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Abstract

The expensive reengineering of the sequential software and the diffi-
cult parallel programming are two of the many technical and economic
obstacles to the wide use of HPC. We investigate the chance to improve
in a rapid way the performance of a numerical serial code for the simula-
tion of the transport of a charged carriers in a Double-Gate MOSFET. We
introduce the Drift-Diffusion-Schrödinger-Poisson (DDSP) model and we
study a rapid parallelization strategy of the numerical procedure on shared
memory architectures.

Keywords: Parallelization; Shared memory paradigm; Schrödinger equation;
Drift-Difusion system; Subband model; Nanotransistor.

Resumen

El transformar un software secuencial en uno paralelo, es costoso y
difícil, lo cual constituye solo dos de los muchos obstáculos técnicos y
económicos que se tienen que enfrentar cuando se desea hacer uso de
sistemas HPC. En este trabajo investigamos la posibilidad de mejorar de
forma rápida y eficiente el desempeño de un código numérico secuencial
que se encarga de realizar la simulación del comportamiento y transporte
de un flujo de electrones en un dispositivo semiconductor MOSFET doble
puerta y de escala nanométrico. Se introduce el modelo Drift-Diffusion-
Schrödinger-Poisson (DDSP) y se estudia una estrategia de paralelización
rápida del procedimiento numérico, óptimo específicamente para arquitec-
turas a memoria compartida.

Palabras clave:Paralelezación; Paradigma de Memoria Compartida; Ecuación
de Schrödinger; Sistemas Drift-Difusion; Modelo Subband; Nanotubos.

Mathematics Subject Classification:65N55.

1 Introduction

The ongoing progress of industrial semiconductor device technologies during
last fifty years has been focused on minimizing the size of electronic compo-
nents. Nowadays nanometric devices can be used in a very large number of
integrated circuits, resulting in remarkable performances improvement. In this
task, modeling and numerical simulations play an important role in the determi-
nation of the limit size of a nanoscale device, as well as in the design of new
devices.

We present the development of the parallel implementation of a code for
numerical simulations of the electron transport in nanoscale semiconductor de-
vices. We are specifically interested in a nanoscale Double-Gate MOSFET (Metal
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PARALLELIZATION OF A QUANTUM -CLASSIC HYBRID MODEL 233

Oxide Semiconductor Field Effect Transistor), which is a very small structure
Si/SiO2.

When the sizes become so small (< 100nm), quantum phenomena, like in-
terferences, confinement, and tunnelling effect occur. Therefore, it is necessary
to develop new models able to take into account these phenomena. We introduce
a quantum modelization in the direction perpendicular to the transport, and then
we add a fluid model in the other directions. This mathematical model is named
Drift-Diffusion-Schrödinger-Poisson(DDSP) [4], and in order to solve this sys-
tem the Scharfetter-Gummel [8, 3] scheme is used.

Taking into account that the natural parallelism of the algorithm is achieved
in the computation of the eigenvalues and eigenfuctions of the Schrödinger op-
erator, we initially decide to implement a naive parallelism using OpenMP pro-
gramming environment [2].

In Section 2 we present an overview of the model under consideration. Sec-
tion 3 describes the numerical scheme and the iterative procedure used for the
simulation. Section 4 is devoted to the parallelization strategy and finally the
numerical experiments for a nanoscale double gate MOSFET are presented.

2 The DDSP model

When the electrons are extremely confined, as it happens in the semiconductor
nanometric devices, the energy is divided in partially quantified energy levels.
These levels are described by the eigenvalues of the partial Hamiltonian in the
confinement direction, and are usually named sub-bands in physics literature [4].
We namez andx the confinement and the transport directions respectively. The
particles are affected by an electrostatic potentialV (t, x, z) which depends on
the time variablet and spatial variables(x, z).

In z direction the confinement forces a quantization of the system and for
this reason the Hamiltonian partial differential equations−1

2∂2
z +V must have a

discrete spectrum.
We assume now that the confinement area is bound to the following values

z = 0 andz = `. Therefore thez variable belongs the domain(0, `). In the
systemx is considered as a parameter. Furthermore we consider the system to
be static (i.e. not depending ont).

In the sub-band decomposition approach the system is viewed as a statistical
mixture of eigenstates of the Schrödinger operator in the confined direction.

The occupation number of each state is given by a statistic function: for

Boltzmann statistics it isexp
(
εF − ε
kBTL

)
, for Fermi-Dirac statistics it is,
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1/
[
1 + exp

(
ε− εF

kBTL

)]
.

In these expressionsε is the energy of the considered state,kB is the Boltz-
mann constant,TL is the lattice temperature andεF is the so-called Fermi energy
which, at zero temperature, represents the threshold between occupied and un-
occupied states [9, 13].

In the confined direction, the system is assumed to be at equilibrium with a
local Fermi levelεF which depends on the transport variablex. At a position
(x, z), the particle densityN(x, z) for Boltzmann statistics is given by

N(x, z) =
+∞∑

k=1

eβ(εF (x)−εk(x))|χk(x, z)|2, (1)

whereβ = 1/(kBTL) and(χk, εk)k≥1 is the complete set of eigenfunctions and
eigenvalues of the Schrödinger operator in thez variable:





−~2

2
d

dz

(
1

m∗(z)
d

dz
χk

)
+ Uχk = εkχk,

χk(x, ·) ∈ H1
0 (0, `),

∫ `

0
χk χk′ dz = δkk′

(2)

In equation (2)~ is the reduced Planck constant andm∗ the effective mass.
Moreover,U is the potential energy defined byU = −eV , wheree is the ele-
mentary charge andV denotes the self-consistent electrostatic potential, solution
of the Poisson equation

div x,z(εR(x, z)∇x,zV ) =
e

ε0
(N − ND). (3)

εR(x, z) denotes the relative permittivity,ε0 the permittivity constant in vac-
uum andND(x, z) is the prescribed doping density.

In the transport direction(s), we consider a purely classical transport in the
diffusive regime. We can consider some description levels, according to the
physical contest: kinetic or fluid. The macroscopic magnitudes determines the
transport and can be calculated considering the Vlasov equation (if there are no
collisions) or Boltzmann equation from kinetic point of view, and using a Drift-
diffusion system from fluid model point of view. We now have a coupled system
consisting in one of the prior equations, the sub-bands model (2), and the Poisson
equation (3) .

We are interested in the transport in a semiconductor device where the col-
lisions are the main responsible for the motion. The transport equation we are
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PARALLELIZATION OF A QUANTUM -CLASSIC HYBRID MODEL 235

going to consider is the following stationary Drift-Diffusion equation:

−divx J(x) = 0, (4)

J(x) = D(∇xNs(x) + βNs(x)∇xUs(x)), (5)

whereNs is the surface density,D denotes the diffusion coefficientD = µkBTL

for a constant mobilityµ and the effective energyUs is given by

Us = −kBTL log

(
+∞∑

k=1

e−βεk

)
. (6)

Vlasov-Schrödinger-Poisson system is studied in [1] and Boltzmann-Schrö-
dinger-Poisson system is studied in [12].

If we define the repartition functionZ as

Z(x) =
+∞∑

k=1

e−βεk(x), (7)

then, we easily obtain from (1) and (2) that the surface density satisfies

Ns(x) =
∫ `

0
N(x, z) dz = eβεF Z(x).

Therefore,εF (x) in (1) can be written in terms ofNs andNs can be chosen as
unknown in the model, then we have

N(x, z) =
Ns(x)
Z(x)

+∞∑

k=1

e−β εk(x)|χk(x, z)|2. (8)

If we introduce the Slotboom variableu defined by

u(x) = eβεF =
Ns(x)
Z(x)

, (9)

then, we get easily that the drift-diffusion equation (4)-(5) reads

−div x(DZ(x)∇xu(x)) = 0. (10)

The drift-diffusion equation can be derived from kinetic theory when the
mean free path is small compared to the system length scale [11, 6].

The unknowns of the overall system are the surface densityNs(x), the eigen-
energiesεk(x), the eigenfunctionsχk(x, z) and the electrostatic potentialV (x, z).
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236 O. SALAS – P. LANUCARA – P. PIETRA – S. ROVIDA – G. SACCHI

If we assume that the electrostatic potentialV is given, then a diagonalization
of the one dimensional Schrödinger operator (2) provides the eigenvalues and
eigenvectors(εk, χk). The effective energyUs can be computed from (6). This
allows us to obtain the surface densityNs by solving the drift-diffusion prob-
lem (4) - (5). Thus, we have all the knowledge to find the densityN in (8)
and therefore to compute a new potential thanks to the resolution of Poisson
equation (3).

The DDSP model studies the coupled system consisting in the equations (4),
(2) and (3) using the expression (6) and (8). The transport variablex belongs
to the domain(0, L), then the studied domain isΩ = [ 0, L ] × [ 0, ` ]. In
order to complete this system suitable boundary conditions must be imposed (see
Section 3).

3 Numerical implementation

In this work we are interested in a nanoscale Double-Gate MOSFET, which is
a very small structureSi/SiO2. The device,shown in Fig.1, consists of two
highly doped regions (N+) near the Ohmic contacts (denoted bysourceand
drain) and an active region, called channel, with lower doping (N ).

N N

SiO 

SiO 

V 

V Source Drain 

N 

Si 
Si Si 

Gate 

Gate 

++

2 

2 

GS

DS

LDLS LC

l ox

l ox
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x= Lx=0 

z=0 

z=l

Figure 1: Schematic representation of the modeled device.

This MOSFET has two gates, insulated from the channel by layers of silicon
dioxideSiO2.
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PARALLELIZATION OF A QUANTUM -CLASSIC HYBRID MODEL 237

We assume invariance in they direction (infinite boundary conditions), so that
the problem is studied in a(x, z)-domain.
The device occupies a region of a 2-D domain denoted byΩ = [ 0, L ]× [ 0, ` ].

We recall the stationary DDSP system used for the simulation, taking into ac-
count the presence of the oxide of silicon. As in Section 2, we will use the
notationβ = 1/kBTL.

FindNs(x), (εk(x), χk(x, z)), for k ≥ 1, andV (x, z) such that

d

dx

(
D
(

d

dx
Ns + Ns

d

dx
Us

))
= 0 in (0, L), (11)





−~2

2
d

dz

(
1

m∗(z)
d

dz
χk

)
+ (U + Uc)χk = εkχk.

χk(x, ·) ∈ H1
0 (0, `),

∫ `

0
χk χk′ dz = δkk′ ,

(12)

div x,z(εR(x, z)∇x,zV ) =
e

ε0
(N − ND) in Ω, (13)

where

U = −eV ; N(x, z) =
Ns(x)
Z(x)

+∞∑

k=1

e−βεk(x)|χk(x, z)|2, (14)

Us = −kBTL logZ ; Z(x) =
+∞∑

k=1

e−βεk(x). (15)

In (12) Uc is a given potential barrier between the silicon and the oxide.
Moreover, the diffusion coefficientD in (11), εR, ε0, e, ND in (13), and the
electron effective massm∗ in (14) are defined as in Section 2.

At the ohmic source, drain, and gate contacts (denoted byΓS , ΓD, andΓG,
respectively) Dirichlet boundary conditions are imposed. The remaining part of
the boundary (denoted byΓN ) is considered insulated, and homogeneous Neu-
mann boundary conditions are imposed. Due to the high doping, the drain and
the source contacts can be considered as small electron reservoirs in which we
assume that the potential does not depend on the transport direction. Therefore,
the surface densityNs at the vicinity of the drain and source contacts is assumed
to be constant and is then equal toN+ × `Si.

Moreover, the electrostatic potentialV equals the sum of the applied voltage
and the potential at thermal equilibrium, denoted byVb(xc, z), with xc = 0 or
xc = L.
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In order to findVb(xc, z) the following 1-D Schrödinger-Poisson system
must be solved on the vertical edgex = xc





−~2

2
d

dz

(
1

m∗(z)
d

dz
χk

)
+ (Ub + Uc)χk = εkχk.

χk(xc, ·) ∈ H1
0 (0, `),

∫ `

0
χk χk′ dz = δkk′ ,

(16)

d

dz

(
εR(xc, z)

d

dz
Vb

)
=

e

ε0
(N − ND), Vb = 0 at z = 0 and z = `,

(17)
whereUb, N , Z are the same as in (14) and (15) computed forx = xc.

Summarizing, the boundary conditions for system (11) - (13) are

Ns = N+ × `Si at x = 0 and x = L, (18)

V (z) = Vb(0, z) on ΓS , V (z) = Vb(L, z) + VDS on ΓD, (19)

V (x) = VGS on ΓG, (20)

∂V

∂n
= 0 on ΓN . (21)

with VDS Drain-Source voltage andVGS Gate-Source voltage.

We introduce a partition of[0, L] with nodesxi, i = 1, · · · , Nx, and a
partition of [0, `] with nodeszj , j = 1, · · · , Nz . Then, we mesh the domain
[0, L] × [0, `] with rectangular triangles using the nodes (xi, zj) previously de-
fined. The 1-D Schrödinger equations and the 2-D Poisson equation are dis-
cretized with conformingP1 finite elements, while for the 1D drift-diffusion
equation the Scharfetter-Gummel scheme is used (see [8, 3]). From now on,
when referring to equations and formulas (11) - (21) we intend their discretized
counterpart.

In the solution of DDSP system we can distinguish three different computational
phases.

Initialization: The first step for initializing the procedure is the computation of
Vb on the source and drain contacts. To this aim a Gummel iteration method,
described at the end of this section, is used to solve the 1-D Schrödinger-Poisson
system.

Equilibrium state: Secondly, we consider the whole system for zero applied
source-drain voltage. Equation (11) does not need to be solved in this case, since
we do not have electron transport. Actually, the Slotboom variableu = Ns/Z,
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PARALLELIZATION OF A QUANTUM -CLASSIC HYBRID MODEL 239

solution of the 1-D equation (10), is constant. It is then sufficient to evaluate it
on the boundary (forx = 0 for instance), whereNs is prescribed. It remains to
calculate a 2D Schrödinger-Poisson system, with boundary conditions (19)–(21)
andVDS = 0.

Out of equilibrium state: Finally, we consider the resolution of the DDSP sys-
tem when a drain-source voltageVDS is applied. We start from the previously
obtained potential and we increment the voltage by steps of0.02V .

The iterative procedure for the solution of one DDSP system consists of an iter-
ation on the electrostatic potential and it is summarized in the following steps.

Step 1 -For a given potentialVold in the whole domainΩ we solve the eigenvalue
problem (12) by diagonalization of the Hamiltonian on each slice of the device
( x = xi ). Thus, we obtainNx sets of eigenfunctions{χk(xi, z)}i=1,··· ,Nx and
eigenvalues{εk}.

Step 2 -Next, we compute the effective energyUs from (15). We are then able
to solve the 1D stationary drift-diffusion equation (11) with Dirichlet boundary
conditions (18).

Step 3 - We have then all data needed to compute the densityN using to the
expression (14).

Step 4 -The Poisson equation (3) is solved in the 2-D domain using boundary
conditions (19)–(21). The system is solved using the preconditioned conjugate
gradient method. A new potentialVnew is then obtained.

Step 5 -We repeat the four previous steps until‖Vnew −Vold‖L∞ is sufficiently
small.

We conclude with few remarks on implementation aspects.

A) The solution of the highly non-linear coupled Schrödinger-Poisson system
is the most delicate step in the procedure described above. If the decoupling
procedure is not appropriate, the algorithm fails. On the other hand the use of
Newton-Raphson method is very expensive. We use a Gummel iterative scheme
[8] and we substitute in the procedure the Poisson equation (3) with

−∇(εR∇Vnew) +
e

ε0
N(x, z)

Vnew

Vref
=

e

ε0

(
ND − N(x, z)

(
1 − Vold

Vref

))
,

with Vref = kBTL/e (see [10]). This method can be viewed as an approxi-
mate Newton method where the Jacobian of the system is replaced by a diagonal
matrix.
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B) When solving the eigenvalue problems it is not necessary to compute all the
Nz modes because of the exponential dependence ofUs on the energy levelsεk’s
(see (15)). Here we used only the first 12 modes.

C) The solution of one Schrödinger problem on a slice is independent of the
others, therefore, the most costly part of the algorithm is fully and easily paral-
lelizable.

4 Parallelization

We describe the parallel implementation of the DDSP procedure, which presents,
as already mentioned, a high degree of parallelism when computing the eigen-
values and eigenfunctions of the Schrödinger operator.

We start from an existing serial code developed in Fortran90, using the
Sparse Linear Algebra Package (SLAP) version 2.0 (see [7]), and the Linear
Algebra Package (LAPACK).

We need to introduce some considerations.

The numerical approximation of the problem is carried out usingP1 finite el-
ements; the mesh sizes are relatively small (ranging from50 × 50 degrees of
freedom (dof) to150 × 150 dof); the number of eigenstates of the Schrödinger
operator we calculate is small (12 eigenstates are computed).

Moreover the diagonalization of the Hamiltonian is a real generalized symmetric-
definite eigenproblem (in the formA ∗ x = λ ∗B ∗ x), and to solve it we use the
LAPACK routineDSYGV in order to compute all the eigenvalues, and eigenvec-
tors of the operator.

The linear system resulting from the approximation of the 1-D Poisson problem
is solved by LAPACK routineDGTSV using Gaussian elimination with partial
pivoting.

The solution of the final linear system related to the 2-D Poisson problem is
performed by the SLAP subroutineDSICCG, which implements the Incomplete
Cholesky Preconditioned Conjugate Gradient method, with thel∞ - norm of the
residual as stopping criteria and10−8 as fixed tolerance.

In the end the Drift-Diffusion problem is solved as before, using LAPACK sub-
routineDGTSV.

Due to the relatively small size of the numerical problem and taking into account
that the natural parallelism of the algorithm is achieved in the computation of the
eigenvalues and eigenfuctions of the Schrödinger operator, we initially decide to
implement a naive parallelism using the programming environment provided by
OpenMP version 2.5 (see [2]).

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 18(2): 231–248, July 2011



PARALLELIZATION OF A QUANTUM -CLASSIC HYBRID MODEL 241

4.1 OpenMP

The OpenMP Application Program Interface (OpenMP API) provides a model
for parallel programming that is portable across shared memory architectures
offered by different vendors. The directives, library routines, and environment
variables defined in the OpenMP standard allow users to create and manage par-
allel programs, assuring portability at the same time. The directives extend the
C, C++ and Fortran base languages with Single Process, Multiple Data (SPMD)
constructs, work-sharing constructs, and synchronization constructs, while pro-
viding support for the sharing and privatization of data. Compilers that support
the OpenMP API often include a command line option to the compiler that acti-
vates and allows interpretation of all OpenMP directives.

In order to parallelize our code we use theparallel do construct which
provides a shortcut form for specifying a parallel region that contains a single
do loop.

As we specified in Sec. 3, in order to decouple the stationary DDSP system
the first step consists of computing the eigenvalues of Schrödinger operator (12)
on each vertical slice at the pointx = xi of the considered discretization.

The parallelization can be achieved in a rapid natural way adding,as in Fig
4, theparallel do directive to the original Fortan code.

      Normalisation of the set of the eigenfunctions
 deallocate(g,ge)

!$omp end parallel do
 end do

!$omp parallel do schedule (dynamic)
!$omp private(g,ge) 
!$omp default(shared) 

 do  k  = 1, nbpointx−1

 call sch1d ( zp1,ily,g,ge,xin(k+1,:,:),En(k+1,:),zmtbe )
       . . . 

       . . . 

       . . . 
 allocate(g(1:nbk1), ge(1:nbk1))

     Update of function g = e V ,  ge = U c

Figure 2: The Code Flow Chart.

The routinesch1d computes at each stepk the eigenvaluesEn ({εk} and
the sets of the eigenfunctionsxin ({χk(xi, z)}i=1,··· ,Nx introduced in Section 3.

The constructparallel do creates a team of threads which will solve the prob-
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lem (12) for eachk index (i.e. on each vertical slice). The clauseschedule , set
to dynamic orders to the threads, which has completed its job to start with the
next free indexk.

4.2 Code structure

Figure 3 illustrates the hierarchical organization of the code and the three phases
(Step 1–3) described in Section 3.

Step 1

end

compute V  

V = Vinit

V   = 0.02, 0.04, ..., 0.2DS

Nx − Schrodinger 1D

bV( )
1−Drift Diffusion 1D + B.C.

1−Poisson 2D + B.C.

VinitcomputeNx − Schrodinger 1D

bV( )

V   = 0DS

1−Poisson 2D + B.C.

Step 2

1−Schrodinger 1D
1−Poisson 1D

compute V  b

E
qu

ili
br

iu
m

Step 3

eq
ui

lib
ri

um
O

ut
 o

f
In

iti
al

iz
at

io
n Mesh − Initial Data

Figure 3: The Code Flow Chart.

4.3 Code description

The MOSFET simulation code can be divided in the three blocks in Fig. 3.
Each one of these steps requires the solution of a quantum-classic hybrid mono-
dimensional or bi-dimensional model.
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PARALLELIZATION OF A QUANTUM -CLASSIC HYBRID MODEL 243

The execution of the code is controlled by a main program which calls the
subroutines corresponding to the computational kernels of the procedure. This
way we have these main routines:

− subroutine sch1d to calculate the Schrödinger problem

− subroutine pot1d_vdm to calculate the Poisson 1-D problem

− subroutine pot2d_vd to calculate the Poisson 2-D problem

− subroutine driftdiv_1d to calculate the Drift-Diffusion 1-D problem

Each one of these subroutines respectively implement the approximation
method described in the introduction of the present section.

In the main program the iterative Gummel procedure is implemented at each step
in order to find the corresponding solution, as described in the Section 3.

In the initialization phase we need to solve a mono-dimensional problem con-
sisting of one-Schrödinger equation (16) and one-Poisson 1-D equation (17), in
order to find the valueVb(xc, z) in source and drain areas. This value will be
used in order to impose the boundary conditions in the following steps. Notice
that it is sufficient to evaluate the problem forxc = 0, and obviously we cannot
exploit any kind of parallelism in this phase.

In the second step, or equilibrium phase, the potential difference applied between
source and drain is null (VDS = 0), therefore we have to solve a system consist-
ing of Nx-Schrödinger equations (12) and one-Poisson 2-D equation (13), with
boundary conditions (19, 20,21)- In this step we can exploit, at each iteration, the
intrinsic parallelism in the calculation of theNx-Schrödinger problems. These
problems are indipendent and can be calculated at the same time, according to
the available number of threads.

In the third step, or out of equilibrium phase, the potential difference applied
between source and drain is not null, thus we add to the system considered
above the one-Drift-Diffusion 1-D equation (11), with boundary conditions (18).
Therefore we exploit the advantages of decoupling the system with the Gummel
iterative procedure and the intrinsic parallelism in the calculation of theNx-
Schrödinger problems.

5 Numerical experiments

We consider the model problem described in the Section 3 and we consider the
geometry in Fig.1 with the following values in nanometers:

Ω = [ 0, 50 ] × [ 0, 12 ], `ox = 2, `Si = 8, LS = 15, LC = 30, LD = 15.
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The values of the main physical parameter, used in the computation are shown
in Table 1.

TL = 300 K N+ = 1020 cm−3

e = 1.6−19 A s N = 1015 cm−3

ε0 = 8.85−12 A s cm−1 Uc = 3 eV
εR[Si] = 11.7 me = 9.10−31 kg
εR[SiO2] = 3.9 m∗ = 0.5 me

Table 1: Physical parameters.

Moreover, we considerNx = Nz = 50 andNx = Nz = 150 (see Sec. 3).
Numerical tests have been carried out on the AMD Opteron cluster at Insti-

tute of Applied Mathematics and Information Technologies, CNR in Pavia and
on the IBM Power 5 cluster at Inter-University Consortium for the Application
of Super-Computing for Universities and Research (CASPUR)in Roma.

The experiments on the AMD Opteron cluster have been performed on a
single 4 CPUs node, running one thread per CPU, using the PGI-Compiler 6.2
and the OpenMP API 2.5, ACML 3.6.0 library and SLAP 2.0 package.

The IBM cluster belongs to Series Power 5, and consists of 21 nodes which
share 44GB RAM. Each node is provided with 8 processors SP5, each processor
with 1.9 GHz clock speed.

The nodes of the cluster are connected to each other with an high speed
network, based on IBM High Performance Switch (HPS).

The experiments on IBM Power 5 cluster have been performed on a single
8 CPUs node, running one thread per CPU, using the IBM XL compiler and the
OpenMP API 2.5, ESSL 3.2 library and SLAP 2.0 package.

We present the following numerical tests:

Case A - Partial problem (initialization phase + equilibrium phase): In this
case we consider a mesh with22500 dof and we discuss the scalability be-
haviour obtained running the code on both the IBM Power 5 cluster and the
AMD Opteron cluster.

We initially considered the Partial problem in the way to find out the extent of
performance improvement when executing the parallel version of our algorithm.

Tables 2-3 show the results obtained increasing the number of threads.
In Tables 2-3 we report in the second column entitledexpected speedup, the

maximum expected speedup evaluated according to Amdahl’s law, taking into
account that the cost of the parallel portion of the run, on ADM and IBM cluster
respectively, are equal to47% or 59% of the total execution time.
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threads expected speedup speedup
1 1.00 1.01
2 1.42 1.41
3 1.65 1.62
4 1.80 1.74
5 1.91 1.84
6 1.98 1.93
7 2.04 1.94
8 2.08 1.97

Table 2: Case A: Speedup and Expected speedup on IBM SP5.

threads expected speedup speedup
1 1 1.00
2 1.29 1.25
3 1.44 1.41
4 1.56 1.51

Table 3: Case A: Speedup and Expected speedup on AMD Opteron cluster.

The third column entitledspeedup, we report the speedup value calculated
as the ratio between the sequential wall clock time and the parallel wall clock
time.

Thespeedupvalues are very close to the ones expected The parallel perfor-
mance obtained must be regarded as optimal and are satisfactory, taking into
account the suimplicity of the approach.

In Table 2 we can see that using 8 processors the execution time can be
reduced nearly one half.

Case B - Full problem (see Fig, 2): We solve the complete problem with a
mesh of bot2500 and22500 dof and we discuss the results obtained in terms of
the total wall clock execution time on the AMD Opteron cluster.

Table 4 shows the results obtained varying the number of threads. We remark
that each node of the AMD Opteron cluster has 4 CPU and that we execute up
to 4 threads concurrently.

In Table 4 the first column, entitledthreads, contains the number of threads
used. The columns entitledtotal time, we report the total wall clock time spent
by the algorithm. The columns entitledSchr/iterreports the wall clock time for
the solution of theNx Schrödinger equations per a single Gummel iteration.

An analysis of the values reported in columnSchr/itershows that the time
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Case B dof=2500 Case B dof=22500
threads total time Schr/iter total time Schr/iter

1 52.7 0.09 349.3 0.75
2 44.1 0.05 271.6 0.39
3 41.1 0.02 245.8 0.26
4 39.7 0.02 230.8 0.20

Table 4: Case B: Wall clock time insecs using2500 d.o.f.

decreases, as expected, proportionally to the number of threads used. This con-
firms, also for the full problem, the good scalability of our implementation.
Referring to Table 4 we notice that the times per iteration remain unchanged
when three or four threads are used. This is probably due to the overhead in the
management of the threads which is not offset by the size of the computational
problem. The results on the scalability described above are confirmed by the
reduction of thetotal timesin Table 4.

Comparing theses results and computing, as for case A, the expected speedup
and the speedup obtained, one can get values which are very close to the ones
reported in Table 3. This observation confirms that the chosen parallelization
strategy is a good choice also for the treatment of the Full Problem.

6 Conclusions

In this work we focused on a parallelization strategy for the code used in the
numerical simulation of a nanoscale double-gate MOSFET.

We were interested in an initial approach leading us to optimally exploit the
structure of the original existing code. This way the use of OpenMP library is
an ideal approach, since the code can be executed, once the directives have been
implemented in it, on both shared memory multiple core PCs and single core
PCs, without reingeneering any part of it.

Considering the results obtained with the parallel version of the code, we
regard this as a good starting point to upgrade this implementation to possible
future models considering both quantum effects along the transport direction or
3-D extension of the present model.

Other parallelization approaches, exploiting inter-node parallelism, are still
to be evaluated. A complete algorithm reingeneering and deep modification of
the complex data structures of the sequential code would be required. This oper-
ation must be carefully evaluated both in terms of the resources used and of the
performance improvements one can obtained.
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