs observed by Stabler et
al. in their cell intoxication experiments. From our data, we concluded that the difference in in vivo
cytotoxicity of TcdBNAP1, TcdBNAP1v, and TcdBVPI equivalents did not result from dissimilar in vitro
cytotoxic activity of the toxins.

Accordingly, when we studied the autoprocessing of TcdBVPI, TcdBNAP1, and TcdBNAP1v strains,
we did not observe significantly relevant differences in the in vitro InsP6-induced autoprocessing
efficiency between the toxins. Moreover, TcdBVPI and TcdBNAP1 presented an identical substrate
glucosylation profile and performed glucosylation with the same efficiency. We assume from these
findings that the difference in in vivo biological activity of TcdBNAP1 and TcdBVPI in mouse and
zebra fish models might not be primarily based on a dissimilar efficacy and/or efficiency of their
enzymatic subdomains.

Sequence comparisons between TcdBs from historical and hypervirulent strains revealed that the
highest degree in sequence variation is found in the C-terminal part of the toxins [16,19,27]. Since
the C-terminus of TcdB is involved in target cell interaction, Stabler and colleagues hypothesized
already in 2008 that TcdBNAP1 may have a different binding capacity compared to less virulent TcdB
counterparts [17]. To test this hypothesis, we took advantage of TcdBNAP1v which, in contrast to
TcdBNAP1 and TcdBVPI, does not modify RhoA in target cells. We preincubated HeLa cells with
TcdBNAP1v TcdB to block all cell surface receptors and additional host cell entry factors of the toxin, and,
to our surprise, after intoxication with either TcdBNAP1 or TcdBVPI, RhoA modification still occurred in
cells intoxicated with TcdBVPI. Thus, TcdBNAP1v blocked host receptors and cell entry of TcdBNAP1

but not of TcdBVPI, indicating differential receptor specificity of the TcdB isoforms. This was further
substantiated by the observation that the recombinant receptor binding domain of TcdBVPI was able to
protect the cells from TcdBVPI but not from TcdBNAP1.

Cell surface interactions of TcdB are mediated by the combined repetitive oligopeptide (CROP)
domain and an additional independent receptor-binding domain preceding the CROP domain (amino
acid residues 1349 to 1811) [26,31]. Manse and Baldwin suggested the presence of even two additional
receptor-binding domains in front of the CROP domain [32]. In recent years, three host receptors,
namely, CSPG4, PVRL3, and FZDs, such as FZD2, were identified as TcdB receptors in the strain VPI
10463 [5–7]. Whereas CSPG4 is considered to interact with the CROP domain, PVLR3 and FZD2 bind
to the additional receptor-binding domain(s) [6].
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Very recently, the crystal structure of a TcdB fragment was solved in complex with the cysteine-rich
domain of human FZD2 [25]. The TcdB fragment, referred to by the authors as FZD-binding domain
(FBD), covers amino acid residues 1285–1804 and matches nearly exactly the delimitations of the
additional receptor-binding domain (residues 1349–1811) discovered previously [26]. Recently, Chung
et al. have shown that TcdBNAP1 exhibited only weak binding to FZD2 [33]. In line with this observation,
the authors showed that a fragment of TcdBVPI covering amino acid residues 1101–1836 (and which
largely overlaps with the FBD described above) was capable of competitively inhibiting TcdBVPI but not
TcdBNAP1. Thus, it seems that TcdBNAP1 and TcdBVPI mainly differ in the interaction with FZD2 due to
variations in the FBD. Here, we compared the FBD sequences of TcdBNAP1 and TcdBVPI and found
that, among other residues, a phenylalanine at position 1597, crucially involved in the interaction of
TcdBVPI with FZD2, is not conserved in the TcdBNAP1 equivalent. The modification of FZD-interacting
residues in TcdBVPI resulted in a significant reduction of colonic TcdB-induced damage, establishing
that FZDs are the main receptors that mediate TcdBVPI intoxication [25]. However, even if this and
other amino acids are not conserved in TcdBNAP1, the epithelial damage in the intestine produced by
this toxin was severe, which suggests that different receptors mediate the uptake of TcdBNAP1.

Within the C-terminus of TcdBNAP1, the so-called B2’ region (amino acid residues 1651–1852),
represents the most variable sequence when compared to the reference TcdB (77% identity) [34,35].
Sequence variations in the B2’ region affect protein–protein interactions within TcdB and the exposure
of neutralizing epitopes [34]. Intriguingly, a peptide spanning 19 amino acids in the B2’ region (amino
acid residues 1769–1787, termed PepB2) was capable of inhibiting cytotoxicity caused by NAP1/027
and reference TcdB by disrupting cell binding due to the interaction with the CROP domain of the
toxins. In contrast, the analogous peptide deriving from reference TcdB (PepB1) did not exhibit these
inhibitory effects [36].

Taken together, our findings presented here support a model where TcdBNAP1 and TcdBVPI utilize
different or additional host receptors for cell entry, most likely as a result of sequence alterations in the
FBD. The changed receptor specificity of TcdBNAP1 might have an influence on the cell tropism of the
toxin, resulting in the increased virulence potential observed in vivo. Our data do not exclude that
additional factors, such as the differences in the B2’ region mentioned above or sequence variations in
the CROP domain, contribute to the increased in vivo cytotoxicity of TcdBNAP1.

4. Materials and Methods

4.1. C. difficile Strains and TcdB Sequence Analysis

In a previous study at the Laboratorio de Investigación de Bacteriología Anaerobia (LIBA) from
the University of Costa Rica, strains NAP1 and NAP1v were isolated from stool samples following
established protocols [22,37].

TcdB sequences from strains VPI 10493 (GenBank: MUJV01000001.1), 1470 (GenBank: Z23277.1),
R20291 (NAP1, GenBank: FN545816.1), LIBA-5757 (NAP1v) (GenBank: NZ_LJCM00000000.1), and
8864 (GenBank: AJ011301.1) were extracted manually from WGS or directly from Genbank and aligned
with MUSCLE using 100 iterations and default parameters. These alignments were transformed into
dendrograms using PhyML. Thereafter, TcdBVPI was selected as a reference, and discrepancies to it
in the 1430–1600 region were highlighted with vertical black bars or colored residue letters using
Geneious R11.

4.2. Native TcdB Purification and Recombinant Receptor Binding Domain Purification

TcdB was obtained from supernatants of strains grown in a dialysis system culture for 72 h in
brain heart infusion broth (Difco, BD Life Sciences, Heidelberg, Germany) and purified as described
previously [23]. The toxin was purified by anion-exchange chromatography followed by gel filtration
(GE Healthcare, Chicago, IL, USA), and positive fractions were pooled and concentrated in Hepes
buffer by ultrafiltration with a 100 kDa membrane. Proteins were quantified using the Bradford method
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(Bio-Rad, Hercules, CA, USA), and purity was assessed by SDS-PAGE and Coomassie staining. Final
toxin identification was determined through mass spectrometry (LC–MS/MS), and only TcdB peptides
were identified (not shown). Different toxin preparations of each TcdB were used for the various
experiments and their replicates.

The RBD, comprising residues 1349–1811, from strain VPI 10463 was purified from Bacillus
megaterium as previously described [26]. The C-terminal HIS-tagged fragment was purified by nickel
affinity chromatography, and purity was assessed by SDS-PAGE and Coomassie staining.

4.3. Cultivation of Cells and Preparation of Cell Lysates

HeLa cells (ATCC CCL-2), 3T3 fibroblasts (ATCC CCL-163), and Chinese hamster ovarian (CHO)
cells (kindly provided by Dr. Eugenia Corrales, University of Costa Rica, San José, Costa Rica) were
cultured in DMEM supplemented with 10% FBS, 5 mM L-glutamine, penicillin (100 U/mL), and
streptomycin (100 µg/mL). The cells were grown under humidified conditions with 5% CO2 and, unless
indicated, they were incubated at 37 ◦C.

Cell lysates were prepared by washing the cells with PBS and lysing with precipitation buffer
(1% Triton X-100, 0.1% SDS, 0.3% NonidetP-40, 500 mM NaCl, 10 mM MgCl2, 50 mM Tris, pH 7.2).
Lysates were centrifuged at 21,000× g for 10 min, and protein concentration was determined using the
Bradford method (Bio-Rad, Hercules, CA, USA).

4.4. Murine Ileal Loop Model

Animal experimental procedures were approved by the University of Costa Rica Animal Care
and Use Committee through CICUA 01-12 and CICUA 07-13 according to Law 7451: Bienestar de los
animales, 26668-MICIT. Male Swiss mice, 20 to 25 g of weight, were subjected to fasting overnight and
anesthetized with ketamine (60 mg/kg of body weight) and xylazine (5 mg/kg). Then, 10 µg of each
toxin or Hepes control solution was injected into an ileal, loop following established protocols. The
mice were sacrificed 4 h after inoculation, and the concentrations of the proinflammatory cytokines
IL-1β and IL-6 in ileal tissue were determined [38]. The tissues were macerated in 1× PBS (pH 7.0), and
cytokine concentration in the homogenates was determined by commercial ELISA, according to the
instructions of the manufacturer (R&D Systems, Minneapolis, MN, USA). Intestinal sections were also
fixed in formalin and stained with hematoxylin and eosin for histopathological evaluation according
to previous protocols [38]. The samples were evaluated for the severity of epithelial damage and
neutrophil infiltration using a histopathological score (HS) scale ranging from 0 (absence of alterations)
to 3 (severe).

4.5. Cytotoxicity Assays

Confluent HeLa cells, 3T3 fibroblasts, and CHO cells grown in 96-well plates were intoxicated
with 0.1 and 10 pM of TcdB from the different strains. The percentage of round cells in each well was
evaluated every hour for a period of 12 h and then at 24 h.

For the cell death assay, confluent HeLa cells grown in 24-well plates were intoxicated with
100 pM of each toxin. Cytotoxicity was evaluated after 24 h of treatment. The cells were then harvested,
washed in 1× PBS and resuspended in 100 µL 1× annexin binding buffer (Invitrogen, Waltham, MA,
USA). Afterwards, 2 µL of Alexa Fluor 488 annexin V and 1 µL 100 mg/mL PI working solution
(Invitrogen, Waltham, MA, USA) were added to the resuspended cells. After 15 min, the stained cells
were analyzed by flow cytometry using a Guava easyCyte Mini (Merck Millipore, Burlington, MA,
USA). The percentage of stained cells was determined with FLOWJO, LLC Data analysis software.

4.6. Rac1 and RhoA Glucosylation

Confluent HeLa cells grown in six-well plates were intoxicated with 100 pM of the corresponding
toxins. Cell lysates were obtained at the indicated time points, and lysate proteins were separated
by 10% SDS-PAGE and then transferred onto a PVDF membrane for western blotting. Rac1 and
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RhoA glucosylation were determined with monoclonal antibodies that do not recognize the modified
isoforms, anti-Rac1 (clone 102; BD Transduction Laboratories, Franklin Lakes, NJ) and anti-RhoA
(ab54835, Abcam, Cambridge, UK), respectively. For Rac1 glucosylation dynamics, β-actin was
detected using rabbit anti-actin (A2066; Sigma-Aldrich, St. Louis, MO, USA).

4.7. In Vitro Glucosyltranferase Activity of TcdBs

A radioactive assay to determine the in vitro activity of each TcdB was performed as previously
described [24]. For this, 10 µM of UDP-[14C]glucose, 10 µM of purified recombinant GST–GTPase, and
10 nM of each TcdB were mixed in glucosylation buffer (50mM HEPES, 100mM KCl; 2mM MgCl2, and
1mM MnCl2, pH 7.5). After 1 h of incubation at 37 ◦C, the reaction was stopped with loading buffer.
Radiolabelled proteins were separated by 10% SDS-PAGE and visualized by autoradiography using a
phosphorimager (GE Healthcare, Freiburg, Germany).

For the differential glucosylation assay, HeLa cells were treated with 10 pM of the corresponding
TcdB for 12 h. Lysate proteins were used as substrates in a radioactive assay, following the conditions
described above.

4.8. Ex vivo GTPase Activation Assay

The TcdB ability to inactivate Cdc42 was determined in HeLa cells grown in six-well plates. The
cells were treated with 100 pM of each toxin for the indicated times. Cell lysates were centrifuged at
20,000× g for 1 min, and 20 µL were separated as a control for total amount of GTPase. The lysates were
incubated with previously purified GST-tagged Rho binding domain coupled to glutathione-Sepharose
beads. After 1 h of incubation at room temperature, the activated proteins were pulldown by
centrifugation with the GST fusion effector protein. The proteins were separated by 10% SDS-PAGE
and then transferred onto a PVDF membrane for western blotting. Cdc42 was detected using anti-Cdc42
antibodies (ab41429, Abcam, Cambridge, UK).

4.9. In Vitro Cleavage Assay

The in vitro autoprocessing activity of TcdBs was performed in a 20 uL reaction with 200 nM of
toxin, cleavage buffer (150 mM NaCl, 20 mM Tris pH 7.4), and 10 mM InsP6 (Sigma-Aldrich, St. Louis,
MO, USA) [23]. The reaction was incubated for 0, 2.5, 5, 7.5, 10, 20, 30, 60, and 90 min at 37 ◦C. The
reaction was stopped by addition of loading buffer and boiling at 95 ◦C for 5 min. The samples were
separated by 7.5% SDS-PAGE and then analyzed by Coomassie staining. The activity of each toxin
was quantified by comparing the densities of the bands of full-length and processed protein using
Image J software (NIH, Bethesda, MD, USA). The data were plotted using nonlinear regression and in
GraphPad Prism software (GraphPad Software, Inc., San Diego, CA, USA [29].

4.10. Uptake Competition Assay

Prior to blockade and intoxication, confluent HeLa cells were incubated at 4 ◦C for 30 min. For
NAP1v blockade, 1 nM of TcdBNAP1v was added to the precooled cells. After incubation for 30 min at
4 ◦C, the cells were treated with 10 pM of TcdBVPI or TcdBNAP1 and incubated at 37 ◦C. Cell lysates
were obtained at the indicated time points, and lysate proteins were separated by 10% SDS-PAGE and
then transferred onto a PVDF membrane for western blotting. RhoA glucosylation by TcdBVPI and
TcdBNAP1 was determined with a monoclonal antibody that does not recognize the modified isoform,
anti-RhoA (ab54835, Abcam, Cambridge, UK); β-actin was detected using rabbit anti-actin (A2066;
Sigma-Aldrich, St. Louis, MO, USA). For the receptor binding domain blockade, 100 molar excess of
recombinant toxin fragment was added to the cells. After incubation for 30 min at 4 ◦C, the cells were
treated with 100 pM of TcdBVPI or TcdBNAP1 and incubated at 37 ◦C. The percentage of round cells in
each well was evaluated after 60 min.
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