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Abstract

Latent growth curve models as structural equation models are extensively discussed
in various research fields (Duncan et al., 2006). Recent methodological and statistical
extension are focused on the consideration of unobserved heterogeneity in empirical
data. Muthén extended the classical structural equation approach by mixture com-
ponents, i. e. categorical latent classes (Muthén 2002, 2004, 2007).

The paper will discuss applications of growth mixture models with data from one
of the first panel studies in Germany which explore deviant and delinquent behavior of
adolescents (Reinecke, 2006a, 2006b). Observed as well as unobserved heterogeneity
will be considered with growth mixture models using the program Mplus (Muthén
& Muthén, 2006). Special attention is given to the distribution of the substantive
dependent variables as a count measures (Poisson distribution, zero-inflated Poisson
distribution, cf. Nagin, 1999). Different model specifications with respect to substan-
tive questions will also be emphasized.
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Resumen

Los modelos latentes de curvas de crecimiento, como modelos de escuaciones es-
tructurales, son ampliamente discutidos en varios campos de investigación (Duncan
et al., (2006)). Extensiones metodológicas y estad́ısticas recientes se enfocan en la
consideración de heterogeneidad no observada en datos emṕıricos. Muthén extendió
el enfoque clásico de ecuaciones estructurales por componentes de mezcla, es decir
clases latentes categóricas (Muthén 2002, 2004, 2007).

El art́ıculo discute aplicaciones de modelos de crecimiento de mezcla con datos
de uno de los primeros estudios de panel en Alemania, que explora comportamiento
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desviado y delinquivo de adolescentes (Reinecke, 2006a, 2006b). La heterogeneidad
observada y no observada será considerada con modelos de crecimiento de mezcla
usando el programa Mplus (Muthén & Muthén, 2006). Se dará especial atención
a la distribución de las variables sustantivas dependientes como medidas de conteo
(distribución de Poisson, distribución cero-inflada de Poisson, cf. Nagin, 1999). Se
dará énfasis también a diferentes especificaciones de modelos con respecto a cuestiones
importantes.

Palabras clave: Datos de panel, modelos de mezclas de crecimiento, heterogeneidad,
distribución de Poisson.

Mathematics Subject Classification: 62P25.

1 Introduction

Longitudinal research studies with repeated measurements are quite often used to examine
processes of stability and change in individuals or groups. With panel data it is possible to
investigate intraindividual development of substantive variables across time as well as in-
terindividual differences and similarities in change patterns. While the traditional analysis
of variance (ANOVA) and the analysis of covariance (ANCOVA) assume homogeneity of
the underlying covariance matrix across the levels of the between-subjects factors and the
same covariance patterns for the repeated measurements, the structural equation method-
ology offers an alternative strategy: the latent growth curve models. These models describe
not only a single individual’s developmental trajectory, but also capture individual differ-
ences in the intercept and slopes of those trajectories. Based on the formative work of Rao
and Tucker’s basic model of growth curves (Rao, 1958; Tucker, 1958), Meridith and Ti-
sak (1990) discussed and formalized the model within the structural equation framework.
Further developments of the growth curve model were proposed by McArdle and Epstein
(1987), McArdle (1988) and Muthén (1991, 1997). Extensive applications of different
growth curve models with structural equations using the programs LISREL (Jöreskog,
K. G. & Sörbom, 2004), EQS (Bentler, 2001) and Mplus (Muthén & Muthén, 2006) are
discussed by Duncan et al. (2006).

Observed heterogeneity in growth curve models can be captured by covariates ex-
plaining part of the variances of the intercept and slope. But the assumption of a single
population underlying the growth curves has to be relaxed in the case of unobserved hetero-
geneity. Instead of considering individual variation around a single growth curve, different
classes of individuals should vary around different mean growth curves. A very suitable
framework to handle the issue of unobserved heterogeneity is growth mixture modeling
introduced by Muthén and Shedden (1999). These mixture models differ between contin-
uous and categorical latent variables. The categorical latent variables represent mixtures
of subpopulations where the product membership is inferred from the data. Like the con-
ventional growth curve models, intercept and slope variables capture the continuous part
of the model. Growth mixture models can also be seen as an extension of the structural
modeling approach with techniques of latent class analysis. The inferred membership of
each individual to a certain class is produced with the information of the estimated la-
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tent class probabilities. Further developments and applications with the program Mplus
(Muthén & Muthén, 2006) are discussed in several papers by Muthén (2001a, 2001b, 2003,
2004). Recently, Muthén (2007) gives an model overview of the so-called latent variable
hybrids within the continuous and categorical latent variable framework.

The simplest specification of a growth mixture model is latent class growth analysis
where no variation across individuals are allowed within classes. This model labeled as
a ”semiparametric group-based approach” was originally discussed by Nagin and Land
(1993), Nagin (1999) and Roeder, Lynch and Nagin (1999) with measurements of deviant
and delinquent behavior. The authors discuss also the possibility to treat their measure-
ments as counts with the Poisson distribution as the underlying statistical model (see, e.
g., Ross, 1993). If the count variables are biased to zero, i. e. the particular behaviors
seldom occur, a variant of the Poisson model, the so-called zero-inflated Poisson model
(Lambert, 1992), should lead to a better statistical representation of the data than a model
without considering the zero inflation.

After the introduction of growth curve and growth mixture models including their
special cases (Section 2), applications are shown with longitudinal panel data from repre-
sentative panel study of adolescents’ deviant and delinquent behavior (Section 3). Results
of the models are discussed and summarized in Section 4. The article concludes with
suggestions for further research with growth mixture models.

2 Growth curve and growth mixture models

The possibility that the individual trajectories of a dependent variable can vary is one of
the main advantages of the growth curve model. The formal representation of a growth
curve model can be seen either as a multilevel, random-effects model or as a latent variable
model, where the random effects are latent variables:

yi = Ληi + εi (1)

yi is a p × 1 vector of repeated mesurements for observation i where p is the number of
panel waves. η is a q × 1 vector of latent growth factors where q is the number of latent
growth factors. ε is a p × 1 vector of time-specific measurement errors, and Λ is the p× q
matrix of factor loadings with fixed coefficients representing the functional form of the
individual trajectories. Variations of individual trajectories are captured by q-numbers of
latent variables η whereas η1 is the intercept, η2 is the linear slope and in case of nonlinear
development η3 represents the quadratic slope. Equation 1 assumes that all individuals are
drawn from the same population. The means of the latent variables η shows the average
development of a particular longitudinal variable within a homogenous population.

Growth mixture models can relaxe the assumption of an homogenous population and
can give information about parameter differences across unobserved subpopulations. In-
stead of considering individual variation of single means of the vector η the growth mixture
model allows different classes of individuals to vary around different means. Classes are
introduced by a latent categorical variable where the categories represent the unobserved
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heterogeneity of the data (Muthén & Shedden, 1999):

yik = Λkηik + εik (2)

The growth mixture model (abbreviated GMM) in Equation 2 allows the estimation of
k = 1, . . . K latent classes each with its own latent growth model. The probability density
function for the GMM is a finite mixture of normal distributions:

f(yi) =
K∑

k=1

πkφk[yi;µk(θk)Σ(θk)] (3)

πk is the unconditional probability that a measurement belongs to latent class k, φk is
the multivariate probability density function for latent class k. µk(θk) represents the
model-implied mean vector given by

µk(θk) = Λkαk (4)

and Σk(θk) is the model-implied covariance matrix given by

Σk(θk) = ΛkΨkΛ
′
k + Θk (5)

In an unconditional mixture model the latent variables η are only described by their class
specific means αk and variances Ψk. A conditional mixture model includes exogenous
latent variables ξn represent the observed heterogeneity of the data. The relation between
ξn and the categorical class variable c is given by a multinomial logistic regression equation:

logit(πk) = αk + Γkξn (6)

with πk = P (ck = k|ξn). Γc is a (K − 1)×q-parameter matrix containing regression
coefficients of K classes on ξn. Figure 1 gives an example of a growth mixture model with
intercept and linear slope variables (η1 and η2) and one exogenous latent variable ξ1.

Growth mixture models are estimated by maximizing the log likelihood function within
the admissible range of parameter values given classes and data. Mplus uses the princi-
ple of maximum likelihood estimation and employs the EM-algorithm for maximization
(Dempster, Laird & Rubin, 1977; Muthén & Shedden, 1999). For a given solution, each
individual’s probability of membership in each class is estimated. Individuals can be as-
signed to the classes by calculating the posterior probability that an individual i belongs to
a given class k. Each individual’s posterior probability estimate for each class is computed
as a function of the parameter estimates and the values of the observed data (Muthén
& Muthén, 2001: 367f.). By classifying each individual into his most likely class, a table
with rows corresponding to individuals classified into a given class can be constructed. The
columns of that table show the average conditional probabilities to be in the particular
class. Quality of the classification is summarized by the entropy measure EK (Muthén &
Muthén, 2001: 372), which ranges from zero to one, where values close to one indicate a
good classification of the data.

Standard errors of estimates are asymptotically correct if the underlying mixture model
is the true model. In general, test statistics require well-defined classes in a mixture
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Figure 1: General Growth Mixture Model (GMM).
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A measurement model for the exogenous variable ξ1 is ommitted.

model. In mixture models a k class model is not nested within a k + 1 group model.
Therefore, conventional mixture tests like the Akaike Information Criterion (AIC; Akaike,
1987) and the Bayesian Information Criterion (BIC; Schwartz, 1978) have to be used
for model comparisons. Usually, the model with the smallest AIC or BIC is accepted
within model comparisons. Furthermore, Mplus calculates a sample size adjusted BIC
with n = (n + 2)/24 which was found to give superior performance for model selection
(Yang, 1998). But accepting or rejecting a model on the basis of the AIC or BIC is more
or less descriptive and does not imply any statistical test.

Lo, Mendell, and Rubin (2001) proposed a likelihood ratio-based method for testing
k − 1 classes against k classes in mixture models. The Lo-Mendell-Rubin likelihood ratio
test (LMR-LRT) considers the usual likelihood ratio for testing the k − 1 model against
a k model but with the correct distribution. The p-value from the test represents the
probability that H0 is true, i. e., that the model is sufficient with one less class. Therefore,
a low p-value indicates that the k−1 class model has to be recjected and the k-class model
is sufficient to represent the mixture of the data. LMR-LRT has been critized by Jeffries
(2003), but importance of the critics in applications is unknown (Muthén, 2004: 356).

McLachlan and Peel (2000) suggested another likelihood-based technique to compare
the mixture models: the bootstrapped likelihood ratio test (BLRT). This method uses
bootstrap samples to estimate the distribution of the log likelihood difference test statis-
tic. Instead of assuming that the difference distribution follows a known distribution like
the chi-square distribution, the BLRT empirically estimates the difference distribution.
Similar to the LMR-LRT, the BLRT provides a p-value that can be used to compare the
increase in model fit between the k − 1- and k-class models.
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Latent Class Growth Analysis
A special case of the growth mixture model is the latent class growth analysis (LCGA),

which has been studied by Nagin and Land (1993), Nagin (1999) and Roeder, Lynch
and Nagin (1999). LCGA is a submodel of the GMM and characterized by having zero
variances and covariances of the intercept and slope variables (η1 and η2 in Figure 1).
Individuals within a class are treated as homogeneous with respect to their development.

LCGA can serve as a starting point for growth model analyses although trajectories
of the indviduals are fixed within the class. LCGA can give information about the latent
classes representing substantially different trajectories. In addition, the zero variance
restriction leads to a fast convergence of the estimation (Muthén 2004: 350).

Poisson Models
To study development of deviant and delinquent behavior is one of the main topics

in criminal sociology or criminology. Very often the longitudinal data gives information
about the incidence rate of that behavior or the number of convictions. From a method-
ological point of view the distribution of those variables are counts and have to be treated
differently compared to continuous data. The so-called ”key approach in the modeling of
delinquent and criminal careers” (Land, McCall & Nagin, 1996) is the Poisson distribution
with the corresponding regression models.

Let Y = 0, 1, 2 . . . be a random variable for a given time interval and y be the number
of observed occurences. The number of events in an interval of a given length is Poisson
distributed with the probability density function:

Pr(Y = y) = e−ν

[
νy

y!

]
(7)

The expected value or mean of the Poisson distribution is E(Y ) = ν with V ar(Y ) = ν.
Usually, the parameter ν is refered as the mean rate of occurrence of events. Small values
of ν yield high probability for zero occurences of the random variable Y . The higher the
value of ν, the lower the skewness of the distribution.

To cover the unobserved heterogeneity, a Poisson-based latent class growth model can
be formulated which is also implemented in Mplus (Muthén & Muthén, 2004: 190):

ln(νitk) = λ1tkη1k + λ2tkη2k (8)

νitk is the expected number of occurences of the measurement y of individual i at time
t given the membership in class k. The conditional number of events, P (yitk|k), should
follow the Poisson distribution.

If the number of zeros in the count variable are very large, a variant of the Poisson
regression model is more appropriate: the so-called zero-inflated Poisson model (ZIP)
originally proposed by Lambert (1992). The ZIP model combines the Poisson regression
model with a logit model to cover the zero inflation in the count variable Y with probability
p that Y is zero (Lambert, 1992: 3). Two parallel growth mixture models are estimated
simultaneously when zero inflation of the data is assumed: The first model contains the
count part of the outcomes with values of zero and above (Variables y1 to y4 in Figure 2).
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Figure 2: Two-part Growth Mixture Model with Zero-inflated Measurements.
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Intercepts of the outcomes are fixed to zero as the default. The means of growth curve
variables (Variables i, s) are estimated for each class. The second model refers to the
zero-inflation part of the outcome with only values of zero in all measurements (Variables
yi
1 to yi

4). Intercepts of the outcomes are estimated and held equal as the default. The
mean of the intercept variable (Variable ii) are fixed to zero for all classes while the mean
of the slope (Variable si) is estimated and held equal for all classes (cf. Muthén & Muthén,
2004: 190).

3 Applications with panel data

The empirical basis for the following analysis with mixture models is taken from the
longitudinal research project Juvenile Delinquency in Modern Towns.1 The main focus of
the study is on the emergence and the development of deviant and delinquent behavior
of juveniles, and the social control surrounding it; both formal, meaning the police and
the judiciary, and informal, referring to school and family. The panel data contains self-
administered interviews with pupils from the town of Duisburg located north of Cologne
in West Germany. The initial survey was conducted in the year 2002 with pupils from 7th
grade, considering all relevant school types in the community. The same age cohort have
been yearly interviewed, and currently the 7th wave is in progress.

1This interdisciplinary research project is located at the universities of Münster (Institute of Crimi-
nology) and Bielefeld (Faculty of Sociology) and supported by the German National Science Foundation
(DFG) under grant numbers Bo1234/6 and Re832/4. More information can be found on the website of
the project (www.uni-bielefeld.de/soz/krimstadt).
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The analysis of the unobserved heterogeneity in our sample by means of LCGA has
been conducted using five panel waves with the subjects’ age ranging from about 13 to 17.
First of all, some preliminary assumptions regarding the modeling strategies are required.
One important aspect concerns the expected development over time of the outcome of
interest. The mean values of the prevalence rates over the five panel waves clearly show a
curvilinear development. Furthermore, this assumption is confirmed by the comparison of
the model fit statistics between the quadratic and the linear growth curve models, which
suggests that the linear model has to be rejected in favour of a quadratic development
(table not reported).

Another important aspect in the model choice process is the distribution of the outcome
variables. Due to the large number of non-offenders, namely those who never reported the
commission of deviant behaviors, the data are highly skewed because of the inflation with
zero values. Consequently, our analyses assume a zero-inflated Poisson distributed model
(LCGA-ZIP) with a curvilinear develpoment. It will form the basis for the subsequent
analysis of unobserved heterogeneity.

In order to determine the most adequate number of classes to represent the sample’
distribution a comparison of the different model fit measures is needed. The results are
reported in Table 1.

Table 1: Comparison of Unconditional Models with Different Classes (Duisburg).

LCGA-ZIP (Quadratic Model)
Test C1 C2 C3 C4 C5 C6 C7
BIC 18880 16557 15890 15699 15606 15535 15513

Adj. BIC 18861 16525 15845 15643 15537 15452 15417
LMR-LRT − 2274 673 212 118 97 50

p-value − 0.00 0.00 0.00 0.03 0.02 0.07
p-value

The BIC and the adjusted BIC favor a solution with seven classes, although their
values show a larger decrease between the models with five and six classes (a difference of
85 units compared to 35 units when a seventh class is added). The LMR-LRT points out
to a solution with six classes as the best model, whereas its value for a seventh class is not
significant. The results are in part confirmed by the BLRT that shows a small value for
the model containing six classes. The same value increases when one more class is added,
suggesting that a seventh class is of minor importance and redundant. Thus, six classes
are chosen to represent the unobserved heterogeneity in the sample.
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Figure 3 shows the class trajectories of the zero-inflated model with one class of non-
offenders and five classes with different offending patterns. The classification of the sub-
jects is based on the most likely latent class membership, which groups pupils with a high
probability to share a common delopmental trajectory over time.

Figure 3: Six Class Quadratic-LCGA-ZIP for Five Panel Waves.

From the bottom to the top of the figure, the first class consists of 826 so called non-
offenders (53%) who almost never reported offenses over the covered time period, and
includes the majority of the participants. This class is well represented by a straight line.
A model in which the intercept and slopes of this class are held equal to zero does
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not show any improvement in model fit, supporting the assumption that sporadic offences
might occur even within this group of subjects (the specification of a so called zero-class has
been proposed by Kreuter and Muthén, 2008). The second class represents the so called
low increasers, with 197 subjects (13%). This is the single group which shows a moderate,
but still evident increase across the whole time period. The third class, which is the
second largest with 279 subjects (18%), is defined as low stable. Its developmental pattern
shows some deviant activity at the beginning of the survey, which decreases constantly
over time heading toward zero at the last time point. The fourth class represents the
3% of the sample (49 individuals), and is named increasers after its trajectory shows a
clear increment in offenses from a mean value of 1.54 (t1) to 4.63 (t3), especially in early
adolescence. Afterwards, however, its crime rates tend to stabilize, and in the last wave
they show a modest decrement to an average of 3.34 (t5). Another important group of
offenders is represented by the high-level desisters which includes 174 pupils (11%). Their
criminal activity is quite consistent at the first time point (with a mean rate of 2.69 in t1),
although they constantly desist throughout the entire panel, where in the last panel wave,
they report a mean value close to zero (0.74 in t5). The last class includes 27 (2%) high
rate offenders. Although they clearly show a tendency to desist, their level of offending
starts high. A peak around the age of 14 and 15 with a mean value of 8.44 (t2) is reached.
This group still maintains at a considerable level in the fifth panel wave.

The development of the classes over time is remarkable; all but the non-offenders show
a trajectory which tends to decrease by the end of the time period under study. Yet, this
is not the case for the low increasers which, on the contrary report a slow but constant
increase in offending rates. Further waves will be conducted to gain a better understanding
of the future development of the different patterns of delinquent behavior.

4 Discussion

The general framework of growth mixture modeling outlined by Muthén (2002, 2004)
integrates several approaches to longitudinal growth modeling, e. g., the semiparametric
group-based model developed and applied by Nagin and Land (1993) and Nagin (1999).
This model is equivalent to the latent class growth model (LCGA), in which the intercept
and slope variances are fixed to zero. Due to an easier estimation of the parameters
the latent class growth analysis is computationally less demanding and thus useful for a
first evaluation of the unobserved heterogeneity in the data. Thereafter, the variability
of the class specific intercepts and slopes can be studied with the more general growth
mixture models. If count data with largely positive skewed distributions are analyzed,
the assumption of continuously distributed variables can be replaced by the Poisson or
the zero-inflated Poisson distribution. Mplus allows the above mentioned tests of growth
mixture models assuming different distributions of the manifest variables under study.

Data from a five-wave panel study of adolescents have been used to study unobserved
heterogeneity in the development of deviant and delinquent behavior. In a first step
the data have been analzyed by means of a general latent growth model. A curvilinear
trajectory fits the data well and it is favored to a linear development. A negative quadratic
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random effect suggests that the level of offending increases across the first three time points
and decrease therafter. Due to the large number of zeros in the sample (namely those who
never reported offences), the data are highly skewed. This condition justify the assumption
of a Poisson distributed model with zero inflation. Following a stepwise procedure - as
outlined in Kreuter and Muthén (2008) - the quadratic growth specification is used as the
initial model for the analysis of unobserved heterogeneity in the sample. The comparison
of several model fit criteria (e.g. BIC, adjusted BIC and LMRT-LRT) for the unconditional
latent class growth models (LCGA) suggests that one class of non-offenders and five classes
of offenders well represent the mixture of the data. Among the mentioned offender classes,
all report a decreasing trajectory, whereas only one class (low increasers) shows a constant
increase in offending over time. Even the high rates, although maintaining a significant
involvement in deviant activities, reports signs of desistance (mainly in the last two panel
waves). These findings add new informations to the results previously obtained with only
four waves with the same sampled cohort. In fact, Reinecke (2006a, 2006b) obtained
similar patterns of development with different panel data of the same substantive topic,
where only three classes were necessary to represent the mixture of the data. These classes
are replicated in the current analysis but with additional patterns of desisters and low
increasers. So, the current panel study shows a greater versatility of delinquent behaviors.
All in all, this suggest the importance of expanding the time range of the analysis in order
to improve the understanding of the substantive phenomenon, especially in a cohort of
adolescents where behavioral instability of different deviant behaviors can be expected.

Great attention has been paid to the process of model specification and model selection.
Furthermore, the new results are supported by previous researches on the same data,
suggesting a high stability in the mixture distribution. Nonetheless, the present analysis
shows some limitations. On the one hand, although the five-wave panel design has given
important insight in the subject, much more is to expect when new panel waves will be
available. On the other hand, the current discussion on the topic suggests great caution in
the interpretation of mixture analyses. As Bauer and Curran (2003) clearly demonstrate,
there is the risk that a mixture is found which is only an approximation of a non-normal,
but homogeneous, distribution in the data, and do not represent real groups of individuals
in the population. To this respect, the introduction of theoretically meaningful covariates,
in the form of either antecendents, time varying covariates, or distal outcomes, is expected
to enhance the capability of the model to define the unobserved mixture, and eventually
spot possible misspecification (Muthén, 2003). Therefore, further tests of growth mixture
models should also include substantively relevant time-dependent (Hussong et al., 2004)
and time-independent (Muthén, 2003) variables, although those extensions are beyond the
scope of the present article.
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