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Abstract

Many real-world problems can be expressed as an instance of the
constrained nonlinear optimization problem (CNOP). This problem
has a set of constraints specifies the feasible solution space. In the
last years several algorithms have been proposed and developed for
tackling CNOP. In this paper, we present a cultural algorithm for
constrained optimization, which is an adaptation of “Musical Com-
position Method” or MCM, which was proposed in [33] by Mora et
al. We evaluated and analyzed the performance of MCM on five test
cases benchmark of the CNOP. Numerical results were compared to
evolutionary algorithm based on homomorphous mapping [23], Arti-
ficial Immune System [9] and anti-culture population algorithm [39].
The experimental results demonstrate that MCM significantly im-
proves the global performances of the other tested metaheuristics on
same of benchmark functions.

Keywords: Constrained nonlinear optimization, metaheuristics, cultural

algorithms, system socio-cultural of creativity, musical composition.

Resumen

Muchos de los problemas reales se pueden expresar como una
instancia del problema de optimización no lineal con restricciones
(CNOP). Este problema tiene un conjunto de restricciones, el cual
especifica el espacio de soluciones factibles. En los últimos años
se han propuesto y desarrollado varios algoritmos para resolver el
CNOP. En este trabajo, se presenta un algoritmo cultural para op-
timización con restricciones, el cual es una adaptación del “ Método
de Composición Musical” o MCM, propuesto en [33] por Mora et
al., para resolver instancias del CNOP. La adaptación propuesta del
MCM se aplicó a cinco instancias de prueba del CNOP a fin de eva-
luar y analizar su comportamiento Los resultados experimentales del
MCM se compararon con los resultados obtenidos por algoritmo evo-
lutivo basado en homomorfismo [23] , Sistema Inmune Artificial [9]
y el algoritmo de anti-cultural [39]. Los resultados experimentales
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muestran que el MCM genera resultados significativamente mejores
que los obtenidos por las otras metaheuŕısticas probadas en algunos
de los problemas de referencia.

Palabras clave: optimización no lineal con restricciones, metaheuŕısticas,
algoritmos culturales, sistema socio-cultural de la creatividad, composición
musical.

Mathematics Subject Classification: 97M40, 90C59, 68T20.

1 Introduction

Many real-world problems can be formulated as a nonlinear optimiza-
tion problem (NLP). Every NLP includes constrains called “Constrained

optimization problem”(CNOP). A CNOP is made up of three basic com-
ponents: a set of variables, an objective function to be optimized and

a set of constraints that specify the feasible spaces of the variables [18].
Given the functions f : R

n → R, g : R
n → R

p and h : R
n → R

m, without
loss of generality, the general constrained optimization problem can be

formulated as:

Optimize x∈F⊆Sf(x) (1)

subject to

gj(x) ≤ 0, ∀j = 1, 2, . . . , p

hj(x) = 0, ∀j = p + 1, . . . , m; x ∈ R
n.

where: n is the number of variables, the objective function f is defined on

the search space S ⊆ R
n and the feasible region is F ⊆ S. Usually S is

defined as a n−dimensional rectangle in R
n domains of variables defined

by their lower and upper bounds (S = {x ∈ R
n : xl ∈ [xL

l , xU
l ]}). Whereas

the feasible set F is described by inequality (g) and / or equality (h)

constraints on the decision variables (F = {x ∈ R
n : gj(x) ≤ 0 ∀j =

1, 2, . . . , p; hj(x) = 0 ∀j = p + 1, . . . , m; m ≤ n}) [23, 29, 3].

Due to the complexity and unpredictability of CNOP, it is very diffi-
cult to develop a deterministic method of solution, since the presence of
constraints significantly affects the performance of solution strategies (op-

timization algorithm, heuristics and metaheuristics). A set of techniques
non-linear mathematical programming and software are shown in [26, 16],

focusing on the contrasting strategies of local optimization and global op-
timization [2]. In the last years, several metaheuristic methods have been

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 20(2): 183–202, July 2013
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proposed for approaching CNOP problems e.g: an evolutionary algorithm
based on homomorphous mappings proposed in [23], in [18] is put for-

ward an adaptation of particle swarm optimization, a cultural algorithm
is proposed in [24] and in [39] is presented the anti-culture population

algorithm, among others.

In this paper, we propose an extension of the metaheuristic “Musical

Composition Method”(MCM ), which is a cultural algorithm, (see section
2) which was proposed in [33], to solve CNOP. The design of MCM was
based on the following ideas: a) musical composition can be viewed natu-

rally as an algorithm, since composition process uses rules, principles, and
a finite number of steps to create a new track [7], b) musical composition

is developed within a creative system and c) composers learn from their
experience.

In order to evaluate the performance of MCM, numerical experiments
were carried out on five instances benchmark CNOP proposed in [29, 30,

31, 32], which are G1, G2, G3, G4 and G5. Numerical results show that
MCM can find better solutions compared with evolutionary algorithms
based on homomorphous mapping [23], Artificial Immune System [9] and

the anti-culture population algorithm [39] on a set of cases benchmark of
the CNOP.

This paper is organized as follows. In the following section, we examine
some basic concepts and previous works related with cultural algorithms

constraint handling methods, process of musical composition and creative
system. In section 3, we describe the MMC algorithm. In Section 4, we

describe the experimental methodology used to analyze the performances
of our algorithm, also the obtained results are shown. Finally, in Section
6, we give our conclusions.

2 Cultural algorithms

The term culture does not have a standard definition. For the purposes
of this paper, culture is defined as the shared patterns of behaviors and

interactions, cognitive constructs, and affective understanding that are
learned through a process of socialization. In the human society, the

cultural changes are faster than genetic changes so a cultural change takes
place in minutes, days, moths, year and decades in contrast a genetic
change takes at least a decade [15].

In evolutionary computational, the methods based on social-behavioral
models have been recently developed. These algorithms are based on
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the idea that every individual in a society is adapted and evolves faster
through cultural evolution than by genetic inheritance e.g: a) Cultural al-

gorithms [38], b) ant colony optimization algorithm [11], c) particle swarm
optimization [22] d) society and civilization [37], etc.

Cultural algorithms (CA) are techniques that add domain knowledge
to evolutionary computation methods. CA, which were introduced by

Reynolds and Chuang in [38], were developed as a vehicle for modeling
social evolution and learning. CA involve a model of dual-inheritance

since the evolution takes place in two levels, the macro-evolution that
takes places in a cultural level (the belief space) while micro-evolution

occurs in a population level (for each individual).

2.1 Previous work

Reynolds and Chung in [38] introduced cultural algorithms, which were

used both in [28] and [4] together with strategies of evolutionary program-
ming to solve constrained nonlinear optimization problems.

Jin and Reynolds in [21] developed an evolutionary programming-
based cultural algorithm which uses an n−dimensional regional based

schema, called belief. The belief-cells provides an explicit mechanism to
support the acquisition, storage and integration of knowledge within the

constraints.

Ray et. al. in [36] presented an evolutionary algorithm for constrained

optimization, which incorporates intelligent partner selection for cooper-
ative mating. Ray and Liew in [37] proposed the society and civilization

algorithm (SCA), which was based on social behavior. SCA was tested
with four instances of constrains optimization problems in engineering,
the numerical results showed advantages compared with others methods.

Coello and Landa in [5], proposed the cultural algorithm evolutionary
programming (CAEP), which uses CA with evolutionary programming,

to solve constrains optimization. These authors in [6] proposed to use a
cultural algorithm to solve multiobjective optimization problems. Coello

and Landa in [24] proposed a cultured differential evolution (CDE) ap-
proach to handle the constrained optimization problems.

Tang and Li in [39] proposes a triple spaces cultural algorithm in which
a new framework called anti-culture population. The numerical results

obtained in theirs tests showed advantages compared with others methods.

The techniques to adapt Evolutionary algorithms for solving constrained

optimization problems are divided into five basic categories[31]: a) meth-
ods based on preserving the feasibility of solutions, b) methods based on
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penalty function, c) methods that makes a clear distinction between fea-
sible and infeasible solutions, d) methods based on decoders and e) Other

hybrid methods.

2.2 Creativity and algorithms

Musical composition is the artistic process of creating and innovating an
artwork through a recursive procedure that involves a phenomena of cre-

ativity. Creativity can be understood by distinguishing two different lev-
els: personal and social-cultural [27]. The personal composer’s creativity

results from connection making between disjoint ideas [10] and it may be
produced through a moment of genius or for a recursive reasoning process

about a thought, called “hard work” [19].

Besides, the musical composition process is not an isolated phenomenon
but can rather be situated within a creative framework, meaning that some

events in the composer’s socio-cultural environment might have an impact
on the creative process.

These ideas can be used to model, simulate or replicate creativity us-
ing a computer. For instance, artificial creativity, which is a branch of
artificial intelligence, studies the creative behaviour of individuals and ar-

tificial societies [15]. The model of artificial creativity has been used in
music from the beginning of the music composition process [19]. Some

examples are: a) Genetic Algorithms (GAs) and Computer Assisted Mu-
sic Composition [17], which is an application of genetic algorithms to

the problem of composing music; b) GenJam [1], which is a GA based
model of a novice jazz musician learning to improvise; c) Composing with

Genetic Algorithms [20], in which GAs were used to produce a set of
data filters that were identified as acceptable material from the output of

a stochastic music generator; d) Composition Algorithm as a creativity
model [19], in which both GAs and the idea of creativity (generated for
“hard work”) were used to into compositional process ; e) Algorithmic In-

tegrated Composition Environment (ALICE), which is based in analysis,
and pattern matching of musical pieces [7] and f)Simple Analytic Recom-

binancy Algorithm (SARA), which is based in analysis and recombination
of information [8], etc.
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3 New heuristic based on the process of musical

composition

Designing a metaheuristic method is a process that involves researchers’s
creativity and knowledge. Usually analogies are used as a starting point in

these process, e.g: physical phenomena (simulate annealing SA), biological
system and processes (ant colony optimization ACO, genetic algorithms

GA), human memory (neuronal networks), social systems (Cultural al-
gorithms) etc. In this work we used an analogy between music compo-

sition and optimization. It should be mentioned that Z. W. Geem was
the first in propose a metaheuristic based on system of creativity, which

is called Harmonic Search (HS). For specific information about HS see
[12, 13, 14, 25].

In MCM algorithm each solution is called “tune” (tune�,�,�), which
is an n−dimensional vector. Every element of tune�,�,� is called motif
(y�,�,l) which has values in the range from -1 to 1,so a tune�,�,� ∈ [−1, 1]n

(see equations 2 and 3). This idea is based on decoding of the search
space proposed by Kosiel and Michalewicz in [23], which is a technique

for handling to restrictions.

tunei,q,� = [yi,q,1yi,q,2 . . . yi,q,n] (2)

where: tunei,q,� is the tune q of the composer i and yi,q,l ∈ [−1, 1] is l− th
motif in the q − th tune.

yi,q,l =
2 ∗ xi,q,l − (xU

l + xL
l )

xU
l − xL

l

∀l = 1, . . . , n (3)

where: xi,q,l is the value assigned to l − th decision variable associated
with the tune yi,q,l (see equation 4 ) and xL

l and xU
l are lower and upper

bounds, respectively.

xi,q,l = yi,q,l ∗

(

xU
l − xL

l

2

)

+
xU

l + xL
l

2
∀l = 1, . . . , n , [23]. (4)

In this paper, we used the relation of isomorphism between [−1, 1]n

and S, which was proposed in [23] . Isomorphism can be defined as an

one-to-one mapping (H) between the hypercube [−1, 1]n and S, which is
denoted as H : [−1, 1]n → S, which is formally defined in equation 5

H(tunei,q,�) = xi,q,� , [23]. (5)
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Without loss of generality the equation 5 can be formulated as:

H([yi,q,1, yi,q,2, . . . , yi,q,n]) = [xi,q,1, xi,q,2, . . . , xi,q,n]. (6)

A summarized description of MCM is as follows. Initially, the MMC

generates a social network with Nc composers and a set of links, among
composers, randomly created. After, for i − th composer (∀ i = 1 . . .Nc)

is randomly created a set of artworks (an artwork is a solution), which is
used as previous knowledge by i − th composer, this previous knowledge
is called score matrix (P�,�,i). While the stopping criterion is not met, the

following steps are performed: a) social networks’ links are updated, b)
i−th composer exchanges information with j−th composer (∀ i = 1 . . .Nc

and i �= j), if there is a link among themselves, c) i− th composer decides
to select information of the j − th composer, if the worst solution in P�,�,j

(tunej,worst) is better that worst solution in P�,�,i (tunei,worst), d) i − th
composer builds his acquired knowledge as matrix (ISC�,�,i) with based

on information previously selected, e) i − th composer builds his knowl-
edge background (KM�,�,i) through he concatenates P�,�,i and ISC�,�,i,

f) i − th composer creates a new tune (xi,new) based on his KM�,�,i, and
g) finally, i− th composers decides on replace or not tunej,worst by xi,new

into P�,�,i, he takes this decision based on the quality of xi,new. Gen-

erally, the stopping criterion is the maximum number of arrangements
(maxarrangement), or iterations. The basic structure of the initial ver-

sion of MMC is presented in Algorithm 1.

The MCM method consists of six steps: 1)initialize the process of

optimization (from input to line 9), 2)exchange of information among
agents (from line 11 to line 12), 3)generate for every agent a new tune

(from line 17 to line 20), 4)update the artwork of each agent (from line
21 to line 23), 5)build the set of solutions (line 25), and 6) repeat while

the stoping criterion is not fulfilled (from line 10 to line 26). For more
information about MCM see [33, 35, 34].

For each composer in the MCM algorithm, should generated a Pi,�,�,

which works as i − th composer’s memory (experience and knowledge).
Before building Pi,�,� should generated both the matrix of tunes (MT )

and the matrix of constraints (MC). MT and MC are structured as
shown in equations 7 and 9, respectively.

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 20(2): 183–202, July 2013



an optimization algorithm inspired by musical... 191

Algorithm 1: The basic MCM algorithm.

Input: MCM method parameters and data about the instance to
solve, which should be expressed through the model shown

in equation (1)
Output: The best tunes generated by composers

1 Creating an artificial society with rules of interaction among agents.
2 for every individual in society do

3 repeat

4 Randomly generate the tune q by composer i (tunei,q).

5 Determine how many and which constraints are violated by
the tune q.

6 Evaluate tune q (φ(tunei,q) .

7 until Creating Ns tunes ;

8 Writing the score (Pi) with the artworks of the composer i

9 end

10 repeat

11 Update the artificial society.
12 Exchange information among agents.

13 for each individual in society do

14 Updating the matrix of knowledge.

15 Evaluate fitness of every tune in matrix of knowledge.
16 tunei,worst ← is the tune in matrix of knowledge with both

worst value of function objective and most number of
violated constraints.

17 Generate a new tune (tunei,new)
18 Determine how many and which constraints are violated by

the new tune.
19 Evaluate new tune (φ(tunei,new)).
20 if tunei,new is better than tunei,worst (based on the set of

criteria for update of artwork) then

21 Replacing tunei,worst with tunei,new in Pi.

22 end

23 end

24 Build the set of solutions

25 until Termination criterion is satisfied ;
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MTi =











yi,1,1 yi,1,2 . . . yi,1,n φ(tunei,1,�)
yi,2,1 yi,2,2 . . . yi,2,n φ(tunei,2,�)

...
...

...
...

...
yi,Ns,1 yi,Ns,2 . . . yi,Ns,n φtunei,Ns,�)











(7)

where: MTi is the matrix of tunes of the composer i; yi,q,j is the motif
j in the tune q, which is randomly initialized as a uniformly distributed

value between the −1 and 1 and φ(tunei,q,�) is defined as:

φ(tunei,q,�) =

{

f((xi,q,�)) if all constraints are satisfied by xi,q,�

f((xi,worst)) if at least 1 constraint is violated by xi,q,�

(8)
where: f(xi,q,�) is the result of evaluating the function objective on (xi,q,�),

for which the tunei,q,� is converted in its corresponding xi,q,� and
f((xi,worst)) is the worst value of objective function on feasible solutions

of the composer i.

MCi =











ci,1,1 ci,1,2 . . . ci,1,m Ci,1,� difi,1

ci,2,1 ci,2,2 . . . ci,2,m Ci,2,� difi,2
...

... . . .
...

...
...

ci,Ns,1 ci,Ns,2 . . . ci,Ns,m Ci,Ns,� difi,Ns











(9)

where: MCi is the matrix of constraints of the composer i; ci,q,j indicates

whether the j − th constraint is either feasible or unfeasible by q − th
tune (see equation 10); Ci,q,� is total of constraints violated by tune q

(see equation 11); difi,q is the sum of differences among right side of
every constraint j and the value obtained by tune q in this constraint (see

equation 12).

ci,q,j =

{

1 If the j − th constrain is violated by tune q

0 If the j − th constrain is satisfied by tune q
(10)

.

Ci,q,� =

m
∑

j=1

ci,q,j (11)

.

difi,q =

p
∑

j=1

|hj(tunei,q,�)|+

m
∑

j=p+1

|gj(tunei,q,�)| (12)
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Function
Number
of vari-

ables

Type of de-
cision vari-

ables

ρ LI NE NI α

G1 13 Quadratic 0.0111% 9 0 0 6
G2 k Nonlinear 99.8474% 0 0 2 1

G3 k Polynomial 0.0000% 0 1 0 1
G4 5 Quadratic 51.1230% 0 0 6 2

G5 4 Cubic 0.0000% 2 3 0 3

Table 1: Summary of 5 test cases [31].

where: k = 50, ρ =
|F|
|S| , LI is the number of linear inequalities,NE is

the number of nonlinear equations, and NI is the number of nonlinear

inequalities.

.

Pi,�,� is built as shown the equation 13

Pi,�,� =
(

MTi | MCi

)

(13)

It should be noted, the MCM is not a variant of HS. Since the MCM is
a cultural algorithm because it has a model of dual-inheritance as it allows

for a two-way system of learning and adaptation to take place, in contrast
the HS is not a a cultural algorithm because it has only one-inheritance

mechanism. Also, the MCM algorithm generates a new solution using a
process most similar to that is used by PSO than is occupied by HS.

4 Experimental methodology and test problems

4.1 Test functions

This section presents the computational experiments and associated re-

sults obtained by the MCM algorithm on a set of CNOP. We used the
MCM algorithm to solved the problems G1, G2, G3 ,G4, and G5 of test
set G-suite [29, 31], with the aim of analyzing the performance of our al-

gorithm. A summary with characteristic of test problems is shown in the
Table 1.

Considering the stochastic nature of the MCM algorithm, 20 inde-
pendent replications were performed for each instance (this number of
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replications has been used in other studies see [9, 39]). For each replica-
tion, we registered both the computational execution time and the best

target function value. Next we obtain the best mean and worst value and
standard deviation of the results. Next, the results obtained are then com-

pared with those of other heuristic algorithms. The techniques selected
for comparison are:

• Evolutionary algorithm with homomorphous mappings for constrai-

ned optimization (KM) with 1,400,000 fitness function evaluations
[23]

• Artificial Immune System (AIS) with 350,000 fitness function eval-

uations [9]

• Anti-culture population algorithm (TSCGA) with 100,000 fitness
function evaluations [39]

Furthermore, a non-parametric Wilcoxon rank sum test is applied to

the results obtained by both MCM variants and for the other tested heuris-
tic algorithms. The null hypothesis is that data in two solution sets are

independent: a test value returned equal to h = 1 indicates a rejection
of the null hypothesis at the 5% significance level, while h = 0 indicates

a failure to reject the null hypothesis at the 5% significance level. In the
statistical test are computed parameters p (standing for the symmetry

and mean of the distribution) and h (which is test results hypothesis)

4.1.1 Parameter setting for the MCM algorithm

Because heterogeneity in the set test, we took decision of setting of pa-

rameters for each test instance. For tuning of parameters, we used a
brute-force approach. In Table 6 are shown the parameter settings used
by MCM algorithm in every test-case.

Therefore 20 runs were executed for each instance. A run consisted
performing 240,000 evaluations of objective function. This number of

evaluations is closed of the average of 350,000; and 100,000 evaluations
which are the number of evaluations used by AIS and TSCGA, which are

included in the comparison.

The way to create a new tune was determined through previous ex-
periments.
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Parameter G1 G2 G3 G4 G5

max arrangement 48000 48000 12000 48000 48000
ifg 0.005 0.005 0.001 0.005 0.005

cfg 0.02 0.02 0.0009 0.01 0.01
Nc 5 5 20 5 5

Ns 10 10 5 10 3
Way to create a

new tune

First First Second First First

Table 2: Parameter settings of MCM algorithm.

where: maxa is the maximum number of arrangements to be performed

by each composer (stopping criterion ); ifg is the factor of genius over
innovation; cfg is the factor of genius over change; Nc is the number of

composers and Ns is the number of tuner for each composer.

4.1.2 Experimental results and discussions

The MCM algorithm was implemented in Matlab R2007a. Results ob-

tained for MCM algorithm on set test are shown in the Table 3 . This
Table synthesizes, for each case, the best, worst, mean, variance (s2),

standard deviation (s) and ρ = number of solutions ∈F
number of solutions ∈S

, computed over

20 runs. In the Table 4 are shown confidence interval at 95% determined

for bootstrap method.

We compared our algorithm against three state-of-the-art approaches:

KM, AIS, TSCGA. The best results obtained by each approach are shown
in Table 5. The mean values provided are compared in Table 6 and the

worst results are presented in Table 7. The results provided by these
approaches were taken from the original references for each method.

Based on previous Tables, we can say that our algorithm achieves the
best of top results in 60% of cases, the mean of top results in 20% of cases

and the worst of top results in 40% of cases.
Based on information obtained by non-parametric Wilcoxon rank sum

test (see Table 8), we can say that the MCM algorithm obtains perfor-

mance levels similar to those of other metaheuristics considered in this
experiment

In the Table 4.1.2 we show the running time of our algorithm for each
test-problem.
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196 r.mora–j.raḿırez–e.rincón–a.ponsich–o.herrera–p.lara

Test-problem ρ Optimum Best Mean

G1 1 -15 -15 -14.9
G2 1 0.802964 0.8036 0.7864

G3 0 1 0.9999 0.9839
G4 1 -30005.7 -30664.9924 -30664.9913

G5 0.8 5126.498‡ 4232.57159 4896.5759

Test-problem Worst s2 s
G1 -13 2.00E-01 4.47E-01

G2 0.7395 3.18E-04 1.78E-02
G3 0.7768 2.47E-03 4.97E-02

G4 -30664.9705 2.38E-05 4.88E-03
G5 5612.51901 1.48E+05 3.85E+02

‡ Do not know the optimal, the best known is 5126.4981.

Table 3: Summary of results obtained by MCM algorithm. The test G2 was
run with k = 20 variables, whereas G3 with k = 10.

Test-
problem

Lower limit Upper limit

G1 -15 -14.7

G2 0.77871 0.79413
G3 0.95913 0.99755

G4 -30664.99236 -30664.98909
G5 4741.83877 5056.98263

Table 4: Confidence Interval 95% obtained by method bootstrap.

5 Conclusions

In this paper, we have presented a novel cultural algorithm for CNOP,

which mimics creativity within music composition process. The creativity
in MCM is made up two different levels: personal and social-cultural. The

MCM uses an artificial society, where interactions among agents cause
changes over characteristics of artworks in following levels: A) Personal
so every composer proposes a change in his artwork considering both his

experience and his knowledge (own and selected), B) Local so at time “tv”,
the i − th composer can be influenced by tunes of other composer, with

which he has a link, and C) Social: in this level, a metapatters (common
characteristics in artworks generated into society) emerge, which is results
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Test-
problem

KM AIS TSCGA MCM

G1 -14.7864 -15.0000 -15.0000 -15.0000

G2 0.7995 0.7703 0.7908 0.8036

G3 0.9997 1.0000 0.9999 0.9999

G4 -30664.5000 -30665.0815 -30665.3743 -30664.9924
G5 - 5126.6861 - 4232.5716

Should be noted that MCM has found the best results for test-cases in three times.

Table 5: Comparison of the best results obtained for algorithms.

Test-
problem

KM AIS TSCGA MCM

G1 -14.7082 -15.0000 -15.0000 -14.9000
G2 0.7967 0.7040 0.7554 0.7864
G3 0.9989 0.9970 0.9995 0.9839

G4 -30655.3000 -30648.1750 -30664.8926 -30664.9913
G5 - 5307.2016 - 4896.5759

Should be noted that MCM has found the best results for test-cases in one time.

Table 6: Comparison of the mean results obtained for algorithms.

Test-

problem
KM AIS TSCGA MCM

G1 -14.6154 -15.0000 -15.0000 -13.0000
G2 0.7912 0.5956 0.7094 0.7395

G3 0.9978 0.9810 0.9987 0.7768
G4 -30645.9000 -30613.4426 -30663.9483 -30664.9705

G5 - 5927.3671 - 5612.5190

Should be noted that MCM has found the best results for test-cases in two time.

Table 7: Comparison of the worst results obtained for algorithms.
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Algorithm
Best Mean Worst
p h p h p h

KM 0.97380076 0 1 0 0.5993607 0

AIS 0.97380076 0 0.94764453 0 1 0
TSCGA 1 0 1 0 1 0

MCM 1 0 1 0 1 0

Table 8: Results of non-parametric Wilcoxon rank sum test.

Test problem Mean Maximum Minimum s2 s

G1 300.57 311.83 294.64 21.44 4.63

G2 328.63 340.82 321.22 20.51 4.53
G3 423.89 434.61 412.17 35.87 5.99

G4 254.83 259.24 249.23 7.18 2.68
G5 256.15 336.23 219.87 949.45 30.81

Table 9: Running time of MMC algorithm in seconds.

of interactions among agents and it is built with characteristics accepted

and shared by the composers in the society.
The numerical results proved that our algorithm achieves the best of

top results in 60% of cases, the mean of top results in 20% of cases and
the worst of top results in 40% of cases. Also, the numerical results of

non-parametric Wilcoxon rank sum test proved that our algorithm has a
similar performance that other metaheuristics used in this experiment.

The results also illustrate that the MCM has a higher exploration

capability of the solution space throughout the whole iteration due to
the use of interaction among agents. Among our future work will be the

study strategies of self-adapting of parameters involved in MCM. Also we
will apply the MCM algorithm on combinatorial and discrete optimization

problems.
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