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Abstract
Let G and Ḡ be complementary graphs. Given a penalty function

defined on the edges of Ḡ, we will say that the rigidity of a k-coloring
of G is the sum of the penalties of the edges of Ḡ joining vertices of
the same color. Based on the previous definition, the Robust Coloring
Problem (RCP) is stated as the search of the minimum rigidity k-
coloring. In this work a comparison of heuristics based on simulated
annealing, GRASP and scatter search is presented. These are the
best results for the RCP that have been obtained.

Keywords: graph coloring, robust coloring, heuristics.

Resumen
Sean G y Ḡ dos grafos complementarios. Dada una función de

penalización en las aristas de Ḡ, la rigidez de una k-coloración de
G se define como la suma de las penalizaciones en las aristas de
Ḡ cuyos vértices incidentes son del mismo color. Con base en la
definición anterior, el Problema de Coloración Robusta (PCR) se
define como la búsqueda de la k-coloración de rigidez mı́nima. Este
trabajo realiza un estudio comparativo de varias técnicas heuŕısticas:
Recocido Simulado, GRASP, y Búsqueda Dispersa. Los resultados
aqúı presentados son los mejores obtenidos para el PCR.

Palabras clave: coloración de grafos, coloración robusta, heuŕısticas.

Mathematics Subject Classification: 90C59, 78M32.

1 Introduction

Let G be a simple graph with sets of vertices and edges denoted by V (G)
and E(G) , respectively, and |V (G)| = n. G is said to be k − colorable if
to each of its vertices we can assign one of k colors in such a way that no
two adjacent vertices have the same color. The minimum value of k that
makes G k− colorable is called the chromatic number of G and is denoted
by χ(G). A coloring of a graph G with k colors defines a partition of the
vertices set into subsets V1, V2, ..., Vk , where Vj denotes the set of vertices
which have the color j assigned. Each Vj is an independent set, which is
called color class j.

In a graph G, the Minimum Coloring Problem, MCP for short, searches
a coloring of G that uses not more than χ(G) colors. Given complementary
graphs G, Ḡ and a penalty function P : E(Ḡ) → < , the rigidity of a k-
coloring Ck of G , denoted by R(Ck) is the sum of the penalties of the
edges of Ḡ that join vertices of the same chromatic class, i.e.

R(Ck) =
∑

{i,j}∈E(Ḡ),Ck(i)=Ck(j))

pij.

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 18(1): 137–147, January 2011
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Robust Coloring Problem. Determine a k-coloring C(k,R) of G, with
minimum rigidity, i.e.,

Ck
R = min

Ck

R(Ck)

.
It was also proved (Yáñez and Ramı́rez, 2003) that this problem is

NP-hard, which makes the use of heuristic methods necessary to obtain
good solutions in a reasonable amount of time.

The objective is to minimize the sum of penalizations of the comple-
mentary edges whose extremes are equally colored. In Ramı́rez Rodŕıguez
(2001) some practical examples are presented as applications of RCP, such
as: scheduling problems, cluster analysis and maps coloring, that work also
presents the first algorithms to solve the RCP one is based on a partial
enumeration method, and the other is a hybrid of a greedy with a genetic
algorithm.

New heuristics are presented in this work: in section 2 one based on
simulated annealing, another one based on a GRASP algorithm and a
scatter search algorithm; computational experiences are included in section
3; and some conclusions are in section 4. These algorithms show the best
results obtained to date for the RCP.

2 Heuristics

All the heuristics proposed in this work use the following objective function:

min f(S) =
∑

{i,j}∈E(Ḡ),Ck(i)=Ck(j))

pij + µ

k∑

i=1

E(Vi).

The first part of the objective function is the sum of the penalizations of the
complementary edges whose extremes are equally colored, and the second
part during the search process, penalizes the not valid coloring. |E(V i)|
is the number of edges in G with endpoints in set Vi, pij is the associated
penalization of the complementary edge {i, j} ∈ E(Ḡ), and µ = 100.

Heuristics admits at the beginning and intermediate stages the possi-
bility of working with not valid coloring, if this coloring produces a little
accumulated rigidity for the complementary edges, so an intermediate so-
lution produced for the heuristics for the coloring problem is a partition
S = (V1, V2, . . . , Vk) of the vertices set in k subsets not necessarily inde-
pendent.

S′ = (V ′
1 , . . . , V ′

k) is a neighbor solution of S if two Vi,Vj and x ∈ Vi

exist so that:

V ′
i = Vi − {x};V ′

j = Vj ∪ {x}

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 18(1): 137–147, January 2011



140 m.a. Gutiérrez – p. lara – r. lópez – j. raḿırez

V ′
l = Vl, ∀l 6= i, j

the criterion to generate S′ from S consists of a random selection of an
index i and an index j, and also a random selection of x ∈ Vi to move it
to Vj .

2.1 Tabu Search

This method can be cosidered as an iterative technique wich explores a set
X of solutions of a problem (Glover, 1997), moving from a solution S to
another solution S in the neighbourhood N(S) of S. These movements are
performed to reach a good solution evaluating an objective function f(S)
to minimize.

A key mechanism to explore memory in Tabu Search consists in classi-
fying a subset of movements in the neighbourhood as prohibited or tabu,
called tabu list. The classifications depend on the story of the search and
normally are the most recent movements. Tabu constraints are not im-
mune. When a tabu movement provides a better solution than any other
found, its tabu classification can be eliminated; the conditions that allows
such elimination are called aspiration criteria.

The basic step consists of analyzing all posible movement is carried out
and the tabu list is updated. A termination rule has to be defined too,
in general this consists of giving a maximum number of iterations, or stop
when after a certain number of iterations, the solution does not improved.

The basic Tabu Search algorithms is:

1 Begin
2 Generate initial solution
3 for i = 1 to niter
4 Analyze neighbouring solutions: change two color class vertices.
5 Choose the best solution.
6 Randomly select a vertex and assign a different color to it in a

random way
7 end {for}
8 End

The components of the tabu search algorithm proposed for the RCP
are shown as follows. A feasible solution is, as in the simulated annealing
method, a partition S = (V1, V2, , Vk) of the set of vertices V (G) in k color
clases. Let E(Vi) be the set of edges in G with both ends in Vi, pij the
associated penalization of the complementary edge i, j ∈ E(), and µ = 100.

The stop criterion used was a number of iterations determined. The
tabu list was built bye the following way: whenever a vertex x changes
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form a color class, vi to a color class vj , to obtain a new solution, a pair
{i, x} is added to the tabu list, wich means that vertex x cannot be colored
again with color i during certain number of iterations.

An aspiration criterion which establishes that if a movement, belonging
to the tabu list, gives a new solution which is better to ther best solution
found at that moment, then the tabu status is ignored and the movement
is done.

An important characteristic of the proposed algorithm is the diversifi-
cation of the search when the sizes of the color clases vary. The algorithm
which finds the first feasible solution, tends to homogenize the color clases
in relation to the number of elements, situation that the algorithm keeps
in its general stage when applying the first criterion of change, when ran-
domly chooses two vertices of different color and interchanges them; but
modifies with the second criterion of change, when choosing randomly a
vertex and assigning a different color in a random way.

2.2 Simulated Annealing

The standard Simulated Annealing algorithm is:

Begin
1 Generate an initial random coloring i.
2 Evaluate the cost function f(S)
3 Set t =

√
(V (G)) ; r = exp(d/t); B = 0.95 ; a = 1.05

4 While a new neighboring solution is accepted in a complete cycle
5 For i = 1 to S
6 Generate a neighboring solution j.
7 If ∆f = f(i) − f(j) > 0, then j becomes the new best solution i.
8 Otherwise, generate a random number U(0,1).
9 If exp(∆f

t ) is bigger than such random number then j becomes
the new best solution i.

10 Adjust the parameter: r = a ∗ r
11 End {For}
12 Adjust the parameter: t = B ∗ t
13 End {While}
End

With this algorithm we produce an initial solution painting each one
of the graphs vertices with a random color (line 1). Because a property of
function f(S) (equation 1) is that, if we take relatively large values of µ
(µ > 5) we assure almost always the feasibility of the solution, at the cost
of having solutions with a relatively high rigidity. On the other hand, if we
take relatively small values of µ, we get the best values of rigidity, at the
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risk of having solutions that are not feasible. In this algorithm we found
that a value of µ = 3 gives the best results, for it gives feasible solutions
in most cases with small rigidity (line 2).

The length r of each set, where the control t parameter remains con-
stant, was considered as r = exp(d/t) , where d is the extent required to
escape from any local minimum; d = 2 was considered, as suggested in
Chams (1987).

The control parameter t was considered equal to the square root of
|V (G)|, that is t = ((|V (G)|)1/2) , and the value was decreasing by a factor
B < 1 after r iterations, that is ti+1 = B∗ti, where the best value of B was
considered near to 1 (0.95). The algorithm ends when no new neighboring
solution is accepted in a complete cycle.

In the While cycle of the algorithm (lines 4 - 13) we are testing neigh-
bors solutions and accepting them always if they are better than the actual
solution (line 7); if not, when the value of exp (∆f

t ) is less than a number
with distribution U(0,1), the j solution becomes the best i solution (line
9). The parameters numbers of neighbors revised, r and actual tempera-
ture, t are reset. The constants a, B were set to the best empirical values
found.

2.3 GRASP

GRASP Algorithm for the coloring problem is:

Begin
1 For m = 1 to PoolSize
2 Generate a sequence in which the vertices will be painted: Sec(j)
3 For j = 1 to n
4 Generate a sequence in which the colors will be tried: SeqCol(i)
5 For i = 1 to k
6 If Col(Sec(j)) = SeqCol(i) is a valid coloring,

then paint that vertex in that color
7 End {For i}
8 If Col(j) = φ, paint the vertex in a random color.
9 End {For j}
10 While we have an improvement in coloring:
11 Generate a sequence for visiting vertices Sec(j)
12 For j = 1 to n
13 Generate a sequence for trying colors: SeqCol(i)
14 For i = 1 to k
15 If Col(Sec(j)) = SeqCol(i), then reduce the number of wrongly

colored vertices or rigidity, without worsening the coloring;
and replace the solution.
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16 End {For i}
17 End {For j}
18 End {While}
19 End {For m}
End

In the construction phase (lines 1 - 9 in Figure 4), the graph is painted
in a random sequence, trying the colors also at random, expecting that the
color placed generate a valid coloring. If that is not possible, it is painted
in any color. Due to the random character of this procedure, the number
of ways in which the vertices could be painted is n! ; in each one of them
colors could be tried in k! different ways, which produces a large diversity
of solutions.

During the improvement phase (lines 11 to 14 of Figure 4), a vertex and
a color are chosen at random. In line 15 the objective function considered
is (1) with a value of µ = 20. With values of µ greater than one, as
is the case, feasible solutions are found more frequently, validity being
preferred to finding non feasible solutions with very small rigidity. This is
particularly useful in our case, because the last feasible solution found is
considered as the best of each run. The process ends once all the colors
have been tested in all the vertices and no better coloring has been found.
The cycle 2-18 was executed 100 times (PoolSize = 100) and the feasible
solution with lesser rigidity was chosen.

2.4 Scatter Search

The Scatter Search algorithm for the coloring problem is as follows:

Begin
1 A set of 100 GRASP solutions is generated
2 While new solutions are added to the RefSet:
3 Delete from the Pool all redundant solutions.
4 Choose 5 solutions with valid coloring and minimum rigidity.
5 Choose the other 5 solutions with one or two badly colored vertices and

minimum rigidity.
6 Empty the Pool.
7 Consider all the possible combinations of sets with two elements.
8 Consider the mixture of the best 4 elements in sets with three elements.
9 For all the subsets with two elements a and b
10 For m = 1 to partitions
11 Mix randomly the elements of the solution Col(b) in Col(a)
12 Use the improvement method in the new solution
13 Add the solution to the Pool.
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14 End {For}
15 End {For every}
16 For the four best elements of the RefSet:
17 Mix the three elements in a proportion of 1/3 of each one
18 Use in the solutions the improvement method and add them to

the Pool
19 End {For the four}
20 End {While}
End

For the robust coloring problem the stages used were:
The Diversification Generation Method, 1, consisting in running the

GRASP algorithm described in the previous section with µ = 1, to obtain
thus 100 test solutions; in this case, unlike the GRASP, the solution con-
sidered as better is the one that minimizes function (1), whether or not it
is feasible. One consequence of using that value of µ, is that we can find
either feasible solutions of small rigidity, or non feasible solutions with a
pair of incompatible chords, with even less rigidity than the feasible ones;
this in order to generate a pool with elements of quality and diversity.

In the Reference Set Update Method, 2 - 6, 10 elements are chosen
among the 100; 5 of them are the best feasible solutions different from
one another, and the other 5 are the different non feasible solutions with
minimum rigidity. In this way we build the reference set with 50% quality
solutions, the feasible ones, and the other 50% diversity solutions, the non
feasible ones because of a few incompatible chords, with small rigidity.

Two k-colorings, S = (V1, V2, . . . , Vk) and S′ = (V ′
1 , . . . , V ′

k) are equal,
except for a permutation of colors; if for every i = 1, . . . , k there is a
j = 1, . . . , k such that Vi = Vj . To make the identification of two equal
k-colorings easier, we now design a coloring ‘S as a n−plet (u1, u2, . . . , un),
where ui is the color assigned to vertex l, for l = 1, . . . , n. Thus, if we have
two k-colorings, S = (u1, u2, . . . , un) and S′ = (v1, . . . , vn), they are equal
if when we take a color array (1, . . . , k) and assign to the u1 position of
the array the value v1, and then take the u2 position in the array, and
we assign to it the value v2, in case there is no assigned value; if there is
another value already assigned, check if this value is V2, for, if it is not,
that will be a violation to the fact that S is equal to S′. If the assigned
value is v2, we go on in the same way with positions u3, u4, . . . , un, of the
array until we find a violation. If any violation exists, then the k-colorings
S and S′ cannot be equal. In the opposite case, they are equal.

A measure of how different two solutions are with respect to their
chromatic classes is to count, using the former procedure, the number of
violations found. Those solutions with the greater number of violations
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with respect to the elements of each of the better ones provide the most
different solutions.

For the Subset Generation Method, 7-8, all the possible subsets with
two elements were taken, and from the two elements of best quality and
the two with best diversity are chosen the sets with three elements.

For the Solution Combination Method, given two solutionsa, b, the
elements of each one of them are mixed at random, 9- 15. In a similar
way were mixed three elements, 16-19. To the new solution produced an
improvement method identical to the one used in the GRASP algorithm
was applied.

3 Computer results

In this work we have used new instances to prove the four algorithms
described: simulated annealing, Tabu, GRASP and scatter search, and to
compare its results among them. These results are shown in Table 1, where
the number of vertices n, the valid number of colors k and the minimum
rigidity R(C(k,R)) obtained for each method appear.

Graphs equivalent to those presented in Ramı́rez Rodŕıguez (2001) were
generated, having from 20 to 120 vertices (first column) second and third
columns indicates the number of vertices in the instance and the number
of colors used, respectively. The following columns for each algorithm
presents the solution found by each method as their time of execution in
seconds. The GRASP was executed 100 times and the best solution found
is presented. In the Scatter Search algorithm, 100 initial solutions were
taken, 50/50 between quality and diversity, 5 elements in the RefSet and 5
steps for reconnecting trajectories. In the Simulated Annealing algorithm
it was considered a = 0.99 and a number of iterations in each generation
equal to exp(2/dn), were n is the generation number.

In 18 of the 22 instances a solution better than or equal to the best
known solution could be found, and only in four cases the best solution
found happens to be that of the Scatter Search algorithm. As for the
execution times, although the SA algorithm is relatively slow for small
instances, it begins to be evident that for instances of more than 90 vertices
it becomes the best option.

4 Conclusions

In this paper heuristic algorithms for the RCP were presented. No exact
solutions were found for instances with more than 15 vertices. The pro-
posed algorithms find solutions for instances of up to 120 vertices. All the
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Gn,0.5 n k Tabu GRASP Scatter S. Sim. Ann.
al(20) 20 7 7.0970 / < 1 7.1423 / 0.14 6.9046 / 1.3 6.6796 / 8.26
al(20) 20 8 4.7710 / < 1 4.6934 / 0.15 4.6934 / 1.3 3.5934 / 5.67
al(30) 30 10 8.0623 / < 1 7.5749 / 0.44 7.5749 / 3.6 7.5749 / 8.17
al(30) 30 11 6.0565 / < 1 5.9318 / 0.49 5.8890 / 3.6 5.8890 / 6.57
al(40) 40 14 7.1709 / 15 7.3950 / 1.0 7.0837 / 8.5 6.9901 / 21.49
al(40) 40 15 5.8173 / 14 6.3117 / 1.0 5.6708 / 7.2 4.9947 / 19.29
al(50) 50 17 9.8259 / 33 8.9531 / 1.9 8.2587 / 13 8.2587 / 15.89
al(50) 50 18 7.4966 / 33 7.1464 / 1.9 6.7164 / 12 6.7164 / 24.47
al(60) 60 20 9.8331 / 69 9.9687 / 3.3 8.8676 / 19 8.7568 / 23.03
al(60) 60 21 8.2181 / 69 8.1430 / 3.4 7.2380 / 20 7.2048 / 23.30
al(70) 70 24 11.1307 / 128 11.2388 / 5.31 9.2634 / 36 9.3555 / 35.02
al(70) 70 25 9.5478 / 128 9.2145 / 5.56 7.7048 / 33 7.3799 / 50.33
al(80) 80 27 11.1946 / 218 11.7512 / 8.0 9.9835 / 52 9.7132 / 75.41
al(80) 80 28 10.5845 / 219 10.2631 / 8.2 8.5961 / 43 8.6118 / 52.42
al(90) 90 30 12.2832 / 350 13.4919 / 11.5 10.8911 / 47 10.6400 / 41.2
al(90) 90 31 11.3699 / 349 11.5060 / 11.9 9.5008 / 89 9.5570 / 60.9
al(100) 100 34 12.1932 / 544 12.8675 / 15.8 10.0470 / 123 9.9658 / 99.59
al(100) 100 35 12.0650 / 885 11.1317 / 15.6 9.4259 / 124 9.0303 / 78.0
al(110) 110 37 —– 12.7681 / 20.7 10.8463 / 149 10.6524 / 152.2
al(110) 110 38 —– 11.6574 / 20.2 9.9558 / 171 9.8614 / 115.7
al(120) 120 40 —– 15.0014 / 26.8 11.3507 / 190 11.1545 / 144
al(120) 120 41 —– 13.5266 / 27.5 10.1258 / 191 10.1307 / 150

Table 1: Comparrative results.
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heuristics found the optimal solution of problems whose solution is known,
Yáñez and Ramı́rez (2003). The results are encouraging, which drives us
to work on larger graphs and think of refining some of the proposed meth-
ods; for instance, considering adaptive and learning implementations in
simulated annealing; using reactive GRASP, path relinking, ants, among
others.
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[6] Ramı́rez-Rodŕıguez, J. (2001) Extensiones del problema de coloración
de grafos. Tesis Doctoral, Universidad Complutense de Madrid,
Madrid. Disponible en: http://eprints.ucm.es/4479/
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