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We have determined the location and focal mechanism for the 1924 Orotina earthquake using two different
relocation algorithms developed for the analysis of historic earthquakes and forward waveform modeling of
teleseismic body waves. Our relocation results suggest that the 1924 earthquake occurred ~50 km southeast
of Orotina near the Pacific coast. The heavy damage reported in the Orotina region, coupled with a low
population density to the southeast, had led previous researchers to believe that the earthquake occurred
near Orotina, possibly on the Tarcoles or Bijagual faults. Our waveform modeling results indicate rupture on
a thrust fault at a depth (25+5 km) near the plate interface with M,, 6.4-6.7. These are inconsistent with
slip on any mapped surface faults located near Orotina and with the mechanism of the nearby 2004 M,, 6.4
Damas earthquake that indicates transtensional deformation in the upper crust. This suggests that the 1924
event may be one of a sequence of events (1924, 1990, 1999) generated by subduction of the central Costa
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1. Introduction

The 1924 Orotina Earthquake is considered one of the most
destructive earthquakes of Costa Rica. Its name is derived from the
damage caused by the earthquake to the city of Orotina (Fig. 1) and
also to its aftershocks, accompanied by noises that were felt there. It
damaged localities of central Costa Rica close to the central Pacific
coast and caused geologic effects like fracturing of the ground,
landslides, liquefaction and changes in the groundwater level. A
remarkable fact of this earthquake is that no one in Orotina and
surrounding regions was killed; the few reported casualties are from
the southeastern side of the previously proposed epicentral area
(Montero, 1999).

The International Seismological Summary (ISS) reported the first
location for this earthquake. Sapper (1924) (quoted in Montero,
1999) pointed out that the epicenter of the main event could have
been located in the vicinity of the Pacific Ocean. Jacob et al. (1991)
showed a focal mechanism for the event and Ambraseys and Adams
(1996) and Montero (1999) macroseismically located the event.
Montero (1999) linked the earthquake to a hypothetical tectonic
boundary.

In this study we analyze phase data tabulated by the ISS to obtain
several estimates of the earthquake's location (with associated
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uncertainties). We also model teleseismic waveform data collected
from seismic stations around the world to determine the earthquake's
focal depth and faulting processes. Our results are compared with
previous epicentral determinations and related to the tectonic
features of the study area.

2. Tectonic framework

Costa Rica is part of the Central America Volcanic Arc formed by
the subduction of the Cocos plate under the Caribbean plate. The most
important tectonic feature of Costa Rica is the Middle American
Trench (MAT) located on the Pacific side of the country. Other
relevant tectonic structures are the Panama Fracture Zone (PFZ), the
North Panama Deformed Belt (NPDB) and the Tarcoles and Candelaria
faults.

The MAT is the junction of the Cocos and Caribbean plates (Fig. 1).
The present convergence rate increases along the trench from about
7.3 cm/yr off Mexico and Guatemala (DeMets, 2001) to 9.9 cm/yr in
southern Costa Rica (Montero, 2000). The northeast dipping slab has
descended to a maximum depth of 200 km in western Costa Rica
(Protti et al., 1994) and to only 70 km off southern Costa Rica (Arroyo,
2001). The shallowing of the subduction at the southern terminus of
the MAT is related to the subduction of young, buoyant, rough ocean
crust that arrived at the trench ~5 Ma (de Boer et al., 1995), causing a
decrease in the volcanic activity. This oceanic crust includes the Cocos
ridge and a seamount belt that generates high uplift and significant
deformation of the arc during their subduction beneath the Caribbean
plate.
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Fig. 1. Tectonic framework of Costa Rica and previous instrumental and mascroseismic epicenters of the 1924 Orotina earthquake. The inset map at the upper right shows major
tectonic features and the location of the larger map (box). The tectonic features shown on the inset map include the Middle America Trench (MAT), the Panama Fracture Zone
(PFZ), and the North Panama Deformed Belt (NPDB). HTB is the hypothetical tectonic boundary between the Caribbean plate and Panama microplate proposed by Montero (1999),
Fan et al. (1993), Giiendel and Protti (1998), and Marshall et al. (2000). In the inset map COP is Cocos plate, CP is Caribbean plate, N is Nicaragua, NP is Nazca plate, P is Panama, and
PO is Pacific Ocean. On the larger map BF is the Bijagual fault and ISS is the International Seismological Survey. Squares denote towns/cities. Focal mechanism for the 1924 Orotina

earthquake is from Jacob et al. (1991).

The Panama Fracture Zone is the plate boundary between the
Cocos and Nazca plates. It is a north-south striking, dextral, oceanic
transform fault zone that extends from near the Equator to 6°N, where
it splits into a series of parallel, north-west trending, dextral strike-
slip faults. The PFZ is a very active tectonic boundary that has
generated events of magnitude larger than 7.0.

The NPDB is an overthrust feature of the Caribbean which extends
offshore from the Panama-Colombia border (not shown) up to the
shoreline northwest of Limén in Costa Rica. This deformed belt can be
explained by a movement of blocks within the Caribbean plate
(Adamek et al., 1988; Silver et al., 1990). Recently recorded seismicity
in north central Panama associated with the convergence between the
Caribbean plate and the Panama block indicates that events in this
region can reach depths of up to 70 km (Fernandez et al., 2007).

The Tarcoles fault is a long, northeast trending fault (Fig. 1). It first
appears onshore at Tarcoles, a community located on the east coast of
the Gulf of Nicoya. However, it is agreed that the tectonic deformation
associated with this fault begins in sea-floor of the Gulf of Nicoya. It
takes a straight path northeastward through the valley of Tarcoles
River to southern Orotina where it intersects the Bijagual fault system,
the only major north-south trending fault in the area. From the
vicinity of its intersection with the Bijagual fault system, the Tarcoles
fault becomes a diffuse structure with no distinctive single trace as in

the southwest. According to Denyer et al. (2003), the Tarcoles fault
crosses the Bijagual fault system and continues as two companion
branches to the southwest end of the Garita fault. In an undeviating
course the trace of the Tarcoles fault passes just east of Orotina and
connects to the Garita fault. Uplifts, basins, and displaced recent
sediments are evidence of activity along this fault (Montero, 1999).
Madrigal (1970) inferred normal slip along the Tarcoles fault, but
Denyer et al. (2003) considered that this fault is a left-lateral strike-
slip structure.

The Candelaria fault is one of the largest northwest striking faults
of Costa Rica. Its trace is prominent in the southeast where it follows
the Cajén and Candelaria rivers and shows linear valleys. According to
Arias and Denyer (1991) and Montero (1999) this is a dextral strike-
slip fault with a reverse component of motion.

A hypothetical and multi-named strike-slip structure (i.e. the
transcurrent fault of Costa Rica, Astorga et al. (1989); the diffuse
transcurrent fault zone of Costa Rica, Fan et al. (1993); the shear zone
of Costa Rica, Gliendel and Protti (1998); the Central Costa Rica
Deformed Belt, Marshall et al. (2000)) has been proposed as the
tectonic boundary between the Caribbean and hypothetical Panama
microplate (HTB, Fig. 1). However, Fernandez Arce (2009) did not find
evidence of the proposed subparallel strike-slip faults that would
form this suggested strike-slip tectonic boundary.
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3. Previous work

The 1924 Costa Rica earthquake was initially located by the
International Seismological Summary (ISS). The epicentral coordinates
obtained (Fig. 1) were 9.5°N and 84.0°W (Table 1). The earthquake
depth was not determined.

Jacob et al. (1991) were the second group to try to locate the
earthquake. They located the event near Orotina (see Fig. 1). They also
determined a focal mechanism for the event from waveform modeling
(Pacheco, pers. commun., 2006), although this was not stated in the
publication and no results of the waveform modeling process were
shown. In fact, the coordinates of the epicenter, the focal mechanism
orientation, and the depth of the earthquake were not given in the
publication. Their focal mechanism indicated predominantly strike-
slip motion with a reverse component (Fig. 1). One nodal plane of
their solution had a northwest-southeast strike with a high angle of
dip (~80°) to the southwest, while the other nodal plane had a
northeast-southwest strike with a ~50-60° dip to the northwest.

Later, Ambraseys and Adams (1996) carried out the first macro-
seismic location of the 1924 earthquake. Their epicenter lies within
the Gulf of Nicoya (Fig. 1). They indicated that the area of maximum
damage in 1924 was located between Machuca and Orotina in the
north and the Pacific shoreline in the south. They mention the total
ruin of rural settlements and some deaths in the Turrubares region
(located near Cerro Turrubares, Fig. 1). Most interestingly, they report
heavy damage and some casualties in the region east of the Candelaria
fault. Damage was heavy in San Jose, but minor in Esparza and Jaco.
Ambraseys and Adams (1996) indicated that the earthquake foci were
shallow but they did not give a specific depth.

Montero (1999) located the 1924 earthquake by using structural
effects like damage to houses, buildings, and a railroad line, and non
structural effects like landslides, rock falls, ground fracturing, changes in
groundwater flow pattern and liquefaction. The determined mesoseis-
mal area included Orotina, San Mateo and Esparza where the maximum
intensity was IX. Surprisingly, in distant eastward localities like Heredia
and San Jose the maximum intensity was VIII. The IX and VIl isointensity
contours of Montero (1999) are discontinuous southeast of Orotina,
indicating that the intensities are not well constrained in this area.
According to Montero (1999) the earthquake occurred near Orotina
(Fig. 1) at 15 km depth and was generated by the Tarcoles fault.
However, his publication includes a paragraph of a transcribed
conference about the earthquake (dictated in the beginning of April
1924) in which Dr. Sapper suggested that the epicenter of the 1924
Costa Rica earthquake could have occurred near the coast due to the
damage observed in Herradura, Paquita and Quepos.

Finally, Engdahl and Villasefior (2002) relocated the earthquake
using instrumental information and the Engdahl et al. (1998)
relocation algorithm. Their location (X, Figs. 1 and 2) places the
earthquake about 75 km southeast of Orotina at a depth of 35 km.

4. Earthquake relocation

We relocated the 1924 earthquake using two techniques that are
specifically designed for the study of historic earthquakes that often

1

-86 -85 -84 .83

Fig. 2. Results of relocations. The black square indicates the location of the city of
Orotina. The black oval represents the 95% confidence ellipse for relocations (plusses)
using the Petroy and Wiens technique. The best-fit epicenter for this technique is
indicated by the black star. The gray star and dashed gray error ellipse were obtained
using the jloc method of Lee and Dodge. The open gray diamond is the ISS location, the
open gray triangle is Ambraseys and Adams' location based on macroseismic data, the
open gray inverted triangle is the location of Jacob et al. (1991) and Montero (1999),
and the X represents the instrumental relocation of Engdahl and Villasefior (2002). The
open circle is the 1990 Gulf of Nicoya earthquake.

have poor distributions of phase data and highly variable quality of
phase data (see Table 1 for location details). We used 38 P and 16 S
phases tabulated by the ISS for our analysis (Table 2). The closest
station to the earthquake was in Balboa Heights, Panama (A=4.4°).

The first location technique, developed by Petroy and Wiens
(1989), uses a bootstrap approach where random subsets of the phase
data are used to repeatedly locate the earthquake. The cloud of
relocations is then used to define an error ellipse for the location. Fig. 2
shows the results of 100 relocations of the earthquake (plusses) and
the error ellipse (solid black line) representing the 95% confidence
interval for these locations. We used the Jeffreys and Bullen (1940)
velocity model for these relocations. Note that the ellipse lies to the
southeast of Orotina (black square), with the optimal epicenter (black
star) located near Quepos.

The second location technique (jloc) was developed by Lee and
Dodge (2006). This method uses a grid search technique followed by
downhill simplex search algorithm to find the epicenter that mini-
mizes the observed travel times. An L1 minimization is used because it
is less sensitive to large travel time outliers at a few stations. The
algorithm uses the IASPEI91 velocity model. The error ellipse is
estimated assuming that the travel time data are uncorrelated and
have equal variance. Fig. 2 indicates that the jloc epicenter (gray star)
is east of both Orotina and the bootstrap location, however its error

Table 1

Earthquake relocations.
Method Latitude Longitude Error ellipse (length of major and Depth (km)

minor axes in km, strike of major axis)

Original (ISS) 9.5 —84.000 - -
Jacob et al. (1991) 9.83 —84.58 - -
Ambraseys and Adams (1996) (macroseismic) 9.8 —84.7 - -
Montero (1999) (macroseismic) 9.83 —84.58 - 15
Engdahl and Villasefior (2002) (instrumental) 9.56 —83.84 35
Bootstrap 9.376 —84.164 131,107, 173° -
Jloc 9.637 —83.581 214,119, 33° -
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Table 2
Stations used for earthquake relocations.

Station name Phase Distance (degrees) Azimuth (degrees)
BHP P, S 4 100
TAC P, S 17 306
S|P P 20 63
MAZ P, S 25 306
SLM P 29 351
CLH P 30 196
GEO P 30 195
WAS P, S 30 195
LPZ P 31 148
CHI P 32 356
ITH P, S 33 11
TUO P, S 33 316
TNT P 34 7
NRT S 36 15
HAL P 39 24
MHC P 43 315
BRK S 44 316
LPA P, S 51 152
VIC B 50 327
RDJ P, S 52 129
ESK P 77 35
BID S 77 37
EDI P, S 77 35
WBE P 78 38
PAR P, S 81 42
FBR S 81 50
ucc P, S 82 40
ALG P, S 82 54
DBN P, S 82 39
STR P, S 84 42
HAM P, S 85 37
ZUR P, S 85 43
INN P 87 43
FIR P 87 46
VEN S 88 44
RDP P 89 48
VIE P 90 41
PUL P 94 27

ellipse (dashed gray line) overlaps with that of the bootstrap location.
Note that the Engdahl and Villasefior location is within the region of
overlap between the two location error ellipses we have obtained.
These results suggest that the 1924 earthquake occurred near the
western coast of Costa Rica southwest of Orotina and likely did not
involve movement on the Tarcoles fault.

5. Waveform modeling results

We collected seismograms of the 1924 earthquake from seismo-
graph stations located around the world. Information on seismo-
graphs that recorded waveforms of sufficient quality for our
waveform modeling study are given in Table 3. Seismograms were
digitized from scanned images using the SeisDig software package
(Bromirski and Chuang, 2003).

Table 3
Information on seismograph stations used in waveform modeling portion of this study.

Our analysis used the forward modeling technique developed by
Baker and Doser (1988). We modeled vertical P, transverse S
(obtained from rotation of the two horizontal S-wave components)
and vertical PP (using Hilbert transformed PP waveforms following
the method of Ruff and Kanamori (1983)). First-motion observations
at Tacubaya (A=17°) and Pasadena (short-period instrument) were
also used to constrain the starting model (Fig. 3). Our velocity model
at the source was taken from Protti et al. (1995). At the receivers we
used a 3 layer model with 15 km thick upper crust (V,=6 km/s,
Vs=3.5 km/s, p=2600 kg/m>®), a 25 km thick lower crust
(Vp=6.5 km/s, Vs=3.7 km/s, p=2700 1<g/m3), and mantle half
space with V, =8 km/s, V;=4.2 km/s, and p=3300 kg/m>.

The compressional first-motion observations for the 1924 event
(Fig. 3) at stations PAS and TAC in North America suggested a focal
mechanism with a large component of reverse/thrust motion — more
reverse motion than the mechanism published by Jacob et al. (1991)
(dashed lines, Fig. 3). Although we tested a variety of fault orientations,
including the Jacob et al. (1991) mechanism, the observed seismo-
grams were best fit with a thrust fault having a strike similar to that of
the subduction zone (solid lines, Fig. 3). The Jacob et al. mechanism
produced nodal SH waveforms at GTT and did not match the SH
waveform shape at MHC. Our focal mechanism strike is well
constrained by SH waveforms at European stations (308°+15°). A
strike of 318° produces a nodal SH waveform at GTT and a strike of 293°
greatly overestimates SH amplitudes (factor of 3 or more) at all
stations. The angle of dip is low (<30°) but difficult to resolve with
available information. The rake (110 4 15°) is also well constrained by
the European SH waveforms. A rake of 125° greatly overestimates SH
amplitudes in Europe and a rake of 95° produces a nodal waveform at
GTT. The focal depth of 25 4 5 km, combined with a relocation near the
Pacific coast (Fig. 2), places the event near the plate interface (based on
the 3-D models of DeShon et al. (2003)). It was difficult to estimate the
total duration of the earthquake. The minimal estimate of the event's
seismic moment is 4x 10'® N m (M,, = 6.4) and it could be as high as
1.2x10' N m (M,, = 6.7). This is lower than the magnitude estimates
of 6.9 (my,) to 7.0 (Ms) by Abe (1981) for this event.

In order to further verify the focal mechanism of the 1924
earthquake we felt that it would be useful to search for a recent, large
magnitude event that occurred close to the 1924 event and was
recorded at the same seismograph station locations as in 1924. Our
best candidate for this comparison was the March 25, 1990 Nicoya
Gulf earthquake (M,,=7.0) (open circle, Fig. 2) with a focal depth of
~20 km (Protti et al., 1995). Fig. 4 shows seismograms recorded at
stations DBN and PUL for both events. Although the instrumentation is
not exactly the same in 1924 and 1990, the similarities of the
waveform shapes suggest similar mechanisms for the two events. The
1990 event has a longer duration, as expected for an event with
greater moment release.

6. Discussion

Our relocation and waveform modeling results suggest that the
1924 earthquake occurred on a thrust fault near the depth of the plate

Station waveform(s)* Distance (deg), azimuth (deg)

Seismometer period (s)®

Galvanometer period (s)¢ Magnification

De Bilt (DBN) PZ, PPZ, SH 82,39

Gottingen (GTT) SH 85, 32 12
Pulkovo (PUL) PZ, PPZ 94, 27 122
Mt. Hamilton (MHC) SH 43,315 6
Sverdlovsk (SVE) PPZ 54,19 13
Uppsala (UPP) SH 87,30 9

25 (H) 10 (V)

25 (H) 10 (V) 310 (H) 740 (V)

4 (D) 157
13.1 212
11 (D) 300
13 462
4 (D) 187

2 PZ = vertical P, PPZ = vertical PP phase, SH = transverse S.
> H = horizontal component, V = vertical component.

¢ D indicates a mechanically damped seismograph, where D is the damping coefficient.
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Orotina March 4,1924
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Fig. 3. Waveforms (top observed, bottom synthetic) of the 1924 earthquake. See Table 3 for explanation of station abbreviations. Solid lines represent our best-fit mechanism, dashed
lines indicate the mechanism of Jacob et al. (1991). Stars labeled PAS and TAC represent compressional first-motion observations at Pasadena and Tacubaya. Amplitude of source-

time function at lower left has units of 10'® N m/s.

interface in a region southeast of Orotina near the Pacific coast.
Although previous macroseismic studies suggested a location nearer
Orotina (Figs. 1 and 2), these estimates were based on damage to
buildings and secondary effects such as ground deformation, land-
slides, soil failure and liquefaction. Ambraseys and Bilham (2003)
have stated that liquefaction, landslides, and rock falls are not criteria
suitable for the assessment of intensity. Musson (1998) has shown
that even small (M. <4) earthquakes can produce liquefaction.
Rupture directivity may have also played a role in the intensity of
shaking observed in the Orotina and San Jose regions.

Montero's (1999) intensity results are not well constrained
southeast of Orotina due to the lack of population and structures in
that area in the 1920s. Communities such as Parrita and Quepos grew
substantially after 1930 when banana plantations moved from the
Costa Rican Atlantic to Pacific coast due to the effect of disease on
banana production along the Atlantic coast. Indeed, Sapper (1924)
(quoted in Montero (1999)) observed that the 1924 earthquake
caused heavy damage in Herradura, Paquita and Quepos, and he felt
that the epicenter could have been located southeast of Orotina near
the Pacific coast. Montero (1999) indicated that he could not find any
written reports of the damage observed in these localities to verify
Sapper's claims.

Our focal mechanism is also inconsistent with rupture on either
the northeast-southwest striking Tarcoles or north-south striking
Bijagual fault systems near Orotina. The strike of one nodal plane of

our focal mechanism is similar to that of the Candelaria and Jaris
faults, but is inconsistent with the strike-slip nature of these faults.
The focal mechanism is also inconsistent with strike-slip rupture
along faults associated with the east-northeast striking hypothetical
boundary between the Caribbean and Panama microplate. In 2004 the
M,, 6.4 Damas earthquake occurred at 24 km depth (Pacheco et al.,
2006) in a location very near the epicenter we determined for the
Orotina event using the Petroy and Wiens method (black star, Fig. 2).
The Damas event had a strike-slip mechanism with a large component
of normal dip-slip motion that Pacheco et al. (2006) interpret as
representing transtensional deformation of the entire forearc crust.
These observations would suggest that the Orotina event is most
consistent with slip on the plate interface, as none of the mapped
surface faults in the epicentral region is a thrust fault, and the recent
Damas event indicates that transtensional deformation is occurring in
the upper crust.

7. Conclusions

Our relocation and waveform modeling analysis of the 1924 Costa
Rica earthquake suggest that it occurred along the plate interface and
that it represents subduction of the central Costa Rica seamount belt,
similar to recent earthquakes located to the north (1990 Gulf of
Nicoya; Husen et al, 2002) and south (1999 Quepos, Bilek and
Lithgow, 2005) of the 1924 epicentral region. The strong shaking
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/ dbn ew 1924

dbn ew 1990
l' pul pz 1924
l, pul ppz 1924

pul ppz 1990

Fig. 4. Raw (unprocessed) seismograms of the 1924 and 1990 earthquakes recorded at
De Bilt (dbn) and Pulkovo (pul). The arrival of the S (dbn ew), P (pulp z) and PP phase is
indicated by arrows. Seismograms have been scaled to the same horizontal time scale.
Although the seismographs had different responses in 1924 and 1990 and the 1990
event had a greater moment, the initial portions of the waveforms appear similar.

observed in Orotina may have been related to rupture directivity. The
lack of population/settlements in the epicentral region in the 1920s
likely skewed macroseismic locations of this event.
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