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SUMMARY

The proper transmission of DNA in dividing cells is crucial for the survival of eukaryotic organisms. During

cell division, faithful segregation of replicated chromosomes requires their tight attachment, known as

sister chromatid cohesion, until anaphase. Sister chromatid cohesion is established during S-phase in a

process requiring an acetyltransferase that in yeast is known as Establishment of cohesion 1 (Eco1). Inacti-

vation of Eco1 typically disrupts chromosome segregation and homologous recombination-dependent DNA

repair in dividing cells, ultimately resulting in lethality. We report here the isolation and detailed character-

ization of two homozygous T-DNA insertion mutants for the Arabidopsis thaliana Eco1 homolog, CHROMO-

SOME TRANSMISSION FIDELITY 7/ESTABLISHMENT OF COHESION 1 (CTF7/ECO1), called ctf7-1 and ctf7-2.

Mutants exhibited dwarfism, poor anther development and sterility. Analysis of somatic tissues by flow

cytometry, scanning electron microscopy and quantitative real-time PCR identified defects in DNA repair

and cell division, including an increase in the area of leaf epidermal cells, an increase in DNA content and

the upregulation of genes involved in DNA repair including BRCA1 and PARP2. No significant change was

observed in the expression of genes that influence entry into the endocycle. Analysis of meiocytes identified

changes in chromosome morphology and defective segregation; the abundance of chromosomal-bound

cohesion subunits was also reduced. Transcript levels for several meiotic genes, including the recombinase

genes DMC1 and RAD51C and the S-phase licensing factor CDC45 were elevated in mutant anthers. Taken

together our results demonstrate that Arabidopsis CTF7/ECO1 plays important roles in the preservation of

genome integrity and meiosis.
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INTRODUCTION

Precise cell division with transmission of genetic informa-

tion is a key process controlling growth and development

in all eukaryotic organisms (Peters and Bhaskara, 2009).

Chromosomes need to be properly replicated and con-

densed then attached to the spindle fibers in order to be

distributed evenly among daughter cells (D�ıaz-Mart�ınez

and Clarke, 2009). The cohesin complex is critically impor-

tant for these processes. Compliance with this program

ensures the timely growth and development of unicellular

organisms such as yeast, and the proper formation of

tissues and organs in multicellular organisms such as

animals and plants (Skibbens, 2010; Wu et al., 2010).

Proteins from the STRUCTURAL MAINTENANCE OF

CHROMOSOMES (SMC) family and associated non-SMC

factors are essential for the regulation of higher-order chro-

mosomal structure in eukaryotes (Schubert, 2009). The

SMC complexes are mostly composed of canonical SMC

proteins, which contain a globular ATPase head, and kleisin
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subunits that connect the two heads to form a ring that

topologically embraces nascent chromatid fibers (Peters

et al., 2008; Watanabe, 2012). This topological entrapment

allows each chromatid to be used as a template for homol-

ogy-dependent DNA repair during DNA synthesis in the S-

phase (Murakami et al., 2010), and binds sister chromatids

to each other for proper spindle orientation and segregation

during the G2/M phase (Beckouet et al., 2010). Chromosome

cohesion involves cohesin complexes that include SMC3,

SMC1, SCC3 and one of several different kleisins (Schubert,

2009). Cohesins are also important for the repair of DNA

lesions caused by exposure to radiation or chemical agents

post-replication, a task performed by cohesin complexes

that include SMC5, SMC6A/B and the d-kleisins NSE4A/B

(Watanabe et al., 2009; Callegari et al., 2010; Kim et al.,

2010a). Cohesins are also required for the exchange of non-

sister chromatid segments between homologous chromo-

somes during meiosis (Kim et al., 2010b).

The assembly of cohesin rings around chromosomes has

been extensively studied in yeast (Saccharomyces cerevisi-

ae) and humans. In yeast the key regulator of cohesin estab-

lishment is an acetyltransferase known as Establishment of

cohesion 1 (Eco1). Acetylation of key lysine residues K112,

K113 and K84, K210 of SMC1 and SMC3, respectively, by

Eco1 stabilizes the ring and facilitates binding to the a-klei-
sin, Sister chromatid cohesion 1 (Scc1), until anaphase

(Beckouet et al., 2010). Then two sequential events occur,

first the enzyme separase cleaves Scc1 to open the ring, fol-

lowed by deacetylation of SMC1 and SMC3 by Histone

lysine deacetylase 1 (Hos1) to facilitate recycling of SMC1

and SMC3 (Rivera and Losada, 2010).

In humans, point mutations in the Eco1 homolog ESCO2

lead to congenital abnormalities exemplified by Roberts

syndrome (RBS). In RBS patients only 10–20% of cells show

abnormal mitosis; however, all cells are hypersensitive to

DNA-damaging agents and show premature centromere

separation (Vega et al., 2005; van der Lelij et al., 2009; Whe-

lan et al., 2012b). Recent studies on CTF7 in yeast and

mouse Eco1 and Esco2 mutants suggest that mutations in

the C-terminal acetyltransferase domain have little effect on

S-phase cohesion and chromosome segregation, but

increase the sensitivity to DNA-damaging agents, thereby

phenocopying RBS cells (Lu et al., 2010; Whelan et al.,

2012a). Mutations in the N-terminus mostly lead to defects

in cohesion, and often to loss of chromosomes during mito-

sis (Lu et al., 2010; Whelan et al., 2012a). Moreover, in yeast

it has been observed that haploid-strains defective in Eco1

are not able to sporulate, while diploid heterozygous strains

are normal (Rudra and Skibbens, 2012). In mice heterozy-

gous conditional-Esco2 mutants show no phenotype, while

homozygous embryos die at the eight-cell stage (Whelan

et al., 2012b). These findings have led to the suggestion that

Eco1 activity is dosage-dependent (Rudra and Skibbens,

2012; Whelan et al., 2012b), a claim made earlier by

Skibbens (2010) who suggested that a decrease in yeast

Eco1 activity may compromise DNA repair first and chroma-

tid pairing second.

Nothing was known about the biological function of the

Arabidopsis thaliana Eco1 homolog until recently, when Ji-

ang et al. (2010) showed that Arabidopsis CTF7/ECO1

encodes an acetyltransferase with the ability to rescue

yeast eco1 deletion mutants. Arabidopsis CTF7/ECO1

encodes a 345 amino acid protein, which contains a con-

served N-terminal PIP box required to interact with the rep-

lication fork subunit PROLIFERATING CELL NUCLEAR

ANTIGEN (PCNA) and a zinc finger domain, important for

chromatin binding. At the C-terminus of the protein is the

acetyltransferase domain, required to acetylate cohesin

factors (Jiang et al., 2010; Higashi et al., 2012; Rudra and

Skibbens, 2012). Heterozygous ctf7-1 mutants showed

asynchronous female development, while homozygous

embryos were found to arrest before or at the globular

stage. Here, we report the identification and characteriza-

tion of homozygous ctf7-1 and ctf7-2 T-DNA insertion

mutants and show that CTF7/ECO1 is required to establish

sister chromatid cohesion during male meiosis, and to

allow proper cell division in vegetative tissues. We also

show that CTF7/ECO1 is required for DNA repair and dis-

cuss these results in the context of a complex regulatory

network.

RESULTS

Homozygous ctf7-1 and ctf7-2 plants are viable but exhibit

defects in vegetative and reproductive development

It was previously shown that approximately 25% of the

seed in siliques of heterozygous ctf7-1 plants (ctf7-1/+)

exhibit defects in zygote and embryo development includ-

ing arrest by the early globular stage (Jiang et al., 2010),

suggesting that inactivation of Arabidopsis CTF7 results in

embryo lethality. During the analysis of segregating

populations of progeny of the ctf7-1/+ (SALK_059500) and

ctf7-2/+ (SAIL_1214G06) T-DNA lines (Jiang et al., 2010;

Figure 1a), we identified several slow-growing dwarf

plants (Figure 1b). At about the same time analysis of the

subcellular localization of AtCTF7 in Arabidopsis protop-

lasts indicated that AtCTF7 localizes to the nucleus

(Figure 1c), a result that is in agreement with the hypothe-

sis that Arabidopsis CTF7 is an essential nuclear protein

required for growth (Jiang et al., 2010). Indeed, genotyping

indicated that dwarf plants were homozygous for the

T-DNA insert and segregated at a very low frequency

(below 4%), a rate that deviated significantly from a 1:3

Mendelian ratio (Figure 1d). The phenotypes of ctf7-1 and

ctf7-2 homozygous mutants are indistinguishable, there-

fore it was decided to focus efforts on the characterization

of ctf7-1, which had been successfully complemented

using the full genomic sequence of CTF7/ECO1, plus its
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native promoter (Jiang et al., 2010). This line is referred to

as the ctf7-1 complementation line (Com) in this paper.

Quantitative real-time PCR (QPCR) showed that plants

homozygous for either ctf7-1 (ctf7-1 plants) or ctf7-2 (ctf7-2

plants) contain <20% of wild-type (WT) CTF7 mRNA levels

corresponding to exon 5, located downstream of the corre-

sponding T-DNA inserts (Figure 1e). Amplification of CTF7

cDNA with primers spanning the T-DNA insert was not

possible in ctf7-1 plants, suggesting that the ctf7-1 muta-

tion gives rise to truncated versions of the transcript, a

(a)

(b) (c)

(d)

(f) (g)

(h) (i)

(e)

Figure 1. Homozygous ctf7-1 and ctf7-2 plants

are dwarf and exhibit male sterility.

(a) The diagram shows genomic organization

and T-DNA insertion sites in the Arabidopsis

CTF7 locus. Dark boxes represent exons. The

primer sets used for genotyping of both T-DNA

lines (59LP, 59RP and LBP1.3 for ctf7-1; 12LP,

12RP and LB1 for ctf7-2) and quantitative real-

time PCR (1F, 1R, 2F 2R, 3F and 3R) are indi-

cated.

(b) Homozygous ctf7-1 and ctf7-2 plants are

dwarf and fail to develop mature siliques; how-

ever, transformation of ctf7-1 heterozygous

plants with the full genomic sequence of CTF7/

ECO1 allowed normal development in comple-

mentation homozygotes (Com).

(c) The Arabidopsis CTF7/ECO1 protein co-local-

ized with the ERF4 nuclear marker in leaf

protoplasts.

(d) Less than 4% of the progeny of self-

pollinated heterozygous ctf7-1 and ctf7-2 (ctf7-1/

+, ctf7-2/+) plants were homozygous (ctf7-1,

ctf7-2). Segregation of progeny for both T-DNA

alleles was non-Mendelian (not 1:3), and the

respective P-values for the chi square test (with

two degrees of freedom) were highly significant,

suggesting serious developmental defects.

(e) Quantitative real-time PCR experiments with

primers complementary to exons 3, 4 and 5,

which flank the T-DNA inserts in ctf7-1 and

ctf7-2 indicated a significant reduction in CTF7/

ECO1 expression downstream of the respective

T-DNA insert, while the ctf7-1 complementation

line (Com) showed values similar to wild type

(WT). Results are shown as means � SD (n = 3)

from three biological samples. Asterisks repre-

sent significant differences (*P < 0.5, **P < 0.01;

Student’s t-test) relative to WT.

(f) After anthesis, free pollen grains were easily

identifiable on the surface of WT stigma, but not

on ctf7-1. Distribution of the petals, sepals and

anthers was also affected in ctf7-1 flowers.

(g) Aniline blue-stained self- and reciprocal-

pollinated pistils showed normal elongation

of pollen tubes from WT, ctf7-1 heterozygous

(ctf7-1/+), and the ctf7-1 complementation line

(Com) inside wild-type and ctf7-1 pistils, but no

seed was recovered in the latter. No elongating

pollen tubes were found inside either WT or

ctf7-1 pistils after pollination with ctf7-1 pollen

grains.

(h) Compared with the WT, siliques of heterozy-

gous ctf7-1 and ctf7-2 plants contained a higher

percentage of defective/aborted seeds. Never-

theless, ctf7-1 and ctf7-2 plants only produced

immature siliques without normal seeds.

(i) Counts of seeds per silique indicate recovery

of seed development in the ctf7-1 complementa-

tion line (Com), while ctf7-1 and ctf7-2 homozyg-

otes show complete sterility. Scale bars = 1 cm

for (b), 10 lm for (c), 0.5 mm for (f) and (h),

0.25 mm for (g).
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situation previously observed in mutations for human

ESCO2 (Vega et al., 2005).

Developmental defects are widespread in ctf7-1 and ctf7-2

seedlings, including defects in the distribution of leaves on

the stem (e.g. phyllotaxy). In the WT all leaves are

arranged in a spiral, while in ctf7-1 and ctf7-2 this arrange-

ment shows modifications, including additional basal

leaves and clusters of modified, small rosette leaves

(Figure S1a). Defects in root development were also

observed, including reduction in the length of the elonga-

tion zone and root swelling (Figure S1b).

The morphology of ctf7-1 flowers was also abnormal,

with enlarged papillae, defective anthers and a very limited

amount of pollen (Figure 1f). Crossing experiments

showed that mutant stigmas allowed the germination of

WT pollen, but no mature siliques were recovered after

pollination, suggesting that both male and female gameto-

phytes are defective in ctf7-1 (Figure 1g). No defects were

observed in the germination of pollen from the ctf7-1

complementation line or ctf7-1/+ plants (Figure 1g), sug-

gesting that ctf7-1 heterozygous plants are not defective in

the development of mature microspores.

Unlike heterozygous ctf7-1 and ctf7-2 plants, mature

siliques of ctf7-1 and ctf7-2 plants were unable to develop

viable seeds (Figures 1h,i). Approximately 22% of the ctf7-1/

+ seed reaches full size but the embryos arrest by the glob-

ular stage (Jiang et al., 2010); however, in ctf7-1 and ctf7-2

all seeds are developmentally arrested before cellulariza-

tion of the endosperm (Figure 1h). Analysis of emasculated

flowers suggested that unlike the case in WT siliques,

unfertilized ctf7-1 and ctf7-2 ovules degrade within 2 days

of emasculation of the anthers (Figure S1c).

CTF7/ECO1 is essential for microsporogenesis

Reciprocal pollination experiments showed that ctf7-1 pol-

len is defective. Alexander staining revealed a reduction in

the size and number of viable pollen grains in ctf7-1 and

ctf7-2 anthers, which was not observed in heterozygous

anthers. Pollen from ctf7-1 and ctf7-2 is poorly stained due

to the lack of cytoplasm (Figure S2a). Staining with fluores-

cein diacetate (Heslop-Harrison and Heslop-Harrison, 1970)

revealed that <6% of ctf7-1 and ctf7-2 pollen was viable, as

opposed to over 85% in the WT and the complementation

and heterozygous lines (ctf7-1/+, ctf7-2/+) (Figure S2b).

Also, staining with the DNA dye 4′,6-diamidino-2-phenylin-

dole (DAPI) indicated that <4% of ctf7-1 and ctf7-2 pollen

fully develops into mature tricellular pollen (Figure S2c).

This prompted us to examine anther and pollen develop-

ment in ctf7-1 and ctf7-2 plants.

Anther development in Arabidopsis starts with the

formation of bilateral primordia that features locules, and

vascular tissue (stages 1–4). Once the primordia are estab-

lished, archesporial cells within the anther give rise to the

endothecium, middle layer, tapetum and pollen mother

cells (stage 5). At this stage ctf7-1 anthers already appear

smaller than in the WT (Figure 2a). Alterations in micro-

sporogenesis were first observed during stages 6 and 7

when normally meiosis is completed and tetrads are

formed. Irregular division of pollen mother cells (stage 6)

and the formation of irregular tetrads (stage 7) were

observed in ctf7-1 anthers. Anthers in ctf7-1 remained

smaller than in WT as development continued, and devel-

opment of the connective tissue appeared compromised

as well. After the release of microspores at stage 8, the

anthers of WT and ctf7-1 continued to develop in a similar

fashion; the microspores became vacuolated and the tape-

tum degenerated (stages 9 and 10). However, at stage 11,

when microspores normally enter into mitosis and the sto-

mium and septum degrade, ctf7-1 microspores appeared

shrunken and there was no noticeable degradation of the

stomium and septum. By stage 12, WT anthers contained

fully developed tricellular pollen and the anthers were

undergoing anthesis. In contrast, most ctf7-1 pollen

appeared dead and no opening of the stomium and sep-

tum was observed.

Finally, severe defects in the ultrastructure of ctf7-1 and

ctf7-2 pollen were observed, including the relative absence

of an electron-dense cytoplasm, vegetative nuclei and

sperm cells (Figure 2b). These results demonstrate that

microsporogenesis and anthesis are defective in ctf7

homozygous mutants.

ctf7-1 male meiocytes display defects in chromosome

condensation, sister chromatid cohesion and the

distribution of cohesin proteins

Based on observations in other systems (Baudrimont et al.,

2011; Rudra and Skibbens, 2012), we expected that inacti-

vation of CTF7 should block the establishment of sister

chromatid cohesion and result in meiotic defects. In order

to investigate this possibility we analyzed meiotic chromo-

some spreads in ctf7-1 plants. Alterations were observed

from the earliest stages examined, with the first noticeable

difference between ctf7-1 and WT plants being the pres-

ence of fewer meiocytes overall throughout meiosis. It is

not clear if this is due to the fact that the plants are smaller

and less healthy, or if some ctf7-1 microsporocytes arrest

and abort prior to meiosis. Some variability was also

observed in the phenotypes at different stages of meiosis,

with some meiocytes appearing relatively normal; how-

ever, most meiocytes shared common phenotypes, which

are described below. During pre-leptotene, WT chromo-

somes showed faint labeling of chromosomes with chro-

mocenters that stain deeply (Ross et al., 1997; Figure S3a

for WT), while in ctf7-1 plants no chromosome axes were

recognizable and the chromocenters stained very faintly

(Figure 3a). Similar to WT, chromosome condensation was

observed during leptotene in ctf7-1, although at somewhat

reduced levels (Figures 3b and S3b for WT). During
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zygotene, chromosome alignment was reduced in ctf7-1

(Figures 3c and S3c for WT) and ultimately a mixture of

unpaired and unevenly paired chromosomes were

observed at pachytene (Figures 3d S3d for WT). During dip-

lotene, a decondensed mass of chromatin was typically

observed in ctf7-1; no individual separated chromosomes

were visible (Figures 3e and S3e for WT). In contrast to the

five bivalents observed in WT at diakinesis (Mercier et al.,

2005; Figure S3f for WT) a mixture of uncondensed

chromatin, unpaired chromosomes and possibly some

bivalents were observed in ctf7-1 (Figure 3f). Beginning at

diplotene and diakinesis and continuing through meiosis II,

ctf7-1 meiocytes typically appeared less condensed than

their WT counterparts. A relatively small number of cells

(10%) also appeared to contain extra chromosomes

(Figures 3e–g and S3e–g for WT), although it is not clear

whether this was caused by defects in chromosome segre-

gation or DNA replication.

During metaphase I a mass of DNA, possibly chromo-

somes, congregated at the equatorial plane in ctf7-1;

(a)

(b)

Figure 2. Anther dehiscence and microsporogenesis are defective in homozygous ctf7-1 plants.

(a) Sections of developing anthers revealed that ctf7-1 had multiple anther developmental defects, including: a reduction in anther size (all stages), unsynchro-

nized release of free tetrads (stage 7), release of irregular microspores (stage 8), lack of pollen mitosis II (stage 10) and failure of the septum (Sn) and stomium

(St) to degenerate during anthesis (stage 12).

(b) Left, transmission electron microscopy showed that homozygous ctf7-1 and ctf7-2 pollen grains were smaller, lacked cytoplasm, a vegetative nucleus and

sperm cells. Right, staining with DNA dye 4′,6-diamidino-2-phenylindole (bottom) confirmed that ctf7-1 and ctf7-2 pollen lack identifiable vegetative nuclei and

sperm cells, unlike wild-type (WT) pollen where vegetative nuclei and sperm cells were clearly observed. T, tapetum; PMC, pollen mother cell; StR, stomium

regium, E, epidermis; En, endothecium; ML, middle layer; V, vascular tissue; C, connective tissue; MC, meiotic cell; Td, tetrad; Msp, microspore; Sm, septum;

PG, pollen grain; Fb, fiber bands, St, stomium. Scale bars: in (a), 25 lm for stages 5–8 and 50 lm for stages 9–12; in (b) left 50 lm and right 2 lm.

© 2013 The Authors
The Plant Journal © 2013 John Wiley & Sons Ltd, The Plant Journal, (2013), 75, 927–940

Arabidopsis CTF7 is required for microsporogenesis 931



however, individual chromosomes and/or bivalents were

difficult to identify (Figures 3g and S3g for WT). In contrast

to WT (Figure S3h), chromosomes of ctf7-1 did not segre-

gate evenly at anaphase I, resulting in chromosome

bridges, lagging chromosomes and a random distribution

of chromosomes (Figure 3h). At telophase I in ctf7-1 indi-

vidual chromosomes could be identified while the orga-

nelle band in the equatorial region of the cells was diffuse

and difficult to visualize (Figures 3i and S3i for WT). At

metaphase II and anaphase II the chromosomes were irreg-

ularly scattered around the cell in ctf7-1 (Figures 3j–k and

S3j–k for WT). Finally, at telophase II, nuclear membranes

formed around random groups of DNA resulting in

polyads in ctf7-1 (Figures 3i and S3i for WT).

To further investigate meiosis, and in particular sister

chromatid cohesion and chromosome pairing, in situ

hybridization was conducted with the 180 bp centromere

(CEN) repeat as a probe (Armstrong et al., 2001) (Data S1).

In leptotene, approximately 10 unpaired and well-

dispersed CEN signals were observed in WT (11 � 2,

n = 10), while in ctf7-1 irregular CEN signals were typically

observed (Figure S4a). By zygotene, the number of CEN

signals was reduced to approximately 5 � 1 (n = 10) in

WT. In ctf7-1 roughly double the number of CEN foci

(12 � 1, n = 7) were observed, consistent with a defect in

synapsis (Figure S4b). Increased CEN foci (8 � 1, n = 4),

were also observed during pachytene in ctf7-1; in addition

the signals were more dispersed and less well defined than

in WT, often appearing not as discrete foci but rather as

long extended segments. Five easily identifiable CEN foci

were observed in WT cells at diakinesis; however, 20

or more CEN signals were typically found in ctf7-1

(Figure S4d).

During late metaphase I/early anaphase I, five pairs of

CEN signals (9.1 � 1, n = 10) were observed in WT, while

over 20 CEN signals appeared randomly dispersed around

the nucleus in ctf7-1 (Figure S4e). By late anaphase I

masses of DNA, some without CEN signals, some with two

signals, and clusters of CEN signals were observed in ctf7-

1 (Figure S4f). Later in development, ctf7-1 microspores

containing varying numbers of CEN signals, some with 20

or more signals, could be observed (Figure S4g). ‘Extra’

CEN signals were also observed in interphase nuclei of

some anther somatic cells of ctf7-1 plants (Figure S4h). In

contrast WT microspores and interphase anther cells

always contained five and 10 CEN foci, respectively.

We next investigated the loading and distribution of the

SYN1 and SMC3 cohesin proteins on chromosomes of

ctf7-1 meiocytes. As has been demonstrated previously,

SYN1 and SMC3 display similar distribution patterns on

WT meiotic chromosomes (Yang et al., 2011a,b; Figures 4

and S5 for WT). Diffuse nuclear labeling is observed at

interphase. Beginning at early leptotene and extending into

zygotene both proteins decorated the developing WT chro-

mosomal axes. During late zygotene and pachytene the

proteins lined the synapsed chromosomes. As meiosis

progressed from diplotene to diakinesis the chromosome-

associated cohesin signals became progressively weaker

and more diffuse.

Similar to our observations in the chromosome spread-

ing and CEN fluorescence in situ hybridization experi-

ments, approximately half of the ctf7-1 meiocytes

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Homozygous ctf7-1 male meiocytes are defective in chromosome

pairing and segregation. 4′,6-Diamidino-2-phenylindole stained male meio-

cytes from ctf7-1 plants are shown. A number of alterations are observed.

(a) Pre-leptotene. Chromosomes of ctf7-1 failed to distribute in the nuclear

periphery.

(b) Leptotene. Chromosomes failed to form condensed threads and

remained in a scattered pattern.

(c) Zygotene. Chromosomes of did not pair and align along the chromo-

some axis and the recombination foci were poorly observed.

(d) Pachytene. Defects in synapsis with unpaired regions were observed.

(e) Diplotene. Alterations in chromosome condensation with a mixture of

unpaired chromosomes.

(f) Diakinesis. A mixture of unpaired chromosomes, univalents and potential

chromosome fragments were observed.

(g) Metaphase I. Individual bivalents were not observed. Many meiocytes

appeared to contain ‘extra’ chromosomes.

(h) Anaphase I. Chromosomes failed to segregate properly. Lagging chro-

mosomes and chromosome bridges were observed.

(i) Telophase I. Chromosomes failed to condense properly at the poles, and

lagging chromosomes were observed throughout the cell.

(j) Metaphase II. Chromosomes did not align properly at the equatorial

planes and remained scattered in the meiocyte.

(k) Anaphase II. Chromosomes failed to segregate properly.

(l) Telophase II. Polyads were observed. Scale bars = 10 lm.
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displayed relatively normal SYN1 and SMC3 labeling pat-

terns. However, in most cells the labeling for both proteins

was very weak and irregular (Figures 4 and S5). Very little

SMC3 and SYN1 signal was present in the nucleoplasm at

interphase (Figures 4a and S5a for WT). Diffuse labeling of

the chromatin was first observed during leptotene

(Figures 4b and S5b for WT), with some labeling of thread-

like structures in some cells during early zygotene

(Figures 4c and S5c for WT). However, in most cases the

SYN1 and SMC3 signals were diffuse and became progres-

sively weaker as meiosis progressed into pachytene, diplo-

tene and diakinesis stages (Figures 4d–g and S5d–g for WT).

Several key genes for DNA repair and cell cycle

progression are upregulated in ctf7-1 plants

In addition to its critical role in the establishment of sister

chromatid cohesion during DNA replication, CTF7/ECO1

may be involved in DNA repair and cell cycle progression

(Lu et al., 2010; Lyons and Morgan, 2011). We therefore

investigated the effect of the ctf7-1 mutation on the expres-

sion of a number of genes required for DNA repair and cell

cycle progression. A pathway analysis using AraNet (Lee

et al., 2010) suggested a strong functional linkage for these

genes (P = 1.054 9 10�82). The relative expression levels of

the selected genes were measured in triplicate through

QPCR. As shown in Figure 5, large and statistically signifi-

cant increases (greater than four-fold) in transcript levels

were observed for several genes in ctf7-1 plants, including:

ATM (a kinase), BRCA1 (a ubiquitin ligase), PARP2 (a poly-

merase), RAD51 (a gene involved in homology-dependent

DNA repair), CYCB1;1 (a G2/M checkpoint gene) and

TOPOII-a (a topoisomerase) (Xie and Lam, 1994; Garcia

et al., 2003; Preuss and Britt, 2003; Takahashi et al., 2010;

Thomson and Guerra-Rebollo, 2010). Smaller increases

(approximately two-fold) were observed for SMC5, SMC6B

and SRS2 (a helicase) (Ira et al., 2003; Watanabe et al.,

2009), while no significant change was observed for ATR (a

kinase involved in single-strand break repair) (Yoshiyama

et al., 2009), the M-phase checkpoint genes MAD2 and

NQK1 (Takahashi et al., 2010) and the gene CDKA1, which

regulates the transition from mitosis to endocycle (Diss-

meyer et al., 2007). Expression of other topoisomerases

was not detected in either WT or ctf7-1 samples, including

TOPOI-a, and TOPOI-b (Takahashi et al., 2002).

Given the developmental defects observed in ctf7-1

meiocytes the transcript level of highly expressed meiotic

genes (Yang et al., 2011b) was measured by QPCR as well.

As shown in Figure 6, statistically significant increases in

transcript levels were observed for ATM and ATR, BRCA2B,

RAD51C, DMC1, SMC1 and SMC3, and CDC45, a gene that

codes for an S-phase licensing factor and is required for

meiosis (Stevens et al., 2004). No significant increase was

observed for the mitotic checkpoint gene BUB1.3. Expres-

sion of several other genes was not detected, including

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4. SYN1 exhibits an altered distribution pattern in homozygous ctf7-1

male meiocytes. Merged images of 4′,6-diamidino-2-phenylindole stained

chromosomes (red) and SYN1 (green) are shown.

(a) Interphase. SYN1 is distributed throughout the nuclei of wild type (WT)

male meiocytes; in contrast little or no SYN1 was observed within the nuclei

of ctf7-1.

(b) Leptotene. SYN1 decorated WT chromosome filaments as they started to

condense, while in ctf7-1 only labeling is weak and diffuse.

(c), (d) Early and late zygotene. SYN1 decorates WT chromosome axes as

chromosomes start to synapse.

(e) Pachytene. SYN1 lined the synapsed WT bivalents, but in ctf7-1 the label-

ing remained weak and diffuse.

(f) Diplotene. SYN1 continues to label WT bivalents, while in ctf7-1 both pro-

teins appear as scattered, punctuate foci.

(g) Diakinesis. Chromosome-associated SYN1 begins to weaken in WT and is

absent in ctf7-1 nuclei. Scale bars = 10 lm.
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SRS2, mitotic topoisomerases TOPOII-a, TOPOI-a, TOPOI-b
(Takahashi et al., 2002), meiotic TOPO III-a (Hartung et al.,

2008) or endoreplication factor MYB3R4 (Takahashi et al.,

2010).

The ability of ctf7-1 plants to repair DNA double breaks

was tested using the comet assay (Kozak et al., 2009)

(Data S2), which has been employed in Arabidopsis

mutants with defects in either chromosome cohesion or

DNA repair proteins (Takahashi et al., 2010). Seven-day-old

WT and ctf7-1 seedlings were exposed to a bleomycin

solution (50 lg ml�1) for 1 h and the percentage of DNA

present in nuclei tails after recovery times of 0, 30 and

60 min was used to estimate the level of double-strand

breaks remaining in each sample (Figure S6). In WT most

double-strand breaks were repaired after 30 min and only

approximately 29% remained after 1 h. In contrast approxi-

mately 79% of all double-strand breaks remained unre-

paired after 1 h in ctf7-1 plants, indicating that CTF7/ECO1

is required for DNA repair in Arabidopsis.

ctf7-1 and ctf7-2 plants are defective in mitotic cell cycle

progression

The extreme dwarf phenotype of ctf7-1 and ctf7-2 plants

suggested that, similar to the situation in yeast (Moldovan

et al., 2006), Arabidopsis CTF7 plays an important role in

cell cycle progression. To determine if ctf7-1 and ctf7-2

cells show cell cycle arrest, we analyzed the morphology

and density of pavement and stomata cells in the first true

leaves of 7-day-old seedlings by cryo-scanning electron

microscopy (cryo-SEM). In WT, pavement and stomata

cells were small (Figure 7a), developed at a density of 1070

and 590 cells mm�2 (Figure 7b) and covered an approxi-

mate area of 892 lm2 (for pavement cells) and 88.0 lm2

(for stomata) (Figure 7c). Similar values were observed for

the ctf7-1 complementation line (Com) (Figure 7a,b). In

cells of ctf7-1 and ctf7-2 there was a significant reduction

in the density of both pavement cells (580 cells mm�2),

and stomata (250 cells mm�2) (Figure 7b), accompanied by

a significant increase in the average area of pavement cells

(1300 lm2 per cell) (Figure 7c); however, no change was

observed in the area of stomatal cells under cryo-SEM.

Mitotic cell cycle progression was further examined by

analyzing the DNA content of leaf cells. Intact nuclei were

isolated from the first leaves of 7-day-old plants, followed

by flow cytometry. In WT and complementation line

samples, approximately 71–73% of all nuclei had a haploid

DNA content of 2, ‘2C’, which reflects normal entry into

mitosis and cell division (Figure 7d). Approximately 16–

17% of WT and complementation line nuclei showed a 4C

value, which represents those cells that have completed

DNA replication but have not entered the G2/M phase. In

contrast, 55–56% of ctf7-1 and ctf7-2 nuclei showed a 4C

value (Figure 7d), suggesting a defect in the ability of cells

to advance into M-phase after DNA replication.

ctf7-1 and ctf7-2 plants are defective in mitotic

chromosome segregation

In order to obtain direct evidence of the role of Arabidopsis

CTF7/ECO1 in mitotic chromosome segregation, root tips

were excised from 2-week-old seedlings corresponding to

WT, Com, ctf7-1 and ctf7-2. As observed in Figure 8, it was

possible to observe cell division from interphase to

telophase. In both WT and Com, 10 chromocenters were

observed during interphase (Figure 8a,e), which corre-

sponds to a diploid number of chromosomes, while in

Figure 5. DNA-repair genes are upregulated in leaf tissue of ctf7-1.

Complementary DNAs from 1-week-old wild-type (WT) and ctf7-1 seedlings

were generated and used in quantitative real-time PCR. Transcript levels of

ATM, PARP2, BRCA1, RAD51, SMC5, TOPOII-a and CYCB1;1 are elevated in

ctf7-1. Data are shown as means � SD (n = 3) from three biological

samples. Asterisks represent significant differences (*P < 0.5, **P < 0.01,

***P < 0.001; Student’s t-test) relative to WT.

Figure 6. DNA recombination and canonical cohesin subunit genes are

upregulated in meiocytes of ctf7-1.

Complementary DNAs were isolated and amplified from ctf7-1 seedlings

and used in quantitative real-time PCR. Transcript levels of ATM, ATR,

RAD51C, BRCA2B, DMC1, SMC1, SMC3 and CDC45 are elevated in ctf7-1.

Data are shown as means � SD (n = 3) from three biological samples.

Asterisks represent significant differences (**P < 0.01, ***P < 0.001;

Student’s t-test) relative to wild type (WT).
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ctf7-1 (Figure 8i) and ctf7-2 (Figure 8m) the chromocenters

often appeared decondensed and in some cases an excess

of 10 chromocenters was observed. During metaphase, WT

(Figure 8b) and Com (Figure 8f) cells typically displayed 10

condensed chromosomes; however, chromosomes in cells

of ctf7-1 (Figure 8j) and ctf7-2 (Figure 8n) appeared less

condensed and irregularly shaped. At anaphase, WT

(Figure 8c) and Com (Figure 8g) cells showed even segre-

gation of chromosomes, and individual chromosomes

could be recognized, while chromosomes in cells of ctf7-1

(Figure 8k) and ctf7-2 (Figure 8o) looked intertwined and

stretched, and condensation was defective. In telophase,

WT (Figure 8d) and Com (Figure 8h) cells showed segrega-

tion of chromosomes into two well-condensed masses of

equal size, but in ctf7-1 (Figure 8l) and ctf7-2 (Figure 8p)

chromosome bridges persisted and the chromosomes

often recondensed into a single unevenly shaped mass of

DNA (Figure 8l,p). In fact chromosome segregation in

homozygous ctf7-1 and ctf7-2 mitotic cells is statistically

different from WT (P < 0.001, Student’s t-test) and shows

defective chromosome segregation (Figure 8q). Taken

together these results suggest that CTF7/ECO1 plays a

critical role in the regulation of chromosome segregation

during mitotic cell division.

DISCUSSION

Accumulating evidence suggests that assembly of cohe-

sion rings around nascent chromatids allows efficient DNA

repair during mitosis by guaranteeing the availability of an

intact template (Schubert et al., 2009). In yeast and mam-

mals, a direct link exists between acetylation of cohesin

rings and cohesion (Peters and Bhaskara, 2009). Acetyla-

tion of cohesin rings occurs at conserved lysine residues in

SMC proteins during S phase and to a lesser extent during

the G2/M phase (Onn et al., 2009). Further, establishment

of cohesion requires functional interactions with subunits

of the replication fork (Sherwood et al., 2010). In yeast this

process is regulated by the acetyltransferase Eco1, which

targets both SMC subunits and the PCNA subunit of the

replication fork (Sherwood et al., 2010).

In contrast to budding yeast, very little is known about

the role of Arabidopsis CTF7/ECO1. In this study we char-

acterized the roles of Arabidopsis CTF7/ECO1 in both mito-

sis and meiosis by characterizing plants homozygous for a

T-DNA insertion in AtCTF7/ECO1 (ctf7-1 and ctf7-2). Given

that CTF7 is a single-copy gene in Arabidopsis and com-

plete inactivation of CTF7 is typically lethal, our ability to

obtain plants homozygous for the T-DNA insertion was

(a)

(b)

(d)

(c)

Figure 7. Leaves of ctf7-1 and ctf7-2 mutant

seedlings are defective in mitotic cell division.

(a) Cryo-scanning electron microscopy revealed

a dramatic increase in cell size of ctf7-1 and

ctf7-2 pavement cells (adaxial).

(b) Statistical quantification of average pave-

ment cell area.

(c) Total cell number per 1 mm2 leaf area.

(d) Flow cytometry analyses of leaf cells’ DNA

content (‘C’) showed a significant increase

(‘4C’) in ctf7-1 and ctf7-2. Data are shown as

means � SD (n = 100 for B and C, and 10 000

for D) from three biological samples. Asterisks

represent significant differences (**P < 0.01,

***P < 0.001; Student’s t-test) relative to wild

type (WT).
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unexpected. The presence in ctf7-1 and ctf7-2 plants of rel-

atively normal levels of transcript having the potential to

encode the N-terminus of the protein, and reduced but

detectable levels of RNA encoding the C-terminus (which

comprises the acetyltransferase domain), raises the possi-

bility that truncated forms of the protein may be produced

in some cells, which allows some nuclear division. While

further experiments are required to determine if partially

functional forms of the protein are formed, the possibility

that low levels of CTF7 activity are present in at least some

cells is consistent with the fact that we observe severe

defects in development and DNA repair first, and some-

what milder defects in chromosome cohesion during

nuclear division. A dosage effect has been observed for

cohesins in other organisms (Rudra and Skibbens, 2012),

and this also appears to be the case for Arabidopsis. Plants

heterozygous for ctf7-1 and ctf7-2 showed defects during

female gametophyte development, which requires three

rounds of mitosis (Figure S1c), but no developmental

defects were found in microspores, which require only two

rounds of mitosis (Figure S2b) (Chang et al., 2011). Also no

obvious defects in vegetative growth were detectable in

heterozygous plants, which is consistent with the hypothe-

sis that a small reduction in acetyltransferase activity does

not have a significant impact on either cohesion or cell

division (Whelan et al., 2012a). However, ctf7-1 homozy-

gous plants had severe defects in male gametophytic

development, including defects in anther development

(Figure 2), defects in SMC3 and SYN1 binding to meiotic

chromosomes (Figures 4 and S5) and dramatically reduced

cohesion at centromeres (Figure S4). Alterations in cohe-

sion distribution can affect synaptonemal complex for-

mation and impair RAD51-mediated formation of chias-

mata (Longhese et al., 2009), resulting in defective pollen

(q)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 8. Staining with 4′,6-diamidino-2-phenylin-

dole reveals defective chromosome segregation

in homozygous ctf7-1 and ctf7-2 mitotic root tip

cells.

Interphase cells in both wild type (WT) (a) and

the ctf7-1 complementation line (Com, e) show

approximately 10 chromocenters corresponding

to a diploid number of chromosomes. In cells

of ctf7-1 (i) and ctf7-2 (m) the chromocenters

often appeared decondensed and in some

instances in excess of 10 chromocenters are

observed. In metaphase, WT (b) and Com (f)

cells typically show 10 condensed chromo-

somes; however, chromosomes in cells of ctf7-1

(j) and ctf7-2 (n) appear less condensed and

irregularly shaped. In anaphase, WT (c) and

Com (g) cells show even segregation of chro-

mosomes, and individual chromosomes can be

recognized, while chromosomes in cells of ctf7-1

(k) and ctf7-2 (o) appear intertwined and

stretched; condensation is also defective. In

telophase, WT (d) and Com (h) cell chromo-

somes segregate into two well-condensed

masses of equal size, but in ctf7-1 (l) and ct7-2

(p) chromosome bridges persist and the chro-

mosomes often recondense into a single

unevenly shaped mass of DNA (l, p). Chromo-

some segregation in homozygous ctf7-1 and

ctf7-2 mitotic cells is statistically different from

WT and shows defective chromosome segrega-

tion (q). Data are shown as means � SD

(n = 100) from 40 biological samples. Asterisks

represent significant differences (***P < 0.001;

Student’s t-test) relative to WT. Scale

bars = 10 lm.
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formation and sterility, as we observe in ctf7-1 (Figures 2

and 1h,i).

Homozygous ctf7-1 and ctf7-2 plants are dwarf

(Figure 1c), suffer from cell cycle arrest (Figure 7d) and are

unable to segregate chromosomes properly during mitotic

cell division (Figure 8). Moreover, leaf cells from ctf7-1

plants are unable to efficiently repair DNA double-strand

breaks (Figure S6) and contain elevated levels of tran-

scripts of genes required for double-strand break repair

(Figure 5), such as the effector kinase gene Ataxia Telan-

gietasia Mutated (ATM), polymerase PARP2, recombina-

tion mediator RAD51, cohesin subunit SMC5 and

checkpoint regulators such as BRCA1 and CYCB1;1 that

trigger arrest at the G2/M phase (Garcia et al., 2003;

Schubert et al., 2009; Yoshiyama et al., 2009). The anthers

of ctf7-1 plants contained elevated transcript levels for a

number of genes, including the ATR kinase, the meiotic re-

combinase gene DMC1 and its associated factor RAD51C,

cohesin subunits SMC1 and SMC3, BRCA2B and the

Minichromosome Complex Maintenance (MCM) subunit

gene CDC45, which is required for proper meiotic entry

into S phase (Stevens et al., 2004). ATR is required for the

loading of meiotic recombinases (Kurzbauer et al., 2012).

Therefore elevated transcript levels of ATR, RAD51C and

DMC1 suggest that ctf7-1 plants may experience DNA

recombination stress. Interestingly, changes in the activity

of CDC45, RAD51C and BRCA2 have all been linked to

chromosomal fragmentation due to pre-replicative stress

and the failure to perform homologous recombination

(Stevens et al., 2004; Abe et al., 2005; Kurzbauer et al.,

2012), a phenotype similar to what we observe in ctf7-1

meiocytes.

Taken together, these results suggest that CTF7/ECO1 is

extremely important for mitotic cell cycle progression,

meiosis, mitosis and DNA repair in Arabidopsis. The dra-

matic developmental defects observed in ctf7-1 plants are

not observed in humans containing ESCO mutations,

which induce defects in cohesion and DNA damage repair

but not in chromosome segregation (van der Lelij et al.,

2009). A role for ESCO2 in human meiosis has remained

mostly hypothetical (Hogarth et al., 2011). Likewise, in Dro-

sophila melanogaster, Eco1 homologs are required for

checkpoint activation and chromatid cohesion (Williams

et al., 2003), but a role in meiosis has not been demon-

strated (Pimenta-Marques et al., 2008).

Interestingly, somatic cells of ctf7-1 plants contained

transcript levels for topoisomerase II-a, which is the only

eukaryotic enzyme known to mediate topological responses

to a loss of cohesion by controlling the amount of catena-

tion in replicated DNA (Ryu et al., 2010). Upregulation of

this gene raises the possibility that loss of CTF7-dependent

cohesion may induce an increase in the activity of topo-

isomerase II-a as a compensatory process that restores a

certain degree of cell division and allows Arabidopsis ctf7-1

mutants to remain viable, as has been reported in human

HeLa cells defective in cohesion (D�ıaz-Mart�ınez et al., 2006).

In fact, a positive reinforcing relationship between DNA cat-

enation and cohesin-mediated cohesion has been proposed

in yeast (Farcas et al., 2011).

Finally, some of the observed developmental defects

may be the result of impaired acetylation of proteins

other than SMC1 and SMC3. The Arabidopsis genome

harbors several SMC-like genes that have been show to

affect organ development, gene expression and chroma-

tin compaction (Schatlowski et al., 2010; Moissiard et al.,

2012) and whose relationship with CTF7/ECO1 has not

yet been determined. For instance the condensin subunit

SMC2A/CAP-E1 has been shown to play an important

role in meiosis (Siddiqui et al., 2003), while condensin

subunits HEB1 and -2 directly influence root and root

hair development under boron stress (Sakamoto et al.,

2011).

In conclusion we have shown that Arabidopsis CTF7/

ECO1 plays critical roles in meiosis, mitosis and DNA

repair and is essential for microsporogenesis and anther

development. While further work is required to dissect the

regulatory mechanism of Arabidopsis CTF7/ECO1 the avail-

ability of plants homozygous for CTF7 mutations provides

a valuable system for studying this important enzyme.

EXPERIMENTAL PROCEDURES

Plant material and growth

The WT (ecotype Columbia) and T-DNA insertional lines,
SALK_059500 (ctf7-1), and SAIL_1214G06 (ctf7-2) were obtained
from the Arabidopsis Biological Resource Center (Columbus, OH,
USA; http://abrc.osu.edu). Seeds were surface sterilized in 30%
sodium hypochlorite and germinated on half-strength Murashige
and Skoog medium without sucrose, followed by stratification at
4°C for 96 h in the dark. Seedlings were grown at 21°C under a 16-h
photoperiod and 60% relative humidity for approximately 5 days
after the emergence of the radicle. Seedlings were then genotyped
following emergence of either cotyledons or first true leaves and
used for the experiments. The remaining seeds were germinated
on soil to further characterize the phenotype of the mutants.

Molecular analysis of CTF7/ECO1

The Arabidopsis At4g31400 locus was first selected for study dur-
ing a screen for potential gametophytic mutants. The T-DNA lines
SALK_059500 (ctf7-1) and SAIL_1214G06 (ctf7-2) were selected in
this study, since previous work showed that both independent
lines display a similar phenotype and line ctf7-1 could be success-
fully complemented by transformation with the Gateway binary
vector pFGC5941 carrying the full genomic sequence of At4g31400
(Jiang et al., 2010). Genomic DNA was extracted from segregant
ctf7-1 and ctf7-2 T3 seedlings. Plants were genotyped with specific
primer pairs for their corresponding T-DNA inserts and WT locus.
At least five independent complementation lines were analyzed
using specific primers for the ctf7-1 insertion, for the pFGC5941
vector and for exons 3, 4 and 5 of CTF7/ECO1. Resistance to Basta,
and plant fertility were also analyzed. The complete list of primers
used can be found in Table S1.
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Morphological characterization of ctf7-1 and ctf7-2

Images of seed set were recorded after dissection of at least 30 sil-
iques from 7-week-old plants under a Carl Zeiss stereo Lumar V12
fluorescence stereomicroscope (Carl Zeiss, http://microscopy.
zeiss.com/microscopy) connected to a Carl Zeiss AxioCam MRc5
CCD unit. Whole anther morphology was analyzed by staining
with Alexander staining for 24 h at 50°C (Alexander, 1969) or by
sectioning followed by staining with toluidine blue. Pollen viability
was analyzed by releasing mature pollen grains into fluorescein
diacetate (FDA) (Sigma-Aldrich, http://www.sigmaaldrich.com)
solution for 15 min in the dark followed by observation under an
Olympus BX51 epifluorescence microscope coupled to an Olym-
pus DP70 CCD unit (Olympus, http://www.olympus-global.com/en/
corc/company/lifescience). Analysis of in vivo pollen tube growth
was performed as described by Szumlanski and Nielsen (2009)
and emasculated pistils from the WT and homozygous ctf7-1 (ctf7-1)
were cross-pollinated and collected after 24 h. Tissue was
obtained from 5-week-old plants, with three biological replicates
and at least 100 pollen grains per replicate were used to estimate
pollen viability.

Analysis of subcellular localization of CTF7/ECO1

Protoplasts prepared from the leaves of 4-week old Arabidopsis
plants were co-transformed with 35S:CTF7/ECO1:GFP and the
nuclear marker construct 35S:ERF4:mRFP. Transformed protop-
lasts were observed by two-photon laser confocal microscopy and
analyzed with the ZEISS LSM IMAGE BROWSER version 3.5.

Analysis of ultrastructure

The ultrastructure of mature microspores was analyzed by trans-
mission electron microscopy on a Philips CM 100 unit (Philips
Research, http://www.research.philips.com/). Samples were pre-
pared by fixation on 2.5% gluteraldehyde and 4% paraformalde-
hyde, in 0.1 M sodium phosphate buffer, pH 7.0 at room
temperature (25�C) for 4 h. After three 20-min buffer rinses, sam-
ples were post-fixed on osmium oxide 1%. Samples were dehy-
drated in an acetone series, embedded in Spurr’s resin, and
sectioned on a Leica Ultracut E microtome (Leica Microsystems,
http://www.leica-microsystems.com/). Ultra-thin sections (70–
90 nm) were stained with 6% uranyl acetate and 0.4% lead citrate.
Sections were observed at 80 kV. Preparation of anther sections
followed the same procedure; however, semi-thin samples (1 lm)
were stained instead with 10% toluidine blue in 1% Na-Borex for
1–2 min, and observed directly under a light microscope. Develop-
mental stages were assigned according to Sanders et al. (1999).
For the analysis of leaf cell structure, the first true leaves of 1-
week-old seedlings were excised, frozen in liquid nitrogen and
then transferred to a sample preparation chamber set at �160°C.
After 5 min the temperature was raised to �85°C and the sample
was sublimed for 15 min. After coating with platinum at �130°C
the sample was transferred to a PP2000T Cryo-SEM System cham-
ber (Quorum Technologies, http://www.quorumtechnologies.com/
) and observed at �160°C on a FEI Quanta 200 scanning electron
microscope (FEI, http://www.fei.com/) set at 20 kV. Results were
obtained from three different biological samples containing at
least three technical repeats.

Chromosome spreads

In order to analyze male meiosis, anthers were isolated and
digested as described (Yang et al., 2011a,b). Following digestion,
cells were transferred onto poly-L-lysine slides (Sigma-Aldrich),
and covered with a cover slip. The slides were frozen on dry ice

and the cover slips quickly removed. The dried slides were stained
with 1.5 mg ml�1 DAPI (Vector Laboratories, http://www.vectorl-
abs.com/). In order to analyze mitosis, root tips from seedlings
grown on agar were excised and placed within 200 ll PCR tubes.
Fixation and digestion was performed within the tubes, and diges-
tion was extended to 2 h.

Antibodies and immunolocalization

SMC3 and SYN1 were localized in buds prepared as described
previously (Yang et al., 2011a,b). Rabbit polyclonal antibodies
against SYN1 and SMC3 were then detected with Alexa Fluor 488
goat anti-rabbit secondary antibody (1:500) (Molecular Probes,
http://zt.invitrogen.com/) with or without Alexa Fluor 594 goat
anti-mouse secondary antibody (1:500) and observed under an
epifluorescence microscope.

Flow cytometry

Cells from fresh leaves were isolated and stained with the CyStain
PI Absolute P Kit (Partec, http://www.partec.com/). Finally the
nuclear suspension was run through a MoFlo XDP Laser Cell
Sorter (Beckman Coulter, https://www.beckmancoulter.com/) and
results were analyzed with SUMMIT V5.0 software (Beckman Coulter)
from at least three different biological samples.

Quantitative real-time PCR

Total RNA was extracted with the RNAeasy Plant Minikit (Qiagen,
http://www.qiagen.com/) from WT and ctf7-1 seedlings (1 week
old), and from meiotic anthers collected from mature WT and ctf7-
1 plants. Total mRNA from meiotic anthers was further amplified
with the MessageAmp II aRNA Amplification Kit (Ambion, http://zt.
invitrogen.com/). First-stranded cDNA was prepared from total
RNA with the Moloney murine leukemia virus reverse transcrip-
tase system (Promega, http://www.promega.com/) according to
the manufacturer’s instructions. For quantitative PCR, a Power
SYBR Green I Master Mix (Applied Biosystems, http://www.
appliedbiosystems.com/) was used with 150–200 nM primers,
20 ng ll�1 cDNA and 50 ll of reverse transcriptase reaction prod-
uct. Reactions were run and analyzed on the AB 7500 Real Time
PCR System (Applied Biosystems). Melting curve analyses and
negative controls were used to exclude primer–dimer artifacts and
low specificity in the amplification. Quantitative reactions were
done in triplicate and averaged. Primers specific for the 3′ end of
transcripts were either designed on PRIMER EXPRESS version 3.0
(Applied Biosystems) or adapted from relevant references (Preuss
and Britt, 2003; Czechowkski et al., 2005; Takahashi et al., 2010).
The complete list of primers used can be found in Table S1.

ACCESSION NUMBERS

Sequence data from this article can be found in the Arabid-

opsis Genome Initiative or GenBank/EMBL under the follow-

ing accession numbers: At3g48190 (ATM), At5g40820 (ATR),

At4g21070 (BRCA1), At5g01630 (BRCA2B), At3g19590 (BUB

3.1), At3g25100 (CDC45), At3g48750 (CDKA1), At4g31400

(CTF7/ECO1), At4g37490 (CYCB1;1), At3g22880 (DMC1),

At3g25980 (MAD2), At5g11510 (MYB3R4), At5g56580

(NQK1), At4g02390 (PARP2), At5g20850 (RAD51), At2g45280

(RAD51C), At3g54670 (SMC1), At2g27170 (SMC3), At5g15920

(SMC5), At5g61460 (SMC6B), At4g25120 (SRS2), At5g55300

(TOPOI-a), At5g55310 (TOPOI-b), At3g23890 (TOPOII-a),
At5g63920 (TOPOIII-a).

© 2013 The Authors
The Plant Journal © 2013 John Wiley & Sons Ltd, The Plant Journal, (2013), 75, 927–940

938 Pablo Bola~nos-Villegas et al.



ACKNOWLEDGEMENTS

We thank Ms Su-Hsin Huang for her assistance in flow cytometry
analysis (Flow Cytometry Analysis Laboratory, Academia Sinica),
Mrs Mei-Jane Fang for her assistance during QPCR (DNA Analysis
Core Laboratory, Academia Sinica) and Dr Wann-Neng Jane for
assistance in transmission and scanning electron microscopy
(Plant Cell Biology Core Laboratory, Academia Sinica). This work
was supported by research grants from Academia Sinica (Taiwan),
the National Science and Technology Program for Agricultural
Biotechnology (NSTP/AB, 098S0030055-AA, Taiwan) and the
National Science Council (99-2321-B-001-036-MY3) to G-YJ and by
a grant (MCB0718191) to CAM from the National Science Founda-
tion (NSF).

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article.
Figure S1. Phenotypes associated with the ctf7-1 and ctf7-2 homo-
zygous mutants.

Figure S2. Homozygous ctf7-1 and ctf7-2 pollen is not viable.

Figure S3. Chromosome pairing and segregation patterns in wild-
type meiocytes.

Figure S4. Chromosomes in homozygous ctf7-1 male meiocytes
exhibit defects in cohesion and chromosome fragmentation.

Figure S5. Cohesin subunit SMC3 exhibits an altered distribution
pattern in homozygous ctf7-1 male meiocytes.

Figure S6. Homozygous ctf7-1 seedlings exhibit reduced DNA
repair efficiency.

Table S1. Primers used in this paper.

Data S1. Fluorescence in situ hybridization in meiotic chromo-
somes.
Data S2. DNA comet assay.

REFERENCES

Abe, K., Osakabe, K., Nakayama, S., Endo, M., Tagiri, A., Todoriki, S.,

Ichikawa, H. and Toki, S. (2005) Arabidopsis RAD51C gene in important

for homologous recombination in meiosis and mitosis. Plant Physiol.

139, 896–908.
Alexander, P. (1969) Differential staining of aborted and nonaborted pollen.

Stain Technol. 44, 117–122.
Armstrong, S.J., Franklin, F.C.H. and Jones, G.H. (2001) Nucleolus associ-

ated telomere clustering and pairing precede meiotic chromosome

synapsis in Arabidopsis thaliana. J. Cell Sci. 114, 4207–4217.
Baudrimont, A., Penkner, A., Woglar, A., Mamnun, Y.M., Hulek, M., Struck,

C., Schnabel, R., Loidl, J. and Jantsch, V. (2011) A new thermosensitive

smc-3 allele reveals involvement of cohesin in homologous recombina-

tion in C. elegans. PLoS ONE, 6, e24799.

Beckouet, F., Hu, B., Roig, M.B., Sutani, T., Komata, M., Uluocak, P., Katis,

V.L., Shirahige, K. and Nasmyth, K. (2010) An Smc3 acetylation cycle is

essential for establishment of sister chromatid cohesion. Mol. Cell, 39,

689–699.
Callegari, J.A., Clark, E., Pneuman, A. and Kelly, T.J. (2010) Postreplication

gaps at UV lesions are signals for checkpoint activation. Proc. Natl Acad.

Sci. USA, 107, 8219–8224.
Chang, F., Wang, Y., Wang, S. and Ma, H. (2011) Molecular control of micro-

sporogenesis in Arabidopsis. Curr. Opin. Plant Biol. 14, 66–73.
Czechowkski, T., Stitt, M., Altmann, T., Udvardi, M.K. and Scheible, W.R.

(2005) Genome-wide identification and testing of superior reference genes

for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17.
D�ıaz-Mart�ınez, L.A. and Clarke, D.J. (2009) Chromosome cohesion and the

spindle checkpoint. Cell Cycle, 8, 2733–2740.
D�ıaz-Mart�ınez, L.A., Gim�enez-Abi�an, J.F., Azuma, Y., Guacci, V.,

Gim�enez-Mart�ın, G., Lanier, L.M. and Clarke, D.J. (2006) PIASc is

required for faithful chromosome segregation in human cells. PLoS

ONE, 1, e53.

Dissmeyer, N., Nowack, M.K., Pusch, S., Stals, H., Inz�e, D., Grini, P.E. and

Schnittger, A. (2007) T-loop phosphorylation of Arabidopsis CDKA;1 is

required for its function and can be partially substituted by an aspartate

residue. Plant Cell, 19, 972–985.
Farcas, A.M., Uluocak, P., Helmhart, W. and Nasmyth, K. (2011) Cohesin’s

concatenation of sister DNAs maintains their intertwining. Mol. Cell, 44,

97–107.
Garcia, V., Bruchet, H., Camescasse, D., Granier, F., Bouchez, D. and Tissier,

A. (2003) AtATM is essential for meiosis and the somatic response to

DNA damage in plants. Plant Cell, 15, 119–132.
Hartung, F., Suer, S., Knoll, A., Wurz-Wildersinn, R. and Puchta, H. (2008)

Topoisomerase 3a and RMI1 suppress somatic crossovers and are essen-

tial for resolution of meiotic recombination intermediates in Arabidopsis

thaliana. PLoS Genet. 4, e1000285.

Heslop-Harrison, J. and Heslop-Harrison, Y. (1970) Evaluation of pollen

viability by enzymatically induced fluorescence, intracellular uptake of

fluorescein diacetate. Stain Technol. 45, 115–120.
Higashi, T.L., Ikeda, M., Tanaka, H., Nakagawa, T., Bando, M., Shirahige, K.,

Kubota, Y., Takisawa, H., Masukata, H. and Takahashi, T.S. (2012) The

prereplication complex recruits XEco2 to chromatin to promote cohesin

acetylation in Xenopus egg extracts. Curr. Biol. 22, 1–12.
Hogarth, C.A., Mitchell, D., Evanoff, R., Small, C. and Griswold, M. (2011)

Identification and expression of potential regulators of the mammalian

mitotic-to-meiotic transition. Biol. Reprod. 84, 34–42.
Ira, G., Malkova, A., Liberi, G., Foiani, M. and Haber, J.E. (2003) Srs2 and

Sgs1-Top3 suppress crossovers during double-strand break repair in

yeast. Cell, 115, 401–411.
Jiang, L., Yuan, L., Xia, M. and Makaroff, C.A. (2010) Proper levels of the

Arabidopsis cohesion establishment factor CTF7 are essential for embryo

and megagametophyte, but not endosperm development. Plant Physiol.

154, 820–832.
Kim, B.J., Li, Y., Zhang, J. et al. (2010a) Genome-wide reinforcement of

cohesin binding at pre-existing cohesin sites in response to ionizing radi-

ation in human cells. J. Biol. Chem. 285, 22784–22792.
Kim, K.P., Weiner, B.M., Zhang, L., Jordan, A., Dekker, J. and Kleckner, N.

(2010b) Sister cohesion and structural axis components mediate homo-

log bias of meiotic recombination. Cell, 143, 924–937.
Kozak, J., West, C.E., White, C., da Costa-Nunes, J.A. and Angelis, K.J.

(2009) Rapid repair of DNA double strand breaks in Arabidopsis thaliana

is dependent on proteins involved in chromosome structure mainte-

nance. DNA Repair (Amst.) 8, 413–419.
Kurzbauer, M.T., Uanschou, C., Chen, D. and Schl€ogelhofer, P. (2012) The

recombinases DMC1 and RAD51 are functionally and spatially separated

during meiosis in Arabidopsis. Plant Cell, 24, 2058–2070.
Lee, I., Ambaru, B., Thakkar, P., Marcotte, E.M. and Rhee, S.Y. (2010)

Rational association of genes with traits using a genome-scale gene net-

work for Arabidopsis thaliana. Nat. Biotechnol. 28, 149–158.
van der Lelij, P., Godthelp, B.C., van Zon, W. et al. (2009) The cellular phe-

notype of Roberts syndrome fibroblasts as revealed by ectopic expres-

sion of ESCO2. PLoS ONE, 4, e6936.

Longhese, M.P., Bonetti, D., Guerini, I., Manfrini, N. and Clerici, M. (2009)

DNA double-strand breaks in meiosis: checking their formation, process-

ing and repair. DNA Repair (Amst.) 8, 1127–1138.
Lu, S., Goering, M., Gard, S., Xiong, B., McNairn, A.J., Jaspersen, S.L. and

Gerton, J.L. (2010) Eco1 is important for DNA damage repair in S. cerevi-

siae. Cell Cycle, 9, 3315–3327.
Lyons, N.A. and Morgan, D.O. (2011) Cdk1-dependent destruction of Eco1

prevents cohesion establishment after S phase. Mol. Cell, 42, 378–389.
Mercier, R., Jolivet, S., Vezon, D. et al. (2005) Two meiotic crossover classes

cohabit in Arabidopsis: one is dependent on MER3, whereas the other

one is not. Curr. Biol. 15, 692–701.
Moissiard, M., Cokus, S.J., Cary, J. et al. (2012) MORC family ATPases

required for heterochromatin condensation and gene silencing. Science,

336, 1448–1551.
Moldovan, G.L., Pfander, B. and Jentsch, S. (2006) PCNA controls establish-

ment of sister chromatid cohesion during S phase. Mol. Cell, 23,

723–732.
Murakami, T., Takano, R., Takeo, S., Taniguchi, R., Ogawa, K., Ohashi, E.

and Tsurimoto, T. (2010) Stable interaction between the human prolifer-

© 2013 The Authors
The Plant Journal © 2013 John Wiley & Sons Ltd, The Plant Journal, (2013), 75, 927–940

Arabidopsis CTF7 is required for microsporogenesis 939



ating cell nuclear antigen loader complex Ctf18-replication factor C (RFC)

and DNA polymerase e is mediated by the cohesion-specific subunits,

Ctf18, Dcc1, and Ctf8. J. Biol. Chem. 285, 34608–34615.
Onn, I., Guacci, V. and Koshland, D.E. (2009) The zinc finger of Eco1

enhances its acetyltransferase activity during sister chromatid cohesion.

Nucleic Acids Res. 37, 6126–6134.
Peters, J.M. and Bhaskara, V. (2009) Cohesin acetylation: from antiestablish-

ment to establishment. Mol. Cell, 34, 1–2.
Peters, J.M., Tedeschi, A. and Schmitz, J. (2008) The cohesin complex and

its roles in chromosome biology. Genes Dev. 22, 3089–3114.
Pimenta-Marques, A., Tost~oes, R., Marty, T., Barbosa, V., Lehmann, R. and

Martinho, R.G. (2008) Differential requirements of a mitotic acetyltrans-

ferase in somatic and germ line cells. Dev. Biol. 323, 197–206.
Preuss, S.B. and Britt, A.B. (2003) A DNA-damage-induced cell cycle check-

point in Arabidopsis. Genetics, 164, 323–334.
Rivera, T. and Losada, A. (2010) Recycling cohesin rings by deacetylation.

Mol. Cell, 39, 657–659.
Ross, K.J., Fransz, P., Armstrong, S.J., Vizir, I., Mulligan, B., Franklin, F.C.H.

and Jones, G.H. (1997) Cytological characterization of four meiotic

mutants of Arabidopsis isolated from T-DNA transformed lines. Chromo-

some Res. 5, 551–559.
Rudra, S. and Skibbens, R.V. (2012) Sister chromatid cohesion establish-

ment occurs in concert with lagging strand synthesis. Cell Cycle, 11,

1–8.
Ryu, H., Furuta, M., Kirkpatrick, D., Gygi, S.P. and Azuma, Y. (2010)

PIASc-dependent SUMOylation regulates DNA topoisomerase IIa activity.

J. Cell Biol. 191, 783–794.
Sakamoto, T., Tsujimoto Inui, Y., Uraguchi, S., Yoshizumi, T., Matsunaga,

S., Mastui, M., Umeda, M., Fukui, K. and Fujiwara, T. (2011) Condensin II

alleviates DNA damage and is essential for tolerance of Boron overload

stress in Arabidopsis. Plant Cell, 23, 3533–3546.
Sanders, P.M., Bui, A.Q., Weterings, K., McIntire, K.N., Hsu, Y.C., Lee, P.Y.,

Truong, M.T., Beals, T.P. and Goldberg, R.B. (1999) Anther developmen-

tal defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant

Reprod. 11, 297–322.
Schatlowski, N., Stahl, Y., Hohenstatt, M.L., Goodrich, J. and Schubert, D.

(2010) The CURLY LEAF interacting protein BLISTER controls expression

of Polycomb-group target genes and cellular differentiation of Arabidop-

sis thaliana. Plant Cell, 22, 2291–2305.
Schubert, V. (2009) SMC proteins and their multiple functions in higher

plants. Cytogenet. Genome Res. 124, 202–214.
Schubert, V., Weissleder, A., Ali, H., Fuchs, J., Lermontova, I., Meister, A.

and Schubert, I. (2009) Cohesin gene defects may impair sister chroma-

tid alignment and genome stability in Arabidopsis thaliana. Chromoso-

ma, 118, 591–605.
Sherwood, R., Takahashi, T.S. and Jallepalli, P.V. (2010) Sister acts: coordi-

nating DNA replication and cohesion establishment. Genes Dev. 24,

2723–2731.
Siddiqui, N.U., Stronghill, P.E., Dengler, R.E., Hasenkampf, C.A. and Riggs,

C.D. (2003) Mutations in Arabidopsis condensin genes disrupt embryo-

genesis, meristem organization and segregation of homologous chromo-

somes during meiosis. Development, 130, 3283–3295.
Skibbens, R.V. (2010) A sliding scale: the many faces of Ctf7/Eco1 cohesion

establishment factor in DNA repair. Cell Cycle, 9, 3642–3643.

Stevens, R., Grelon, M., Vezon, D., Oh, J., Meyer, P., Perennes, C., Domeni-

chini, S. and Bergounioux, C. (2004) A CDC45 homolog in Arabidopsis is

essential for meiosis, as shown by RNA interference-induced gene

silencing. Plant Cell, 16, 99–113.
Szumlanski, A.L. and Nielsen, E. (2009) The Rab GTPase RabA4d regulates

pollen tube tip growth in Arabidopsis thaliana. Plant Cell, 21, 526–544.
Takahashi, T., Matsuhara, S., Abe, M. and Komeda, Y. (2002) Disruption of a

DNA topoisomerase I gene affects morphogenesis in Arabidopsis. Plant

Cell, 14, 2085–2093.
Takahashi, N., Quimbaya, M., Schubert, V., Lammens, T., Vandepoele, K.,

Schubert, I., Matsui, M., Inze, D., Berx, G. and De Veylder, L. (2010) The

MCM-binding protein ETG1 aids sister chromatid cohesion required for

postreplicative homologous recombination repair. PLoS Genet. 6,

e1000817.

Thomson, T.M. and Guerra-Rebollo, M. (2010) Ubiquitin and SUMO signal-

ling in DNA repair. Biochem. Soc. Trans. 38, 116–131.
Vega, H., Waisfisz, Q., Gordillo, M. et al. (2005) Roberts syndrome is caused by

mutations in ESCO2, a human homolog of yeast ECO1 that is essential for

the establishment of sister chromatid cohesion. Nat. Genet. 37, 468–470.
Watanabe, Y. (2012) Geometry and force behind kinetochore orientation:

lessons from meiosis. Nat. Rev. Mol. Cell Biol. 13, 370–382.
Watanabe, K., Pacher, M., Dukowic, S., Schubert, V., Puchta, H. and Schu-

bert, I. (2009) The STRUCTURAL MAINTENANCE OF CHROMOSOMES

5/6 complex promotes sister chromatid alignment and homologous

recombination after DNA damage in Arabidopsis thaliana. Plant Cell, 21,

2688–2699.
Whelan, G., Kreidl, E., Peters, J.M. and Eichele, G. (2012a) The non-redun-

dant function of cohesin acetyltransferase Esco2: some answers and new

questions. Nucleus, 3, 1–5.
Whelan, G., Kreidl, E., Wutz, G., Egner, A., Peters, J.M. and Eichele, G.

(2012b) Cohesin acetyltransferase Esco2 is a cell viability factor and is

required for cohesion in pericentric heterochromatin. EMBO J. 31, 71–82.
Williams, B.C., Garrett-Engele, C.M., Li, Z.X., Williams, E.V., Rosenman, E.D.

and Goldberg, M.L. (2003) Two putative acetyltransferases, San and

deco, are required for establishing sister chromatid cohesion in Drosoph-

ila. Curr. Biol. 13, 2025–2036.
Wu, S., Scheible, W.R., Schindelasch, D., Van Den Daele, H., De Veylder, L.

and Baskin, T.I. (2010) A conditional mutation in Arabidopsis thaliana

separase induces chromosome non-disjunction, aberrant morphogenesis

and cyclin B1;1 stability. Development, 137, 953–961.
Xie, S. and Lam, E. (1994) Abundance of nuclear DNA topoisomerase II is

correlated with proliferation in Arabidopsis thaliana. Nucleic Acids Res.

22, 5729–5736.
Yang, X., Boateng, K.A., Yuan, L., Wu, S., Baskin, T.I. and Makaroff, C.A.

(2011a) The Radially Swollen 4 separase mutation of Arabidopsis thali-

ana blocks chromosome disjuntion and disrupts the radial microtubule

system in meiocytes. PLoS ONE, 6, e19459.

Yang, H., Lu, P., Wang, Y. and Ma, H. (2011b) The transcriptome landscape

of Arabidopsis male meiocytes from high-throughput sequencing: the

complexity and evolution of the meiotic process. Plant J. 65, 503–516.
Yoshiyama, K., Conklin, P.A., Huefner, N.D. and Britt, A.B. (2009) Suppres-

sor of gamma response 1 (SOG1) encodes a putative transcription factor

governing multiple responses to DNA damage. Proc. Natl Acad. Sci.

USA, 106, 12843–12848.

© 2013 The Authors
The Plant Journal © 2013 John Wiley & Sons Ltd, The Plant Journal, (2013), 75, 927–940

940 Pablo Bola~nos-Villegas et al.


