
Irreversibility in an ideal fluid

Alejandro Jenkins∗

High Energy Physics, Florida State University, Tallahassee, FL 32306-4350, USA and
Escuela de F́ısica, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
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When a real fluid is expelled quickly from a tube, it forms a jet separated from the surrounding
fluid by a thin, turbulent layer. On the other hand, when the same fluid is sucked into the tube, it
enters from all directions, forming a sink-like flow. We show that, even for the ideal flow described
by the time-reversible Euler equation, an experimenter who only controls the pressure in a pump
attached to the tube would see jets form in one direction exclusively. The asymmetry between
outflow and inflow therefore does not depend on viscous dissipation, but rather on the experimenter’s
limited control of initial and boundary conditions. This illustrates, in a rather different context
from the usual one of thermal physics, how irreversibility may arise in systems whose microscopic
dynamics are fully reversible.
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I. INTRODUCTION

Irreversibility is a prominent feature of real-world phe-
nomena. If the video of any but the very simplest process
is played backwards, it will soon seem so contrary to ex-
perience as to appear comical. For instance, a glass bottle
may fall to the floor and shatter into jagged pieces, but
we never see the jagged pieces jump up and reassemble
themselves into a glass bottle. This irreversibility is cap-
tured by the second law of thermodynamics, which states
that the entropy—defined as proportional to the loga-
rithm of the number of microscopic physical configura-
tions that are macroscopically indistinguishable—tends
toward a maximum. Nontechnically, this is often pre-
sented as the statement that the randomness (or disor-
der) of the world increases with time.

As far as we know, the microscopic laws of physics are
time-reversal symmetric (at least to a very good approxi-
mation), so that nothing actually forbids the pieces of the
broken bottle from reassembling themselves.1 The reason
why we never see that happen is that it would require an
exquisite tuning of initial conditions: the thermal mo-
tions of the molecules in the floor would have to conspire
to push the various pieces with just the right velocities
to make them converge into the form of the original bot-
tle. If the air, moisture, etc. moved out at the right time
from the regions of contact between the pieces, the glass
would fuse and a pristine bottle would then land on the
table above.

The point is that it is very easy for an experimenter to
set up the conditions for a bottle to break, but extraor-
dinarily difficult to set up the conditions for the pieces to
reassemble themselves—there are many ways for a bot-
tle to be broken, but comparatively very few for it to be
whole.2 The irreversibility is therefore a consequence of
the experimenter’s limited control over initial conditions.
For an accessible introduction to this interpretation of ir-
reversibility and to the problem of the “arrow of time”
in statistical mechanics, see Ref. 3.

The problem of the arrow of time is usually posed in
the context of thermal systems, in which mechanical en-
ergy can be dissipated into the random motion of the
particles in a “heat bath.” In this article we will describe
an idealized, non-dissipative system in which a kind of ir-
reversibility nonetheless appears for the same qualitative
reason as in statistical mechanics: because of the experi-
mentalist’s limited control over the initial and boundary
conditions. Our example will be the flow of an ideal fluid
into and out of a tube.

II. MACHIAN PROPULSION

In his delightful Physics for Entertainment, originally
published in Russian in 1913, Yakov Perelman expresses
surprise that squids, jellyfish, and other aquatic creatures
propel themselves by alternately aspirating and then ex-
pelling water. According to Perelman, this method of
swimming might appear, at first glance, as absurd as
the Baron Munchausen lifting himself out of a swamp by
pulling on his own hair.4 Even though the water moves in
opposite directions during intake and outtake (see Fig. 1),

FIG. 1: A squid escapes from danger by emitting a cloud of
ink that obscures it from predators. It then fills up its mantle
cavity with water before rapidly expelling it as a jet. The
cycle of aspiration and expulsion allows the animal to swim
away quickly. The illustration is taken from Ref. 5 and is used
here with the publisher’s permission.
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FIG. 2: Steady streamlines for a real flow when (a) expelled
from the mouth of a tube, and (b) aspirated into the mouth
of the tube.

a squid can swim in one direction for long periods and at
considerable speed.6

In fact, it is reverse propulsion during steady aspiration
of an ideal fluid that would be akin to the Baron pulling
himself up by the hair. While the outgoing jet efficiently
transfers momentum away from the squid and into the
surrounding fluid medium, the inflow impinges on the
internal cavity and therefore imparts its momentum to
the animal. The only way in which the inflow can end up
transferring some of its momentum to the surrounding
medium is by viscous diffusion.7

Ernst Mach appears to have been the first experi-
menter to report that if a solid device alternately aspi-
rates and expels fluid through a single opening, it moves
in the same direction as if it only expelled the fluid.8

We shall therefore refer to this process as “Machian
propulsion,” a term introduced in Ref. 9. In France, an
equivalent observation has sometimes been dubbed the
“paradox of Bergeron,” after mechanical engineer Paul
Bergeron.10,11 The same phenomenon is also notorious
because of its role in an oft-told story from the early life of
the eminent theoretical physicist Richard Feynman.12–15

In certain contexts, engines driven by Machian propul-
sion have been characterized as “valveless pulse jet”
devices.16

Mach noted that there is an asymmetry between the
outflow and the inflow; the outflow forms a narrow jet
whereas the inflow comes in from all directions (see
Fig. 2). Various authors have claimed that the omnidi-
rectionality of the inflow is the reason why its momentum
does not cancel the momentum of the outgoing jet.17–20

C

FIG. 3: The integral of ds · v, along the path C, does not
vanish for a jet flow like the one pictured in Fig. 2 (a).

It is well-known that “a match can be extinguished by
blowing, but not by sucking,” because the air only forms
a narrow jet when blown out, and that this is related to
the fluid’s viscosity.21

When applied to Machian propulsion, however, this
line of argument can be misleading. The asymmetry
in the shape of the flows in Fig. 2 is tied to viscosity,
but Machian propulsion is not.9 It should be clear from
our simple account of how a squid swims that Machian
propulsion is simply a consequence of momentum con-
servation and can be explained without considering the
precise shapes of the inflow and the outflow. However,
to understand the nature of the irreversibility manifested
as Machian propulsion we need a more careful analysis
of the physics behind the flows in Fig. 2 than what is
available in the standard literature.

III. JETS

Kelvin’s circulation theorem establishes that ideal
flows (those without viscosity) that are irrotational at
some initial time remain irrotational for all future times.
That is, if the flow is characterized by a velocity field
v(t, x, y, z), then

∇× v = 0 (1)

for all t.22 By Stokes’s theorem, this implies that∮
C

ds · v = 0 (2)

for any closed path C, defined within a region of space
filled with a homogenous ideal fluid.

The integral on the left-hand side of Eq. (2) is known as
the “circulation,” and Fig. 3 makes it clear that the cir-
culation does not vanish everywhere for a jet surrounded
by fluid approximately at rest. One might therefore ex-
pect that it is necessary to take viscosity into account
in order to understand jet formation. The viscosity of a
fluid does play a key role in the formation of real jets, as
we shall review shortly. However, ideal jets are possible
in principle.

If one is careful about deriving Kelvin’s circulation
theorem, it becomes clear that Eq. (2) applies only if
the fluid elements along C initially formed some other
closed path with vanishing circulation. Since we are
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FIG. 4: Closeup of the outgoing flow in Fig. 2 (a) in the region
around the lip of the tube’s mouth, after it has reached a
steady state. The viscous boundary layer separates from the
tube wall at point S, where the solid has a sharp edge. This
illustration is adapted from Ref. 28.

not allowed to draw paths that cross the solid tube in
Fig. 3, it is possible for an ideal jet to exit the tube and
slide frictionlessly against the surrounding fluid at rest.23

The jet would then be separated from the surrounding
fluid by a surface at which the fluid’s tangential veloc-
ity changes discontinuously. Such a surface is called a
“vortex sheet.”24 We will have more to say about such
idealized flows in Sec. V D.

The role of viscosity in the formation of real jets may
be confusing to a beginner. Tritton writes that “at low
Reynolds numbers [when viscosity is dominant ], the fluid
from an orifice spreads out in all directions. At high
Reynolds numbers [when viscosity is mostly negligible ]
a jet, like a wake, is long and thin.”25 But even at high
Reynolds numbers the viscosity cannot be ignored within
a “boundary layer” close to the solid surface of the tube.

Within the boundary layer, the fluid’s velocity drops to
zero as one approaches the solid surface.26 When the fluid
moves along an adverse pressure gradient—from lower to
higher pressure—the streamlines in the boundary layer
may break away from the solid, enclosing a region of
slow, irregular flow, around which the flow changes direc-
tion. This boundary layer separation is treated in detail
in Ref. 27.

The steady flow shown in Fig. 2 (a) slows as it leaves
the tube’s mouth. The pressure gradient in that region
is therefore adverse.29 Figure 4 illustrates the separation
of the boundary layer at point S on the lip of the tube’s
mouth. The fluid caught in the area around S, where the
flow changes direction, forms a thin, turbulent layer that
separates the jet from the surrounding fluid.

On the other hand, the flow that enters the tube in
Fig. 2 (b) always moves along a favorable pressure gradi-
ent (i.e. from higher to lower pressure) and the boundary
layer therefore remains attached to the tube. This ex-
plains why, for a real fluid, the outflow forms a jet while
the inflow does not.

IV. SINKS AND SOURCES

If the flow is irrotational, the velocity can be expressed
as the gradient of a “velocity potential” ϕ:

v = ∇ϕ . (3)

FIG. 5: Streamlines for the irrotational, incompressible,
steady flow into or out of a tube, within which the flow is
parallel. The spacing of adjacent streamlines corresponds to
an equal flux. The image is by Sir Horace Lamb.31

The condition of incompressibility (∇ · v = 0) is then
equivalent to Laplace’s equation

∇2ϕ = 0 , (4)

whose solutions have been thoroughly investigated in a
variety of contexts. If the steady flow within the tube is
parallel and uniform, the only possible configuration con-
sistent with Eq. (4) is the one shown in Fig. 5, regardless
of whether the flow is entering or leaving the tube.30

Far from the tube, this approaches the shape for a pure
sink or source of flow, with the velocity of the flow becom-
ing radial and falling off as 1/r2 (in three dimensions).32

This pattern of flow is very different from the outflowing
jet of Fig. 2 (a). On the other hand, it is similar to the
omnidirectional inflow in Fig. 2 (b), especially far from
the tube. We therefore refer to the flow of Fig. 2 (b) as
“sink-like.” (In Sec. V A we will discuss why, unlike in
Fig. 5, the flow within the tube in Fig. 2(b) is not every-
where parallel.)

As explained in Sec. III, real fluids are commonly seen
to sustain sink-like but not source-like flows, as the latter
are destroyed by the separation of the boundary layer at
the lip of the tube’s mouth. But even in the ideal limit, a
source-like flow would be difficult to set up and maintain
because it would require that the experimenter control
the fluid pressure not just within the tube but also at
the boundary of the tank that encloses the entire fluid,
as we will explain in Sec. V B.

V. TIME REVERSAL AND PRESSURE
CONTROL

Euler’s equation for an ideal fluid of density ρ moving
under the action of a pressure field P ,(

∂

∂t
+ v ·∇

)
v = −∇P

ρ
, (5)
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FIG. 6: Ideal flow into a Borda mouthpiece forms a vena
contracta, with half the tube’s cross-section. The white area
within the tube may be filled with fluid at rest, against which
the ideal flow (light gray) slides frictionlessly. The pressure
gradient ∇P is trivially reversed between (a) and (b), by
reversing the spatial coordinates. In both cases the pressure
is lower inside the tube than in the bulk.

is invariant under the time-reversal transformation

v(t, x, y, z)→ −v(−t, x, y, z) . (6)

For the most part, we will focus on steady flows, in which
the velocity of the fluid moving past a given point in space
remains constant, so that ∂v/∂t = 0. For any steady flow
v that solves Euler’s equation, the reverse flow −v will
be a solution as well, with the same pressure gradient
∇P . Thus, for an ideal fluid, both the sink-like and the
source-like flows imply the same pressure gradient, with
higher pressure outside the tube.33

A mathematician thinks of Eq. (5), together with the
condition of incompressibility, as determining both v and
∇P (which are related to each other by Bernoulli’s the-
orem), given a choice of initial and boundary conditions
on v.34,35 In practice, however, an experimenter usually
establishes a flow by manipulating certain pressure dif-
ferences. This is also the case of the squid in Fig. 1: the
animal generates an outgoing jet (and therefore a propul-
sion), by contracting its mantle cavity and thereby in-
creasing the pressure of the water inside it. It then refills
the cavity by expanding it and thus lowering the water
pressure within it.

Note that reversing the pressure gradient in Eq. (5),

∇P → −∇P , (7)

does not reverse the flow, something that at first might
seem counterintuitive. The velocity field v is defined as a
function of time t and absolute position (x, y, z), but the
fluid elements (to which Newton’s laws apply directly)

R

v

n

streamlines

center of curvature

^

FIG. 7: When the streamlines in a flow turn with radius
of curvature R, the pressure gradient along a unit vector n̂
normal to the streamlines is given locally by Eq. (8). Pressure
increases as one moves away from the center of curvature.

do not have fixed positions, since they move along the
streamlines. As is clearly explained in Ref. 22, this is the
reason for the second term in the left-hand side of Eq. (5),
as well as the source of most of what appears confusing to
a student who confronts fluid mechanics for the first time.
Reversing the force exerted by the pressure gradient on
individual fluid elements changes the streamlines, rather
than merely reversing their direction.

A. Borda mouthpiece

Consider the flow into a submerged tube, as shown
in Fig. 6 (a). The fluid is accelerated by the difference
between the higher pressure in the bulk and the lower
pressure inside the tube. It is easy to show, using mo-
mentum conservation and Bernoulli’s theorem, that the
flow within the tube forms a vena contracta (“contracted
vein”) with half the tube’s cross section. The ideal flow
would slide frictionlessly on the fluid at rest that sur-
rounds the vena contracta. For real fluids, viscous drag
causes the streamlines to diverge, until the flow fills the
tube and becomes parallel again, as in Fig. 2 (b). The
physics of this system, called a “Borda mouthpiece,” is
reviewed in detail in Ref. 9.

We could trivially reverse ∇P by a coordinate trans-
formation (x, y, z) → (−x,−y,−z), but this would also
reverse the position of the tube: we would merely have
the fluid going out the other way, as in Fig. 6 (b). If we
made the pressure of the fluid inside the tube higher than
the pressure in the bulk, the flow pattern would have to
change. This is clear from the fact that, by Bernoulli’s
theorem and the condition of incompressibility, the flow
must narrow as the pressure drops. We will describe the
resulting “ideal jet” in Sec. V D.
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FIG. 8: A long and narrow tube, placed inside a large tank
filled with fluid, is open at both ends and contains a movable
plug. The pressure at the tank’s boundary can be controlled
by a piston. This diagram is adapted from an illustration by
Sir Horace Lamb.37

B. Transverse pressure gradients

For the streamlines to curve, there must be a pressure
gradient along the direction normal to the streamlines,
as illustrated in Fig. 7. It is the force exerted by this
pressure gradient that steers the flow along the curving
streamlines, overcoming the fluid’s inertia. If n̂ is a unit
vector normal to the streamlines of the flow at a given
point, we have

n̂ ·∇P =
ρv2

R
, (8)

where R is the radius of curvature of the streamlines.36

For the flow in Fig. 5, in which R is very small near the
lip of the tube’s mouth, Eq. (8) implies that the pressure
of the fluid near the edge of the tube’s mouth has to be
much smaller than the pressure of the fluid that is nearly
at rest along the boundary of the tank.

Consider a long and narrow tube, open at both ends,
placed inside of a tank filled with an ideal fluid. Let
the tube contain a movable plug. If this plug is moved
along the tube with a constant speed v, then the only
possible steady, irrotational flow that can result is the
one shown in Fig. 8, with a sink-like flow into one end of
a tube and a source-like flow out of the other end. The
pressure of the parallel flow within the tube is labelled
P1. As the flow leaves the tube’s mouth and spreads, its
speed decreases and its pressure increases. By Bernoulli’s
theorem, the fluid at rest near the boundary of the tank
will have pressure

P2 = P1 +
1

2
ρv2 . (9)

Lamb analyzed this configuration in Ref. 37, from
where we have taken Fig. 8. As he notes, maintaining
this pattern of flow as the plug is moved down the tube
would require that the experimenter maintain the higher
pressure P2 at the boundary of the tank, which could be
done by pushing on a piston like the one shown in Fig. 8.
But if the experimenter let the piston recede, the stream-
lines of the fluid that leaves the tube would not be able
to spread outwards, because there would not be a suf-
ficient pressure gradient to steer the streamlines around
the tube’s mouth. In that case, an annular cavity might
form at both ends of the tube. A cavity (or bubble) is
a region that contains no fluid and therefore effectively
exerts a negative pressure.38

C. Pump-driven flows

So far, nothing in our analysis has challenged the sym-
metry between ideal inflows and outflows implied by the
Euler equation. In the process represented by Fig. 8, a
given fluid element moves from a region of higher pres-
sure P2 to a region of lower pressure P1 and finally back
to P2. The direction of this motion can be reversed by
reversing the plug’s motion. But Lamb’s analysis reveals
that the shape of the flow around the tube’s openings
depends on the pressure at the tank’s boundary.

Suppose that, instead of moving a plug, the experi-
menter controlled a pump attached to one end of the
tube inside the tank, as shown in Fig. 9. Fluid can be
expelled by increasing the pressure in the pump relative
to the fluid at rest in the tank. Conversely, fluid may
be sucked in by lowering the pump pressure. This is the
case in all of the systems that exhibit Machian propul-
sion, such as the squid in Fig. 1.

It is easy to establish a sink-like flow with such a device.
If the pump keeps the flow within the tube at a pressure
P1 lower than the tank pressure P2, fluid will rush om-
nidirectionally from the tank into the tube, forming a
vena contracta (as discussed in Sec. V A). But producing
a source-like flow is more difficult. With an arrangement
like the one in Fig. 9, fluid can only be pushed down
the tube by first rising the pump pressure relative to the
tube’s P1. Once the flow in the tube has been estab-
lished, the experimenter would have to act on the piston
in order to maintain a higher pressure P2 near the tank’s
inner boundary, in accordance with Eq. (9). Otherwise,
the streamlines leaving the tube’s mouth would not curve
outwards. In Sec. V D we will describe what would hap-
pen to the ideal flow in that case.

Evidently, an experimenter who controls only the
pump in Fig. 9 will be unable to reverse the flow in the
tank. As explained in Sec. II, the inflow and outflow
phases of Machian propulsion, in which the sign of the
pressure difference is flipped, are not time-reversed im-
ages of each other, even in the limit of zero dissipation.

In the case of the source-like flow, Bernoulli’s theorem
implies that the pressure P2 at the tank’s inner boundary
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FIG. 9: Instead of the configuration in Fig. 8, we now con-
sider attaching one end of the tube to a pump. It is easy
to establish a sink-like flow by lowering the pump’s pressure,
but maintaining a source-like flow would require control of
the pressure P2 at the tank’s boundary.

must equal the pressure within the pump (where the fluid
is initially at rest). Thus, by raising P2 in order to main-
tain the source-like flow, the experimenter would also
equalize the pressures on opposite sides of the pump’s
wall, causing the net force on that wall to vanish. This
is compatible with the fact that, unlike a jet, the source
flow transfers no net momentum to the tank walls. Thus,
by conservation of momentum, no net force would act on
the solid device submerged inside the tank.39 The squid
would come to a standstill!

D. Vortex sheets and cavities

As discussed in Sec. III, an ideal flow rushing out of
a solid tube could form a jet, separated from the sur-
rounding fluid by a “vortex sheet,” at which the tan-
gential velocity changes discontinuously. Though useful
in certain contexts,40 such vortex sheet solutions to Eu-
ler’s equation are unstable: small transverse perturba-
tions grow exponentially until the nonlinearities associ-
ated with turbulence become important and the flow can-
not be treated as ideal, even approximately.23,41 It is in-
structive, nonetheless, to consider such idealized flows in
order to explain why Machian propulsion, which appears
as a kind of irreversibility, is nonetheless compatible with
the theory of non-dissipative flows.

If the pressure within the tube is greater than the pres-
sure outside, Bernoulli’s theorem and the condition of
incompressibility imply that the outgoing jet must be
narrower than the tube (unlike the flow shown in Fig. 3).
The pressure P2 of the jet leaving the tube is higher than
the ambient P3 of the surrounding fluid at rest. As shown

S

S

P3P1 P2

P3

P3

FIG. 10: An ideal, incompressible fluid at high pressure P1

exits through a tube and into a region where the fluid is at rest
at a lower pressure P3. Only the moving fluid is shaded. Upon
leaving the tube, the flow has an intermediate pressure P2.
Since P2 > P3, there is a transverse pressure gradient in the
direction of the arrows, and the streamlines therefore curve
inwards in that region. The sharp turning of the streamlines
at the points marked S requires the formation of a cavity
around the tube’s mouth.

in Fig. 10, the resulting transverse pressure gradient be-
tween P2 and P3 makes the streamlines converge as they
leave the tube, until the pressure of the moving fluid
drops to P3 and the flow becomes parallel.

Note that Bernoulli’s theorem cannot be applied to
points in the fluid that are separated by the vortex sheet.
The reason is that that theorem expresses energy con-
servation, but the total energy of fluid elements in the
outflow is greater than the energy of similar elements in
the ambient fluid. Thus, the same pressure P3 can apply
to the parallel jet flow and to the surrounding fluid at
rest.42

Note also that the outflowing streamline must turn
sharply inward as it passes near the lip of the tube’s
mouth (point S in Fig. 10); this requires a very large
transverse pressure gradient. The only way in which the
flow itself can create such a gradient is by forming a cav-
ity near S, where the pressure becomes negative. Absent
such a cavity, we must have P1 = P2 = P3, so that the
streamlines remain parallel as they leave the tube. In
such a case, all of the acceleration of the flow would oc-
cur before entering the tube, as a result of the higher
pressure within the pump.

Even a small amount of viscosity completely alters this
picture, producing instead a jet like that of Fig. 4, in
which the cavity at S is replaced by separation of the
boundary layer, while the vortex sheet is replaced by a
thin layer of turbulent flow. The theoretical details of
this (which Lamb describes as “not easy to make out”37)
need not concern us here. Our objective has been only
to establish that the irreversibility of Machian propulsion
is a simple consequence of momentum conservation, not
of dissipation. A realistic solution to the more difficult
problem of determining the shapes of the resulting flows
must invoke viscosity, as we saw already in Sec. III.
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VI. CONCLUSIONS

The Navier-Stokes equation for real fluids,(
∂

∂t
+ v ·∇− ν∇2

)
v = −∇P

ρ
, (10)

has no time-reversal symmetry. This is understood to
result from the fact that a kinematic viscosity ν > 0
implies that the macroscopic energy of the flow may be
irreversibly dissipated into the random thermal motion
of the fluid’s microscopic components. But even an ideal
flow with ν = 0 can exhibit a certain kind of irreversibil-
ity.

An experimenter who controls only the pressure of a
pump connected to a solid tube will see jets form when
the fluid is expelled from the tube, but never when the
fluid is aspirated. Conversely, the experimenter will be
able to set up and maintain a sink-like flow into the tube,
but not a source-like flow out of the tube—the pattern
in Fig. 5 is plausible only if the streamlines point into
the tube. The reason for this is that the source-like flow
would require control of the pressure of the fluid not just
at the pump attached to the tube, but also at the distant
boundary of the tank that receives the fluid, where the
pressure must be kept higher than that inside the tube.

Alternatively, we may note that a jet—either a real
one as in Fig. 2 (a) or an ideal one as in Fig. 10—carries
momentum away to infinity (or to the walls of the sur-
rounding tank). Reversing this motion therefore requires
that momentum flow in from infinity (or from the tank
walls). Setting this up would demand a control of the
fluid that an experimenter cannot achieve with only a
pump attached to the submerged tube.

This irreversibility is similar in spirit to that of statisti-

cal mechanics, which also results from the experimenter’s
limited control of initial and boundary conditions. What
is remarkable is that it can be seen even in an ideal flow,
without invoking any concept of heat, temperature, or
entropy. A video of an ideal fluid moving past the mouth
of a tube would, if played backwards, appear suspect,
even though the second law of thermodynamics would
play no part in that flow.

The Machian propulsion described in Sec. II can be
entirely understood in terms of momentum conservation
and is most pronounced in the limit of zero viscosity.
Even without dissipation, the outflow and inflow phases
are not time-reversed images of each other: it is only the
pressure difference between the inside and the outside of
the solid device that changes sign. Machian propulsion
is therefore an instance of nonthermal irreversibility.

Acknowledgments

The author thanks Paul O’Gorman for help under-
standing the role of boundary layer separation in the for-
mation of real jets, as well as the physical significance of
the time-reversal symmetry of Euler’s equation. Vanessa
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