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Abstract

There is evidence that signals from financial markets, such as
stock indices, interest rates or commodities, have a multifractal na-
ture. In recent years, many efforts have been made to relate the
inefficiency of markets with the multifractal characteristics of this
corresponding signals. These characteristics are summarized in the
knowledge of the spectrum of singularities or multifractal spectrum
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that relates to the set of singular points of the signal with its cor-
responding Hausdorff dimension. The novel approach proposed in
this paper, to study the dynamics of financial markets, is to analyze
the evolution of the set of singular points or Hölder exponents of the
series of exchanges, measured daily. We examined the “logarithmic
returns” of stock indices from 9 countries in developed markets and
12 belonging to emerging markets from February 2006 to March 2009.
The analysis reveals that the temporal variation of the local Hölder
exponent point reflects the evolution of the crisis and identifies the
historical events which have occurred during this phenomenon, from
the minimum values of the Hölder exponent.

Keywords: Local Regularity, Pointwise Hölder Exponent, Wavelet Anal-
ysis, Stock Market Indices.

Resumen

Existe evidencia de que señales provenientes de los mercados fi-
nancieros, tales como ı́ndices bursátiles, tasas de interés, variaciones
de precios de productos básicos, tienen naturaleza multifractal. En
los últimos años se han hecho esfuerzos para relacionar la ineficiencia
de los mercados con las caracteŕısticas multifractales de sus corre-
spondientes señales. Estas caracteŕısticas se resumen en el conocimiento
del espectro de singularidades o espectro multifractal que relaciona al
conjunto de puntos singulares de la señal con su correspondiente di-
mensión de Hausdorff. La novedosa aproximación que se propone
en este trabajo, para el estudio de la dinámica de los mercados fi-
nancieros, es el estudio de la evolución de los puntos singulares o
exponentes Hölder locales de las series de ı́ndices bursátiles, medidos
diariamente. Se analizaron los “retornos logaŕıtmicos” de los ı́ndices
bursátiles de 9 páıses pertenecientes a mercados desarrollados y 12
pertenecientes a mercados emergentes, desde febrero de 2006 hasta
marzo de 2009. El análisis revela que la variación temporal del ex-
ponente Hölder puntual refleja la evolución de la crisis y detecta los
eventos históricos que se desarrollaron durante este fenómeno, a par-
tir de los valores mı́nimos del exponente Hölder puntual.

Palabras clave: Regularidad Local, Exponente Hölder Puntual, Análisis
Wavelet, Wavelet Leaders, Indices Bursátiles

Mathematics Subject Classification: 65T60, 94A12, 26A16, 37M10.

1 Introduction

The multifractal nature of empirical data have been shown in financial mar-
kets, such as stock market indices, foreign exchange markets, commodities,
traded volumes and interest rates. Many efforts have been made to adapt
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the multifractal formalism to the dynamics of the financial variables. In
the last years, many authors provide evidence that the multifractality de-
gree for a broad range of stock markets is associated with the stage of their
development. To evaluate, numerically, the multifractality degree (MD),
the authors employ different ways to the estimation of multifractal spec-
trum, such as the Multifractal Detrended Fluctuation Analysis (MFDFA)
[5, 14].

Another approach is to study the local regularity of the signals. Local
regularity analysis is useful in many fields, such as fluid mechanics, PDE
theory or signal and image processing [1]. Different quantifiers have been
proposed to measure the local regularity of a function [11, 2, 12]; the
simplest one is the pointwise Hölder exponent estimated at each point
where a locally bounded function is defined. A highly irregular point in
a function is characterized by a lower value of Hölder exponent, while
the smooth portions of a function have higher exponents. This exponent
is a useful tool in signal and image processing which is used to detect
contours in images, perform data interpolation, denoise signals and images,
among other applications [7, 6]. In addition, the statistical distribution
of the Hölder exponents is used to characterize natural signals through
multifractal analysis. There are several techniques to estimate numerically
the pointwise Hölder exponent: in this work we used the Wavelet Leaders
method, formulated by S. Jaffard, which is effective in the estimation, [4].

2 Local regularity and wavelet leaders

2.1 Pointwise Hölder regularity

Singularities and irregular structures often carry essential information in a
signal or image. For example, in image processing, the contour of objects
are related with discontinuities and singularities in the image. To char-
acterize these localized singular structures it is necessary to quantify the
local regularity of a signal f(t). An alternative is to study the pointwise
Hölder exponent which quantifies how “ruguos” or spiky is the graph of
a function; a low pointwise Hölder exponent value indicates an irregular
point while the smooth portions of a function have higher exponents.

The pointwise Hölder exponent is defined, in each x0 ∈ R where a
locally bounded function is defined, as

Hf (x0) = sup
0≤α<+∞

{α : f ∈ Cα(x0)} , (1)

where a function f is in the class Cα(x0) if there exists C > 0 and
a polynomial Px0

(x) of degree less than α such that |f(x) − Px0
(x)| <
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C |x− x0|
α near the point x0. In the case α = 0 we adopt, for convention,

that the null polynomial has degree −∞ and |f(x)| < C.

If 0 < Hf (x0) < 1 then f is not differentiable and Px0
(x) = f(x0).

For example, the functions f(x) = |x|α and f(x) = |x|α sin
(

ω
|x|β

)

contin-

uously extended, with 0 < α ≤ 1, ω >> 1, β > 0 have Hf(0) = α and
Hf (x) = +∞ otherwise. This fact shows that the pointwise Hölder ex-
ponent captures a singularity in a regular environment. However we note
that both functions having the same regularity exhibit different singularity
structures; for the first one x0 is a cusp point and for the other we can
see a local oscillating behavior of the graph at x0, known as a chirp-like
singularity.

Furthermore, the function f(x) = |x|α 1Q, where 1Q is the characteris-
tic function over the rational number set, has Hf (0) = α and Hf (x) = 0
otherwise. Then, the pointwise Hölder exponent also detects a regular
point in an irregular environment.

There are several techniques to estimate numerically the pointwise
Hölder exponent; among them heuristic methods as those presented in
[8, 13]. On the other hand, the study of the amplitude of wavelet co-
efficients reveals the signal regularity, among these methodologies is the
Wavelet Leaders method which is very effective in the estimation.

At last we recall that the Hölder pointwise exponent is the usual and
most preferable but not the unique option to describe the regularity. Other
exponents and parameters can be used, we refer to [11, 12] for specific
details.

2.2 Wavelet tools

The wavelet transform is used to represent signals in both the time and
frequency domains. The wavelet representation provides precise measure-
ments regarding when and what degree of transient and singularity events
occur and when and how the frequency content of a signal waveform
changes over time. This is achieved by using a family of functions gen-
erated from a single function (a basic wavelet) by the operation of scaling
(stretching or shrinking the basic wavelet) and translation (moving the
basic wavelet to different time positions at any scale without changing its
shape).

In this way, a time-frequency decomposition of the signal is performed,
at each scale, corresponding to a given frequency band, and each time
position, the basic wavelet function is correlated with the shape of the
waveform at that position. This correlation, known as a wavelet coefficient,
measures how much of the basic wavelet, at that scale and position, is
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included in the waveform. More precisely, a basic wavelet is a quickly
vanishing oscillating function with zero average, well-localizated in time
and frecuency and a wavelet family {ψa,b} is the set of elemental functions
generated by the dilation and translation of a unique admissible mother
wavelet ψ(x)

ψa,b(x) = a−1/2ψ

(

x− b

a

)

, (2)

where a, b ∈ R, a > 0 are the dilation and translation factors. If ψ(x) is a
real wavelet belonging to the space of signals having a finite energy L2(R)
(the square integrable functions), the continuous wavelet transform of f ∈
L2(R) at scale a and time b is:

Wf(a, b) = a−1/2

∫ +∞

−∞
f(x)ψ

(

x− b

a

)

dx = 〈f, ψa,b〉 (3)

and it measures the variation of f in a neighborhood of b proportional to a.
The information displayed at closely space scales or at closely spaced time
points is highly correlated. In consequence, the continuous wavelet trans-
form provides a redundant representation of the signal under analysis. In
this view, the discrete wavelet transform is defined, giving a non redundant,
highly efficient wavelet representation that can be implemented with a sim-
ple recursive filter scheme and the original signal reconstruction can be ob-
tained by an inverse filtering operation. Then for the discrete set of param-
eters, aj = 2−j and bj,k = 2−jk with j, k ∈ Z and an appropriated election
for the wavelet mother ψ(x), the family F =

{

ψ|,‖(§) = ∈|/∈ψ(∈|§ − ‖)
}

constitutes an orthonormal wavelet basis of L2(R). Such a function ψ(x)
exists, see [11, 9] for more details. Each scale aj = 2−j is related with a
given frequency band and j is known as the resolution level. Then, the
signal f ∈ L2(R) can be recovered by:

f(x) =
∑

j∈Z

∑

k∈Z

Cj,kψj,k(x) (4)

in the L2(R) sense, where the wavelet inner-product coefficients

Cj,k = 〈f, ψj,k〉 =

∫ +∞

−∞
f(x)ψj,k(x)dx (5)

are the wavelet coefficients. These wavelet coefficients provide full infor-
mation in a simple way and a direct estimation of local energies at the
different relevant scales, furthermore the amplitude of coefficients reveals
the signal regularity. The information can be organized into multireso-
lution signal approximations which were formulated by Mallat and Meyer
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[9], who were inspired by original ideas developed in computer vision to an-
alyze images at several resolutions. The properties of orthogonal wavelets
and the multiresolution scheme brought to light a link with filter banks
and a fast wavelet transform algorithm decomposing signals of M samples
with O(M) operations.

In the present study, an orthogonal decimated discrete wavelet trans-
form is applied and the sequences of wavelet coefficients from different
resolution levels information is organized in a hierarchical scheme, [10].
Among several alternatives orthogonal β-cubic spline functions are used
as mother wavelets in this paper. They combine in suitable proportion
smoothness with numerical advantages.

2.3 Wavelet leaders

The notion of wavelet leaders were introduced by Jaffard in [3], finding a
formula which yields the upper box dimension of a graph of a function.
Then, in 2004, he gives a new characterization of the local regularity using
the wavelet leaders [4].

In the context of studying the local regularity additional properties are
required for the wavelet mother ψ. More precisely, we suppose that the
admissible wavelet mother ψ is Cr, r ∈ N, with derivatives that have a
fast decay which implies that ψ has r vanishing moments, that is,

∫ +∞

−∞
xkψ(x)dx = 0 for 0 ≤ k < r. (6)

To measure the local regularity of a signal, vanishing moments are
crucial. If the wavelet has r vanishing moments, the wavelet transform
can be interpreted as a multiscale differential operator of order r. This
yields a first relation between the differentiability of f and its wavelet
transform decay at fine scales [10]. Following the formula 4, for f a signal
in the space of signals having a finite energy L2(R),

f(x) =
∑

j∈Z

∑

k∈Z

cj,kψ(2jx− k) (7)

where cj,k = 2j/2 〈f, ψj,k〉 are the wavelet coefficients of f instead the usual
Cj,k. There is a direct correlation between the wavelet coefficients cj,k and
the pointwise Hölder regularity. If f is in the class Cα(x0), it is proved in
[3] that the wavelet coefficients of f satisfy, for all j ≥ 0,

|cj,k| ≤ C 2−jα(1 +
∣

∣2jx0 − k
∣

∣)α (8)
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for some constant C. Moreover, when f has a non-oscillating singularity
in x0, like a cusp point, the significance coefficients are “localized” near
the point x0 and

|cj,k| ≈ C 2−jα. (9)

But this is not the case when the function has oscillating singularities,
like a chirp. Then, the maxima coefficients may be “placed” far from the
singular point and the last property fails. In this view, Jaffard gives a new
formulation for this property, characterizing the local regularity in terms
of the local suprema of the wavelet coefficients, the wavelet leaders.

We can suppose that ψ is essentially localized on the interval [0, 1] and
then ψj,k is localized on the dyadic interval Ij,k =

[

k
2j ,

k+1
2j

)

which means
that cj,k, the wavelet coefficient of f in Ij,k, has information related to this
interval. Then, wavelet leaders of f , are defined as follows,

dj,k = sup
Il,h⊂3Ij,k

|cl,h| (10)

where 3Ij,k =
[

k−1
2j ,

k+2
2j

)

is the dilated interval. We denote Ij(x0) the
unique dyadic interval Ij,k containing x0 ∈ R for the level j. Then the
wavelet leader for x0 in the level j is defined as

dj(x0) = sup
Il,h⊂3Ij(x0)

|cl,h| . (11)

Then, concentrating the wavelet coefficients information in the wavelet
leaders, Jaffard proved the following general result characterizing the “lead-
ers” coefficients decay [4].

Let f be a locally bounded function in Cα(x0), α > 0. Then for all
j > 0,

dj(x0) ≤ C 2−jα (12)

for some constant C. Furthermore, if f is uniformly Hölder, the pointwise
Hölder exponent of f can be computed using

Hf (x0) = lim inf
j→+∞

log(dj(x0))

log(2−j)
. (13)

This property is independent of the wavelet mother election as long as
ψ has the required conditions and r vanishing moments with r > α. Then,
from the sample values of a signal and using this one result, the pointwise
Hölder exponent can be estimated numerically by linear regression.
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3 Results and conclusions

We study daily data beginning in February 22, 2006 and ending in March
1, 2009 from the Bloomberg database, with 789 observations. All country
indices were studied for the same time period. We analyzed 9 developed
(Australia, Canada, France, Germany, Hong Kong, Japan, United King-
dom and United States) and 12 emerging stock markets (Argentina, Brazil,
Chile, Mexico, China, India, Korea, Malaysia, Philippines, Taiwan, Rus-
sia and South Africa). This classification is obtained following the Morgan
Stanley Capital Index methodology to define developed and emerging stock
markets.
Let x(t) be the equity index of a stock on a time t, the equity index returns,
rt, are calculated as its logarithmic difference, rt = log(x(t + 1)/x(t)).

Applying the formula 13 to rt series we obtain the pointwise Hölder
exponent(PHE) for every country. We will display the results of four
paradigmatic examples, two from emerging markets: Brazil and China
and two from developed markets: Japan and U. S. The corresponding
indices for these countries are: IBOV (Brazil Bovespa Stock Index) for
Brazil, SHCOMP (Shangai Stock Exchange Composite Index) for China,
TPX (Tokio Stock Price Index) for Japan and SPX (S&P 500 Index) for
U. S.

We note on the figures some important dates in the evolution of the
crisis, these are: a) August 12, 2007 which corresponds to the subprime
mortgage crisis that spans the financial markets, mainly, from Thursday 9
August 2007, although its origins go back to previous years; b) On Monday
21 January, produced a historic stock market crash, dragging bags to all
the world except the U. S., which is closed by being festive; c) In May
2008, there is an apparent recovery of markets and reaches its maximum
on 22 May and d) Period of maximum intensity of the crisis, between
September 2 and December 15, 2008: on September 22 the U.S. Federal
Reserve approved the conversion of the last two independent investment
banks remaining, Goldman Sachs and Morgan Stanley into commercial
banks, allowing greater control and regulation by the authorities. This is
just a banking model with 80-year history and the largest bank failure in
the history of the United States.

Values of the PHE near zero indicate an irregularity in the signal, to
which it may be interpreted as an indicator to of financial market insta-
bility. So, from observing the graphs, we can conclude that:

• The analysis reveals that the temporal variations of PHE reflects
the crisis evolution, detects historical events and precursors of the
phenomenon from the minimum values of PHE.

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 19(1): 65–78, January 2012



local regularity analysis of market index... 73

• Temporal evolution of the PHE provides timely information about
the phenomenon that is not evident in the data series. An example
of this is seen in the evolution BOVESPA index which shows a rising
trend after the subprime mortgage crisis, while values of exponents
hold, on average, the same value indicating that the dynamics of the
system remains the same precursor characteristics of this crisis,(see
Fig. 1 and 2). Also in the evolution of TPX from Japan and SPX
from U. S., (see Figs. 5 to 8).

• The Hölder exponent time evolution of the China SHCOMP index
has a stable behavior with a moderate decline during the most critical
period of the financial crisis, which indicates that the global economic
crisis had more influence moderate in this market, coinciding with
the events, (see Figs. 3 and 4).

In summary, the method PHE is an interesting alternative for studying
the transitions of a signal, through the change of the local regularity of
the data. We hope that in future works we’ll find new applications for this
methodology.
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Figure 1: Daily series of the Brazil Bovespa Stock Index (IBOV)
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Figure 2: Pointwise Hölder exponent of the Brazil Bovespa Stock Index
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Figure 3: Daily series of the China Shangai Stock Exchange Composite
Index (SHCOMP)
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Figure 4: Pointwise Hölder exponent of the Shangai Stock Exchange Com-
posite Index

22/02/06 22/5/08 2/9/08 1/3/0915/12/0821/1/0812/08/07

2000

2400

2800

3200

 

 

J
a

p
a

n
 I

n
d

e
x
 (

T
P

X
)

30 days

Figure 5: Daily series of the Japan Tokio Stock Price Index (TPX)
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Figure 6: Pointwise Hölder exponent of the Tokio Stock Price Index
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Figure 7: Daily series of the United Stated S&P 500 Index (SPX)
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Figure 8: Pointwise Hölder exponent of the S&P 500 Index
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