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1 Vector bundles and their classification

The procedure commonly known as geometric quantization associates a Hilbert space to
certain symplectic manifolds, and thereby allows a bridge to be built from the algebra of
functions on the manifold to an operator algebra. It has been used, with considerable success,
to reconstruct unitary representations of Lie groups from their symplectic homogeneous
spaces; this is known as the Kirillov orbit method. An alternative method of constructing
these representations, at least for compact groups, arises from the study of Dirac operators
on these same homogeneous manifolds. The purpose of these notes is to clarify the role
of the Dirac operator. Hopefully, this will enable us to build a bridge between geometric
quantization and noncommutative geometry, in which the key concept is a generalization of
the Dirac operator to “noncommutative manifolds”.

The main geometric objects with which we shall be concerned are vector bundles with
some extra algebraic structure, such as a metric or a symplectic structure (or both). Roughly
speaking, a vector bundle consists of the disjoint union £ of a collection of isomorphic vector
spaces F,., indexed by the points of a differential manifold M, together with some smoothness
conditions relating £ and M; an example is the tangent bundle of the manifold M. The
algebraic structure of the “fibres” FE, transfers to give an interesting algebraic structure to
the manifold F. The set of all possible vector bundles of a given species on a manifold M,
up to a suitable equivalence relation, holds important information about the topology of
the manifold M (in fact, it holds all the topological information we need to know for the
purposes of noncommutative geometry) and we begin our study with this classification.

We have gathered in Appendix A a compendium of definitions and basic facts on differ-
ential manifolds, vector fields and differential forms, with which we assume the reader to be
acquainted. We refer to it for the notations used below.

1.1 Generalities on manifolds

Recall that a differentiable manifold of (real) dimension n is a (paracompact) topological
space M provided with an atlas, i.e., a collection of charts (Uj, ¢;), where the domains Uj
form a (locally finite) open covering U of M, each ¢,: U; — R™ is a homeomorphism, and
the “transition maps” ¢; o ¢;1 are smooth functions on each ¢;(U; NU;). If n = 2m, we
can regard R?™ as C™; we say that M is a complez manifold if the transition maps are
holomorphic (as multi-variable vector-valued complex functions); it suffices that they satisfy
the Cauchy-Riemann equations.

We shall be mainly interested in the case where M is compact; then its differentiable
structure is defined by a finite atlas.

A useful property of the chart domains Uj; is that they be contractible, that is, that there
exist zop € U; and a smooth function f: [0,1] x U; — U; with f(0,z) = =z, f(1l,2) = x;
informally, U; may be “deformed” to a point {z¢}. The intersection of two such domains
need not be contractible: just think of the sphere S? covered by two large polar caps which
overlap at the equator. It is good to know, however, that by using another (equivalent) atlas,
we can avoid this difficulty. What we need is that the chart domains form a “good covering”



of M [12].

Definition 1.1. An open covering U := {U,} of a topological space is a good covering' if
every nonempty finite intersection U; N --- N Uj, is contractible. A differentiable manifold
M always has a good covering: take a Euclidean metric on M and cover M by an atlas for
which each U; is “geodesically convex” (that is, any two of its points can be connected by
a minimal geodesic lying within U;).? All finite intersections are also geodesically convex,
and hence are contractible (since one can deform to a point zg by retreating along geodesics
emanating from that point). So we can replace the original atlas of M by a (possibly larger)
atlas whose domains form a good covering. From now on, we will assume that this has been
done.

Ezercise 1.1. Show that the following recipe defines a good covering {Uy, Us, U3, U} of the
sphere S?. Take four points on S? that are vertices of a regular tetrahedron (e.g., if a = 1/v/3,
take (fa, +a, £a) with either one or three positive signs). Connect these points by six great-
circle arcs, which determine four spherical triangles F. Finally, let U; := {z € §? : d(z, F}) <
e } for some small € (say, e = 1/4).

1.2 Principal bundles and vector bundles

Recall that a fibre bundle E —— M or simply £ — M (see Appendix A for notation) is a
triple (E, M, ), where the manifolds £ and M are its total space and base space respectively,
and m: E — M is a surjective submersion, subject to two conditions: (a) that each fibre
E, = n~'({z}) is diffeomorphic to a fixed manifold F (the “typical fibre”), and (b) for some
atlas {(U;, ¢;)} of M there is a family of local trivializations of E, i.e., diffeomorphisms

;N U) = Uy x F (1.1)
such that (¢! (z,v)) =z for all 2 € Uj, v € F.

Definition 1.2. Let G be a Lie group. A principal G-bundle P — M is a fibre bundle
whose fibres are diffeomorphic to G, together with a free right action of G on the total space
P, whose orbits are the fibres P, = n~!(x). We use the notation x;: n~*(U;) — U; x G for
the local trivializations.

Ezercise 1.2. Suppose that G is a Lie group and that H is a closed subgroup of G (so that
H is also a Lie group); then H acts freely on G by right multiplication g - h := gh. If

n: G — G/H is the quotient map, check that G - G/H is a principal H-bundle.
Before examining where principal bundles come from, let us describe a general recipe for

manufacturing new fibre bundles using a given principal bundle. Indeed, this recipe is the
main reason why principal bundles are used at all.

IThis is also known as a “contractible covering” [38], or a “Leray covering” [58].
2It is a basic proposition of Riemannian geometry that each point has a geodesically convex neighbour-
hood; see [32] or [36] for the proof.



Definition 1.3. Let P — M be principal G-bundle, and let F be a manifold on which the
Lie group G acts on the left. The product manifold P x F' carries a right action of G, given
by
(p.v)-g:=(p-g.97" ). (1.2)

Let £ := P xg F be the set of orbits of this action; we denote the orbit of (p,v) by [p,v].
Notice that [p- g,v] = [p, g - v] on account of (1.2).

Define 7: E — M : [p,v] — n(p). For each p € P, the map v — [p,v] is a diffeomorphism
from F' to E,4), and 5 M is a fibre bundle with typical fibre F, which is said to be
associated to the given principal G-bundle.

Definition 1.4. A vector bundle £ —— M is a fibre bundle whose “typical fibre” is a (real
or complex) vector space V', such that each fibre E, is a vector space of dimension dim V',
and such that for each z € Uj, the map v — wj’l(a:,v) is a linear isomorphism from V
onto E,.

A real vector bundle with typical fibre V' = R is called a real line bundle; a complex
vector bundle with typical fibre V' = C is called a complex line bundle. When we say
simply “line bundle”, we shall usually mean a complex line bundle.

Examples of (real) vector bundles over M are the tangent bundle 7'M — M, the cotan-
gent bundle T*M — M, and its exterior powers A"T*M — M: see Appendix A.

Given a representation p: G — GL(V) of a Lie group, and a principal G-bundle P M,
we can form the associated bundle by taking g - v = p(g)v; thus

p-g.v]=[p.plg)v] for peP, veV, geq. (1.3)

The fibres E, become vector spaces by taking [p, u] + [p, v] := [p,u+v], and A|p,v| := [p, Av];
and the linearity of each p(g) shows that £ —— M is a vector bundle with typical fibre V.

We can now reverse the recipe of Definition 1.3 in order to associate a principal bundle
to a given vector bundle:

Definition 1.5. Let E —— M be a vector bundle® with typical fibre V. Let P,, for € M,
denote the set of linear isomorphisms p: V' — E, (each such p is called a frame for E,).
If g € GL(V), then po g is again a frame, so that GL(V) acts on the right (freely and
transitively) on P, by composition p +— po g. The disjoint union P = |4,.,, Pr, with
n(p) := z for p € P,, defines a principal GL(V)-bundle P — M, which is called the frame
bundle of £ " M.

Ezercise 1.3. Using the identity representation of the group GL(V) on V', check that the

vector bundle associated to the frame bundle P — M by the recipe (1.2) is the original
vector bundle £ — M.

3We use a notation which covers the real and complex cases simultaneously; thus GL(V) denotes either
GLr(V) or GLc(V), according as V is a real or complex vector space.



1.3 Hermitian vector bundles

If V' carries some extra structure (e.g., an inner product or an orientation), we can restrict to
the subgroup G < GL(V') which preserves that structure. We need to impose a corresponding
structure on the fibres F, and consider only those frames p: V' — FE, which are structure-
preserving. Under p — p o g, these comprise a principal G-bundle associated to E —— M.
More generally, if we are given a Lie group G with a representation p: G — GL(V), we
define a right action of G on frames by p- g := po p(g). If, and sometimes this is “a big
if”, we can select a subset of frames for each E, for which this action is transitive and free
(due to some extra structure given on the vector bundle), these will form the fibres @, of a

principal G-bundle @ ', M. Since [p-g,v] = [p, p(g)v] for p € Q, v € V, the vector bundle
associated, via p, to the new principal bundle is still £ —— M.

For instance, we could ask that a real vector bundle £ — M be Fuclidean, i.e., that
each fibre E, carry a real inner product g, (-, -), which depends smoothly on x. If V is a real
vector space with a positive-definite inner product ¢(-, ), we consider “orthogonal frames” p
satisfying g, (p(u), p(v)) = q(u, v) for all w,v € V. It is clear that such frames form a principal
O(n)-bundle associated to E —— M. Such an isomorphism p is determined by choosing an
orthonormal basis in (E,, g,) (as the image under p of a fixed orthonormal basis in (V, q)),
so that this bundle is often called the “orthonormal frame bundle”.

Alternatively, if £ —— M is a complex vector bundle, we could ask that it be Hermitian,
i.e., that each fibre F, carry a (sesquilinear) inner product h,(+, -), depending smoothly on z.
Then if V' is a complex Hilbert space with inner product (-|-), we consider “unitary frames”
p satisfying h,(p(u), p(v)) = (u | v) for u,v € V. Such frames form a principal U(n)-bundle
associated to E —— M.

1.4 Operations on vector bundles

Definition 1.6. Given any (real or complex) vector bundle F — M, one can form a dual
vector bundle E* — M whose fibre E* is the dual vector space? of E,. Fix a basis
{v1,...,v,} for the typical fibre V. A frame p: V — E, is defined by selecting a basis
{e1,...,e,} for E, and setting p(v;) := e; for each j; matching the dual bases {v{,..., v},
{e),... e} gives a frame p': V* — EZ for the dual bundle. Notice that (pog) = p'og™" by
change-of-basis formulae, where g=* := (g7 !)! is the contragredient matrix to g € GL(V).

Ezercise 1.4. Verify that E* — M is the vector bundle associated to the frame bundle of
E — M, via the representation p(g) := ¢~ of GL(V) on V*.

Exercise 1.5. Check that the cotangent bundle T*M — M is the dual bundle to the tangent
bundle TM — M.

Definition 1.7. Given any two vector bundles E — M, E' — M over the same base space,
we can form two new vector bundles over M: their Whitney sum E @& E'— M and their

4The dual space of V is V* := Homg(V,R) or V* := Homc(V, C), the space of R-linear or C-linear forms
on V, according as V is a real or complex vector space.



tensor product E® E' — M, whose fibres at © € M are respectively the direct sum F, ® E/,
and the algebraic tensor product E, ® E..

The k-th exterior power of E — M is the vector bundle A¥E — M whose fibre at x is
AFE,. (For k =0, we take A°E := M x R.)

These operations can be combined; for instance, the exterior algebra bundle A\*E — M
is the Whitney sum of all exterior powers, for £k = 0,1,...,r, where r = dim FE, is the rank
of E— M.

Definition 1.8. The complexification of a real vector bundle £ — M is the complex
vector bundle Ec — M with E¢ := F ®g C, ie., (E,)c = E, @ C = E, ® i E, for
each x € M.

We write TcM and TEM for the total spaces of the complexified tangent and cotangent
bundles of M.

1.5 Equivalent bundles

Definition 1.9. A morphism of two fibre bundles E —— M and E’ L M'isa pair of smooth
maps (7,0), with 7: F — E’ and 0: M — M’, such that 7’ o 7 = o o 7, i.e., such that the
following diagram commutes:

E —~—— F

M —— M
and, in particular, 7(E,) C E:;(x) for each x € M.
A morphism of vector bundles is a bundle morphism for which 7: FE, — E;(z) is linear.
When M’ = M, we usually take o = idy,.

Definition 1.10. Let £ - M be a vector bundle and let ¢: N — M be a smooth map.
Write ¢*E := { (u,y) € Ex N : 1(u) = ¢(y) } and define 7: ¢*E — N and ¢: ¢*E — E by
7(u,y) :=y and ¢(u,y) := u. Then 7 (y) = Ey,), and so ¢*E - N is a vector bundle,
called the pullback bundle of E — M via ¢. Moreover, (¢, ¢) is a bundle morphism; in
other words, we have a commutative diagram of smooth maps:

$#E — . E
7—{ lﬂ
N —2 M

Exercise 1.6. Show that the pullback bundle has the following universal property: if £’ N
is a vector bundle over N and if p: £ — FE is a map such that (p, ¢) is a bundle morphism
from this bundle to E — M, then there is a unique bundle morphism (7,idy), with 7: £ —
¢*E, so that p = bor. (In other words, any bundle morphism with base map ¢ factors
through the pullback bundle.)



Definition 1.11. Let E —— M, E' ™, M be two vector bundles over the same base space.
A vector bundle equivalence between them is an invertible vector bundle morphism
(1,1d), which is given by a diffeomorphism 7: £ — FE’ satisfying 7’ o 7 = 7 and such that
7: E, — E! is a linear isomorphism for each x.

We shall denote by [E] the equivalence class of the vector bundle E —— M; for the set of
equivalence classes with typical fibre V', we write Vect(M; V).

A vector bundle ' — M is trivial if it is equivalent to the product bundle M x F' 2L M.

Note, from Exercise 1.6, that the pullback bundle is unique up to equivalence, and so
defines a unique [¢*E] € Vect(N; V).

Ezercise 1.7. Show that the tangent bundle T'S' of the unit circle S! is trivial, by producing
a pair of local trivializations which together form a cylinder.

Exercise 1.8. Let E— M be an arbitrary vector bundle over M; write £, = M x V
with dim V' = r, so that F, — M denotes the trivial vector bundle of rank r. Show that
E® E, — M is equivalent to the Whitney sum £ & --- @& E — M of r copies of £ — M.

Definition 1.12. Let P — M, P’ 7, M be two principal G-bundles over the same base
space. An equivalence between them is an invertible bundle morphism (y,id) which is G-
equivariant, that is, x(p-g) = x(p)-g for any p € P. Note that x: P — P’ is a diffeomorphism.

We shall denote by [P] the equivalence class of P —1s M; for the set of such equivalence
classes we write Prin(M; G).

Proposition 1.1. Two vector bundles over M with the same typical fibre V' are equivalent if
and only if their frame bundles are equivalent as principal GL(V')-bundles. The association
recipe thus yields a bijection [E] < [P] between Vect(M; V') and Prin(M; GL(V)). O

FEzercise 1.9. Prove this, using the defining relation (1.3) of an associated vector bundle.

1.6 Sections of vector bundles

Definition 1.13. A smooth section of a vector bundle £ — M is a smooth map s: M —
E such that mos = idyy, i.e., s(x) € E, for each « € M. The totality of smooth sections will
be denoted by I'(E), or by I'(M, E) if it is necessary to specify the base space M. Notice that
['(E) is a module for the commutative algebra of functions C*°(M); the action of C*°(M) is
just scalar multiplication in each fibre:®

(fs)(x) := f(x)s(x),
for s e I'(F), f € C®(M).

5Tt would perhaps be more convenient, in view of an eventual translation to the language of noncom-
mutative geometry, to write the multiplication on the right: (sf)(xz) = s(z)f(z); but as this conflicts with
traditional habits, and could be confusing in the case that s is a vector field, we will for the moment retain
the usual notation of multiplying by scalars f(z) on the left.



“Global” smooth sections s: M — E can sometimes be hard to find. For instance, a line
bundle admits a nonvanishing global section only if it is trivial. To see this, notice that any
v € E, is of the form As(x), for a unique A € C, since s(x) # 0; so As(x) — (z, A) is a vector
bundle equivalence between E and the trivial line bundle M x C.%

Lemma 1.2. If L — M 1is a line bundle, then its tensor product with its dual line bundle,
namely L ® L* — M, s a trivial line bundle.

Proof. Indeed, L,® L ~ End(L,), so the tensor product bundle has an obvious nonvanishing
section sg, whose value at each x is the identity operator on the line L,. Since each End(L,)
is a one-dimensional vector space, any L ® L* — M is a line bundle, with a nonvanishing
global section. O]

Corollary 1.3. The set of equivalence classes of line bundles over M has the structure of
an abelian group.

Proof. Let L — M, L' — M be any two line bundles over M, and define:
(L[] =[Le L],  [L]7':=[L7. (1.4)

Let Ly := M x C so that [Lg] is the trivial bundle class,” and note that [L ® Lo] = [L]
by Exercise 1.8. Since [L ® L*] = [L¢] by the previous Lemma, the inverse of [L] is [L*].
Moreover, the flip map u®v — v®@u from L,® L, to L), ® L, determines a bundle equivalence
between L ® L' and L' ® L, so that the product (1.4) is commutative. O

We shall soon identify this group with a cohomology group of M.

1.7 Local sections and transition functions

The question that now arises is how to deal with bundles that are not trivial, and how to
give an effective description of such bundles. Since there are no nonvanishing global sections,
we must make use of nonvanishing local sections s; € I'(U;, E), where U := {U,} is an open
covering of M by chart domains which admit local trivializations ¢; as in (1.1). Thus

Y;(si(z)) = (z, fi()) (1.5)

where f;: U; — V' \ {0} is a smooth nonvanishing function. (Indeed, to say that s; is smooth
is the same as saying that its local representative f; is a smooth function.)

A global section s € I'(M, F) is determined, via (1.5), by such a family of local represen-
tatives f;: U; — V' (which may now take zero values).

Let » = dim V' be the rank of the vector bundle E —— M. Suppose we can find a set
s; = (Sj1,...,sj) with each s;, € I'(U;, E) so that {sji(z),...,s;-(x)} is a basis for the

SHere we are falling into the sloppy habit of referring to a fibre bundle by naming its total space only. If
the base space M is fixed, this does no harm.
"We use complex line bundles only to be specific; the argument for real line bundles is identical.

10



fibre E, at each x € U;. Then if t; € ['(U;, E) is any smooth local section, we can find
smooth functions hj,..., 5 € C*(U;) such that t; = Y7, h¥sj, on U;. Thus I'(U;, E) is
determined by the set of local sections s;; and globally, the module I'(M, E') is determined
by a family {(Uj, s;)} of such sets, one for each local chart of M. Such a family is sometimes
called a local system of sections [38] for the vector bundle £ — M.

Note that s; is a local frame over U; and may be regarded as a local section of the frame

bundle P - M. To be precise, choose and fix a basis {v1,...,v.} for V, and let p; € P,

for € Uj, be the linear isomorphism from V' to E, determined by p;(vg) = s;i(z) for
k=1,...,r. Then p; € I'(U;, P). Conversely, any such local section p; determines the local
frame s;.

Suppose that (U;, s;) is another local frame and that the chart domains U; and U; overlap:
U;NU; # 0. Then for x € U; N Uj, the isomorphisms p;, p; from V to E, determined by
pi(vk) = sig(x), pj(vg) := sjp(x) are related by p; = p; o g;;(x) for some g¢;;(z) € GL(V). In
the notation of associated bundles, we have

5, v] = [pi © gij(2), v] = [pi, g3 (x)v] (1.6)

for v € V; or equivalently,

wi © ¢;1($, U) = (I,gw(l’ﬁ]), (17)
i.e., g;; is the expression in local coordinates of the transition between the local trivializations
5, 1, of the vector bundle. Thus each g;;: U; N U; — GL(V) is a smooth function.

Ezercise 1.10. Show that a principal bundle P — M is trivial if and only if it admits a
global smooth section ¢: M — P.

Definition 1.14. Let E — M be a vector bundle, with typical fibre V, for which { (Uj, s;) :
j € J} is a local system of pointwise linearly independent local sections. The family of
smooth functions g;;: U;NU; — GL(V), defined whenever U;NU; # 0, such that s; = g;; - s;
on U; N Uj, satisfies the consistency conditions

gi =id on Ui, gijgjx = gix on U; N U; N Up. (1.8)

(The notation g;; - s; denotes the natural action of GL(V) on E, as expressed by (1.6)
or (1.7).) The set {g;;} is called a family of transition functions for the vector bundle
E— M.

Suppose now that the vector bundle ' —— M carries extra structure, for instance a
Hermitian metric. Then we can assume that the basis s;(z) for E, respects this structure
(continuing the Hermitian-metric example, we may take it to be an orthonormal basis, with
sik(z) = pj(vg) for a fixed orthonormal basis of V). Then the transition functions g;; map
U; N U; into the subgroup G of GL(V') which preserves the appropriate structure (in our
example, the unitary group of V). In summary, every g;;(x) belongs to the structure group
G of the principal bundle P — M to which the vector bundle is associated.

This suggests that we should study vector bundles by first classifying the corresponding
frame bundles, and then invoking Proposition 1.1 to pass the classification to vector bundles.

11



This procedure works because the frame bundle is entirely determined by the transition
functions. Specifically, we have the following “patching-together” construction.

Lemma 1.4. Let M be a manifold with an atlas of local charts { (U;, ¢;) 1 j € J}; let G be
a Lie group and suppose we are given a family of smooth functions g;;: U;NU; — G, defined
for U;NU; # 0, that satisfies (1.8). Then there exists a principal G-bundle P M and a
family of local sections p; € I'(U;, P) such that p;(z) - g;;(x) = p;(z) whenever x € U; N Uj.

Proof. Let @) denote the disjoint union 4 s Uj % GG and let P be the quotient space of ()
formed by identifying (z,h); € U; x G with (x, g;j(x) h); € U; x G whenever x € U; N Uj.
The condition (1.8) simply says that (x,h); ~ (z,g;;(x) h); is an equivalence relation on @,
so the quotient space is well defined. Write n[(x, h);] := x; then it may be checked that P
inherits from @ the structure of a differential manifold, of dimension dim M + dim G, such
that n: P — M is a submersion. It remains to check that G acts freely and transitively on
the right on each fibre n~!(z); but it is obvious that the right action of G on @ given by

(ZL’, h)i -9 = (z, hg)i

preserves equivalence classes and drops to a right action on P whose orbits are the fibres
of n. O

If we are also given a representation p: G — GL(V'), we may then create a vector bundle
with transition functions {g;;} by association, using (1.3). Conclusion: one can always patch
together a vector bundle with base M and structure group G from a set of transition functions
satisfying (1.8) and a representation of G.

The remaining question is how can one describe the equivalence of vector bundles in
terms of the transition functions, in order to obtain a manageable classification. The answer
is provided by the theory of Cech cohomology.

1.8 Cech cocycles

A family of transition functions forms what is called a “Cech 1-cocycle” with values in the
structure group G. Some difficulties arise in the cohomology theory of these objects for
noncommutative structure groups, so we shall assume for the present that this group is
abelian. This still covers many cases of interest, such as the groups C, C*, R, U(1), Z,
and Zs.

Definition 1.15. Let W = {U, : j € J} be an open covering of a manifold M and let
A be an abelian group; we will write the group operation additively. For r € N, a Cech
r-cochain over U with coefficients in A is a family of elements c;;,. ; € A, indexed by the
collections of (r +1) sets {Uj,,Uj,,...,U;, } C U for which U, NU; N---NU;, # 0. The set
of all r-cochains is denoted C”(U, A); it is an abelian group.

One often needs a broader definition, where A is replaced by a family of abelian groups
A= {A; } satisfying certain compatibility relations.® We will always take A to be

A 0FLeendir Joj1.--Jr

8To be precise, A should be a sheaf of abelian groups over M. The interested reader may consult [14] or
[58] for the full story.
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the collection of smooth functions from U;, NU;, N---NUj, into a fixed abelian group A. For
r € N, a Cech r-cochain over U with coefficients in A is then a family of smooth functions
Fiojr.gn: Ujp NU;, N+ -NU;, — A, defined whenever U;, NU;, N---NU;, # 0. The set of all
such families is denoted C"(U, A).

For instance, the chart maps ¢; of a manifold M form a 0-cochain in C°(U,R") (or in
C°(U,C™), if M is a complex manifold). The transition functions of a complex line bundle
gij form a 1-cochain in C*(U, C*); the transition functions of a Hermitian line bundle form

a l-cochain in C*(U, U(1)).

Definition 1.16. The Cech complex is the cochain complex® (C*(U, A),6) is defined as
follows. The coboundary operator 6,: C™(U, A) — C™(U, A) is given by

(6a)ij = a; — aj, (0b)iji == bij — b + bji;

for a € C%U,A), beC! (U,A), and (5C)j0~--j'r = ZZ:O(_1)kcj0~~-j7'7k71]'7-—k+1~~~jr
is immediate that % = 0 by cancellation of terms, so we have a complex

in general. It

O, A) - o, A) - e, A) -

which gives rise to cohomology groups in the standard way: Z"(U, A) := {c € C"(U, A) :
dc = 0} are the Cech cocycles, B"(U, A) := {éb: b € C"'(U, A)} are the Cech cobound-
aries, and the quotient group H"(U, A) := Z"(U, A)/B"(U, A) is the rth Cech cohomology
group of the covering U with coefficients in A.

Open coverings of M form a directed set (under refinement); we can eliminate U by
taking a direct limit: the rth Cech cohomology group of the manifold M (with coefficients
in A) is defined as®

H"(M, A) = lim H"(U, A).
U
An essential result from topology [14] is that this limit is already attained when U is a good

covering: H"(M,A) = H"(U, A) in this case.

1.9 The Cech cohomology of S?

Let us compute the Cech cohomology (with real coefficients) of the sphere S2. We know
(Exercise 1.1) that it has a good covering U = {U;,Us,, Us,U,} by open neighbourhoods
of the four spherical triangles F; obtained by projecting an inscribed regular tetrahedron
outward from the centre. Each U; N U; is a neighbourhood of the edge F; N F}, and each
U;NU; N Uy is a neighbourhood of the vertex F; N F; N Fy; all are contractible. Thus 0-
cochains are labelled by the faces of the tetrahedron, 1-cochains are labelled by its edges,
and 2-cochains are labelled by its vertices. Therefore

CO(U,R) ~R*,  CHU,R) ~R® C*(U,R) ~ R*,

9See Appendix A for generalities on cochain complexes and their cohomology groups.
10We use the notation H to distinguish Cech cohomology from singular or de Rham cohomology; although
we shall see that this is often unnecessary.
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and since Uy N Uy N U3 N U, = ), we have C"(U,R) = 0 for » > 3. Thus the Cech complex
reduces to
CO(U,R) 2% Y (U, R) -2 C2(U,R) -2 0. (1.9)

Now a € ker &y iff a1 = ay = a3 = ay, so H(S*,R) = Z°(U,R) ~ R; and (by linearity of &;)
BY(U,R) = im §p ~ R3.

The elements b € kerd; = Z'(U, R) satisfy b;; — by, + by = 0 for {4,5,k} C {1,2,3,4};
these 4 linear equations for the six b;; form a system of rank 3; and hence Z'(U,R) ~ R3.
Thus the sequence (1.9) is exact at C' (U, R), and so H'(S?, R) = 0.

Finally, B>(U,R) = imd; ~ R%/kerd; ~ R3. Since Z%(U,R) = C*(U,R) ~ R* we
conclude that H?(S?,R) ~ R.

FEzercise 1.11. Compute the de Rham cohomology (Appendix A) of S?. Show that closed
0-forms on S? are constant functions, that the volume form Q = sin 6 df d¢ is a closed 2-form
with nonzero integral, and that if 3 is another 2-form with sz 0= fSQ Q) then 8 — (2 is exact.
If = f(0,0)d0+ g(0,¢)sinfdgo is a closed 1-form, use the Poincaré lemma to show that,
away from either the north or the south pole, « is of the form d(sin 6 (6, ¢)), and hence show
that a is exact. Conclude that H"(S?,R) ~ H'(S?) for every 7. Is that just a coincidence?

1.10 Line bundle classification

Let L — M be a complex line bundle with a local system {(U;, s;)} of nonvanishing local
sections and with transition functions g;;: U; N U; — C* such that s; = g;;5; on U; N U;.
(Since the fibres are one-dimensional, we get'! G = GL(1,C) = C* and s; — g;;s; is just
the module action of functions on sections; this simplifies the notation considerably.) We
may and shall assume that U = {U;} is a good covering. The fundamental result we need is
the following [57].

Proposition 1.5. The family of transition functions g := {g;;} is a Cech 1-cocycle for the
good covering U; its cohomology class [g] € H'(M,C>) is independent of the local system of
sections sj, and depends only on the equivalence class [L] of the complex line bundle L — M.
Moreover, the correspondence [L] — [g] € H'(M,C*) is an isomorphism of abelian groups.

Proof. From its definition, g is clearly a Cech 1-cochain in C*(U,C*). The consistency
condition (1.8) says that (0g)ix = 6ijgjx/9sx = 1 on U; N U; N Uy, which means that g
is a Cech 1-cocycle. If a different local system {(U;,t;)} is chosen, then t; = h;s;, where
h;: U; — C* is smooth, i.e., h € C°(U,C*). Clearly t; = (hi/h;)gi;t;, so that the transition
functions for the new local system form the 1-cocycle g + 0h (in additive notation). Thus
the line bundle determines the class [g] in H'(M,C*).

The frame bundle P — M of a line bundle is formed simply by deleting the zero section
from L, ie., by taking P, = L, \ {0} for each x € M. A nonvanishing local section s;
of L — M may thus also be regarded as a section of the frame bundle P — M. From
Exercise 1.4, we see that the transition functions for the dual line bundle L* — M are

' The notation C* denotes the multiplicative group of nonzero complex numbers; we revert to multiplica-
tive notation when working with this group.
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1/g;j. On passing to additive notation, we conclude that the dual bundle determines the
class —[g] € H'(M,C*).

Similarly, if g;; are transition functions for another line bundle L' — M, then the tensor
product bundle L ® L' — M has transition functions g;;g;;, and so determines the class
[g] + [g'] € H'(M,C*). Therefore [L] — [g] is a homomorphism from the group of line
bundle classes to the group H'(M,C*).

If [g] = 0 in H'(M,C*), then g is a coboundary 0 f, i.e., gi;; = fi/f; where each f;: U; —
C* is a smooth function. But then f; 's; = fj_lsj whenever U; N U; # ), and so there is a
global nonvanishing section s € I'(L) given by s := fj_lsj on Uj; and therefore L — M is a
trivial line bundle. Hence the kernel of homomorphism [L] — [g] is zero. From Lemma 1.4, a
line bundle can always be patched together from a given Cech 1-cocycle in C* (U, C*), having
this cocycle as its set of transition functions; this shows that [L] — [g] is surjective. O

1.11 The second cohomology group

Consider the short exact sequence of abelian groups:
0—Z——-C-—-C*—0, (1.10)

where ¢ is inclusion and €(z) := €. One may form Cech cochains with values in any of these
groups. If ¢ € Z"(U,C*), then ¢ = €(b) with b € C"(U, C); since €(db) = dc = 0, we can find
a € C™(Z) with 1(a) = db; since 1(da) = §(ra) = 0, we have da = 0 and so a € Z" (U, Z).
One checks that [¢] — [a] is a well-defined homomorphism'? 9,: H"(M,C*) — H™ (M, Z),
called the Bockstein homomorphism [23, 58]. We therefore get a long exact sequence in
cohomology:

o — HY(M,C) — H(M,C*) -2 H2(M, Z) — H*(M,C) —> - - -

Notice that the discrete group Z need not be underlined: if U is a good covering, an element
of C"(U,2) is a family of Z-valued smooth functions with connectved domains, le, a family
of constant functions; thus C"(U,Z) = C"(U, Z) for all r, and so H"(M,Z) = H"(M,Z).
Exercise 1.12. Verify that 0 does not depend on the choices of @, b and ¢ within their
cohomology classes, and that ker 8, = im H"e and im 0, = ker H"*1..

Ezercise 1.13. If U is a good covering of M and {v,} is a partition of unity subordinate
to U, define, for ¢ € Z"*! (U, C), an element b € C"(U, C) by bj,_j, , = >_. Cjy.j,_15%; (this
is a locally finite sum). Show that db = ¢ and conclude that H*(M,C) = 0 for k > 0.

Proposi’gion 1.6. The l?ockstem homomorphism O is an isomorphism of abelian groups
between H'(M,C*) and H*(M,Z).

Proof. This follows from the preceding exercise, but it is instructive to produce the isomor-
phism explicitly. Let g € Z'(U, C*); since each U; N Uj is contractible, we can find a smooth

12This is just the standard construction of the “connecting homomorphism” in homological algebra.
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function f;;: U; N U; — C such that € o fi; = gij; we could write f;; = (2mi)~'log g;;, but
this is not quite correct since the complex logarithm is “multi-valued”. Define

ik = fij — fi + [ : U;NU; NU, — C (1.11)

whenever U; NU; N Uy, # 0. Then exp(2mia ) = gij9ix/gix = 1, and so a;jy is Z-valued.
Thus a is an element of C?(U,Z). Now (1.11) says that @ = ¢f in C*(U,C), and so
(0@)ijki = Qijk — Qigr + aiji — aji = 0 on U; NU; NUR NUp; these are algebraic relations among
Z-valued functions, and so da = 0 in C?(U,Z); hence a € Z*(U,Z).

If we take g;; := (hi/h;)g;; with h € C°(U,C*), we can find a smooth function k;: U; — C
such that € o k; = h;; then e o (fi; + ki — k;) = gj;. In other words, we modify f to f + dk
in C'(U,C), and @ = §f is unchanged. Therefore we obtain a well-defined homomorphism
0: [g] — [a] from H'(M,C*) to H*(M,Z).

To see that this is an isomorphism, let {¢;} be a smooth partition of unity subordinate
to U. Suppose a € Z%(U, Z) is any Cech 2-cocycle; define f € C'(U,C) by fi; := >, aijriby,
and define g € C*(U,C*) by g¢;; := exp(2mif;;). Then

fij = fie + fijr = Z(aijr — Qiky + Ajr )y = Z AQijkVr = Qiji (1.12)

T

on using da = 0; hence § f = a. This shows that 0 is onto.

If O[g] = 0 in H*(U,Z), we can arrange, by suitably choosing a representative g in its
class, that fi; — fir + fix = 0 on each U; N U; N Uy. Define k € C°(U,C) by k; := >, firths;
then k; — k; = > (fir — fjr)r = 2., fijr = fij, and so f = dk. If h; := exp(2mik;), then
g = 6h in C*(U,C*), and so [g] = 0 in H?(U,C*). Hence 9 is one-to-one, which establishes
that 0: H'(M,C*) — H?*(M,Z) is an isomorphism. O

The upshot is that complex line bundles over M are classified by the integral Cech
cohomology group H 2(M,Z), at the very small price of going up to the second level in
cohomology. This is a first taste of “quantization”, that is, an unexpected discreteness
which appears in a seemingly continuous family of objects. The culprit here is the exact
sequence (1.10), due to the periodicity of the exponential function.

1.12 Classification of Hermitian line bundles

We are particularly interested in Hermitian line bundles L — M, which have an inner
product in each fibre (and therefore the local sections s; can be chosen so that s;(z) € L, is
a unit vector). These have structure group U(1), and the previous arguments show that the
group of equivalence classes of Hermitian line bundles is isomorphic to the Cech cohomology

group H'(M,U(1)).

Exercise 1.14. Construct this isomorphism in detail.

We have a short exact sequence of abelian groups:
0—Z——-R-"U(1) —0,
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where €(t) := €?™ for t € R. The corresponding long exact sequence is

o HY(M,R) — H(M,U(1)) -% H2(M, Z) — H2(M,R) — - - -
and again H'(M,R) = H?(M,R) = 0 by the partition-of-unity construction. Here also,
the Bockstein homomorphism is an isomorphism between H'(M,U(1)) and H?*(M,Z). In
this case, the image of each g;; is not the whole of the unit circle U(1), since U; N U; is
contractible; by passing a half-line from the origin through an omitted point of U(1), we can
choose a branch of the logarithm for which f;; := (2mi)~!log g;; is well-defined. We then
have

1

Qjjk = %(log gij — log gix +log g;i) € Z (1.13)

since exp(2mia;jx) = 1 (note that the three branches of the logarithm on the right hand
side of (1.13) need not be the same). Once again, we get a € C?(U,Z) with da = 0, so
a € Z*(U,Z). This leads to the following result.

Proposi‘gion 1.7. The Bogkstez’n homomorphism O is an isomorphism of abelian groups
between H'(M,U (1)) and H*(M,Z). O

Exercise 1.15. Write out the proof, using the arguments of Proposition 1.6.

The Cech cohomology groups obviously depend only on the topology of M, and are
computed by elementary topological arguments. However, it is desirable to replace them by
de Rham cohomology groups, so that one can work with differential forms. This we do in
Section 3.

1.13 Classification of vector bundles

In order to classify vector bundles of rank higher than 1 (up to equivalence), we face the
obstacle that the group structure on the line bundles does not extend to the higher-rank
case. In fact, it turns out that the most useful classification of vector bundles relies on a
weaker equivalence relation, called stable equivalence, which does not distinguish between a
vector bundle £ — M and the Whitney sum F & Ey — M whenever the second summand
Eq—— M is a trivial bundle. This notion arises from the following fundamental property of
vector bundles.

Proposition 1.8. Let E— M be a vector bundle over a compact manifold M. Then we
can find another vector bundle E' — M such that the Whitney sum E®E — M 1is a trivial
vector bundle.

Proof. Let W = {Uy,...,U, } be a finite open covering of M by chart domains, and let
{s},....s%} be linearly independent sections in I'(U;, E) (where k is the rank of E). Let
{¥j}1<j<m be a smooth partition of unity subordinate to U. Let o} € I'(E) be defined as
;s on U and as 0 on the complement of Uj; notice that the vectors of(x) span the fibre
E,, for any x € M.
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Write n = km, and define f: M x C" — E (in the case of complex fibres; the real-fibre
case is analogous) by f(z,t) :=_, t;.07(z); then f is a surjective bundle map, i.e., (f,idar)
is a bundle morphism. Write E! := { (z,t) : t € C", f(x,t) = 0}. Choose some hermitian
(or Riemannian) metric on M, and let F, be the orthogonal complement of E’ in {z} x C";
one checks that the F, form the fibres of a vector bundle F'— M, and that (f,idy) is a
bundle equivalence between this bundle and £ — M. Since F & E' = M x C", we thereby
obtain an invertible bundle map from M x C" to £ & E'. O

Definition 1.17. Let M be a compact manifold. We say that two vector bundles £ — M
and FF'— M are stably equivalent if there exists a trivial bundle Fy—— M such that
E @ Ey and F @ Ej are equivalent. We denote by [E] the stable equivalence class of E.

FEzercise 1.16. Show that £ — M and F — M are stably equivalent iff [E @& G| = [F @ G|
for some third vector bundle G — M (which need not be trivial).

The equivalence classes of vector bundles over M form an abelian semigroup with identity,
under the operation [E] + [F] := [E & F|. One would like to embed this in an abelian group
in some canonical way. In fact there is a standard construction of such a group, by abstract
nonsense. For any abelian semigroup A with identity, let K(A) be the abelian group with
the following universal property: there is a unital semigroup homomorphism 6: A — K(A)
such that, whenever G is a group and 7: A — G is a unital semigroup homomorphism, there
is a unique group homomorphism x: K(A) — G for which v = ko#. Clearly, K(A) is unique
up to isomorphism, and it is called the Grothendieck group of A.

Exercise 1.17. Check that a group with the desired universal property is given by the
following construction. Define an equivalence relation on A x A by (a,b) ~ (a',V) iff
a+b +c=d+0b+cfor some c € A, and let K(A) be the set of equivalence classes
with the obvious sum operation, where the class of (b, a) is inverse to the class of (a,b); let
f(a) be the class of (a,0). Check also that each element of K(A) is of the form 6(a) — 6(b)
for some elements a,b € A.

FEzercise 1.18. What is K(N)? What is K(A) if A is the multiplicative semigroup Z \ {0}?

An abelian semigroup A is said to “allow cancellation” if a + ¢ = b+ ¢ implies a = b,
for any ¢ € A. Regrettably, the semigroup Vect(M) of (ordinary) equivalence classes of
vector bundles over M does not usually allow cancellation. For example, the tangent bundle
TS? — S? is not trivial, whereas the normal bundle (of lines from the origin of R* through
the sphere S?) is trivial, and their Whitney sum is the trivial bundle S x R® — S?%; thus
[TS?] + [S* x R] = [S? x R?] + [S? x R], so that cancellation is not allowed. In this case, the
homomorphism # is not injective.

Definition 1.18. The K-theory of a compact manifold M is the Grothendieck group
K°%M) := K(Vect(M)). Two vector bundles £ — M and F — M have the same image
in K°(M) iff they are stably equivalent; thus any element of K°(M) can be written as a
difference of two stable equivalence classes, [E] — [F].
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Ezercise 1.19. Prove the assertion that 0([E]) = 0([F]) iff [E] = [F]. Show also that any
element of K°(M) can be written as [E] — [O] for some k, where Oy — M denotes the
trivial bundle of rank &.

It turns out that K°(M) carries important topological information about the manifold M;
in that context, vector bundles may be viewed as auxiliary tools to study topological spaces.
There is a companion group, called K!(M), which together with K°(M) forms a cohomology
theory distinct from the Cech and de Rham cohomologies. This theory is fully developed in
the monograph of Atiyah [3].

2 Complex projective spaces

We illustrate the general theory with a look at a particular class of manifolds, namely
the complex projective spaces. These are complex manifolds, that is, differentiable mani-
folds whose transition maps are holomorphic; thus we may use complex local coordinates
to describe them. They possess three important features: (a) a Hermitian metric; (b) a
distinguished nondegenerate closed 2-form, which is known as a “symplectic structure”; (c)
a “complex structure”, which at each point specifies a linear automorphism of the tangent
space whose square is —1. Moreover, any two of these three structures determine the third;
a complex manifold with such a triple structure is called a Kahler manifold. The complex
projective spaces are perhaps the simplest examples of compact Kéhler manifolds.

2.1 Complex manifolds

Definition 2.1. A complex manifold of complex dimension m is a differentiable manifold
of real dimension n = 2m which has an atlas of local charts (Uj, ¢;), with ¢,: U; — C™,

such that the transition maps ¢; o gbj‘l are holomorphic. If (z',... 2™ y', ... y™) are local
(real) coordinates on Uj, write 2% := zF +iy*  zF := 2% —iy¥; then (21,... 2™ 21 ..., 2™) is
an alternative system of local (real) coordinates on Uj.

Complex-valued 1-forms® are locally generated by dz',...,dz", dz',..., dz™, where we

write dz* := da® + i dy*, dz* := da* — i dy*. Complex-valued vector fields in X(M,C) are
locally generated by 9/0z",...,8/02™,0/0z",...,0/0Z™, where 8/dz" := 2(0/0x*—i0/0yk)
and 0/0z% := 1(8/0x* +i0/0y"); more precisely, X(U;, C) is a C*°(U;, C)-module with these
generators. (The notation is chosen so that dz?(9/92%) = §] and dz7(9/9z%) = 0.)
In particular, we may write the differential of f € C*>°(M,C) as
of w0 k_ 5

where, here and in the future, we use the Einstein summation convention of summing over
repeated upper and lower indices.?

'In this section, all vector fields and differential forms will be taken complex-valued unless stated other-
wise.

2To avoid possible misunderstandings, we emphasize that we do not sum over repeated upper or repeated
lower indices, unless a summation sign appears explicitly.
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Ezercise 2.1. Check that the decomposition df = 9f + 0f does not depend on the local
coordinate system, on account of the holomorphicity of the transition maps.

Ezxercise 2.2. A smooth map f: M — N is called holomorphic iff all its local expressions 1); o
fo qﬁ;l have holomorphic Cartesian components. Verify that f € C*°(M,C) is holomorphic
iff 0f = 0.

Definition 2.2. In view of (2.1), we have a splitting A'(M) = AY(M) & A% (M) of
C*(M,C)-modules, and more generally,

A(M) = P API(M),

prq=r
where each AP4(M) is locally spanned by r-forms of the type
fh 2™ EMY A A ANdEP NAE A N dE

Thus the algebra of differential forms is bigraded: A*(M) = @, ,API(M). Again by (2.1),
the exterior derivative splits as d = 0 + 9, where 9: APY(M) — APTLI(M), 0: API(M) —
AP9HL(M). The identity d? = 0 yields the three identities

=0, 90=-90, D=0, (2.2)

on taking account of the grading degrees. (These identities say that the spaces AP4(M) form
the vertices of a “double complex”.)

Ezercise 2.3. Verify that the conjugation w — @ on A*(M, C) = A*(M,R) ®g C is such that
Ow = Ow and that w € A??(M) whenever w € AP(M).

2.2 Local charts for complex projective spaces

Definition 2.3. The m-dimensional complex projective space CP™ is the set of complex lines
through the origin in C™*!, i.e., the one-dimensional complex subspaces of C™*!. For any
nonzero v € C™*!, the line (v) = Cuv lies in CP™, and n: C"*\ {0} — CP" : v — (v) is a
quotient map.® If (2%, 2!, ..., 2™) denotes coordinates in C™"! (with respect to the standard
orthonormal basis), we may regard each 27 as a linear form on C™'!; these cannot vanish
simultaneously on C™!\ {0}, so we get the following chart domains for CP™:

Uj:={(v) e CP™: 27 (v) #0}, j=0,1,....,m.

Since (v) ¢ U; iff (v) C ker 27, we can identify the complement of U; with the set of lines in
the hyperplane ker 27, which is homeomorphic to CP™!. In particular, each U ; is open and
dense in CP™, since its complement is a lower-dimensional submanifold.

3This quotient map actually defines the topology of CP™.
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For (v) € U; and k # j, we define

wh((v)) == == (2.3)

o((v)) = (wl,. Y. um) (2.4)

. . J
is a homeomorphism from U; onto C™, and (w?, SV wtT

j
for the chart (Uj, ¢,).

) is a system of local coordinates

The w;? are Cartesian coordinates corresponding to the “homogeneous” coordinates 2%,

that is, (wf,wj, ..., wi") = [2°: 2': ---: 2™] in the standard notations.

On the overlap U; N U;, we have

for k ¢ {i,j}, so the transition map ¢; o (;5]_ , when written as u + v, is given by rational
functions: vj = 1/u’ and v* = u*/u’ for other k, and hence is holomorphic. Thus the atlas
{(Uj,¢;):7=0,1,...,m} makes CP™ a complex manifold.

Since C]P \ U, =~ CP" " and U,, ~ C™ ~ R?", we have (by induction) that CP™
is topologically a cell compler with one k-dimensional cell in every even dimension k£ =
0,2,...,2m and no odd-dimensional cells. This allows us to compute the singular homology
groups of the complex projective spaces by standard topological techniques [23]: we get
Hy(CP™ Z) = Z if k = 0,2,...,2m; H(CP™,Z) = 0 for all other k. Thus CP™ is a
“torsion-free” space, i.e., all its integral homology groups are free; it is known that then the
singular cohomology groups with integer coefficients can be computed by duality:

7Z ifk=0,2...,2
H*(CP™, Z) = Hom(H*(CP™, Z),Z) = ' DS (2.5)
0 otherwise.
2.3 The Kahler form
Definition 2.4. For v = (2, 21,... 2™) € C™*!, we write ||[v]|? = >, [2%]? = Y, 2"2F, and
define
Dy (v) := z'aé log [|v]|? = i 9(||v]|~*X2,2" dz¥)
H H4 (HUH2 Zdz AdzF — Z Z'28dz" N dZ° >
r,87]
4The notation \]/ indicates that the index j is omitted from the sequence 0,1,...,m.
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which is a 2-form in AM(C™F\ {0}). Tt is clear that @, is homogeneous of degree 0, i.e.,
Do(Av) = Pg(v) for A € C*. This means that there is a 2-form ® € A“!(CP™) such that
@g = 77*(1)

To find an expression for ® in local coordinates on U;, we may identify U; with a subset
of the hyperplane 27 = 1 in C™"!, by using (2.3) with denominator 1. With this convention,
the norm squared of a vector v in this hyperplane defines a positive function @); on U; (which
tends to infinity at the boundary); in fact,

lol* = Q;((v) =1+ ) whw] (2.6)
ki

for (v) € U; with local coordinates (2.4). Thus

- 09 i - Ty r -8
¢ =i00logQ; = o (Q] Zdw;? A dw;-C — Z wiw; dw} A dwj). (2.7)
J k#j T,5#]

The 2-form @ is in fact real-valued, as is evident from its local expression (2.7), or
alternatively by noting that ® = —i 99 log Q; = ® on account of (2.2); this ® € A*(CP™, R)
is called the Kahler form on CP™.

It is important to note that ® = —99Q); is a closed 2-form. This follows at once from

(2.2), since d® = (0 + 0)® = —9%*(0Q;) + *(0Q;) = 0.

Exercise 2.4. A real-valued 2-form 3 € A*(M) is called nondegenerate if each 3, € A*TM
is nondegenerate as an alternating R-bilinear form, i.e., 8,(u,v) = 0 for all v € T,, M implies
u=01in T, M. Show that 3 is nondegenerate iff for any local expression 6‘U = bps dx” Ndz?®,
the matrix of local coefficients [b,.s] is nonsingular at each point of U. Verify that the Kahler
form ® is nondegenerate on CP™ by showing that the matrix A with entries );0" — wjw; is
positive definite (apply the Schwarz inequality to show that z!Az > 0 for all z € C™"1\ {0}).

Exercise 2.5. Show that ®"™, the m-fold exterior power of ®, is a volume form on CP™,

i.e., a 2m-form which is nonzero at each point of CPP™ when regarded as a section of the line
bundle A?**T*CP™ — CP™.

2.4 The Fubini—Study metric

Definition 2.5. Let M be a differential manifold of even (real) dimension n = 2m. An
almost complex structure on M is an operator J: X(M) — X(M) which is C*°(M, R)-
linear,” and which satisfies J* = —id. Thus (JX), = J,(X,) where J, € Endg(7,M) with
(J.)? = —1id for each x € M.® Almost complex structures need not exist; if one does exist,
we say that (M,J) is an almost complex manifold.

°In other words, J can be identified with a tensor on M, of bidegree (1,1), given by (X, a) — a(J(X)).
One also says that J is a “tensorial operator”.

6An almost complex structure may therefore also be defined as a bundle automorphism (.J,id) of the
tangent bundle TM — M for which J? = —id.
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It turns out that M need not be a complex manifold in order to possess an almost complex
structure; a known example is the sphere S® which has an almost complex structure related
to the Cayley numbers. See [15, 58] for some discussion of this. Here we will stick to complex
manifolds.

A complex structure can always be defined locally if dim M is even; it suffices to take

local coordinates (z',..., 2™, y',...,y™) on a chart domain U and let

0 0 0 0
g) =a (o) = o 2

Now J may be amplified to a C*°(U, C)-linear operator on X(U, C) in the natural way; from

(2.8) we derive
0 .0 0 .0
J(a_) =5 J(a_) = i

On a complex manifold, these local definitions patch together to give a global definition
of J. For instance, on CP™ we have

0 .0 0 .0
J(a—w;) = Za—w?, J(a—w;€> = _ZW’ (29)

J

which is independent of the chart (Uj, ¢;).
FEzercise 2.6. Verify this independence on an overlap U; N U; of charts of CP™.

Lemma 2.1. Let M be a manifold with an almost complex structure J, and let ® € A*(M)
be a real-valued nondegenerate 2-form on M which is invariant under J, i.e., ®(JX,JY) =
O(X,Y) for X, Y € X(M). Then the recipe g(X,Y) := ®(X,JY) defines a symmetric tensor

on M which is also J-invariant.

Proof. Clearly g is a tensor of bidegree (2,0); symmetry follows from invariance, since
gV, X) =0V, JX) = —0(JX,Y) = ¢(JX,J?Y) = &(X,JY) = g(X,Y). O

When M = CP™, ® is the Kéhler form (2.7), and J is given by (2.9), we obtain on U;:
2 — —7, 8 r — s
g = o (Qj Zdw;-C - dwh — Z wiw; dws - dw]). (2.10)
PN kA -y

Exercise 2.7. Check that g is positive definite, and thus defines a Riemannian metric on CP™.
(Recall that the matrix with entries Q;0™ — w%w; is positive definite, by Exercise 2.4.)

Definition 2.6. The metric (2.10) is the Fubini—-Study metric on CP™.
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2.5 The Riemann sphere

When m = 1, the complex projective space CP' is identified with the Riemann sphere
Co = C W {00}, by identifying [2°: 2!] with z = 2!/20 € C if 2° # 0, and [1: 0] with oo.
Notice that z = wj is the local complex coordinate in Uy = Cy, \ {oo}. By writing z = z+iy,
we can also identify C., with the two-sphere S?, regarding the latter as a submanifold of R3,
via the stereographic projection

2z 2y —1+ 2?2 4+ y?
f(z) = L L — (2.11)
1+ +y* 1+a*+y* 1+a°4y

and f([1:0]) := (0,0,1).
The Kéhler form on C,, is easily found. We have Qq({v)) = 1+ |z|? for v = (2°,2!) € C?,

so (2.7) reduces to
o — tdz \Ndz _ 2dx N dy . (2.12)
(T[22 (I+a2+y?)?

Ezercise 2.8. Write (u!, u?, u?) to denote the right hand side of (2.11). Check that ® = f*(,
where 2 € A*(R?) is given by Q = (du' A du?)/2u?. The usual spherical coordinates on S?
are defined by the map h: R? — S? where h(0,¢) := (sin @ cos ¢, sin @ sin ¢, cos ). Check
that h*Q) = —% sinfdf A de.

The Riemannian metric (2.10) reduces to g = 2(1 + |z|*)"2dz - dz or equivalently g =
2(1 + 22 + y*)7% (dz* + dy?), where dz? denotes the symmetric product dx - dz.

Egzercise 2.9. Show that g = f*(3G) where G = (du')? + (du?)* + (du®)? is the standard
Riemannian metric on R?, and that h*G = df? + sin® 0 d¢>.

We may regard (6, ¢) as local coordinates on the Riemann sphere. Thus we write simply:

®=—1L(sin0dd Adp),  g=L(d6®+ sin®0d¢?). (2.13)

It may prove useful to have available some relations between the local coordinate systems
(z,z) and (0, ¢). We list a few identities that follow from the previous formulae:

sinf el 2

=€ dz=-——"(—df+isinfd =—.
1 —cosd © 1—(3059( isinfde), Qo 1—cosd

FEzercise 2.10. Verify the formulae (2.14) and derive (2.13) directly.

Exercise 2.11. Show that the complex structure J on S? satisfying ¢(X,Y) = ®(X,JY) is
given by J(9/00) = —csc00/0¢ and J(csc @ 0/0¢) = /00 in spherical coordinates.

P (2.14)

3 The de Rham complex and Hodge duality

3.1 The de Rham complex

Definition 3.1. If M is an n-dimensional differential manifold, its de Rham complex is
the cochain complex

AYM) -5 ANM) = -+ — AF(M) =L AFFL(M) — -+ — A™(M)
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where A*(M) = A*(M,R) denotes the real-valued differential forms on M, and d is the
exterior derivation. We recall (see Appendix A) that its k-cocycles are the closed differential
k-forms Z¥, (M) := {w € A*(M) : dw = 0}, and its k-coboundaries are the exact differential
k-forms BX, (M) := {dB : 8 € A*=1(M) }. The k-th de Rham cohomology group H%; (M) :=
HY(A*(M),d) is a real vector space.

The 0-cocycles in ZJz (M) are locally constant smooth functions, so Hig (M) = R™ if M
has exactly m connected components. In particular, Hyz (M) # 0. If U is a contractible
manifold, then by the Poincaré lemma,' H%; (U) =0 for each k =1,2,...,n.

If M is an orientable compact manifold (without boundary), with volume form v €
A"(M), then dv = 0 and v is not exact since [, v # 0. (If p € A™(M) is exact, with
1= dj, say, then fM = fM dB = 0 by Stokes’ theorem, since M = (J; thus, a volume form
cannot be exact.) Therefore Hj (M) # 0. Moreover, since the integral vanishes on exact
(n—1)-forms, again by Stokes’ theorem, we see that [w] — [, w is a well-defined linear form
on Hix(M).

3.2 The Riemannian volume form

Definition 3.2. Let g be a Riemannian metric on the compact oriented manifold M. Then
g: X(M)xX(M) — C>(M) is a symmetric C°°(M)-bilinear form such that each g, : T, M x
T.M — R is positive definite. The pair (M, g) is called a Riemannian manifold.

If U C M is a chart domain with local coordinates z*, ..., 2", let g;; :== ¢(9/dz",0/0x7) €
C>(U); then [gi;] is a symmetric matrix, whose determinant we write as det g (by a slight
abuse of notation, since this determinant is coordinate-dependent), and we have g = g;; dz* -
dz’ on U.

For each = € M, there is a vector space isomorphism g, : T, M — T M given by g, (u) :=
[v +— g.(u,v)]; these determine a diffeomorphism §: TM — T*M such that (g,idys) is
an equivalence between the tangent and cotangent bundles. They also determine tensorial
operators X — X’ : X(M) — AY(M), given by X°(Y) := g(X,Y), and its inverse o +— of :
AY(M) — X(M), given by a(Y) =: g(a*,Y). These “musical isomorphisms” [8] allow us to
identify vector fields and 1-forms and to use them interchangeably, as the occasion demands.

The metric g defines thus defines bilinear pairings, not only of vector fields but also of 1-
forms and indeed of differential forms of any degree; we will denote all these pairings by (- |-)
whenever a fixed g is given. Thus (X |Y) := g(X,Y) for X, Y € X(M); («| B8) := g(o#, 5*)
for a, 3 € AY(M); and the pairing on A*(M) (for k > 1) is determined by

(@' A A BE A A BE) = det[(of | )]
for al,... o Bt ..., 3% € AY(M).

Definition 3.3. Let (M, g) be an oriented Riemannian manifold. Choose a local orthonormal
frame X3,..., X, for X(U), i.e., vector fields such that g(X,, X;) = d,s, which is oriented,

LA complex (C*,d) is called “acyclic” if H*(C®,d) = 0 for k > 0. Thus the Poincaré lemma says that
the de Rham complex of a contractible manifold is acyclic.
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that is, v(Xy,...,X,) > 0 where v is a volume form on M which defines the orientation.
Let 0% := X2 € AL(U), so that 6, ... 0" is a local (oriented) orthonormal frame for A'(U).
Then

Q=0 AGEA--- ANO* € A™(M) (3.1)

is a volume form on M, since (2| 2) = 1 and in particular €2, # 0 in AT M for all x € M.
This 2 is called the Riemannian volume form on (M, g).

To see that €2 is in fact independent of the choice of oriented orthonormal frame, we argue
as follows. If Y7,...,Y}, is another oriented orthonormal frame for X(V'), where U NV # 0,
then Y; := a!X; where a = [a]] is a smooth function on U NV with values in SO(n), the
group of orthogonal n x n matrices of determinant 1. (That is to say, a is a local section
of the principal SO(n)-bundle of oriented orthonormal frames on M.) Now 9* := Y? gives
the corresponding oriented orthonormal basis for A'(V), and thus 9% = afél, from which
it follows that 92 A --- A" = (deta)@* A--- A" = Q on UNV. Therefore, Q is defined
globally by (3.1).

One can express ) in terms of local coordinates z',..., 2™ on U for which the 9/0x7
need not be orthonormal, i.e., g;; # 0;; in general. The local coordinates should, however,
be compatible with the orientation, which means that detg > 0. If y!,... 4" are other
local coordinates on V, and if g;; := ¢(9/dy*,0/0y?) € C>°(V), then det g = J*det g, where
J := det[dy" /0] is the Jacobian of the transition function (which is positive). Hence

Vdet gdy' A~ Ady™ = /det gdxt A - A da” (3.2)

on U NV, and thus the coordinate-independent expression v/det gdz! A --- A dx™ defines a
volume on M. In particular, one may choose y',...,y" so that g;; = d;;, so detg = 1 and
dy',...,dy" is an orthonormal frame: so the volume form (3.2) coincides with € of (3.1). In

other words,
Q= +/detgda' A--- A dx" (3.3)

in any oriented local coordinate system.

3.3 The Hodge star operator

Definition 3.4. Let (M, g) be a compact oriented Riemannian manifold of dimension n,
and write m := |[n/2] (so n = 2m or else n = 2m — 1). Define the Hodge star operator
*x: A*(M,C) — A*(M,C) as follows. Choose a local orthonormal frame Xy, ..., X, for X(U)
on some chart domain U C M, and let él, . ,é” be the corresponding local orthonormal
frame for A'(U), determined by §*(X;) := d%. Define x on A*(U, C) by

* o= i"(e(0") — u(X1)) ... (e(0") — u(X,)), (3.4)

where ¢(X) denotes contraction with the vector field X and e(a): w — «a A w denotes
exterior product with the 1-form «. It is readily checked that the right hand side of (3.4) is
independent of these local orthonormal frames, and therefore defines an operator on all of
A*(M,C).
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To simplify products of noncommuting quantities as in (3.4), we use the following nota-
tion: if a;,, a;,, ..., a;, are elements of some algebra, where the indices j, are in increasing
order, write

k

—

H aj, = QG - - . Qj, - (3.5)

1<r<k

Thus x = i"™ [ [, 2, e(0") —1(X,). Tt is also convenient to write .J := {j1, ..., ji} and denote
the right hand side of (3.5) by H?e ;a;, where it is understood that the indices j € J are
arranged in increasing order.

Ezercise 3.1. Let V be an n-dimensional oriented real vector space with a positive definite
symmetric bilinear form ¢. For u € V, a € V*, define operators ¢(u): A¥V* — A1y~
and e(a): A*V* — AMIV* by [w(u)n](vi, ... v6-1) = n(u,v1,. .. vp—1) and e(a)n == a An.
Let {e1,...,en}, {€],...,€,} be oriented orthonormal bases for (V, ¢) (so the change-of-basis
matrix [q(ez, ¢/)] has determlnant +1) and let {¢!,...,¢"}, {¢'h, ..., "™} be the respective
dual bases for V*. Show that [[,Z, ., €(¢"") — u(e)) = [[1,<, €(¢") — t(e;) as operators on
AV o o

Ezercise 3.2. Use the previous exercise to show that the right hand side of (3.4) is indepen-
dent of the given local orthonormal frames {X,} and {6*}.

Notice that when m is even, i.e., when n is of the form 4k or 4k 4+ 3 for some integer k,
then it is not necessary to use complex-valued forms since x takes A*(M,R) to A*(M,R).
However, for n of the form 4k + 1 or 4k + 2, we have i = £i and complex forms are needed.
More traditional treatments of Hodge duality [1, 28, 33, 57] use different sign conventions,
so that x operates on A®*(M,R) in all cases, but the important involutivity property (see
Lemma 3.3 below) is then lost.

Lemma 3.1. If J := {j1,...,jx} C{L,....;n} and if J' :={1,....n} \J = {i1,...,ln_i}
is its complement, with indices written in increasing order in both cases, let n(J, J') = +1 de-
note the sign of the shuffle permutation which reorders (1,2,...,n) a8 (J1, - -+ Jks 815« 5 Gnk)-
Write, for brevity, 67 = it - - /\0”9 where 01 0” 5 a local orthonormal basis of A*(M).
Then the Hodge star operator is given explzcztly on this basis by the recipe:

*éJ — Zm( 1)nk+k¢ k‘ 1 /2 (J J/) QJ/ (36)
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Proof. This identity results from the following calculation:

w07 =i T (6B) = o(X;) 07 A 1 6
1<j<n
="(— k(k=1)/2 H ))gjk NN
1<j<n
= i"(= D)0 ) T e@) TT(—2(X5)) 0% A+ A 6
icJ’ jeJ
= Zm(_]_) k(k— 1)/2 HE gz
ieJ’

va(_1)k(k71)/2(_1)k(_1>k(n7k)?7(!], J/) é]’.

Here, one first reverses the order of the exterior product of 1-forms Gt A - oo A Gk, by a

permutation of sign (—1)**~1/2_ Then the operators e(8/) — 1(X;) act successively on forms

of type 09 A 37, yielding —3 at each stage, until only the constant (—1)* remains; next, the
operators e(0') — 1(X;), with ¢ € J', act successively on forms of type 47, yielding 67 A7 at
each stage, until 67" is created. Lastly, the identity n(J,.J)n(J’,.J) = (=1)*"=*) is used: this
is just the observation that the permutation which interchanges the blocks of indices J and

J' —while preserving the order within each block— is a product of k(n — k) transpositions.
Now (3.6) follows on noticing that (—1)*(—1)¥"=k) = (—1)"k(—1)kk+1) = (_1)7k, O

Corollary 3.2. The Hodge star operator maps A*(M,C) into A"~ (M, C). O

The next calculation shows that the presence of the factor i"™ is what ensures that x is
an involution, i.e., an operator whose square is the identity.

Lemma 3.3. % = id.

Proof. From (3.6) it is clear that xx8” = C;07 for some constant C;. One computes:

CJ _ iQm(_l)nk+k(l€—1)/2(_1)n(n—k)+(n—k)(n—k—l)/QU(J’ J/)U(J/’ J)
( 1)m( 1) ( ) k(k—1)+(n—k)(n—l<:—1))/2(_1)k(n—kz)
( 1)m( 1) ( ) n —n(2k+1)+2k2)/2( 1)nk—k2
( 1)(3n -n)/2 _ (_1)m(_1)(n2+n)/2 _ (_1)m<_1)m(2m:|:1) — +1.
This establishes that xx = id, which also implies that x maps A*(M, C) onto A»*(M,C). O

Ezercise 3.3. If X € X(M), show that xe(X”)x = (—1)"(X) as operators from A*(M) to
AFL(M). (Reduce to the special case X = X;.)
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Consider the case M = R3; though not compact, it is an oriented Riemannian manifold
with the usual euclidean metric; here §* = dz*, and « is determined by

*x1 = —Q = —dz* A da? A da?,
*xdr' = da® Nda?, xda? = —da' AdaP,  xda® = dat A da?,

on account of (3.6).

When M = C with local coordinates z,y, take z = x + 7y. For the usual metric, we
have ' = dz, 8% = dy, and so xdz = i dy, *dy = —i dz. Using the coordinates z, z, we then
have xdz = dz, xdz = —dz. Thus, xdf = «(0f +0f) = df — 0f, so that f € C=(C,C) is
holomorphic iff 9f = 0 (by the Cauchy-Riemann equations) iff xdf = df. More generally,
any o € A*(M,C) may be written as a = o™ + o~ where a™ is selfdual, i.e., xat = at,
and o~ is antiselfdual, i.e., xa~ = —a~. When n = 2m and « € A™(M), we have a™,a~ €
A™(M) also. When n = 2 and M is a compact complex manifold (i.e., a Riemann surface),
f € C>(M,C) is holomorphic iff df is selfdual.

An important example is M = S? with the Riemannian metric g = df? + sin? 0 d¢?. In
spherical coordinates, a local orthonormal basis is given by

6' = dh, 6% =sin6do.
The star operator on S? is determined by
*1 =1iQ =isinf@dfd ANdp, *db =isinfdo,

and thus Q2 = —i and x(sin 0 d¢) = —i df.

For a general system of coordinates, the star operator can be described as follows. On
a chart domain U, a k-form w € AF(U) can be written as w = wj, _j, dzi* A -+ A da’k.
New coefficients with “raised indices” are defined by w™ "t = ¢g"Jt .. g"wkw; . where [¢"*]
denotes the matrix inverse to the matrix [g;;]. Let ¢, ,, := 0ifty,... ¢, contains a repeated
index, and otherwise let €, ;, := %1 be the sign of the permutation (1,...,n) — (t1,...,t,).
Then xw is given by

*(wj,. g, dz?t Ao A daF)

_ Z-m(_l)nk—i-k(k—l)/Q Vdet g

meil...in,km...rnwn“mk d(L’il FANKIIIVAN d%in*k. (37)

Ezercise 3.4. Check the validity of (3.7) by showing that its right hand side is invariant
under a general change of (oriented) frame, and that it reduces to (3.6) for an orthonormal
frame.

Exzxercise 3.5. Work out the action of x for the Fubini-Study metric on CP™.

The Hodge star operator relates the exterior product of forms to the Riemannian volume
form, as follows.
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Lemma 3.4. For a, 3 € A*(M,C),

a AB = im(=1)"EE=D2 (| B) Q. (3.8)
Proof. Since both sides of (3.8) are C°°(M)-bilinear in (a, 3), it suffices to verify equality
for a local basis; thus we may take o = !, 8 = 0/ where I and J are subsets of {1,...,n}.

Now (A7 | 67) = 1 or 0 according as I = J or not. If I # .J then 67 A x67 = 0 from (3.6),
since INJ' # (). Also, 7 Ax07 = i (—1)F+EE=12p( ] JV0T NG = im(—1)rk+tR(E=1/2Q - [

Definition 3.5. The complex vector space A*(M, C) becomes a prehilbert space under the
positive definite Hermitian form

(o] B) = /M<a|ﬂ>9,

where the integral over M is normalized by the requirement that [ 1§ = 1. Tts completion
with respect to this “integrated inner product”? is a Hilbert space which may be denoted
L**F(M). Notice that (o | 8) = (8| a)), i.e., the conjugation of forms is antiunitary.
The inner product may be extended to all of A®*(M,C) by declaring that k-forms and -
forms be orthogonal for k # [; the completion of A®*(M, C) is the Hilbert-space direct sum

L2*(M) = @y L**(M).
From (3.8), it follows that
(o] B) =i -1y s [ ang.
M

Lemma 3.5. The Hodge star operator is isometric, i.e., if o, 3 € A*(M,C) then

(e [5B8) = (| B)

Proof. From (3.6) it follows that xa = (—1)"xa for any o € A®*(M,C). Applying (3.8)
twice,

(ke | %) = i~ (— 1)k k) (n—k—1)/2 / A
M

— Z"m(_1)n2+n(n—1)/2+k(k+1)/2/]M*a /\6

= " (1) (e /M i

= (~1)"(=)"VREB | a) = (o B)

since gn(n+ 1) = m(2m £ 1) = m mod 2. O

Since xx = id on L**( M), this isometry also satisfies (xa|y)) = {a|x7)) for a € A*(M, C),
v € A" *(M,C); thus the Hodge star operator extends to a selfadjoint unitary operator on
L2,k(M) D L2,n7k(M).

2The double brackets are intended to distinguished the integrated inner product from the C'°° (M )-valued
form (-] -).
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3.4 The Hodge Laplacian

Definition 3.6. The codifferential §: A*(M,C) — A*1(M,C) is the adjoint of the exte-
rior derivative with respect to the integrated inner product. In other words, if o € A¥(M,C),
B € A1 (M, C), da is determined by the relation

{oac| B) = (| dB)). (3.9)

The Riesz theorem “guarantees” that there is a unique element da € L7 (M) satisfy-
ing (3.9), though it is not immediately clear that da € A*"}(M,C). That this is indeed
the case, and that § takes A*(M,R) to A*"*(M,R), is a consequence of the following basic
identity.

Lemma 3.6. § = (—1)""xdx.
Proof. If a € A*(M,C) and 3 € A*Y(M,C), then dB Axa + (—=1)* 13 Ad(xa) = d(3 A *a)
is an exact n-form, whose integral is zero by Stokes’ theorem. Thus

(] 6a) = (B | a)) = i~ (~1)m+h=1/2 / 4B A xa

Z-fm( nk+k(k 1) /2/ ﬁ/\d *Oé)
M

( 1)nk+k(k 1/2 1>k< 1 —1)+(k—1)(k— 2/2<<ﬁ|*d*04>>
= (=1)"(B] *d*a»,

and so da = (—1)""xdxa since 3 is arbitrary. O

Clearly 6% = 0, and in particular (A®(M),d) is a chain complex. We say that w € A*(M)
is coclosed if dw = 0, or coexact if w = §¢ for some ¢ € A*1(M).

Definition 3.7. The Hodge Laplacian is the operator A on A®(M) defined as
A= (d+6)* =dé + dd.

Notice that A takes A*(M) to A*(M), since d raises and § lowers degrees by one. [The
restriction of A to 0-forms is called the Laplace—Beltrami operator on C*°(M).]

A k-form ~ is called harmonic if Ay = 0. We denote the vector space of harmonic
k-forms by Harm®*(M).

Lemma 3.7. A k-form v is harmonic iff dy = 6y = 0.

Proof. 1f  is both closed and coclosed, then clearly Ay = d(dv) + d(dy) = 0. On the other
hand, for any w € A*(M),

(| Aw)) = ((w | dow) + (w | Sdw)) = (0w ] 6 + (dw | dw) > 0

so that Ay = 0 implies dy = dv = 0. m
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The Laplacian A commutes with the operators x, d and 6. Indeed, xdé = (—1)"xdxdx =
ddx and x0d = (—1)"dxd = dox, so xA = xdd + x0d = ddx + dox = Ax. Also, dA = did =
Ad and §A = 6dd = Ad since d? = §2 = 0.

On the Hilbert space L**(M), A = dé + dd = dd* + d*d is a formally selfadjoint positive
operator with domain A®*(M, C); however, it is generally an unbounded operator. It can be
made bounded by defining a larger Hilbert space norm on A*(M, C) and completing to obtain
a smaller Hilbert space H*™*(M), called a Sobolev space. We shall not go into this matter
here; we refer to [28] for the details. It turns out that A is then bounded as an operator from
H?"*(M) to L**(M), which is, in fact, an elliptic differential operator.? Elliptic operators
have two main properties. Firstly, they are Fredholm operators. This implies both that
ker A is finite-dimensional, and that A has closed range in L?*(M). Secondly, a generalized
solution of an elliptic differential operator is in fact smooth.* This means that Au = 0 for
uw € H*»*(M) only when u in fact lies in A*(M,C). In other words, ker A = Harm*(M, C).
The Fredholm property of A now implies that Harm®(M, C) is a finite-dimensional vector
space.

The theory of the Hodge Laplacian culminates in the fundamental theorem of Hodge,
which states that any k-form on a compact oriented Riemannian manifold can be uniquely
decomposed as a sum of a closed k-form, a coclosed k-form, and a harmonic k-form.

Theorem 3.8. (Hodge). Let (M,g) be a compact oriented Riemannian manifold. Then
for each k =0,1,... ,n there is an orthogonal direct sum

AR (M) = dAF (M) © 6AM (M) © Harm® (M). (3.10)

That the summands are orthogonal follows from the identities {(da/|63)) = (d*a|B)) = 0,
(da | ) = (a|dy) =0, (B |v) = (B|dy) =0, for a € A¥H(M), B € AMH(M),
v € Harm®(M). If P denotes the orthogonal projector on the Hilbert space L>*(M) whose
range is Harm"”(M), then if w € A*(M) the form w — Pw lies in the range of the selfadjoint
operator A; it turns out that this range is closed, even if one restricts A to its original domain
AR(M). Hence, w—Pw = An for some € A¥(M); and therefore w = d(dn)+6(dn)+Pw. O

The full proof of Hodge’s theorem depends on verifying that A is elliptic and identifying
carefully the range of A. For the original treatment of Hodge, one can examine his book [33];
for more modern proofs, in the somewhat more general setting of an “elliptic complex”, one
may consult [23, 28]. The inverse operator A~!, defined on the orthogonal complement of
Harm" (M), is an integral operator, namely the “Green operator” for the partial differential
equation Aa = 0.

Corollary 3.9. Fach de Rham class [w] € Har(M) contains exactly one harmonic form;
thus v +— [7] is an isomorphism of Harm® (M, R) onto Hb (M), and therefore every de Rham
cohomology space of M is finite dimensional.

3This means that the “principal symbol” of A, which is a certain matrix-valued function on 7% M, becomes
invertible after deleting a neighbourhood of the zero section of the cotangent bundle. In fact, the principal
symbol oa of the Laplacian is given by oa (&) = —(£.1€2) := —g. (&5, €8) for &, € T, M.

4A differential operator whose generalized solutions are automatically smooth is called “hypoelliptic”.
Any elliptic operator is hypoelliptic.
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Proof. If w = da + 63 + v in A¥(M,R), with 4 harmonic, then w is closed iff d6g = 0 iff
(B dép) = (68 |03) = 0iff 68 = 0. For w = da +v € Ziz(M), we clearly have [w] = [7].
Moreover, if w' € Z& (M) with [w'] = [w], then ' = w + d¢ for some ¢ € AF(M), so
W' =d(a+ () + 7; hence v and w have the same harmonic component . O]

Finally, notice that xd = (—1)""1d%, so that whenever w = da + 63+~ in A*(M, C), we
also have xw = d((—=1)""%3) + §((—1)""xa) + %y in A" *(M,C). The uniqueness of the
Hodge decomposition says that the star operator is a linear isomorphism of Harm” (M,C)
onto Harm" *(M, C); if desired, one can match real harmonic forms by v — i~™xy. Passing
to cohomology, this yields a well-defined R-linear isomorphism

V] = [i7™y)  Hi (M) — Hig*(M).

This isomorphism is called Poincaré duality.’

4 The Hodge Laplacian on the 2-sphere

In this section, we investigate in detail the Hodge Laplacian on the 2-sphere S?, both as an
illustration of the Hodge theory in general, and in order to introduce a first example of a Dirac
operator. The sphere is, of course, an oriented Riemannian manifold, but it is also round,
i.e., it is a homogeneous space under the group of rotations of R3. The rotation invariance
of the Laplacian A facilitates a complete description of all its eigenvalues and eigenvectors,
which in turn leads to a corresponding spectral description of the Dirac operator ) = d + 4.

4.1 The rotation group in three dimensions

Definition 4.1. The rotation group SO(3) consists of all 3 x 3 real matrices A satisfying
A'A = 13 and det A = 1. Any rotation belongs to a one-parameter subgroup {exptN :
t € R}, where N belongs to the Lie algebra so(3) of the rotation group, i.e., the 3 x 3 real
matrices satisfying N* + N =0, Tr N = 0. Write

0 —n?® n?
N=|n* 0 -n'l, (4.1)
—n? nt 0

and suppose (n')? + (n?)? + (n®)? = 1. Then if n = (n',n? n?®) € R?, the matrix identities
N? = nn' — 13, N> = —N hold, and it follows that exptN = I + Nsint + N?(1 — cost) €
SO(3). Now the rotation action of SO(3) on R? (or on S?) is given explicitly by
(exptN)z = (I + Nsint + N*(1 — cost)) x
=z 4+ (nxx)sint+ (n(n-x) —x)(1 — cost)
=xcost+ (n x x)sint +n(n-x)(1 — cost). (4.2)

5For noncompact Riemannian manifolds, one can define “compactly supported de Rham cohomology”
H (;R,C(M ) by starting from the cochain complex of differential forms with compact support. Then Poincaré

duality is a family of isomorphisms between H¥; (M) and Hgglj(M ). In the compact case, both cohomologies
coincide.
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Let Ly, Lo, L3 be the generators of the rotation group, i.e., the elements of so0(3) given by
replacing n in (4.1) by the standard orthonormal basis vectors; so N = n'L; +n?Ly +n®Ls.
It is immediate that L, Ly] = Ls, [Lo, Ls] = Ly and [L3, L1] = Lo, or more compactly,
[Li, Lj] = € L.

It is very convenient to introduce the matrices Ly := L; + i Ly (which belong to the
complexified Lie algebra so(3,C)). Then

L3+ 12+ 12=10_ L, +12—ils (4.3)

as 3 x 3 complex matrices.!

Definition 4.2. The action of SO(3) on S? induces an action of C*(S?) by (R - f)(z) :=
f(R™'z); more generally, SO(3) acts on A®*(S?) by R-w := (R™')*w. For the corresponding
action of the Lie algebra s0(3) on C*(S?), the homomorphism property of the group action
induces a Leibniz rule, so that N € s0(3) acts on C*°(S?) as a vector field N, called the
fundamental vector field of N, which is given explicitly by

Nf(r): Flexp(—tN) ).

e

Since the rotation action on SO(3) is a restriction of an action on R3 the same formula
yields fundamental vector fields in X(R?). In particular, since exp(—tL;)x = (z' 2% —
tz3, 23 + tz?) + O(t?) and similarly for exp(—tLy)z and exp(—tL3)z, on account of (4.2),
the corresponding fundamental vector fields on R3 are

Li=— —2*—, Ly=a'— 23— Ly=02’——2

o2 0x3’ o3 ort’ ox! Ox?’ (44)

On transforming (4.4) to spherical coordinates (r,0, ¢), one finds that the Zj are inde-
pendent of r and of 9/0r (as expected). Indeed,

~ . 0 0 ~ 0
+i¢p : 4.
Li=c¢ (:FZ_G + cot 6 >, Ly = 5 (4.5)

which may be regarded as vector fields either in X(R*\ {0}) or in X(S?).
Exercise 4.1. Verify the formulae (4.5) for the fundamental vector fields.

The sphere S? is a homogeneous space for the rotation group, and may be identified with
the coset space SO(3)/S0O(2), where SO(2) is the subgroup of east-west rotations which
fix the north pole. One may therefore consider a system of local coordinates for S? which

! Any Lie algebra g gives rise to an associative algebra, called its universal enveloping algebra U(g), whose
elements are polynomial combinations of elements of g, reduced by the commutation relations among such
elements. The Poincaré-Birkhoff-Witt theorem [35] proves that the natural map from g to U(g) is injective,
so that g may be regarded as a subspace of U(g). Now (4.3) may be regarded as an identity in U(so(3,C)).
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privileges the cartesian coordinate x®. We adopt the following local coordinates for the

remainder of this chapter:
C:=a' +ir? =e“sinf, = cosb.

We also write ¢ := 2! — iz? = ¢7**sin 6, which supplies a third local coordinate for R?. Let
us abbreviate 93 := 9/923, 0; := /¢, O; := 0/I(. In these coordinates, the fundamental
vector fields are given by

Ly = =220, +iC8s, L_ =2ix*0; —iCds, Lz =il —i(0. (4.6)

A polynomial in the variables Zj gives a differential operator on S?. For instance, the
operator corresponding to (4.3) satisfies

(L_Ly + L} —iLs)¢ = (L3 — i) La¢ = (L3 — i)(—i¢) = —2, (4.7)
since O, and therefore also Z+, vanishes on holomorphic functions of (.
4.2 The Hodge operators on the sphere
Lemma 4.1. The Hodge star operator on A*(S?) is determined by the relations
*(d¢ A dx®) = ¢, *(d¢) = 2* d¢ — ¢ da®,
in the (¢,x3) coordinates.
Proof. First observe that

d¢ A dx® = (i€ sinf dp + e cos 0 df) A (— sin 0 df)
= ie?sin?0do A dp = i(Q,

so that x1 = iQ = (71 d(¢ A dx3, and %(¢) = d{ A dz?; reciprocally, x(d¢ A dz?) = (. Hodge
duals of 1-forms are given by

*xd¢ = €' x(isin 0 dp) + €' cos O x(df) = €' df + € cos (i sin 0 do),
which simplifies to x(d¢) = 23 d¢ — ¢ dz®, and reciprocally, x(x® d{ — ¢ dz3) = dC. O

The codifferential § = —xdx is now easily found. For instance, §(d¢) = %d({ da®—x3 d() =
*(2d¢ A dx®) = 2¢, and since §(¢) = 0, it follows that

A(C) = (db + 8d)¢ = 6(d¢) = 2. (4.8)
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Definition 4.3. Since rotations act on differential forms through R -w := (R™')*w, their
generators act as Lie derivatives:

d
Lijw = p (exp(—tL;)'w) = Liw

t=0

for 5 = 1,2,3. Lie derivatives commute with exterior derivation: Lxd = dLx as operators
on A*(S?), for any X € X(S?); and, in particular, £;d = dL; for j = 1,2,3.

An operator T on A*(S?) is rotation-invariant if T(R - w) = R - (Tw) for any R €
SO(3). Since the three one-parameter subgroups { exp(tL;) : t € R} generate SO(3), this
holds iff TL,; = L,T for j = 1,2,3. For instance, the Hodge star operator x = i(e(d') —
L(0))(€(6%) — 1(67%)) is unchanged if the local oriented orthonormal frame {#', 62} is replaced
by {R - él, R- 52}; this says that « is invariant under rotations, and therefore xL; = L for
j=1,2,3

Since 0 = —xdx, A = dd + dd, it follows that 6L, = L;6 and AL; = L,;A for j =1,2,3.
In particular, the Hodge Laplacian is rotation-invariant.

FEzercise 4.2. Use the Cartan identity Lx = txd + dvx to show that £;{2 =0 for j = 1,2, 3.
What can one conclude from this?

The Laplace-Beltrami operator A, (the restriction of A to C*(S?)) is thus a second-order
differential operator which commutes with rotations. It therefore represents a quadratic
element in the centre of the algebra U(so(3)). Now it is known [34, 35] that this centre
is the polynomial algebra R[C] generated by the “Casimir element” C' = L% + L3 + L3.
Thus Ay = a(f% + Z; + Zg) for some constant a; A and each L; commutes with d, and so
A=a(L?+L3+L%) =a(l L, +L2—iL;). From (4.7) and (4.8) one sees that a = —1,
and therefore

A= —L_L,—LE4ils. (4.9)

Ezercise 4.3. Show directly, using only the commutation relations [L;, L;] = €;;* Ly, that any
quadratic polynomial in Ly, Lo, L3 commuting with each L; must be a multiple of L3+ L3+ L3.

4.3 Eigenvectors for the Laplacian

Since A is invariant under rotations, any subspace of differential forms which is stable under
the SO(3) action is mapped by A into another such subspace. The search for eigenvec-
tors under A should therefore start with the irreducible subspaces of the representation
R +— (R™Y* of the compact group SO(3) on A*(S?). This is the point of view adopted by
Folland [26], who obtained a complete spectral decomposition of the Hodge Laplacian on a
sphere of any dimension. Here we show how this works for the 2-sphere.

It is useful to recall some facts about representations of compact Lie groups, which may
be found in many places, e.g. [13, 37, 53]. Any irreducible unitary representation of a com-
pact group G acts on a finite dimensional Hilbert space, and the Hilbert space of any unitary
representation may be written as a (possibly infinite) direct sum of irreducible subrepresen-
tations. Moreover, by the Peter—Weyl theorem, all such irreducible representations already
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occur in the decomposition of the regular representation of G on L?*(G), and their carrier
spaces are in fact subspaces of C*(G).

In the case G = SO(3), the identification SO(3)/SO(2) ~ S? goes as follows: elements of
SO(3) are parametrized by three local coordinates (¢, 0, 1), called “Euler angles”, and SO(2)
is regarded as the one-parameter subgroup { exp 1 L3 : ¢ € R }; the remaining angles (0, ¢) as
the spherical coordinates on S?. Thus functions on S? are identified with functions on SO(3)
which are constant on SO(2)-cosets, i.e., functions which do not depend on the variable v; in
this way the representation of SO(3) on C*°(S?) —or on its completion L?(S?)— becomes a
subrepresentation of the regular representation on L?(SO(3)). Its irreducible subspaces are
spanned by the spherical harmonics Y, (0, ), where [ = 0,1,2,... and m = —1I,..., 1 —1,[;
indeed H; := span{V},, : m = —[,...,l} is an irreducible subspace of dimension 2 + 1,
and the Y}, form an orthonormal basis for L?(S?). It turns out, again by the Peter—Weyl
theorem, that SO(3) has (up to equivalence) exactly one irreducible unitary representation
of each odd dimension, so the orthonormality of the spherical harmonics shows that in the
decomposition of the rotation action on C°°(S?), each such representation occurs once only,
and that there are no other irreducible subrepresentations.?

There is a general principle for finding irreducible representations of a compact Lie
group G, called the “theorem of the highest weight” [13, 35, 37]. One finds a maximal
torus® in G, that is, a subgroup T' < G which is a torus, i.e., isomorphic to T* for some k,
with k£ maximal; if G = SO(3), then k =1 and T := SO(2) ~ T will do. In a representation
space for G, one looks for a joint eigenvector for the torus T; when G = SO(3), this is
just an eigenvector v for L3, whose eigenvalue is called a “weight” of 7. Within g¢ one
finds k “raising elements” which annihilate v (since the weight is “highest”) and & “lowering
elements” which, applied successively to v, generate a basis for an irreducible representation
space V; the commutation relations in g¢ ensure that applying other generators does not
enlarge the space V. When G = SO(3), there is one raising element, namely L, , and one
lowering element, namely L_.

The upshot of the general theory is this. Within each space of k-forms on the sphere
(k=0,1,2), we must find forms « satisfying L, = 0 and L3za = ca for some eigenvalue c,
and such that the vector space span{ L" a : r € N } is finite dimensional. The identity (4.9)
guarantees that « is also an eigenvector for the Laplacian A.

Definition 4.4. From (4.6), the identity £, f = 0 is satisfied whenever f € C>(S?) is
holomorphic in ¢ and independent of z3. Since (L3f)(¢) = —iC f'(¢), this f is an eigenvector
for L3 iff it is of the form f(¢) = ¢! for some [; since ¢! = ¢??sin’ f, the smoothness of f
forces the condition [ € N. Define ¢y € A°(S?) by ¢ (¢, 2) := ¢!, for [ =0,1,2,....

Ezercise 4.4. Show that LF ¢y, is a linear combination of terms (2%)¥~2"("¢'~**" and check
that L ¢ # 0 for k = 0,1,...,20 but L* ¢y = 0. Conclude that the functions { R - ¢y, :

2For other compact groups, the completeness of the decomposition of the natural representation on 0-
forms on a homogeneous space may be obtained from a counting argument based on Frobenius reciprocity.
For the case of SO(n) and the sphere S"~1, we refer to Folland [26].

3Any compact connected Lie group is the union of all its maximal tori, and any two maximal tori are
conjugate, by a theorem of Weyl: see [13] for a proof.
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R € SO(3)} span an irreducible representation space for SO(3), of dimension 2[ + 1, for
each [ € N.

Ezercise 4.5. Prove that the functions { L7 ¢y : I € N, r = 0,...,20 } span a dense subset
of L*(S*) by showing that any homogeneous polynomial in the variables ¢, (, 2z is a linear
combination of these.

Ezercise 4.6. Check that (¢o | pom)) = 0 for I # m, and that (| L_5)) = (Lia| ) for
o, € A%(S?), using (4.6). Show that [L,,L_| = —2iL3 and [L3,L_] = iL_ and conclude
that L, L7 ¢o = ai L7 pg for some constant a;,. Deduce that the functions L7 ¢, when
suitably normalized, yield an orthonormal basis for L*(S?).

We have thus identified a complete set of irreducible subrepresentations of the rotation
action on A°(S?). Note that L3(¢!) = —il¢!, so the Ls-eigenvalue is —il. It is immediate
from (4.9) that A(¢') = (1 + 1) ¢!. We take stock that

Lidy =0, Lsdo = —il ¢, Apy = I(1 + 1) o (4.10)

It is now clear that the Laplace—Beltrami operator Aq is a formally selfadjoint, positive
operator on L?(S?), with spectrum sp(Ag) = {I(I+ 1) : I € N}. Since Ay commutes with
L_,each L" ¢g (r =0,...,2l) is an eigenvector for the eigenvalue [(I + 1), which therefore
has multiplicity 20 + 1. The set sp(4Ay), with these multiplicities, is sometimes referred to as
the spectrum of the Riemannian manifold S? [§].

Note, in particular, that ker Ay = Harm’(S?) is the one-dimensional space spanned by
b0, i.¢., the space of constant functions. Thus, the only harmonic functions on S? are the
constants.

4.4 Spectrum of the Hodge Laplacian

Definition 4.5. Since A commutes with the exterior derivative and the Hodge star operator,
we can manufacture more eigenvectors by applying these operators to the ¢g;. Since dggg = 0
because ¢qg is constant, d¢g; is an eigenvector only for [ > 1. Define

Yu =1 dgo = ¢HC,
g = —xtpy = =" d¢ = ¢ da® — (TP d,

for il =1,2,3,.... Since L, L3 and A each commutes with d and x, we obtain from (4.10):

Ly =0, Lsipy = —il Py, Ay =11+ 1)y,
Lioy =0, Loy = —il ¢y, Agy =1 +1) oy

Thus the 1-forms vy; and ¢q; are highest-weight vectors for irreducible representations of
SO(3), of dimension 2! + 1; in fact, the representation spaces are spanned respectively by
{L" Yy :r=0,...,2l} and {L" ¢y : 7 =0,...,2L }.

Ezercise 4.7. Show that (¢ [ Y1m)) = (éu | ¢1m)) = 0 for [ # m, and that (Y | 1) =0
for all I,m > 1.
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FEzercise 4.8. Check that {(a|L_3) = (L a|B)) for a, € A'(S?), and conclude that the
1-forms { L")y, L7 ¢y : 1 > 1, 7 =0,...,20 } are orthogonal.

The 1-forms 1)q; are exact, so applying d to them yields only zero. However, the 1-forms
¢ are coexact, since ¢y, = —xdpg, = 0 (*¢q;), so we may define

Yo = (I + 1) doy = ¢ hda® A d¢ = i¢'Q

for | = 1,2,3,.... Since the expression i¢'Q) also makes sense for [ = 0, we also define
’1/120 = ZQ Then

L1y =0, Lathyy = —il 1)y, Aty = 1(1 4 1) 9y

for [ =0,1,2,.... Furthermore, since x1 = i{), we have x5, = ¢ for [ € N.
We may summarize this information with two commutative diagrams:

b —— Y bor —— Uy
l—ldl T(Hl)*ld (z+1)*15T ll—la (4.11)
Yy —— ¢u Yy —— ou

where [ > 1. The first diagram takes stock of the foregoing definitions, and the vertical
arrows in the second diagram are formed by composing three arrows from the first, using
the identity 6 = —*d*. From this it is evident that the 1y, are exact forms and the ¢y; are
coexact forms. A complete circuit of four arrows in either diagram corresponds to applying
the operator (I(I 4 1))~} (—*d*d — dxdx) = (I(I + 1)) "' A, which acts as the identity at each
vertex.

We now have a complete set of eigenforms for A. Indeed, we have shown already that the
L" ¢g; are a complete set of eigenforms of degree 0. Since « is a bijection between 0-forms and
2-forms, the L" 1)y, for [ € N, r = 0,...,2[ densely span A*(S?). For the 1-forms, we may
use the Hodge decomposition (3.10); the diagrams (4.11) show that d: §A'(S?) — dA°(S?)
and §: dA'(S?) — 0A?(S?) are bijections, that the 1, densely span dA°(S?), and that the
¢1; densely span dA%(S?). It remains only to observe that there are no nonzero harmonic
1-forms. This can be seen by noting that by writing any 1-form as a = f(¢) d¢ + g(2%) dz® +
h(¢,23)(x3d¢ — ¢ da®), since f(C)dC + g(x3) da? is exact, and h(z3d¢ — (da®) = x(hd() is
coexact. Thus, { L" ¢y, L" ¢y : 1> 1, r=0,...,2[} forms an orthogonal basis for A*(S?).

The spectrum of the Hodge Laplacian is therefore sp(A) = {I(l + 1) : | € N}, with
multiplicities 4{(l + 1) for the eigenvalue [({ + 1) when [ > 1, and multiplicity 2 for the
zero eigenvalue. Indeed, ker A = span{dgo, ¥z} = Harm®(S?). If K denotes the operator on
L**(S?) which is zero on Harm*®(S?) and inverts A on its orthogonal complement, then K is a
bounded selfadjoint operator and, moreover, is compact, since its spectrum sp(K) = { (I(l +
1))7! : 1 € N} accumulates only at 0 and consists of eigenvalues with finite multiplicities.
Also, AK = KA = I — P, where P is the orthogonal projector of rank 2 with range
Harm®(S?).
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Corollary 4.2. The de Rham cohomology spaces of S* are given by
H$:(S?) ~ Harm*(S?) ~ R 0 O R, (4.12)
on decomposing ker A by degrees of forms. [

Notice that this coincides with the Cech cohomology H *(S%,R), computed in subsec-
tion 1.9.

Definition 4.6. An important topological invariant of a manifold M is its Fuler character-
istic* .y

V() =37 (~1)" dim Hly (M),

k=0
For the 2-sphere, (4.12) yields x(S*) =1-0+1=2.

4.5 The Hodge—Dirac operator

Definition 4.7. The Hodge—Dirac operator on the 2-sphere S? is the operator p := d+34,
whose square is the Hodge Laplacian: )? = A.

Let A (S?) := A%(S?) @ A?(S?) be the algebra of differential forms of even degree on
S?, and write A°44(S?) := A(S?) to denote the odd-degree forms. Then Ip is an odd operator
in the sense that it interchanges forms of even and odd parities: (A" (S?)) C A°4(S?)
and w(ﬂodd(SQ)) g Aeven(S2)‘

From (4.11), the action of ) is given explicitly by

Do =1y, DYy =(1+1)da,
Db = 1 u, Do = (1 +1) ¢, (4.13)

for [ =0,1,2,... on the left, and [ = 1,2,3,... on the right. It follows that

D(VI+ 1o+ Vity) =11+ 1) (VI+1on = Vivy),
D(VI+ 1 £ Viey) = £+ 1) (VI Ltby £ V).

Since these eigenforms for ) densely span L?°(S?), one concludes that ) is a formally
selfadjoint® unbounded linear operator on L**(S?), with spectrum sp() = { £/I(l +1) :
leN}.

Ezercise 4.9. What are the multiplicities of the eigenvalues of ) ?

4The Euler characteristic may be computed as the integral of a certain differential form over M, as we
shall see later.

5The term “formally selfadjoint” means that (Dw | 7)) = (w | Pn) for w,n € A®(S?); operator theorists
would say that P is “symmetric”. With some more work, one can check that D is essentially selfadjoint,
which means that it has an extension to a larger domain in the Hilbert space L?*(S?) which is a closed,
unbounded selfadjoint operator. See [39] for a proof of this.
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It also follows from (4.13) that ker D = span{ oo, 120}, and that ) has dense range, so
that coker ) = 0; moreover, the restriction of ) to L**(S?) & Harm®(S?) has a compact
inverse. Thus ) is a Fredholm operator.® Its index is given by

ind ) := dim(ker [p) — dim(coker ) =2 — 0 = 2.
Corollary 4.3. ind P = x(S?). O

This is a first example of an index theorem, wherein a certain integer obtained by an
integral over the manifold (namely, the Euler characteristic) turns out to be equal to the
Fredholm index of an operator (namely, the Hodge-Dirac operator) which is bound up with
the geometric structure of the manifold. For a wider discussion of index theorems in modern
geometry and topology, we refer to [9, 28, 39, 42].

There is an equivalent method of computing the index from the grading of A®(S?) into
forms of even and odd degree. Write L**(S?) = L>'°n(S?) @ L*°44(S?) where L?°V*(S?)
and L%°44(S?) are the respective completions of A" (S?) and A°4(S?); this is then a graded
Hilbert space. The odd operator may be written as

_ (0 P
ﬁ - (lDO 0 ) )
where Dg: LV (S?) — L?°44(S2?) and [p;: L?°94(S?) — L2¢ven(S?). The selfadjointness of

) says that J); = DD}, and this may be verified directly from (4.13) also. Now coker D; ~
(ker IDy)* and coker Dy ~ (ker ID;)*, so the index of I) equals

ind ) = dim(ker Do) — dim(ker ID;). (4.14)
From (4.13), the right hand side of (4.14) equals 2 — 0 = 2, as expected.

Ezercise 4.10. Show that I (¢1; |¥y) = (14 1) {(¢or | dor) and that I (b1, ] o)) = (1+1) {1y |
1g)). Deduce from (4.13) that Dy and D, are adjoints of each other.

The Hodge—Dirac operator is one of many operators which are collectively known as Dirac
operators. Some common properties are: (i) they are unbounded selfadjoint Fredholm oper-
ators; (ii) the Hilbert spaces on which they act are graded into “even” and “odd” subspaces,
which the Dirac operators interchange; (iii) their squares are “generalized Laplacians” (of
which we shall have more to say later) acting on Riemannian manifolds.

Definition 4.8. As a second example, let us redefine the grading of differential forms by
splitting A*(S?) into the (+1)-eigenspaces for the Hodge star operator: thus A*(S?) :=
{w:%w = w} is the space of selfdual forms, and A=(S?) := {n : xn = —n} is the set of
antiselfdual forms. Now dx = —xd implies that [Dx = —%ID, so the same operator ) = d+ 9
interchanges selfdual and antiselfdual forms: D(A*(S?)) C AT(S?).

6Conventionally, Fredholm operators are taken to be bounded, whereas I) and A are not. One could
remedy this by redefining the norm on the domain space, but then the domain and range would lie in
different Hilbert spaces. Instead, we use the alternative definition [22] of a Fredholm operator as a closed,
possibly unbounded, operator between Hilbert spaces which has dense domain, finite-dimensional kernel and
finite-codimensional (therefore closed) range. In this sense, the operator closures of I) and A are unbounded
Fredholm operators on L?*(S?).
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The diagrams (4.11) show that the forms 19 + ¢¢ (I > 0) and ¢y — by, (I > 1) are
selfdual, whereas 19 — ¢o; (I > 0) and ¢y; + ¥y, (I > 1) are antiselfdual. Since ) commutes
with £_, applying powers to £_ to these forms generates a complete set [i.e., a set which
spans a dense subspace of L**(S?)]. Thus we may rewrite (4.13) as

Dy + dar) = 1 (du + Yu), Doy —vu) = 1+ 1) (Ya — o),
D(pu+vu) = (1+1) (Y + dar), Dy — o) = L (pu — Yu),

where [ > 1 in all cases; and ID (19 £ ¢g0) = 0.
Observe that, in the new grading of L?*(S?), the odd operator J) can be written as

D= <l§+ Ipo) , (4.15)

where Dy : L?>*(S?) — L>T(S?). Now we define its index as
ind ) := dim(ker ) — dim(ker D), (4.16)

which equals 1 — 1 = 0 since the ker D are one-dimensional spaces, spanned by (199 & ¢)-

The corresponding topological quantity [9] arises from the bilinear form s([a], [5]) =
Js» @ A B on Hig(S?). The integral depends only on the cohomology classes [o] and [3], and
s is antisymmetric; we assign to s a “signature” of zero.” The index theorem for this case is
the equality of this zero signature with the zero index for ) as defined by (4.15).

5 Connections on vector bundles

Line bundles are classified by integral Cech 2-cocycles, according to the theory developed
in Section 1. In this chapter, we show how to produce, for a given Hermitian line bundle
E — M, a Cech 2-cocycle which is associated to its class. This 2-cocycle comes from the
curvature form of a connection on the line bundle. A connection, or covariant derivative,
is a general structure which supplements that of a vector bundle with a notion of “parallel
displacement” among neighbouring fibres. There are several possible ways to introduce
connections; we shall adopt here an algebraic approach, in the spirit of Cartan calculus of
vector fields and forms.

5.1 Modules of vector-valued forms

Lemma 5.1. Suppose that E— M and E' — M are two vector bundles over the (compact)
manifold M. If : E — E' is a bundle map, i.e., a smooth map such that (7,idys) is a vector
bundle morphism, there is an C°(M)-linear map 7.: I'(E) — ['(E') given by T.s := T o s;
and the correspondence T +— T, satisfies (idg). := idpg) and (70 0), = 7, 0 0.

TA less trivial example arises on considering a Riemannian manifold M of dimension n = 4k; the corre-
sponding formula yields a symmetric bilinear form ¢([a], [8]) := [,, @ A 8 on H3% (M), and the topological
invariant is the signature of this bilinear form.
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Proof. The C*°(M)-linearity of 7 means that 7.(fs) = fr.sfors € I'(E), f € C*°(M), which
follows from the linearity of 7: E, — E! for each x € M, since 7.(fs)(z) := 7(f(z)s(x)) =
f(z)7(s(x)) = (f 7ws)(z). The remaining assertions are obvious. O

Let A := C*(M) be the algebra of smooth functions on M. One way to restate the
preceding Lemma is to say that £ — I'(E), 7 — 7. is a covariant functor I': Vect(M) —
Mod(A) from the category of vector bundles over M to the category of A-modules.

FEzercise 5.1. Verify that I'(E*) = I'(E)*, where E* — M is the dual vector bundle to
E — M, and the notation &*, for an A-module &€, denotes the module of A-linear maps
from € to A.

Definition 5.1. If A is any (real or complex) algebra, a bimodule € over A is a vector
space with bilinear operations A x &€ — &€ and € x A — &, usually simply as (a, s) — as
and (s,a) — sa, satisfying 1s = s1 = s, a(a’s) = (ad’)s, and (sa')a = s(d’a), for s € &,
a,a’ € A. The tensor product & ®4 & of two such bimodules is the bimodule' whose
elements are finite sums >, s; ®@ ) with s; € € and s} € &', subject only to the relations
(sa)®s' —s®(as’) =0, fors € €, 5" € &', a € A. When A is commutative, the identification
sa = as makes each A-module into an A-bimodule; the foregoing recipe defines the tensor
product of A-modules in that case.

Proposition 5.2. Let A := C®°(M) be the algebra of smooth functions on a compact ma-
nifold M, and let E— M, E' — M be vector bundles over M. Then there is a canonical
isomorphism of A-modules:

I(E)@4T(E) ~T(E® E').

Proof. If s € I'(E), s’ € T'(E'), let s ® s’ denote the section = +— s(z) ® s'(z) of the tensor
product bundle E® F' — M. We provisionally denote by s® 45" the element of I'( E)® 4I'(E")
given by the definition of the tensor product of A-modules. Let 0: T'(E)®@4'(E') — T'(EQE")
be the A-linear map determined by 6(s®4') := s®s’; the claim is that € is an isomorphism.

If U is a chart domain in M over which the bundles £ — M and E' — M are trivial,
then £ ® E' — M 1is also trivial over U. Indeed, we have seen in subsection 1.7 that any
local section t € I'(U, E) is of the form ¢ = >, _, h¥sy, where {sy,...,s,} is a local system
of sections for E over U, and hy, ..., h, € C®(U); in other words, the sections {si,...,s,}
generate T'(U, E) freely over C*(U). If {s],...,s} is a local system of sections for E’
over U, they generate I'(U, E') freely as a C*°(U)-module, and it is clear that { s; ® s}, : j =
1,....r; k=1,...,1} generate ['(U, E® £') as a free C*°(U)-module, since { s;(z) ® s}(x) :
j=1,...,r; k=1,...,1} is a basis for £, ® E!, for each x € U. In summary, 6 is an
isomorphism whenever the bundles E — M and E' — M (and consequently E® E' — M)
are trivial.

In the general case, there are vector bundles F'— M and F'— M such that E &
F— M and E' ® F' — M are trivial,2 by Proposition 1.8. Let t: E — E & F and

IThe bimodule operations on E® 4 &’ are, of course, defined by a(s®s’) := (as)®s’ and (s®s')a := s®(s'a).

2The use of Proposition 1.8 (existence of the supplementary bundle) is the only point in this proof where
the compactness of M is used. It should be said that, with some work to establish the existence of a finite
trivialising open covering of M, the compactness assumption can be dropped: we refer to [17] for a proof.
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o: E@® F — E be the extension and restriction maps: t(u) := (u,0), o(u,v) := u, and let
Vi B = E'@F, o' E'®F' — E' be similarly defined. Then oot =idg, so 0, 0, = idpg)
and also o7, o ¢, = idp(g); thus, ¢, and ¢, are injective, whereas o, and o, are surjective.

Now E,®F’ is a direct summand of the vector space (E,®F,)®(E.,®F.) for each x € M;
this yields bundle maps /": EQE' — (E®F)Q(E'@F'), 0" (E&F)Q(E'®@F') - EQLE
satisfying o o ¢ = idpgge). Finally, let

LU T(E) T(E) =T (E®F) T (E' & F')
be defined by (1. @ tL)(s® &) == s @ s, and let 0, @ o, (E® F) @4 '(F @& F') —
I'(E) @4 '(E') be defined similarly. We thus have two commutative diagrams:

N(E)oal(E)  —1— I(E @ E)

L*®L;l J/L;/ (51)

NE®F) @ T(E®F) 2 T(E®F)® (E o F))
where O is the isomorphism of free A-modules already obtained, and

N(E)@aD(E)  — I(E® E)

m@aﬁ Tag (5.2)
TEaF)oi[(E'aF) 25 T(EaF)® (B & F))

From (5.1), € is injective, since ¢, ® ¢/, and ¢/ are injective and © is bijective; and (5.2) shows
analogously that 6 is surjective. Thus 6 is an A-linear isomorphism in the general case. [J

Corollary 5.3. Each A-linear map from U'(E) to T'(E’) is of the form 1, for some bundle
map 7: B — E'.

Proof. The maps 7: E — E’ form the total space of the vector bundle Hom(FE, E') — M,
whose fibres are Hom(F,, E) ~ E* ® E/. Thus 7 can be identified with a section of the
vector bundle £* @ E' — M. On the other hand, an A-linear map from ['(E) to I'(E’)
belongs to Hom4(I'(E),I'(E")) ~ T'(E)* @4 ['(E') ~ I'(E*) ®4 ['(E'); it is easily seen that
7. € Hom4(T'(E),T(E")) corresponds to 671 (7) € T'(E*)®4T'(E’") under these identifications.
Since 6 is bijective, these account for all A-linear maps from I'(E) to I'(E"). O

Definition 5.2. Consider the vector bundle £ = A"T* M, whose smooth sections are the
r-forms over M: A"(M) = I'(A"T*M). Define

A"(M,E) :=T(E) @4 A" (M) ~T(E @ A"T* M), (5.3)

using Proposition 5.2. The elements of the A-module A" (M, E) are finite sums of the form
>k Sk ® wi, where s, € I'(E), wy € A"(M); we shall refer to them as “E-valued r-forms
over M.

On a complex manifold, we may also define AP9(M, E) :=T'(E) @ 4 API(M).
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5.2 Connections

Definition 5.3. A connection on a complex vector bundle £ — M is a C-linear® map

V:T'(F) — AY(M, E) such that
Visf)=(Vs)f+s®df  foral sel(FE), feC®M). (5.4)

This Leibniz rule* shows that the definition is local, i.e., that Vs is determined by its
restrictions to chart domains U;. To see that, let {f;} be a smooth partition of unity
subordinate to {U;}, and notice that _,df; = d(zj fj) = d(1) = 0, and thus Vs =
>_; V(sfi) by (5.4).

This locality is immediately useful in showing that connections exist on any vector bundle.
First, if E— M is a trivial bundle, F ~ M x C", so that I'(E') ~ A", the exterior derivative
d: A" — AYM)" : (h,... k") — (dh',... dh") is a connection, since d(h* f) = dh* f+h* df
fork=1,...,r ie,dh f)=(dh)f+h®df for h € A". In the general case, over each chart
domain U; of M one can choose a local system of sections s; = (sj1,...,sj.) for £ — M;
the expansion t = Y, s; h* gives an isomorphism ¢¥: T(U;, E) — C*(U;)" : t — h. (This
is just the pullback to sections of the local trivialization v; of (1.1)). Since AY(U;, E) ~
D(Uj, E) ®ce ;) A" (Uj), we get an isomorphism ¢} ®@id: A'(U;, E) — A'(U;)" on tensoring
with A'(U;). Now define V& := (¢* @id) " odo ¢, so that VW : T(U;, E) — AU, E) is a
connection on 7~ (U;) — U;. Finally, take any smooth partition of unity {f;} subordinate
to the cover {U;}, and define Vs =} VU (sf;); one checks that V is a connection on the
vector bundle £ — M.

FExercise 5.2. Carry out this check.

The Leibniz rule (5.4) means that V is not itself A-linear. However, if V, and V; are
two connections on F — M, it is immediate from (5.4) that (V1 —Vo)(sf) = (Vis—Vs) f
for s e I'(E) and f € A. By Corollary 5.3, V] — Vi = a, for some a € ['(End E @ T*M) =
AY(M,End E). Therefore,

Vis=Ves+aos  for sel(E); (5.5)

conversely, given V, this equation defines a connection V; when a € A'(M,End E). This
says that the set of all connections on E — M is an affine space, based on the vector space

ALY (M, End E).

Definition 5.4. If X € X(M) is a vector field, the contraction tx: AY(M) — A is A-linear,
since tx(fB) = fB(X) = fuxB for f € A, 3 € AY(M). Thus it extends to an A-linear map
from AY (M, E) =T(E) @4 AY(M) to T(E) @4 A =T(E) by 1x(s ® 3) := s(tx) = s B(X).

If V:T'(E) — AY(M, E) is a connection, we write Vy := 1y o V: I'(E) — ['(E). This is
a C-linear map satisfying the Leibniz rule:

Vx(Sf) = (VXs)f + S(Xf) (56)

3For real vector bundles, we require only that V be an R-linear map.
4Tt is convenient to regard I'(E) and A'(M, E) as right A-modules; if one wishes to regard them as left
A-modules by identifying fs = sf, the Leibniz rule can equivalently be written as V(fs) = f(Vs) +df ® s.
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Definition 5.5. If £ — M is a Hermitian vector bundle, the metric h on E defines a A-
sesquilinear map I'(E) xI'(E) — A by (s|t) :  — h,(s(z),t(z)), for s,t € T'(F). This extends
to a sesquilinear form T'(E) x A*(M, E) — A*(M) by tensoring, i.e., (s [t ®@w) = (s | t)w
when w € AF(M).
A connection V on £ — M is compatible with the metric if

(Vs|t)+ (s|Vt)=d(s|t) for all s,t e I'(E). (5.7)
Notice that this is yet another variant of the Leibniz rule. If X € X(M), a compatible
connection satisfies (Vxs|t) + (s| Vxt) = X(s|t).

Exercise 5.3. In general, for any connection V on a vector bundle £ — M, one may define
a dual connection V* on the dual bundle E* — M by stipulating that the following Leibniz
rule should hold: (V*¢, s)+ (£, Vs) = d(&, s), where (-, -) denotes the evaluation map I'(E*) x
I'(F) — A. Verify that, for given V and ¢ € I'(E*), this Leibniz rule determines a well-
defined element V*¢ of A'(M, E*), and that the operator V* thus obtained is a connection.

Exercise 5.4. Suppose that £ — M and E' — M are equivalent vector bundles and that
7: E — FE’ is an invertible bundle map. Extend 7, to an operator from A*(M, E) to
A¥(M, E") by tensoring: 7.(s ®w) := 1.s ®@w for s € I'(E), w € A¥(M). If V is a connection
on E — M, show that V' := 7, o Vo 7, ! is a connection on B/ — M.

5.3 Curvature of a connection

Definition 5.6. If V: ['(E) — A!(M, E) is a connection on a vector bundle E — M, there
is a canonical way to extend V to a linear map V: A*(M, E) — A*1(M, E). Since A*(M, E)
is a vector space generated by elements of the form s ® w, for s € I'(E), w € A*(M), it
suffices to define

Vis®@w):=(Vs) Aw+s®dw for s€I(E), we A*(M). (5.8)
If n € A*(M), it follows that

Vis®@(wAn)=(Vs)AwAn+s@doAn+ (=1 s®wAdn,
from which one obtains the “graded Leibniz rule”:

VA = (VO A+ (=) CAady i ¢ e AY(M, E), n € A% (M). (5.9)
Ezercise 5.5. Verify that the extended map V: A¥(M, E) — A*Y(M, E) is well-defined, i.e.,
if Y55 @w; = 3.t @1, with s;,t, € T(E) and wy, 7, € A*(M), then 3. V(s;) @ w; =
Zr V(tr) ® 777“
The iterated map V?: I'(E) — A%(M, E) satisfies
V3(sf) =V ((Vs)f)+V(s ®df)
= (V?%s)f — Vs Adf + Vs Adf +s®d(df) = (V?s)f,

for s € T(E), f € A. Thus V? is an A-linear map from I'(E) to A*(M, E) = T(EQ A*T*M);
by Corollary 5.3, Vs = ws with w € I'(End E ® A*T*M) = A?(M,End E). This “matrix-
valued 2-form” w is called the curvature of the connection V.
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Exercise 5.6. If 7: E — FE’ is an invertible bundle map between equivalent vector bundles
over M, and if V, V' are connections on E and E’ related by V' = 7, o V o 7,1, show that
their curvatures are likewise related by ' = 7, ow o 7,71,

On the trivial bundle E = M x C", let d be the connection (h',...,h") — (dh*,... dh")
given by the exterior derivative. From (5.5), we can write Vs = ds + as where o €
AYM,End E) = AY(M)™" is a matrix of 1-forms on M. Explicitly, if s € A" has k-th
component h*, then as has k-th component afh!, so a = [af] € A*(M)™". In this case, the
curvature w is a matrix of 2-forms:

ws = V?s = d(ds + as) + a A (ds + as)
= ((da)s —aANds) + (aNds+ (e ANa)s) = (da+a Aa)s, (5.10)

so that w = da + a A a in A%2(M)™". In components, wf = daf + af A al™.

5.4 A curvature formula

Lemma 5.4. The curvature w of a connection V on a line bundle E — M satisfies
w(X, Y)S = VvaS — VvaS — V[X,y}s (5.11)
for all XY € X(M) and s € I'(E).

Proof. Since w € A*(M,End FE) = I'(End F) ® 4 A*(M), the evaluation on the pair of vector
fields X, Y yields w(X,Y) € I'(End E), so that w(X,Y)s € I'(E). Let the right hand
side of (5.11) be denoted provisionally by F(X,Y)s. We claim that s — F(X,Y)s is A-
linear. To see that, denote by f the operator on I'(E) of right multiplication by f € A;
then the Leibniz rule (5.6) can be rewritten as [V, f] = Yf The desired A-linearity of
F(X,Y) =[Vx,Vy] = Vix,y follows from

[F(X,Y), f] = [Vx.Vy], /] = [Vixv): f]

[
= Vx [V, Al + [V, £, Vy] = [Vixy f]
= [Vx, Y f]+ [XF, Vy] = (X, Y]f)
= (X)) -Y(X[) - [X,Y]f) =0,

on using the Jacobi identity. Thus, by Corollary 5.3, F(X,Y) lies in I'(End E), for each
X,Y € X(M). Furthermore, the formula tpx = iLLX for h € A, which entails V;,x = BVX,
shows that F is A-bilinear in (X,Y), and so F € A*(M,End E).

We must now show that w and F' coincide. It is enough to check this locally, since if
{f;} is a partition of unity on M, the identities w(X,Y)s = > w(X,Y)sf;, F(X,Y)s =
> F(X,Y)sf; show that it suffices to prove w(X,Y)s = F(X,Y)s when X, Y and s vanish
outside a chart domain U;. Thus we may suppose that £ —— M is a trivial bundle and
indeed that £ = M x C", whereupon w = da + a A a if @ € A?*(M)™" is the matrix of
1-forms satisfying V = d + «.
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Let us denote by h the element (h;, ..., h,) of A" =['(E); then Vxh = tx(dh + ah) has
k-th component Xh* + of(X)h!. Thus F(X,Y)h has k-th component

X(YR" +af(Y)R) + af (X) YR 4+ of (X)a* (V)R — Y(XBF + af (X)R')
—af (V) Xh' — ap,(V)a"(X)h' — [X, Y]h* — of (X, Y])H!
= X (a7 (Y)h' =Y (af (X)h') = of ([X, YDA + (g, (X)ai" (V) — ag, (YV)a]" (X)A!
= daj(X,Y)h' + (af, A ") (X, Y)R!,

that is, F(X,Y) is a matrix of 2-forms with components (daf + of A a")(X,Y). Hence
F=da+aha=win A*(M,End F). O

Ezxercise 5.7. Verify that F(gX,hY)s = F(X,Y)sgh for g,h € A.

The connection V is determined by local 1-forms a; € A'(U;, End E), and by a local
system s; in ['(U;, E') with respect to which the identification h < s;,.h* is made. It should
be carefully noted that the local 1-forms a; do not patch together to give a global 1-form
a € AY(M,End E) unless E — M is a trivial bundle, since there is no global d for which
V = d+a unless the vector bundle is trivial.> However, the local 2-forms w; = da;+a;Aa; €
A?(U;, End E) do patch together, since they are restrictions to the U; of the global 2-form w.

When L — M is a line bundle, there is a simplification: by Lemma 1.2, the line bundle
End L — M is trivial, so the curvature form w belongs to A?*(M), since A*(M,End L) =~
A*(M) @4 T(End L) ~ A*(M) @4 A = A?*(M) via canonical isomorphisms. Furthermore,
there are local 1-forms a; € A'(M) such that w = da; on each chart domain Uj, so that the
curvature w is locally exact and hence is a closed 2-form on M.

The curvature form w depends on the connection V, but its de Rham class [w] € Hiz (M)
does not. To see that, recall from (5.5) that if Vo and V; are two connections on L, with
respective curvatures wy and wy, then Vis — Vs = as for some a € A'(M), and hence
wy — wp = da, an exact 2-form. Thus the class [w] depends only on the line bundle L — M.

Exercise 5.8. Suppose L — M and L' — M are equivalent line bundles and that 7: L —
L’ is an invertible bundle map. Show that 7. € I'(Hom(L, L)) intertwines the canonical
isomorphisms I'(End L) ~ A and I'(End L) ~ A, and deduce that the connections V and
7, 0 V o 77! have the same curvature. Conclude that the class [w] depends only on the
equivalence class [L] of the line bundle.

5.5 From de Rham cohomology to Cech cohomology

We have now associated to any line bundle L — M, by very different procedures, two
second-degree cohomology classes, namely the Cech class obtained directly from its transition

5The local 1-forms a; may be globalized by pulling back to the frame bundle P —L, M; recall that the
local system s; may be regarded as a local section of the frame bundle. It is possible to construct a global
1-form & € A'(P,End V') which incorporates each n*«a;, and different connections given rise to different a:
this is called the connection 1-form for V, for which one may consult [9, 39, 52] or any standard text on
differential geometry.
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functions and the de Rham class of the curvature of an arbitrary connection. We are led to
suspect that these two cohomologies are related in some underlying fashion. This is indeed
the case: one way of proving the de Rham theorem, which says that the cohomology of
real-valued differential forms on the manifold M depends only on the topology of M (i.e.,
not on its differential structure) is to show that the de Rham cohomology is isomorphic to
Cech cohomology with constant real coefficients.® For the full proof, we refer to [12] or [17,
Appendix E]. We need only the second-degree case of this isomorphism; however, its proof
illustrates the general method.

Proposition 5.5. Let M be a compact manifold. Then H3z(M) =~ H?(M,R) by a canonical
isomorphism.

Proof. Select a finite good covering’” U = {U;} for M. We must show that H32g(M) ~
H?*(U,R). We first define maps between Z3; (M) and Z?(U, R), which have some ambiguities
that can be removed by passing to cohomology, thereby yielding well-defined R-linear maps
between H3g (M) and H*(U,R).

Start with a closed 2-form w in A?(M); denote by w := {w;} the set of restrictions of w to
each set U; of the good covering; this is an element of C°(U, Az), the set of Cech 0-cochains
with 2-form coefficients. Since dw = 0 and each U; is contractible, the Poincaré lemma shows
that there is a; € A'(U;) with da; = w; for each j; write o := {a;} € C°(U,A"). Now on
each nonvoid overlap U; N U; we have d(o; — aj) = w; —w; = 0, so that a; — o = dfi; with
Ff = {fi;} € C* (U, A%). On each nonvoid U; N U; N Uy we have d(fi; — fix + fir) = 0 by
cancellation, so that a;j; 1= fi; — fi+ fjx 1S a constant real-valued function (since U;NU;NUj
is connected); since a;; — a1 + Qi — @ = 0 on U; N U; N U, N U, by cancellation, we have
da =0, ie., ac Z*(UR).

There are some ambiguities in the choices of a; and f;;, so this process does not give a
well-defined map w — a. Firstly, we could replace each o; by «; + dg;, where g := {g;} €
(U, A"); then fij becomes fi; + g; — g;, which leaves a;;, unchanged. Secondly, we could
replace each f;; by fi; 4 ¢ij, where the ¢;; are constant functions, i.e., ¢ := {¢;} € C'(U,R);
this changes a to a + de, and [a] € H*(U,R) is left unchanged. Therefore w +— [a] is
well-defined. Thirdly, we could replace w by w + d3, adding an exact form; then «; becomes
aj + B35, and f;; = (o + Bi) — (a; + B;) is unchanged because [3; and ; agree on U; N Uj.
Therefore, [a] depends only on the de Rham class of w, so [w] — [a] is a well-defined R-linear
map from H3ig (M) to H*(U, R).

To go the other way, start from a € Z*(U,R), and take a smooth partition of unity {1, }
subordinate to the covering U. As in the proof of Proposition 1.6, define f € C’l(u,ﬂo)
by fij == >, @ijry; then fi; — fie + fir = a4k just as in (1.12), since da = 0; moreover,
dfi; — dfi + df i = 0 since the a;;;, are constant. Define o € Co(U, A" by aj = Uk dfj;
now o; — a; = y_, Yp dfi; = dfi; on U;NUj, and so da; — doy; = 0 there, which says that the

6 Another way is to establish an isomorphism between de Rham cohomology and singular cohomology.
This is thoroughly dealt with in [23].

"This is the only point at which compactness is invoked; and the compactness assumption may be removed
whenever the existence of a finite good covering can be established independently.
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local 2-forms w; := da; patch together to give a global 2-form w on M. Since dw; = 0, w is
closed, i.e., w € Z3g(M).

The correspondence a — w depends on the partition of unity {¢;}, but it is clear that
a — f — a+— w retraces the earlier path w — a — f — a; thus we have shown that the
linear map [w] — [a] is surjective. Moreover, if [a] = 0, then a = dc with ¢ € C'(U, R), so
that fi; := > (¢;j—cir+¢jr )0y = ¢;j—hi+h; where hj := )" ¢, and thus df;; = dh;—dh;;
but then o = )", Vi (dhy — dh;) = 5; — dh;, where (3, is the restriction to U; of the 1-form
B =, rdhy € AY(M); thus w = df is exact, Le., [w] = 0. Hence [w] — [a] is injective,
and is therefore an isomorphism (or real vector spaces) between H3z (M) and H*(U,R). O

The foregoing proof can be cast in a more algebraic framework, as follows. The abelian
groups (actually, vector spaces) CP? := CP(U,A?) of g-form-valued Cech p-cochains are
related by two coboundary operators, 6: CP? — CP*19 and d: CP7 — CP9t! satisfying
dd — dé = 0; if we introduce 9 := (—1)?d on C??, we get 50+ 95 = 0, so we obtain a “double
complex”. By introducing D := § + 9: C* — CP*0 @ CP4H and B = D, ,_,, C™,
we obtain a new cochain complex (E*, D), sometimes called the Cech-de Rham complex.
(For instance, a 1-cochain for this complex is of the form a @ f where a and f are as in
the proof of Proposition 5.5, and D(a & f) = da @ (da — df) @& 0 f, which evaluates to
w®0®a. A general theorem [12, 17] asserts that the k-th cohomology groups for the
complexes (A*(M),d), (E*, D), and (C*(U, M), ) are isomorphic, for any k € N.

Definition 5.7. The standard inclusion ¢: Z — R induces an injection of Cech cohomology
groups t,: H*(M,Z) — H*(M,R). We regard H?(M,Z) as a subset of H*>(M,R) by identi-
fying it with its image under ¢,. We say that a de Rham cohomology class |w] € Hiz(M) is
integral if the corresponding Cech class [a] lies in H?(M,7Z).

Theorem 5.6. Let L — M be a Hermitian line bundle over a compact manifold, and let V
be a connection on it, compatible with the metric, with curvature w. Then [(2mi)~'w] is an
integral de Rham class, corresponding to the class [L] of the line bundle in H*(M,Z).

Proof. Let U = {U;} be a covering of M by chart domains, and let {s;} be a local system
of nonvanishing sections for the line bundle L — M. Then s; € I'(U;, L) for each j. By the
locality property of V, we have Vs; € A'(U;, L) = T'(Uj, L) ®ce(v,) A" (U;), so Vs; = 5; ®a;
for some «; € A (U;) (because s; generates I'(U;, L) as a C*°(U;)-module). We may take s,
to be normalized with respect to the metric, i.e., (s; | s;) =1 on U;. Since V is compatible,
we find that a; is a purely imaginary 1-form, because &; + o; = (Vs; | s;) + (s; | Vs;) = 0.

By (5.8), V?s; = (s; ® aj) A oj + s Ada; = s A daj, so that w = da; on Uj. Let us
write 3; := (2mi) 'ay; then the [3; are real-valued 1-forms, satisfying d3; = (27i)'w. Thus
[(27i)'w] € H3z(M) is a real de Rham class.

The local sections s; are related by s; = g;;8; = s;g;; on U; N U, where the g;; are the
U(1)-valued transition functions of the line bundle (see Definition 1.14). Then

$j ® gijo = 5; @ o = Vs; = V(s;95) = (85 ® o) gi5 + 55 © dyi
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on U; N Uj; since s; does not vanish there, we get
a; = g ggi; + 95" dgi; = oy + g dgi;  on U;NU;.

This gives

Bi — B = (27Ti)_19i_j1 dgi; = (2mi)~" d(log g;)
for a suitable branch of the logarithm, and f;; := (2mi)~!log g;; is a real-valued function on
U; N U; satistying 3; — 3; = dfi;. Now ay, = fij — fir + fjr gives the Cech 2-cocycle a €
C?*(U,R) such that [a] corresponds to [(27i)~'w] under the isomorphism of Proposition 5.5.
On the other hand, the proof of Proposition 1.6 constructs this very same Cech class [a] as

the element of I ?(M,Z) which corresponds to [L] under the Bockstein isomorphism between
HY(M,U(1)) and H*(M,Z). Hence, [(2mi)"'w] is integral and corresponds to [L]. O

In particular, we see that a closed 2-form on M is the curvature of some compatible
connection only if it equals 27 times an integral 2-form.®

5.6 Line bundles over CP™

Definition 5.8. Any element of CP™ is a line through the origin in C™*!, and two such
lines intersect only at the origin. The tautological line bundle L — CP™ is given by
taking the disjoint union of these lines; the fibre at any element of CP™ is the very same
line. More explicitly, we can take L to be

L:={(l,v) eCP" xC™":verl}, (5.12)

and define 7(¢,v) := £.

Here L — CP™ is manifestly a subbundle of a trivial vector bundle. Indeed, let ¢+ be
the subspace of C™*! orthogonal to ¢ (with respect to the usual inner product on C™*1),
and if £ := {({,u) € CP™ x C™*!:y € ¢+ }, then the Whitney sum L & F = CP™ x C™*!
is trivial.

Ezercise 5.9. If n: C™+1\ {0} — CP™ is the quotient map, C™1\ {0} —& CP™ is a principal
C*-bundle. Show that the tautological line bundle is associated to this principal bundle via
the representation p of C* on C given by the multiplication p(A)p := Ap.

Definition 5.9. The dual of the tautological line bundle on CP™ is the hyperplane bundle
H — CP™, where H, = ¢* (the one-dimensional space of linear functionals on /).

8This observation is the launching point for the theory of geometric quantization, which seeks to represent
certain functions on a symplectic manifold (M, ), i.e., a manifold equipped with a closed nondegenerate
2-form, by operators on a Hilbert space. The elements of this Hilbert space come from sections of a certain
Hermitian line bundle over M, equipped with a compatible connection whose curvature is (27ih) ~*Q (where
h is a positive constant, identified with Planck’s constant). Theorem 5.6 shows that such a line bundle exists
iff [A=1€)] is integral; this is a discreteness condition on the original symplectic form €2, hence the use of the
word “quantization”.
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The tensor product bundles L®* —s CP"™ and H® — CP™, for k,l € N, give more
examples of line bundles over CP™. (We take L®Y = H®? := CP™ x C by convention.) We
aim to show that these are distinct, and that any line bundle over CP™ is equivalent to one
on this list. Since [L]™! = [H] in the group of line bundle classes, and since H3iz (CP™) = R,
we have H?(CP™,Z) ~ Z, so it suffices to verify that [H] corresponds to a generator of the
infinite cyclic group H*(CP™,7Z).

Definition 5.10. A complex vector bundle E — M on a complex manifold M is a holo-
morphic vector bundle if its transition functions g;;: U;\U; — GL(m, C) are holomorphic.
The space of holomorphic sections of this line bundle is denoted by O(M, E) or simply by
O(E).

Ezercise 5.10. Compute the transition functions for the tautological and hyperplane bundles
over CP™ and hence show that these are holomorphic line bundles.

Consider first the trivial bundle CP" x C — CP™; a holomorphic section of this bundle
is of the form s(z) = (z, f(x)), where f: CP™ — C is a holomorphic function. If (U, ¢) is
a chart with ¢(U) = C™, then fo¢~': C™ — C is an entire holomorphic function on C™,
which is bounded since CP™ is compact and f is continuous; thus, by Liouville’s theorem,
f is constant. More generally, any holomorphic function on a compact complex manifold is
constant.

It turns out that the tautological line bundle has no global holomorphic sections, other
than the zero section. The hyperplane bundle H — CP™, by contrast, has nontrivial global
holomorphic sections. For any f € (C™*!)* define s; € I'(CP™, H) by s;(¢) := f‘é. Con-
versely, any holomorphic section of H — CP™ is of the form s(¢) := g| ,» Where g: crtl - C
is a holomorphic function whose restriction to each one-dimensional subspace is linear, i.e.,
g is homogeneous of degree one. Since only first-degree terms can then occur in the Taylor
series of g, the function g is itself linear, i.e., g € (C™)* and s = s,. Thus, f — s; is a
linear bijection between (C™)* and O(H).

In particular, O(H) is finite-dimensional, with dimO(H) = m + 1. A basis is given
by 0o, ...,0m, where 0; = s.; and 27 € (C™*)* be the j-th coordinate function, for j =
0,1,...,m.

The standard inner product (- | -)) on C"™! gives metrics on the line bundles L and H.
We may write (u | v), := (u | v)) for u,v € Ly, ie., u,v € £ C C™'. Now if ¢, € ¢* are
given by ¢(v) = (u|v), ¥ (v) = (w |v)) for v € £, then

{uloh{w|v) _ (wlvhv]u)
{v]v) (vlv)

which is independent of any nonzero v € £. When ¢ € U;, we have the equality

(@ Y)er =

(v |v) = 2020 4 2mEm = I (1 + wawf) = \zj(v)IQQj(E),
k#j
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and in particular

-1
(0j]0))=Q;' = (1 + ijfwf) on Uj. (5.13)
s
By continuity, (o, | 0;) = 0 and thus o; vanishes on the complement of Uj.

5.7 Connections on the hyperplane bundle

Definition 5.11. When M is a complex manifold and V is a connection on a holomorphic
vector bundle F — M, we say that V is compatible with the holomorphic structure if Vs €
AY(E) whenever s € O(E). If the vector bundle is also Hermitian, we say that V is
a canonical connection if it is compatible with both the metric and the holomorphic
structure.

Proposition 5.7. On the hyperplane bundle H — CP™, there is a unique canonical con-
nection.

Proof. Let {U;,0;} be the local system of holomorphic sections of the previous Section.
Since o is nonvanishing on U; (e.g., on account of (5.13)), the argument of the proof of
Theorem 5.6 shows that any connection V on the hyperplane bundle is given on each U; by

Vo; =0;® aj, for some a; € A'(Uj).

Thus V is compatible with the holomorphic structure iff each a; lies in A0(U;).
We may write a; = ajp, dw;-g with each aj, € C™(Uj), so that V is also compatible with
the metric iff

Qj_l(ajk dw;-c + Qi dwf) = (0| Vo) + (Vo, | o;) =d(oj | 0;)

= d(Q7") = —Q}Qd(Z w?wf)

ki
iff a;, = —Qj—lwf for all k # j. Thus V satisfies
Vo =—0; ® Q;l Z wj? dwf,
k#j
so this calculation establishes existence and uniqueness of the canonical connection. O

Proposition 5.8. The curvature of the canonical connection on the hyperplane bundle is
—i®, where ® is the Kahler form on CP™.

Proof. The curvature w satisfies w = da; on Uj, so

w=do;=Q;" > dwh Adwh +Q;7dQ; N | wf dwh

k#j k#j
=Q;” (Qj > dwk Adwf - whw dw] A dw;) = —i®,
k#j 7,87
by comparison with (2.7). O
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The element of H3z(CP™) which corresponds to the equivalence class of the hyperplane
bundle is therefore [—(27)~1®].

5.8 Characteristic classes

We have seen that the curvature of a Hermitian line bundles over M is a closed 2-form w
on M and [(27i)~'w] is an integral cohomology class. For vector bundles of higher rank,
it is possible to obtain integral cohomology classes of even degree from the matrix-valued
curvature w by taking suitable traces of its exterior powers. These classes are topological
invariants of the manifold M.

Definition 5.12. Let §: (C"™*")* — C be a symmetric k-linear map on the vector space
of complex r x r matrices. One says that ¢ is invariant (under the adjoint representation
Ad(g)A := gAg™" of GL(r,C)) if

d(gAlg_l, . ,gAkg_l) =q(Aq,..., Ap) (5.14)

for all g € GL(r,C), A e C™".

The function ¢: C™*" — C defined by ¢(A) := G(A, A,..., A) is called a homogeneous
polynomial of degree k; when ¢ is invariant, we call it an invariant polynomial on C™*".
With the “polarization formula” G(Ay, ..., Ay) == (K1) 71 37, (=1)F*q(Aj, +-- -+ A;,), the
map ¢ may be recovered from q.

More generally, an invariant polynomial on C™*" is a finite sum of homogeneous invariant
polynomials of various degrees. (A constant function is an invariant polynomial of degree
zero. )

For instance, in the expansion det(t — A) = >, _(—1)*q(A)t"*, each ¢ is an invariant
homogeneous polynomial; here ¢,.(A) = det A, ¢1(A) = tr A, and ¢2(A) = >_,_; Mi(A)A;(4),
where the \;(A) are the eigenvalues of A. Notice that 2go(A) = (tr A)? — tr(A?).

Lemma 5.9. If ¢: C™*" — C is an invariant polynomial on C™*", then for Ay,..., Ay, B €
C™" we have 2521 G(As,...,[B,Aj],..., A) = 0.

Proof. Set g = €'® in (5.14), and differentiate with respect to ¢t at ¢ = 0; the result follows
on noting that (d/dt)|,_ e Ae™"® = BA— AB = [B, A]. O

If £, = M xC", so that E. — M is the trivial bundle of rank r, then ¢ yields a polynomial
map from I'(End E,) = A™" = C°(M,C™") to A = C*(M) by writing ¢(A)(z) := ¢(A(x));
and ¢ similarly defines an A-valued symmetric k-linear map on A"*". The invariance prop-
erty is q(gAg™") := q(A), where g € C°(M,GL(r,C)). Since 7.(v) := gv forv € A" =T(E")
defines a bundle automorphism (7,1id,,) of E, — M, the invariance condition may be reex-
pressed as ¢ o Ad 7 = ¢ for every invertible bundle map 7: E, — FE,.

FEzercise 5.11. Verify that for any vector bundle £ — M of rank r, the recipe ¢(A)(z) :=
q(A(z)) yields a map ¢: I'(End E) — A (and by polarization, a k-linear map ¢: I'(End E)* —
A), such that q(7. 0 Ao 7, ') = q(A) for any invertible bundle map 7: E — E.
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These may be extended to maps ¢, § on A*(M, End E) with values in A®*(M) by defining

The invariance property of Lemma 5.9 may be expressed in this context as

k

D (=rypetrtta g, 8w wr) = 0 (5.16)

j=1
whenever § € A*°(M,End E) and w; € A%(M,EndFE) for j = 1,...,k. The bracket on
A®(M,End F) is defined as the linear extension of the recipe:

[A®n Bec]=[4,BlnAC (5.17)
for A,B e T'(End E), n,¢ € A*(M).
FEzercise 5.12. Check the invariance formula (5.16).

Exercise 5.13. If a € A¥(M,End E,.), 3 € AY(M,End E,) are matrix-valued forms, deduce
from (5.17) that

[o. 5] =ans—(-)"FAa
in AM(M, End E,.).
FEzercise 5.14. By taking the exterior derivative of the right hand side of (5.15), show that

d(G(wr, .. wp)) = (=) wr, L dwy, . wp) (5.18)

j=1
when each w; € A% (M, End E,) is a matrix-valued form.

It is convenient to introduce the notation ¢'(w;0) := Z?:l G(w,...,0,...,w), where 6
appears in the j-th place and w elsewhere; if w has even degree, it follows from (5.16) that
¢ (w; [B,w]) = 0 for any 5 € A*(M,End E). Also, if w € A®¥**(M, End E,.) is a matrix-valued
form of even degree, then (5.18) gives d(q(w)) = ¢'(w; dw) € A°(M,End E,.).

Proposition 5.10. Let V be a connection on a vector bundle E— M, with curvature
w € A*(M,End E). If q is an invariant polynomial on C™*", then q(w) is closed in A" (M).

Proof. To show that d(¢q(w)) = 0 on M, it is enough to show that d(g(w)) = 0 on each chart
domain U. Thus we can suppose that £ — M is a trivial bundle, that V = d + a with
a € AY(M,End E) and that w = da + a A a.

Now A¥(M,End E) ~ (A*(M))™" by the triviality of the bundle, and the exterior deriva-
tive d: A*(M,End F) — A*(M,End F) is an antiderivation, so

dw=dlaNa)=daNa—aNda=wNha—aAw=[w,a], (5.19)
which is known as the Bianchi identity for the curvature. Now
d(q(w)) = ¢'(w; dw) = —¢'(w; [, w]) = 0

by the invariance of q. O
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Ezxercise 5.15. A connection V on F— M, with curvature w, yields a connection on
the vector bundle End E'— M also denoted V, by adopting the Leibniz rule V(as) =
(Va)s + a(Vs) as a definition, i.e., by setting (Va)s := V(as) — a(Vs) for a € T'(End E),
s € I'(F). Check that a — Va is indeed a connection. This extends to a linear map
V: A¥(M,End E) — A(M,End E) by (5.8). Use (5.8) and (5.9) to show that V23 = wA3
for any 8 € A'(M, E), and deduce that (Vw)s = V(V?s) — V(Vs) = 0 for any s € T'(E).
Finally, show that the equation Vw = 0 reduces to the Bianchi identity (5.19) locally,” when
w is of the form w = da+ a A a.

Proposition 5.11. Let V be a connection on a vector bundle E — M, with curvature w,
and let q be an invariant polynomial. Then the cohomology class [q(w)] is independent of V.

Proof. Let Vi, Vi be two connections on £ — M. Then, by (5.5), Vi = V¢ + 8 with
B e A M, End E). Set Vy:= (1 —t)Vo+tV; = Vo + 3 for 0 < ¢ < 1; this is a connection
on £ — M, whose curvature we denote by w;. The relation [¢(wp)] = [¢(w;)] follows from
the transgression formula:

o) — ) = [ i) ).

To verify this relation, it suffices to show that (d/dt)q(w;) = d(¢'(w; B)) for 0 < t < 1.
By k-linearity of ¢, we have

d d

Eq(wt) = E(j(wt, Co W) = Z G(wiy -y (d)dO)wy, ... wi) = ¢ (wy; (d/dE)wy).

Jj=1

To see that ¢'(wy; (d/dt)wy) = d(¢'(wi; B)), we may compare these two 2k-forms over any
chart domain U C M; or equivalently, we may assume that the bundle £ — M is trivial,
that V; = d + o4 and w; = day + oy A oy In that case, oy = oy + t3, and

%wt = %(d@o—i‘tdﬂ—i‘(Oéo—i—tﬁ)/\(ao—i‘tﬁ))
=df+agANB+BNag+2t(BAB)=dB+a, ANB+ BNy
:dﬁ—i_[[ataﬂ]]

9The identity Vw = 0 for any connection is therefore called the Bianchi identity.
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It remains to compute
k
d(d (@i ) = 3 @i, B, ,w1))
j=1

:ch(wt,...,dwt,...,ﬂ,...,wt)—l—q/(wt;dﬁ)—ch(wt,...,ﬂ,...,dwt,...,wt)

1<J i>7
= _ZQ(wta"'7[[at7wt]]7"'a57"'7wt) +q,(wt7dﬂ)
1<J

—G-Z(](wt,...,ﬁ,...,[[Ozt,wt]],.‘.,wt)

= Z Gwg, - o, B - - we) + q'(wt; dB) = q/(wt§ dp + oy, B])

= ¢ (wg; (d/dt)wy),

(with dw; in the i-th position and f in the j-th position in the double summations). Here we
have used the Bianchi identity dw; + [y, w;]] = 0 and the invariance property (5.16) applied
to the form ¢(wy,...,dwy,...,5,...,w;) and also to G(wy, ..., 03, ...,dwy, ..., wy). ]

If ' — M 1is another vector bundle equivalent to £ — M, and it 7: & — E’ is an
invertible bundle map, then by Exercises 5.4 and 5.6, the recipes V' := 7, 0 Vo 7! and
W' = 1,owor, ! match connections and curvatures on both vector bundles; by the invariance
property (5.14) of the polynomial g, we have ¢(w') = q(w) in A?*(M). Thus the cohomology
class [q(w)] depends only on the equivalence class of the vector bundle E — M, and we may
denote it by ¢([E]), or more simply by ¢(F) € H3E (M) @ C.

If E— M is a Hermitian vector bundle, we consider only bundle maps 7: £ — E’ which
preserve the fibre metrics. Thus we may use polynomials ¢ which are only invariant under
the unitary group U(r) rather than GL(r,C); in (5.16) we may only use forms 3 with either
13 or 3 itself real-valued. If a connection V on E — M is compatible with the metric, then
—iw is real-valued, and the cohomology class [¢(—iw)] belongs to H2k (M).

5.9 Chern classes and the Chern character

Definition 5.13. Let £ — M be a Hermitian vector bundle, together with a compatible
connection V whose curvature is w € A*(M,End E). Define a U(r)-invariant polynomial on
C™" by

1
c(A) = det <1T — —.A),
271
which may be written as a sum of homogeneous polynomials
c(A) =14 c1(A) 4+ ca(A) + -+ ¢ (A) (5.20)

where ¢1(A) = (i/2n)tr A, ¢.(A) = (i/2m)" det A; and if {i\,... i\, } are the eigenvalues
of A, then ¢x(A) = (=1/2m)* > \j A, ... Aj,; the invariant homogeneous polynomials ¢, are
real-valued on the Lie algebra u(r) = iR"™" of the unitary group U(r).
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The class cx(FE) € Hik(M) is called the k-th Chern class, and ¢(F) € HSE™(M) is
called the total Chern class of the vector bundle.

Fxercise 5.16. If B* — M is the dual vector bundle to E— M, and if V* is the dual
connection to V (see Exercise 5.3), show that V* has curvature —w' € A%(M, End(E*)), and
conclude that ¢ (E*) = (—1)kci(E).

Ezercise 5.17. If ¢: N — M is a smooth map, and if V is a connection on a Hermitian vector
bundle £ — M with curvature w, find a connection V' on the pullback bundle ¢*F — N
whose curvature is ¢*w € A?(N,End(¢*E)). Conclude that c(¢*E) = ¢*cx(E) € H¥:(N).

For Hermitian line bundles (r = 1), the total Chern class is just ¢(L) := 14 ¢;(L). From
Theorem 5.6, we know that ¢;(L) is an integral cohomology class, so ¢(L) is also integral.
This integrality property holds for Chern classes of any Hermitian vector bundle. Indeed,
if E— M and E' — M are two Hermitian vector bundles with compatible connections V
and V' and respective curvatures w and ', then V & V' is a connection on £ & E' — M,
with curvature w ® o' € A*(M,End(E & E")). Clearly

w W'
c(wd W) =det <1T - —) A det(l,n/ — —) = c(w) A ¢(w'), (5.21)
2m 2me
on account of (5.15). Now the wedge product of closed forms induces a product of cohomology
classes, since (n+dC) A (0 +d’) =nAn +dnA{+ A () +dQ)) if dnp =0 and dn’ =0, so
[n A n'] is not affected by adding an exact form to either n or 7; in other words, the recipe
0] [7] := [n A 7] is a well-defined product'® making H3g (M) into a ring. The even-degree
classes form a commutative subring H{E™(M). On passing to cohomology, (5.20) becomes

c(E®FE)=c(E)c(E) in HE(M). (5.22)

The integral 2-forms generate an integral subring H*V*"(M,Z). By (5.21), ¢(E) is integral,
i.e., lies in H®*"(M,Z), whenever E — M is a Whitney sum of Hermitian line bundles.
An important splitting principle (see [12] for a proof) asserts that some pullback bundle
¢*E — N can be split (into a sum of line bundles) in such a way that ¢(F) — ¢*(c(E)) =
c(¢*E) is injective, and therefore ¢(F) is integral since c¢(¢*E) is.

Definition 5.14. The Chern character ch(E) of the Hermitian vector bundle £ — M of
rank r is given by the invariant power series

ch(A) := tr(exp((2m) 7" A)) = 1 + chy(A) 4 cha(A) + - - -, (5.23)

or equivalently by the invariant polynomial obtained by discarding the terms chy with 2k >
dim M, since w"* € A% (M, End E) and hence chy(w) = 0 for 2k > dim M. This polynomial
is found explicitly by writing the eigenvalues of A as {2mipy,...,2miu, }, expanding the
function e ™ 4+ - .- + e " in a Taylor series, and discarding high-degree terms.

10This product is usually called the cup product in de Rham cohomology.
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Ezercise 5.18. Check that chi(E) = ¢i(E), chy(E) = 1(ci(E)? — 2¢2(F)), and chy(E) =

Hei(B)? = 3c1(E)ea(B) + c3(E)).

In general, the chy(E) are polynomial combinations of the Chern classes ¢;(E) with ratio-
nal coefficients, on account of the 1/k! terms in the Taylor series expansion; thus they might
not be integral classes, but rational classes, i.e., elements of H*V**(M, Q) = H®*"(M,Z)®7Q.

Proposition 5.12. The Chern character satisfies the homomorphism properties:

ch(E @ E') = ch(E) + ch(E'),
ch(E ® E') = ch(E) ch(E").

Proof. The invariant power series ch(A) of (5.22) satisfies ch(A @ A’) = ch(A) + ch(A’) and
ch(A®1+1® A") =ch(A) ch(A’); where @ and ® denote the usual direct sum and tensor
product of matrices. These identities are simple to check for diagonal matrices, therefore
hold for diagonalizable matrices by invariance, and hence hold generally, since the set of
diagonalizable r x r matrices is dense in C"*".

Given connections V, V' with curvatures w, w’ on the respective vector bundles £ — M
and E' — M, the curvatures of V& V' and V@ V' are w @ w’' € A*(M,End(E @ E')) and
wl+1®w € A*(M,End(E ® E')). On replacing A, A’ by w, ' in the foregoing matrix
identities, bearing in mind (5.15), and on passing to cohomology, one obtains the desired
formulae (5.23) for ch(E & E') and ch(F ® E'). O

Exercise 5.19. Explain how the tensor product connection V ® V' is defined, and check the
given formula for its curvature.

A trivial bundle E, = M x C"— M has a “flat” connection (i.e., a connection with
zero curvature) namely d, and thus ch(E,.) = 1. Thus, if two vector bundles £ — M and
F — M are stably equivalent, then ch(FE)—ch(F) is an integral multiple of 1 in H***(M, Q).
If one defines the “reduced K-theory” KO(M) of M as the quotient of K°(M) by Z (on
identifying r € N with [E,] € K°(M)), the tensor product of vector bundles makes K°(M) a
commutative ring, and thus the Chern character defines a ring homomorphism ch: K°(M) —
Heven(M’ @) .

For Hermitian line bundles L — M and L' — M, Proposition 5.12 yields the identity
ci(L® L") = ¢ (L) + e (L), (5.24)

by extracting the component in H3g (M) from the formula ch(L ® L") = ch(L) ch(L), using
chy (L) = ¢;(L). Thus ¢; determines a homomorphism from the group of line bundle classes
to the additive group H?(M, Z) of integral de Rham classes. Since ¢;(L) = [(i/27)w] when w
is the curvature of a compatible connection on L — M, and ¢;(L*) = —¢1(L), we conclude
that [L] — ¢;(L*) is the isomorphism described in Theorem 5.6.

To show that [L] # [L'], it is enough to show that ¢;(L) # ¢ (L'). Moreover, if dim M =
2m, then ¢;(L)™ = [(i/2m)"w"™] is an integral 2m-form, and so [ (i/27)"w"™ € Z, since
the identification of H3y (M) with R is precisely the map [v] — [, v.
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5.10 Classification of line bundles over CP™

Proposition 5.13. The group of classes of line bundles over CP™ is an infinite cyclic group,
generated by the class [H| of the hyperplane bundle.

Proof. Since we already know that H*(CP™,Z) = Z, we need only check that [H] is a
generator. Equivalently, we must check that ¢;(H) = [(2m)~'®] is a generator for H*(M,Z).
For this, it is enough to show that [ pm.(27)7"®"™ = 1.

Since the complement of the chart domain Uy is a lower-dimensional submanifold (diffeo-
morphic to CP™ 1), we need only show that the integral over Uy equals 1. We may therefore
use the formula (2.7) (with j = 0) for the Kahler form ®. Then

Am
/ PN = / (@QO Z dwf A dwh —iQy> Z whwh dwh A dwo) : (5.25)
Uo k=1

At the point (r,0,...,0) € C™, Qo simplifies to 1 + 72, and the integrand on the right hand
side of (5.24) becomes

(z’(l—l—r) dwy A dwg +i(1+1r?)~ Zdwo/\dwo)
i 2™ m]!
:—(1—1—7“2 erl/\dwo/\dwo —(1+r2 mH/\d:c A dyF
2" m/!
— W)\’ (5.26)

where ) is Lebesgue measure on C™, and wf = ¥ + iy* give Cartesian coordinates on C™.
Interpreting r as a polar coordinate on C™, one can write A = r*™~1dr d*™~10, with § €
S§?m~1 being the angular part. The right hand side of (5.25) is invariant under the unitary
group U(m), as is the Kéhler form, so it represents the integrand at all points, not just at
(r,0,...,0).

The volume of the sphere S*™ ! is Qy,, = 27™/(m — 1)! (see [1, 8, 28], for instance), so
the desired integral is

m] 7,,2m—1
-mFgFAm _ 7 2m—1
/m@”) R /m (L 00

m! o p2m—l ©  Imr2mt

"o | = g
Tm 2 /0v (1 + T2)m+1 /0 (]_ +T2)m+1

(e} mtm 1 1
:/0 (l—l—tm“ /mu du =1,

on substituting t = 2, u =t/(1+t).

Corollary 5.14. The hyperplane bundle is not trivial, since c;(H) # 0.
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This completes the classification of Hermitian line bundles over CIP™, since any line bundle
L' — CP™ satisfies ¢;(L') = k¢, (H) for some k € Z; thus L' ~ H®* if k > 0, L' ~ L®F)
if £ < 0, and L' is trivial iff £ = 0. Furthermore, k is precisely the integral over CP™ of
(—27i)""w™ where wy, is the curvature of any compatible connection on L' — CP™.

5.11 The Levi-Civita connection on the tangent bundle

Definition 5.15. Let M be a Riemannian manifold, and let V be a connection on the tangent

bundle TM — M. The fundamental 1-form @ is the unique element of A'(M, T M) sat-

isfying 1x0 = X for all X € X(M) =T(TM). The torsion of V is T := V0 € A*(M,TM).

Exercise 5.20. Show that the contraction map tx: A'(M, E) — T'(E) of Definition 5.4 ex-

tends to an A-linear map tx : A¥(M, E) — A*"Y(E) such that tx(CAn) = (ex)An+(=1)*CA

1xn for ¢ € A¥(M, E), n € A*(M), provided we define txs := 0 for s € ['(E) = A°(M, E).
We can then define T'(X,Y) := 1y (1xT) € X(M).

Lemma 5.15. If X,Y € X(M), then T(X,Y) = VxY — Vy X — [X,Y].

Proof. 1t is not hard to show that Vx( = V(¢tx()+tx(V() and Vx (ty () = iy (Vx()+xvi€
for ¢ € AY(M,TM). For the particular case ¢ = 0, these identities give

T(X, Y) = Ly(LXvQ) = Ly(VXe - V(Lxe)) = Ly(VXO - VX)
= Vx(l,ye) — L[X7y]9 - VyX = VXy — [X, Y] — VyX, (527)

as claimed. n

Ezercise 5.21. Verify the aforementioned formulae for Vx( and Vx(ty() by applying (5.8)
and (5.9) (and their analogues for ty) in the case ( = Z ® a with Z € X(M), a € A*(M).

Proposition 5.16. If M is a Riemannian manifold, there is a unique connection V on the
tangent bundle T'M — M, which s compatible with the Fuclidean metric on T'M and s
torsion-free.

Proof. Compatibility with the metric demands that (VX |Y) 4+ (X | VY) =d(X |Y), asin
(5.7), where (X |Y) = ¢g(X,Y) denotes the bilinear pairing on X(M) = I'(T'M) determined
by the Euclidean metric g. By Lemma 5.15, V is torsion-free iff VxY — Vy X = [X, Y] for
XY € X(M).

Thus Z(X |Y) = iz2(VX|Y)+12(X|VY) = (VzX|Y)+ (X |VzY). A short calculation
then shows that

AVLX|Y) = X(Y | Z) - Y(Z] X) + Z(X | V)

+ (XY, Z2) + (Y [[Z X]) - (Z] [X,Y]), (5.28)
which establishes the uniqueness of V. On the other hand, it is easy to show that the right
hand side is A-linear in Y and Z, hence is of the form tz(DX |Y), where D: X(M) —
AYM,TM). By replacing X by hX (with h € A) on the right hand side of (5.27) and then

simplifying, one verifies the Leibniz rule for D, which proves the existence of the desired
connection. ]
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Definition 5.16. The unique metric-compatible torsion-free connection on the tangent bun-

dle of a Riemannian manifold M is called its Levi-Civita connection. Its curvature, in

A?(M,TM), is usually denoted by R, and is also called the Riemannian curvature ten-
11

sor - of M.

Ezercise 5.22. Verify the following property of the Riemannian curvature tensor:
RX,Y)Z+R(Y,Z) X+ R(Z,X)Y =0 for XY, Z € X(M), (5.29)

using only Lemma 5.4, Lemma 5.15, and the Jacobi identity.

Ezercise 5.23. Verify the following symmetry properties of the Riemannian curvature tensor:
WIR(X,Y)Z) = =(R(X,Y)W | Z) = (X | R(W, Z2)Y),

for W, XY, Z € X(M).

6 Clifford algebras

A Clifford algebra is an associative algebra which is generated by starting with a real vector
space and defining a product of vectors in such a way that the square of any vector is a scalar.
This can be done consistently if the generating vector space is Euclidean, i.e., if it carries a
symmetric bilinear form. For the zero bilinear form, the corresponding algebra is just the
exterior algebra on the given vector space; otherwise, it has the same underlying vector space
as the exterior algebra, but with a modified product operation. The Clifford algebra has
interesting matrix representations, whose representation spaces are called “Clifford modules”.
All of these spaces are graded into an “even” part and an “odd” part, so we begin with a
general discussion of vector spaces and algebras which are Z,-graded.

6.1 Superspaces and superalgebras

Definition 6.1. A superspace is just a vector space with a given Z,-grading: V = VTV —;
here V* is called the even subspace and V~ is called the odd subspace.!

A superalgebra is an algebra whose underlying vector space is a superspace: A =
AT @ A~ where the product respects the grading,? ie., AT - AT C AT, A= A~ C A",
At A" C A and A~ - AT C A,

USince A2(M,TM) = X(M) ®4 A?(M), the map (X,Y,a) — a(R(X,Y)) is a tensor of bidegree (2,1)
on M.

!The unfortunate prefix “super”, which is simply a synonym for “Zs-graded”, was introduced by Feliks
Berezin [7] about 30 years ago, and has since become fashionable. Berezin wished to extend the calculus of
Gaussian integrals by regarding an exterior algebra as a “space of functions of anticommuting variables”.
This crazy idea works astonishingly well.

2Tf we regard the exponents + and — as the elements of the additive group Z,, these four inclusions may
be collected as the formula A®- A7 C A, In this way we can define a G-graded algebra for any abelian
group G, although only the cases G = Zy and G = Z are commonly used.
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Definition 6.2. The exterior algebra A*V of a vector space V is a Z-graded algebra,
whose subspace of degree k is A¥(V) for k = 0,1,...,dimV (and for k < 0 or k > dimV/,
one sets AF(V) := {0}), since A¥(V) A AY(V) C A*TYV) for k,1 € Z.

But A*V is also a superalgebra, since we may define

AT (V)= @ A(V),  A(V)= D AV

k even k odd

Indeed, any Z-graded algebra becomes a superalgebra, by collecting the subspaces of even
degree and of odd degree in this manner.

Definition 6.3. If V = VT & V™ is a superspace, then End V' is a superalgebra, with

End*V := End(V") @ End(V "),
End™ V := Hom(V*, V™) & Hom(V~, V"),

FExercise 6.1. Guess the definition of a supermodule. Any superspace V is a supermodule
for the superalgebra End V.

Definition 6.4. We say an element a of a superalgebra A is homogeneous if either a € A™
or a € A its parity #a is defined as #a := 0 if a € A", #a := 1 if a € A~. Analogously,
in a Z-graded algebra, we define the degree of a homogeneous element as #a := k if a € AF.

There is an important, if somewhat informal, sign rule in superalgebra, which says that
in any calculation in which the order of multiplication of homogeneous elements is reversed
(i.e., ab is changed to ba), a sign factor of (—1)#%#® must be inserted. Thus, for example, we
say that a superalgebra is “supercommutative” if ab = (—1)#%#%hq for homogeneous elements
a,b € A; in other words, even elements commute with both even and odd elements, but two
odd elements anticommute. Notice that the exterior algebra A®V is supercommutative.

Definition 6.5. The superbracket in a superalgebra is the bilinear operation A x A — A
defined, for a,b homogeneous, by

[a,b] := ab — (—1)#**bq.

A superalgebra is supercommutative iff all supercommutators [a,b] vanish, i.e., if the
superbracket is trivial. The superbracket satisfies the properties:

[[av b]] + (_1)#a#b[[b7 a]] =0,
[a, [b. 1] = [a. 8], ] + (=1)**#*[b, [a, ]]. (6.1)

A vector space with a bilinear operation (of any kind) which satisfies (6.1) is called a Lie
superalgebra.

Several bracket notations are in general use. Usually one writes [a,b] = ab — ba, and
anticommutators ab + ba are denoted {a, b} or sometimes [a, b]; thus [a,b] = [a, b] if either
a or b is even, and [a,b] = {a, b} if both a and b are odd. Warning: many superalgebraists
use [a, b] to denote a supercommutator, even when a and b are odd.
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Definition 6.6. A supertrace on a superalgebra A is a linear form 7 which vanishes on
supercommutators, i.e., 7([a,b]) = 0 for all a,b € A.
When A = End E for E a superspace, we may write a € AT and b € A~ as

“= (ao+ ao_) b= <bo+ bo_> 7 (6.2)

and we define a supertrace on End E by
Str(a +b) := Tr(a™) — Tr(a™). (6.3)

FEzercise 6.2. Write the supercommutator [a,b] for a,b homogeneous elements of End F
in the matrix notation (6.2) —there are four cases— and thus verify that (6.3) defines a
supertrace.

The tensor product U @V of two superspaces U and V is a superspace, with the grading:

UVt =UreVHae (U V),
UeV) =U"eV )e U V"), (6.4)

The tensor product of two superalgebras A and B, with the standard product recipe (a ®
b)(a' @ V) := ad’ ® bl is not, however, a superalgebra, since this product does not respect
the grading (6.4). However, one defines a graded tensor product, denoted A ® B, whose
underlying superspace is A ® B, by using the multiplication rule:

(a@b)(d @V) = (=1)%"#ad’ @ bl (6.5)

(for a,a’, b, homogeneous) in view of the passage of a’ to the left of b.

FEzercise 6.3. Verify that the product (6.5) is compatible with the grading (6.4) on the
superspace A ® B.

Exercise 6.4. If U and V' are (ungraded) vector spaces, show that A*(U @ V) ~ A°U @ A*V
as superalgebras.

Exercise 6.5. If U and V are superspaces, define an action of End U ® End V' on the super-
space U ® V' in such a way that EndU ® End V ~ End(U ® V') as superalgebras.

FExercise 6.6. Let A be a supercommutative superalgebra, and let V' be a superspace. Es-
tablish the following identity for homogeneous elements of A ® End V:

[a@ T bS] = (—1)*"*ab® [T, 9].

Show that the linear map Stry: A ® EndV — A given by Stry(a ® T') := a Str(T) is an
A-valued supertrace, in the sense that it vanishes on supercommutators.

Definition 6.7. A superbundle over a smooth manifold M is a vector bundle £ — M
which is a Whitney sum of two vector bundles: E = E* & E~. The fibres E, = Ef © E
are superspaces.
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The space of sections I'(E) is a Zs-graded C*°(M)-module: T'(E) = I'(E™T) @ ['(E™).
The E-valued forms on M may also be graded by degree, and so, in accordance with (6.4),
A®(M, E) carries the total Zs-grading:

AT(M,E) == A%(M, E*) @ AY(M, E™),
A~ (M, E) := A%(M,E~) ® A (M, E™).

6.2 Clifford algebras

In this section we treat briefly the algebraic theory of Clifford algebras over Euclidean vector
spaces. The presentation follows the treatment in [9], and the appendix to [54]. For a more
detailed exposition of the algebraic theory, see [27] or [39]. All these rely on the fundamental
paper of Atiyah, Bott and Shapiro [4].

Definition 6.8. Let V' be a real vector space, with dimg V' = n, and ¢ a positive definite
symmetric bilinear form on V; we shall call the pair (V,q) a Fuclidean vector space.> The
Clifford algebra C/(V) = C{(V,q) is an associative algebra generated by the elements
of V subject (only) to the relation v? = —q(v,v) 1. More precisely, one defines C{(V, q) :=
T(V)/1(q), where T(V) is the tensor algebra over V and I(q) is the ideal generated by
{v®@v+q(v,v)1:v e E}. The canonical mapping of V into C¢(V, ¢) is injective, so V may
be regarded as a subspace of C{(V/ q); we then have the fundamental relation

wv +vu = —2q(u,v) for w,veV. (6.6)
Exercise 6.7. Check that (6.6) is a consequence of v* = —q(v, v).

Proposition 6.1. The algebra CU(V,q) satisfies the following universal property: if A is a
real algebra with identity and f:V — A is a linear mapping such that f(v)* = —q(v,v) 1,

then there is a unique algebra homomorphism f: Cl(V,q) — A such that f = ﬂv 0

Exercise 6.8. Give the proof of Proposition 6.1.

A Clifford algebra is Zy-graded, as follows. By taking f(v) := —v in the previous propo-
sition, with A = C/l(V,q), we see that there is a unique automorphism a of C4(V,q) ex-
tending f, such that a? = id. (From the definition, each element of C{(V,q) is a linear
combination of products vivy...v, with vq,... v € V; clearly we have a(vive...v) =
(=1)kv1vy ... vp.) We write C£5(V, q) to denote the (41)-cigenspaces of a. Thus C/(V, q) is
a superalgebra. Notice that V' C C0™(V,q).

Now take A to be the opposite algebra of C/(V,q) (the same vector space with the
product reversed), and f(v) := v; we get an involutive antiautomorphism of C¢(V, q) given
by (v; .. .vk)’ = Vg ...v;. We define another antiautomorphism a +— a, called conjugation,
by @ := ala)' = a(a').

Many properties of the Clifford algebra come from the following simple proposition, due
to Chevalley [16].

3A Clifford algebra can be defined if ¢ is a symmetric bilinear form of any signature. However, we shall
use only forms which are either positive definite or (occasionally) negative definite.
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Proposition 6.2. Let (V,q) and (W,r) be two Fuclidean vector spaces, and let ¢ & r be the
symmetric bilinear form on V& W given by (¢ & r)(v1 +wq, ve +ws) 1= q(vy, v2) + 1 (w1, w2).
Then there is an isomorphism of superalgebras CL(V & W, q & r) ~ CLV,q) @ CL(W,r).

Proof. Define f: V& W — ClV,q) @ C{(W,r) by flv+w) =v®1+1®w. Using
(6.5), we see that f(v+ w)> = —(¢® r)(v + w,v + w)1 ® 1; therefore f extends to an
algebra homomorphism f: CO(V @ W,q @ r) — Cl(V,q) ® CL(W,r). Since the elements
v® 1+ 1®w generate CL(V,q) @ CL(W,r) as an algebra, f is surjective; to see that it is
injective, it suffices to compute f on a basis for ClV & W, q & r) generated by bases for V
and W. O

If ey, ..., e, is an orthonormal basis of (V, q), write ey :==¢;, ...¢e;, for J = {j1,...,ji} C
{1,2,...,n} with1 <j; <---<jp<mjandlet ey :=1. Then {e;:J C{1,2,...,n}}isa
basis of C¢(V, q). In particular, dim C/(V, q) = 2" and dim C¢*(V, q) = dim C¢~(V, q) = 2" L.

Ezercise 6.9. Use the previous Proposition to verify this basis, by induction on n.

Suppose V' = R” and that ¢, is the standard Euclidean inner product on R™; in that
case, we abbreviate Cl(n) := Cl(R",q,). Since C/(1) = span{l,e;} with €2 = —1, we
have Cl(1) ~ C (as real algebras); with C/T(1) = R, C/7(1) = iR. Next, Cl(2) =
span{1, eq, €9, e1e2} ~ H, the algebra of quaternions. In both these cases, a — a denotes the
usual conjugation.

Since C/(R, —q;) = span{1,é;} with é = +1, we have C/(R, —q;) ~ R® R, so C{(V,q)
depends on the signature of the form ¢. Also, C/(R?, —qy) ~ R**? by taking é; = ((} _01),
€y = ((1) (1)) A complete list of the algebras Cl(R", +gq,) is given in [4], and reproduced
in [27, 39]. A basic fact is what is called Bott periodicity: Cl(n + 8) ~ Cl(n) @ CL(8)
(ungraded tensor product). Since Cl(8) ~ R16*16 is a real matrix algebra, this means that
Cl(n + 8) =~ Cl(n)'*1% 5o one only need determine Cf(n) forn =1,2,...,8.

Ezercise 6.10. Show that C¢(3) ~ H & H. The remaining cases are Cl(4) ~ H**? C/(5) ~
T4, CU(6) ~ R¥S, CU(T) ~ R¥S @ REXE.

6.3 Clifford actions

Definition 6.9. A Clifford module for the Clifford algebra C/(V,q) is a superspace F' =
F* @ F~ together with an even homomorphism (called a Clifford action) c: Cl(V,q) —
End F. In other words, c(a)F* C F*if a € ClT(V,q), and c¢(b)F* C FT if b € CL~(V,q).

Suppose that F' has a (Euclidean or hermitian) inner product (-|-), and denote the adjoint
of A € End F by AT, that is, (x| A'y) := (Ax|y)) for z,y € F. We say that F is a selfadjoint
Clifford module if ¢(a)’ = c(a) for all @ € A. Notice that is enough to see that c(v)" = —c(v)
for all v € V, i.e., that each ¢(v) is skewadjoint.

Write Endcgv,g) F' := {R € EndF : [c(a),R] = 0,for a € Cl(V,q)} to denote the
subalgebra of End F' consisting of operators which supercommute with the Clifford action.

Erercise 6.11. Check that [RS, c(v)] = R[S, c(v)]+(=1)#°[R, c(v)]S for R, S homogeneous
elements of End /', and conclude that Endcywv,q) £ is indeed an algebra.
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Definition 6.10. Let (V,q) be a finite-dimensional real vector space with a nondegenerate
bilinear form.* The dual space V* of R-linear forms on V is a real vector space of the same
dimension; we may define the so-called musical isomorphisms [8], namely b: V' — V* and
f: V¥ =V, by

w(v) = q(u,v), g\, ) == A(w).
They are mutually inverse: (u”)f = u, (A\F)” = \.

If W is a complex vector space with a hermitian inner product (- | -)) (or a Hilbert
space,® not necessarily finite-dimensional), we define b: W — W* and #: W* — W similarly
by v’ (v) := {(u|v), {N|v) := A(v). In the complex case, the musical isomorphisms are
antilinear.

Definition 6.11. Let (V, ¢) be an Euclidean vector space, and let A*V be its exterior algebra.
For v € V, define the exterior multiplication €(v) and the contraction «(v") in End(A®V)
by

e()(vr A+ Avg) ;= VAU A A v,
k ,
: J
V) (o A Awg) = 5 (=1)7 " q(v, vj)vy A Y-+ Ay (6.7)

j—1

(The notation V indicates that the term with index J is missing from the exterior product.)
For k = 0, we define €(v)1 := v, ¢(¢v")1 := 0. Note that (") is a graded derivation:®

W) (@ A B) = u()a A B+ (=D Au(v”) for a,8 € A*V.
On A*V we use the real inner product
(ug A e s AU, 01 A v o - AUy) 1= Oy, det [q(uk,vl)}
It is easily seen that €(v)! = 1(v”) for v € V. Define
c(v)a = e(v)a — 1(v")a, for aeA*V. (6.8)
Ezercise 6.12. Check that e(v)! = 1(v") and that
e(w)u(v”) + u(v")e(u) = q(v, u).

Conclude that ¢(v)? = —q(v,v) 1 forv € V.

By Proposition 6.1, ¢ extends to a Clifford action of C¢(V, ¢) on A®V. Since c(v)" = —c(v),
this action is selfadjoint.

4This definition applies to both symmetric and antisymmetric bilinear forms.

5In the infinite-dimensional case, the bijectivity of the musical isomorphisms is a restatement of the Riesz
theorem.

6Tt could have been defined as the unique graded derivation that takes u to q(v,u).
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Definition 6.12. The R-linear map o: Cl(V,q) — A®V given by
o(a) :==c(a)l (6.9)

for a € Cl(V,q), is a vector-space isomorphism (but not an algebra isomorphism) between
the Clifford algebra and the exterior algebra, called [9] the symbol map. (It is easy to see
that o is surjective; since C¢(V, q) and A*V have the same dimension 2", it is also injective.)
Note that o(1) =1 and o(v) = v for v € V.

The inverse isomorphism @Q: A*V — C/(V,q) may be called [9] a quantization map,
since it maps a supercommutative algebra to an algebra which is no longer supercommuta-
tive.”

Ezxercise 6.13. Show that o(uv) = uAv—q(u,v) 1, so that Q(uAv) = uwv+q(u,v) 1. Establish
the general formula:
1 T
Q(Ul N A Uk) = H Z(—l) Ur(1) - - - Ur(k); (6.10)

’ TESE

where (—1)" denotes the sign of the permutation 7. In particular, Q(ej A---Aej,) = e
if {ey1,...,e,} is an orthonormal basis for V and j; < --- < ji.

g1+ G

Ezxercise 6.14. The map () does not preserve the Z-grading of A*V, but does preserve its
filtration. A filtration of an algebra A is a system of subspaces A; with A; C A,,; and
A;A; C Ay For A= CU(V,q), take A; to be the subspace generated by products at most
J vectors in V. There is an associated graded algebra, namely gr A := i A JA;_1 and a
canonical “symbol map” o: A — gr A. Check that for A = C{(V, q), the associated graded
algebra is none other than A*V with the symbol map given by (6.9).

6.4 Complex Clifford algebras

Definition 6.13. The complezification Cl(V,q) := CL(V,q) ®g C can be regarded as the
Clifford algebra over C of the complexified vector space Vi with the same quadratic form
q amplified to V¢: any vector in V¢ can be written uniquely as w = u + v with u,v € V,
and one defines q(w,w") := q(u,v') — q(v,v") +ig(u,v") —ig(v,u'); notice that the amplified
bilinear form ¢ is not positive definite on V. On V¢ all nondegenerate symmetric bilinear
forms are equivalent, so we may abbreviate C{(V,q) to C{(V); in particular, C/(V,q) ~
Cl(n) := CL(C™, g,) if dimg V' = n.

Exercise 6.15. Prove that C/(1) ~ C & C and that C/(2) ~ C*>*2.

"Quantum field theory deals with Fermi fields, which are systems of operators { ¢(v) : v € V' } satisfying
an “anticommutation relation” akin to (6.6). It helps to imagine an analogous situation in which the
anticommutators vanish, i.e., the algebra generated by the Fermi fields is replaced by a supercommutative
algebra; restoration of the scalar terms g(u, v) then corresponds to quantizing the latter system.
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Exercise 6.16. Prove that Cl(n+2) ~ Cl(n)® C¢(2) (ungraded tensor product)® by showing
that the C-linear map f: C"*? — Cf(n) ® C{(2) given by f(e;) := 1® ey, f(e2) == 1 ® ey,
fej) :=1iej_o ®ejeq for j > 3, satisfies { f(e;), f(ex)} = —20;,(1 ® 1), and hence extends to
the desired isomorphism.

From this we find that C¢(2m) ~ CY*¥ with N = 2™; and C/(2m+1) ~ CN*¥N g CNV*V,
In particular, C¢(V,q) is a simple matrix algebra iff dimg V' is even. From now on, we
consider only the case that V' has even dimension n = 2m.

Definition 6.14. Any finite-dimensional module for the matrix algebra A = C¥*¥ is of the
form FF =5, @ --- @ S, where each Sy has dimension N and A acts irreducibly on each S;.
Another way to express this is to say that FF = W ® S, where dim¢ S = N and A acts
trivially on W, that is, a - (w ® s) = w ® (a - s). Therefore, if dim V' is even, any Clifford
module for C/(V) is of the form F' =W ® S, with ¢(a)(w ® s) := w ® ¢(a)s, where S is an
irreducible Clifford module, unique up to equivalence, called the spinor module (or “spinor
space”) for C{(V'). As algebras, C/(V) and End¢(S) are isomorphic.

Exercise 6.17. Define Homegv)(S, F') to be the vector space of C-linear maps 7': S — F
which intertwine the Clifford actions of C/(V') on S and on F', i.e., c(a)(Ts) := T(c(a)s) for
alls € S, a € C{(V). Check that the map T'®s — T's gives an isomorphism Homg ) (S, F)®
S ~ F, and deduce that Homc (S, F)) ~ W and Endgevy F' ~ Endc W.

Definition 6.15. Let (V] ¢) be an oriented Euclidean vector space of even dimension n = 2m
(over R), and let {ej,...,e,} be an orthonormal basis for (V,q) which is compatible with
the given orientation.” We define the chirality element of C/(V) as

vi=1i"eles. .. €. (6.11)

If {e},..., e} is another oriented orthonormal basis, then €} = 7/, gjrex for g € SO(n) an
orthogonal matrix of determinant +1, and so i €}e) ... e/, = det(g)y = ~: thus the recipe
(6.11) is independent of the chosen basis.

The chirality element 7 satisfies v2 = 1 (that is why the factor ™ belongs in the defini-
tion), and it anticommutes with the copy of V' within C/(V'). Indeed, e;y = —ve; since e;
anticommutes with every e, except e; itself; by linearity, vy = —vv for all v € V. Therefore
yvy = —v for v € V, so by Proposition 6.1 yay = a(a) for all a € C{(V). The Zy-grading
on C/(V) induced by 7 (by declaring an element even or odd according as it commutes or
anticommutes with ) coincides, fortunately, with the original grading given by «.

Notice that if n = 4k is a multiple of 4, then ~ belongs to the real Clifford algebra
Cl(V,q), and it is not necessary to use the complexification C/(V).

8This is the “Bott periodicity” identity for complex Clifford algebras.
9Recall that an orientation of V is a choice of a positive direction in the real line A"V'; a basis {v1,...,v,}
for V' is compatible with the orientation iff v; A - -- A v,, is positive.
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6.5 The Fock space of spinors

The availability of v means that any (ordinary) complex module F' under the Clifford algebra
can be given a Z,-grading by taking F'* to be the (£1)-eigenspaces of ¢(y) € End¢ F. In
particular, the spinor module is a superspace S = ST @ S~, with C{(V) ~ Endc S as
superalgebras. We now give an explicit construction of the spinor module.

Definition 6.16. A Euclidean vector space (V,q) of even real dimension n = 2m can be
made into a complex Hilbert space by choosing an orthogonal complex structure J on (V, q);
this is an R-linear operator on V' satisfying:

JP=—1 and q(Ju, Jv) = q(u,v) for u,v € V. (6.12)

Now we regard V' as a complex vector space via the rule (o +1i5)v := av+ gJv for o, f € R.
The hermitian form

(ul]v) = qlu,v) +ig(Ju,v)

is positive definite since ¢ is. We shall denote the complex Hilbert space thus obtained by
(V,q,J). Notice that i((u | v)) = (u | Jv) = —({(Ju|v)) for u,v € V.

Exercise 6.18. For (V, q) = (R*, q4), find all J € Endg V' = R** satisfying (6.12). Show that
the set of such J has two connected components, each homeomorphic to a 2-sphere S2.

Ezercise 6.19. If g € Endg(V), check that g is a C-linear map on the Hilbert space (V,q, J)
iff gJ = Jg. Conclude that { g € GLg(V) : gJ = Jg} = GLc(V, ¢, J). It O(V, q) denotes the
orthogonal group of those g € GLg(V') for which ¢(gu, gv) = q(u,v) for all u,v € V', show
that U;(V) := O(V,q) N GLc(V, q,J) is the unitary group of the Hilbert space (V,q,J),
i.e., the group of complex automorphisms satisfying (gu | gv)) = (u | v)) for u,v € V.

Ezercise 6.20. Let J(V, ¢) denote the set of all orthogonal complex structures on a Euclidean
vector space (V,q). Show that J(V,q) is empty if dimg V' is odd, and nonempty if dimg V'
is even (produce an example). Show that the orthogonal group O(V, q) acts transitively on
J(V,q) by J +— gJg~t, and that the isotropy subgroup of any .J is the unitary group U (V).

Ezercise 6.21. Check that {uy, Juy,..., Un, Ju,} is an orthonormal basis for (V,q) when
{uy,...,un} is an orthonormal basis for (V, ¢, J), and deduce that O(V, q) ~ O(R*™, ¢,,,) =
O(2m) and that U;(V) ~ U;(C™) = U(m). Conclude that J(V,q) is diffeomorphic to the

quotient manifold O(2m)/U(m) (which, as it happens, has two connected components).'?

Definition 6.17. Choose and fix an orthogonal complex structure J on (V,q). Denote by
F;(V) or simply by F(V) the complex exterior algebra A®*(V,q, J) over the Hilbert space
(V,q,J). Then F(V) is a complex vector space of dimension 2™, called the Fock space!!

0The identity component SO(V, q) of the group O(V, q), which consists of those g with determinant +1,
satisfies SO(V, q) ~ SO(2m), so one of the two components of J(V, q) is the set of “orientation-preserving”
J, which is diffeomorphic to SO(2m)/U(m).

' This is sometimes called a fermion Fock space to distinguish it from the Hilbert space formed from
a symmetric algebra over V' (suitably completed), which is known as a “boson Fock space”; these spaces
describe many-particle states of fermions and bosons in quantum field theory.
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over (V,q,J). The Fock space is itself a complex Hilbert space, with the inner product
determined by
(ui A Ay |01 A= Avg)) i= G det [(u, | 0r))].

We can choose (by induction on dim V') an orthonormal basis {e,...,e,} for V so that
Jeg,_1 =e€o. forr=1,...,m.

It is useful to identify (V, g, J) with an m-dimensional complex subspace W of the com-
plexification Vg = V ®@g C; take W := {v —iJv € V¢ : v € V }. Notice that W is isotropic
for the amplified bilinear form ¢ on V¢, i.e., ¢(u — iJu,v — iJv) = 0 for u,v € V, on ac-
count of (6.12); and moreover, dim¢ W = m = %dim(c Ve, so W is a maximally isotropic
subspace.'? The conjugate subspace W := {v +iJv € Vg : v € V' } satisfies W NW = 0,
W @ W = V¢, and indeed W is the orthogonal complement of W under the inner product
on V¢ given by

(w]2) =2q(w, 2).

The operator Py := (I —iJ) is then a unitary isomorphism between (V, g, J) and W, so we
may identify these Hilbert spaces. The Riesz theorem allows us to identify the dual space
V* with W, and if w = P, v, we identify v* with @ := P_v := %(I +iJ)v. An orthonormal
basis for W is {z1,..., 2}, where z; := Pyeg,_1; notice that Pyeg, = Py (Jegr_1) = i2k.
We may also identify F(V') with the complex exterior algebra A*W. Now define c(v)
on A*W, for v € V, by
c(v)a = e(Pyv)a — o(P_v)a, (6.13)

J
where ¢(2)(wy A -+ Awy) = Zf (—=1)77 (2 | w) wy A+ Y-+ A wy, in accordance with (6.7),
and extend to V¢ by c(v1 +ivg) 1= c(vr) +ic(vg).
Ezercise 6.22. Show that {e(w),¢(2)} = (2 | w)) for w,z € W.

Ezercise 6.23. Show that c¢(w) = e(w) and ¢(z) = —(2) for w,z € W. Conclude that ¢
extends to a selfadjoint Clifford action on A®*(W).

Proposition 6.3. The operator c(v) on the Fock space is the grading operator on the super-
space N°W .

Proof. The assertion is that the (£1)-eigenspaces of ¢() are the even and odd subspaces
AEW: in other words, c¢(y)a = (—=1)Fa for all a € A*W.
First of all, notice that zpz; — Zpzr = ©egp_1€9k, so that v = H;k<m(2k5k — Zrzk).

Moreover, c(z,2x — Zrzk) = [c(2k), ¢(Zk)] = [t(Z1), €(21)]. Now a direct calculation shows that,
for a = z;;, A -+ A z;,, we have [1(Z,), €(z.)]a = Lo, with negative sign iff » € {ji,...,jk}
Since A®W is generated (as a complex vector space) by such a, we obtain c¢(y)a = (—1)*a.

]

121f Z < V¢ has dimension k, the subspace of vectors w with g(w,z) = 0 for all 2 € Z has dimension
2m — k, since ¢ is nondegenerate; thus an isotropic subspace can have dimension at most m. A maximally
isotropic subspace is also called a polarization for q.
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6.6 The Pin and Spin groups

Definition 6.18. Let (V,q) be a Euclidean vector space with ¢ positive definite. The
invertible elements of C/(V, ¢) form a group which includes all nonzero scalars and all nonzero
v €V (since v™! = —v/q(v,v)); and the “twisted conjugation” ¢(a)b := a(a)ba™" provides a
linear action of this group on C¢(V,q). The invertible elements which preserve the subspace
V under this action form the Clifford group I'(V,q) := {a : ¢(a)(V) C V' }. The nonzero
scalars t € R* lie in I'(V, ¢), and so do the nonzero vectors u € V' '\ {0}, since if v € V|

B _ q(u, v)
du)v = —uvu™t = (vu — 2q(u,v))ut = v —2 u, 6.14
(w) (v~ 24(u ) e (6.14)
so u € I'(V,q). Geometrically, (6.14) is the reflection in the hyperplane orthogonal to wu,
since ¢(u)u = —u and ¢(u)v = v iff ¢(u,v) = 0.

Lemma 6.4. The kernel of ¢: I'(V,q) — GLg(V) is the subgroup R* of nonzero scalars.

Proof. If a € ker ¢, let a = at + a~ with a* € Cl*(V,q); taking even and odd parts of
the equation a(a)v = va gives a*v = +va® for v € V. If {ey,...,e,} is an orthonormal
basis for V', and if V; denotes the hyperplane in V orthogonal to e;, then at = b" + e;b™
with b* € Cl*(V4,q). Now the equation ate, = eja® yields bte; + b~ = e;bt — b, so
b~ = 0; hence a* € Cl(V1,q). A similar argument shows that a= € C/(V},q). An obvious
induction argument now shows that a has only a scalar component when expanded in the
basis {e;: J C{1,...,n}} of C{(V,q), and so a € R*. O

If v € V, then vo = va(v) = —v? = q(v,v) 1, so the quadratic form ¢(-,-) extends to
the map a — aa of CU(V,q) into itself. If a = >, aye; is the expansion of a with respect
to the basis {e; : J C {1,2,...,n}} of C{V,q), then aa and aa have the same scalar
component y_,a3. If a € I'(V,q) and v € V, then ¢(a)v = u implies u = a(a) 'va, and so
u = u' = a'va~! = ¢(a)v; in consequence, ¢(aa)v = ¢(a)p(a)v = v, so that aa € ker¢ =
R*. Thus a — aa = aa yields a group homomorphism of I'(V, ¢) into R*. Its kernel is
Pin(V,q) :=={aeI'(V,q) :aa =1}.

Ifa eT'(V,q) and v € V, then

2

q(d(a)v, ¢p(a)v) = a(a)va™ta 'va(a) = a(aa)(aa) oo = —v* = q(v,v),

since aa = aa is a scalar, and so ¢(a) lies in the orthogonal group O(V,q). Restriction to
Pin(V, q) yields a homomorphism ¢: Pin(V, q) — O(V, q) which is surjective since the orthog-
onal group is generated by the reflections'® (6.14), and v € Pin(V, q) whenever ¢(v,v) = 1.

Definition 6.19. The Spin group of the Euclidean vector space (V,q) is defined as the
even part of Pin(V/, q), i.e.,

Spin(V, q) := CL*(V,q) N Pin(V,q) := {a € T(V,q) N ClT(V,q) s aa = 1}.

13This is the Cartan-Dieudonné theorem, which can be proved by writing an orthogonal matrix in normal
form as a direct of k plane rotation matrices and possibly a —1 diagonal entry, and by recalling that a plane
rotation is a product of two reflections in lines.
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The image ¢(Spin(V,q)) is the subgroup SO(V,q) of O(V,q) generated by products of an
even number of reflections. This is the rotation group, also called the special orthogonal
group, since g € O(V, q) lies in SO(V, q) iff det g = 1.

The homomorphisms ¢: Pin(V,q) — O(V,q) and ¢: Spin(V,q) — SO(V,q) have the
same kernel {+1} ~ Zy, by Lemma 6.4. In particular, we have a short exact sequence of Lie
groups:

1 — Zy — Spin(V,q) == SO(V,q) — 1,

so that Spin(V, ¢) is a double covering of the rotation group.

FEzercise 6.24. Show that Pin(V,q) is the set of products {v;... v} of unit vectors (i.e.,
vectors v; € V such that ¢(vj,v;) = 1 for each j), by showing that these products form a
normal subgroup which ¢ maps onto O(V, q). Deduce that Spin(V, ¢q) is the set of products
{v1...v9:} of an even number of unit vectors.

FEzercise 6.25. If u,v € V are unit vectors in V, with u # tv, and if a(t) := 1+ ¢(u, v) sin 2¢
for 0 <t < Z, define w(t) := a(t)"/?(costu +sintv), z(t) := a(t)~*/?*(costv + sint u), and
b= (1 —q(u,v)®)""?(uv + q(u,v) 1). Show that ¢t — —w(t)w(—t) is a continuous path in
Spin(V, ¢) from 1 to —1 through b, and that ¢ — w(t)z(—t) is a continuous loop in Spin(V, q)
from uv to b and back. Deduce that Spin(V, q) is a connected group.*

On passing to the complexification, we may regard Spin(V, q) as a subgroup of the in-
vertible elements of the complex Clifford algebra C¢(V'); the circle group U(1), regarded as
complex scalars is another such subgroup. Now if A,y € U(1) and a,b € Spin(V, q), then
Aa = pb in CLV) iff (u,b) = (A a) or else (u,b) = (=X, —a); thus Spin(V,¢) and U(1)
generate the subgroup

Spin“(V') ~ (Spin(V, q) x U(1))/Z,,

where the quotient map is defined by the relation (A\,a) ~ (=, —a). Define ¢°(Aa)v =
N (a)v for Aa € Spin®(V); then ¢¢ maps Spin®(V') onto SO(V,q) x U(1) with kernel {+1},
so there is another short exact sequence of Lie groups:

1 — Zy — Spin(V) 25 SO(V, q) x U(1) — 1.

The Lie algebra of the spin group Spin(V, ¢q) is readily identified as a subspace of the
Clifford algebra C4(V, q). Indeed, let A5 be the subspace of C¢*(V, q) with basis {1}U{ e;e; :
i < j}with {ey,...,e,} an (arbitrary) orthonormal basis of V' (compare with Exercise 6.14),
and let C%(V, q) be the image of AV under the quantization map Q.

Lemma 6.5. C?(V,q) ={be€ A :b=—b}.

Proof. Since Q(u A v) = uv + q(u,v) 1, it follows that C?(V,q) C A;. Counting dimensions,
dim C?(V, q) = dim A?V = in(n—1) = dim A — 1, so C*(V, ¢) is a hyperplane in A. Now

4Since the fundamental group of SO(V,q) is Zs, this shows that the covering map ¢ is nontrivial and
hence that Spin(V, ¢) is the universal covering group of SO(V, q).
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ee; = eje; = —e;e; for i < j, so the map b — b+ b is a scalar-valued R-linear form on AJ,
whose kernel is a hyperplane; and since
QuAv) =vu+qu,v)1 = —uv — q(u,v) 1 = —Q(u A v)
for u,v € V, it coincides with C?*(V, q). O
If b€ C*(V,q) and w € V, then [b,w] = [b,w] lies in V also; to see that, it suffices to
take b = uv + ¢(u, v) 1, whereupon
b, w] = vvw — wWuv = VW + VWY — VWY — WU
= 2¢(u, w)v — 2q(v,w)u € V. (6.15)
The only elements of A which commute with V' are scalars, so [b, w] vanishes for all w € V'

iff b =0 in C*(V,q). Hence 7(b)v := [b,v] defines an injective R-linear map 7: C*(V,q) —
End V.

Proposition 6.6. The map 7 is a Lie algebra isomorphism from C*(V,q) onto the Lie
algebra of antisymmetric operators so(V,q) := { A € EndV : ¢(Au,v) = —q(u, Av) }.
Proof. First notice that C%(V,q) is a Lie algebra under the bracket [b,d] := bd — db of
Cl™(V,q). Indeed, on taking b = uv + q(u,v) 1, d = wz + q(w, 2) 1, one finds that

[b,d] = [uv,wz] = [uv, w]z + wluw, 2] € Ay

using (6.15), and [b,d] = [d,b] = [~d, —b] = —[b,d], so [b,d] € C*(V,q). Also from (6.15),

[b
q([b,w], z) = 2q(u, w)q(v, 2) — 2¢(v, w)q(u, 2) = —q(w, [b, 2]),
which shows that 7(b) € so(V,q). Since dimso(V,q) = in(n — 1) = dim C*(V,¢) and 7 is
injective, its image is all of s0(V, ¢). Finally, the Jacobi identity yields
7([b, d])v = [[b, d],v] = [[b,v],d] + [b, [d,v]] = —7(d)T(b)v + T(b)7(d)v,
so 7([b,d]) = [7(b), 7(d)] where the latter bracket is the commutator bracket in End V' (which

preserves s0(V, q)); thus, 7 is a Lie algebra isomorphism. O

Lemma 6.7. If A € s0(V,q) and {ey,...,e,} is an orthonormal basis for V', then

1 1
7 A) = 5 Zq(Aej,ek) ejer = 7 Z q(Aej, er) ejey. (6.16)

j<k jk=1

n

Proof. The series in (6.16) are equal since A is antisymmetric, and they lie in C?*(V, q) by
Lemma 6.5; if b denotes either series, we show that g(e,,7(b)es) = q(e,, Aey) for all r, s.
Indeed,

1

T(b)es = 5 Z q(Aej, er) [ejer, es] = 5 Z q(Aej, er) (20;5€, — 20k5€;5)
j<k i<k
= a(Aes ) e — Y a(Aeje,)e; = D q(Aey, e ey,
k>s 7j<s k=1
by antisymmetry of A, so q(e,, 7(b)es) = q(Aes, e,.) = q(e,, Aes) as required. O
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The Lie algebra C?(V, q) gives rise to a Lie group, namely, the group of invertible elements
of CL*(V,q) generated by the elements expb := 1+ 3, b*/k!, for b € C*(V,q), i.e., by the
image of C%(V,q) under the exponential map in the Clifford algebra. Notice that if a = exp b

and w € V, then

1

awa™' = (exp b)w(exp(—b)) = mbkw(—b)l
El>0
1= (7,4 - 1
:ZHZ | Vrw(=b) :Z;![b,[b,...,[b,w]...]]
r>0 " k=0 r>0
1
= =7(b)w, (6.17)
=
so that awa™ € V, and hence a € I'(V,q). From the relation b = —b it follows that

aa = (expb)(exp(—b)) =1, and so a € Spin(V, q).
Ezercise 6.26. If b = uv + q(u,v) 1 with u,v € V, show that

q(r(b)w, 7(b)w) <16 q(u, u)q(v, v)g(w, w).

If 3 denotes the series on the right hand side of (6.17), verify its convergence by obtaining
the estimate ¢(2, %) < 5 q(w, w) where s(b)? = q(u,u)q(v,v).

Proposition 6.8. The exponential map exp: C*(V,q) — Spin(V, q) is surjective.

Proof. The equation (6.17) reads

o(expb) = exp(7(b)), (6.18)

where the second exponential map is the matrix exponential in End V. Now any rotation
in SO(V, q) is of the form exp A for some antisymmetric operator A € s0(V,q), as is seen
by expressing the matrix of the rotation in canonical form. Therefore, { ¢(expb) : b €
C2(V,q)} = SO(V, )

Also, if u,v are orthogonal unit vectors in V and if § € R, then fuv € C*(V,q), and
exp(fuv) = cosf + sinfuv. In particular, —1 = exp(muv) lies in exp(C?*(V,q)). Now if
b=7"1A) with A € s0(V,q), choose an orthonormal basis for V' such that g(Ae;,e;) =0
unless k = j £ 1. From (6.16), b = > byea,_1€9, with b, = %q(Aegr_l,egT). Thus b
commutes with mejes, and so —expb = exp(meies + b). It follows that exp(C?*(V,q)) is a
subset of Spin(V, ¢) doubly covering SO(V, q), and hence is all of Spin(V/ q). ]

Thus we may regard C%(V,q) as the Lie algebra of Spin(V, ¢). It should be noted that
Spin(V, q) and Pin(V, q) are compact Lie groups, since they are closed subsets of the “unit
sphere” in C{(V,q) determined by the condition Y_,a% = 1. Therefore, Proposition 6.8
exemplifies the well-known fact that the exponential mapping from the Lie algebra to a
compact connected Lie group is surjective [13].
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6.7 The spin representation

Proposition 6.9. Let S := ALW be the spinor module for C{(V'). Define c¢: Pin(V,q) —
Endc S by restriction of the Clifford action ¢: Cl(V) — Endc S given by (6.13). Then c is
an irreducible unitary representation of the Lie group Pin(V, q).

Proof. Since c: Cl(V) — Endc S is multiplicative, its restriction to Pin(V,q) is a represen-
tation of this group on S. Since the Clifford action is selfadjoint (see Exercise 6.24), we have
c(a)t = c(a) = c(a™t) = c(a)™! for a € Pin(V,q), because aa = 1; thus c(a) is a unitary
operator on S.

The irreducibility of ¢ follows from Schur’s Lemma: we show that any 7" € Endc¢ S
commuting with {c¢(a) : @ € Pin(V,q) } is a scalar operator. Indeed, 7" must commute
with c¢(w) = e(w) for any w € W, since V' \ {0} C Pin(V,q) and W C V¢; and T must
also commute with ¢(z) = —«(z) for z € W. If  is a unit vector in the one-dimensional
space ALW ~ C, then «(2)TQ = T(.(2)Q) = 0, so TQ = tQ € ALW for some t € C. Now
T(wi A Aw,) =T (e(w) ... e(w,)Q) = e(wy) ... e(w,)(tQ) = twi A+ -Aw,,s0T =t idg. O

Definition 6.20. The irreducible representation given by the previous Proposition is called
the pin representation of the group Pin(V,q). Its restriction to the subgroup Spin(V,q) is
called the spin representation.

Proposition 6.10. The spin representation is not irreducible, but it is the direct sum of two
inequivalent irreducible representations on the subspaces ST := AW and S™:= AW.

Proof. Recall Proposition 6.3: ¢(7) is the grading operator on S = ST @& S~. Now the chi-
rality element ~ anticommutes with every v € V', and so ya = avy for all a € Spin(V, q) by
Exercise 6.24. Thus ¢(y) commutes with { ¢(a) : a € Spin(V, q) }, so by Schur’s lemma the
spin representation cannot be irreducible; in fact, it is the direct sum of two subrepresenta-
tions on the +1-eigenspaces of ¢(v), which are S* and S™.

If T € Endc S* commutes with c(a) for all @ € Spin(V, g), then T must commute with
c(wy)c(wse) = €(wy)e(we) and with ¢(Z1)c(Z2) = ¢(Z1)e(Z2) for wy,we, 21,20 € W, so T is
a scalar operator, by adapting the argument of the proof of Proposition 6.9. Thus both
subrepresentations are irreducible.

Notice that dim ST = dim S~ = 2™, so these “half-spin representations” have the same
dimension. However, they are not equivalent, since if R € Hom(S*,S7) is an intertwining
operator, then Rc(egj_1e2;) = c(egj_1€9;)R for j = 1,...,m and hence Re(y) = c(y)R; but
then Ra = Re(y)a = ¢(y)Ra = —Ra for all & € ST, so R = 0; inequivalence follows from
Schur’s lemma. ]

Ezercise 6.27. Show that v € Spin®(V).

The whole theory of Clifford algebras and spin representations may be extended, with a
little care, to infinite-dimensional vector spaces with a symmetric bilinear form. The Clifford
algebra must be complete, so its complexification is defined as the unique C*-algebra with
the desired universal property. The orthogonal group must be restricted to the subgroup of
operators ¢ € Endr V' whose antilinear part, with respect to a fixed complex structure, is
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Hilbert—Schmidt; this is necessary to guarantee convergence of series similar to (6.16). For
an exposition of the infinite-dimensional spin representation which extrapolates from the
present treatment, we refer to [2]. An alternative method, wherein the spin representation
is defined by permuting certain “Gaussian” elements in the Fock space, is developed in [31],
based on ideas of [44].

7 Global Clifford modules

Given a compact Riemannian manifold (M, g), we can form a Clifford bundle CO(M) — M
by gluing together the complex Clifford algebras Cl(T, M, g,). The space of smooth sections
['(C¢ M) is an algebra, and its completion to the space of continuous sections I'coni(CE M)
is canonically a C*-algebra. Naturally, we want to consider vector bundles of representation
spaces for the algebras C{(T,M,g,), whose section spaces are modules over the algebra
['(C¢ M). However, although the Clifford algebra bundle can be built over any Riemannian
manifold, topological obstructions can prevent putting together the corresponding Clifford
modules. We shall restrict our attention to oriented, even-dimensional Riemannian manifolds
and we shall say that (M, g) is a spin manifold if a Clifford module corresponding to the
irreducible spinor representation exists. Such manifolds may have none, one, or several
inequivalent spin structures; our first task is to sort out the possibilities.

7.1 Clifford algebra bundles

Definition 7.1. Let M be a compact manifold, and let £ — M be a real vector bundle of
rank n with a Euclidean metric g. For any z € M, (E,, g.) is a Euclidean vector space, and
we can form the Clifford algebra C{(FE,,g,). These form the fibres of a real vector bundle
Cl E — M of rank 2", which extends the vector bundle £ — M in the sense that there
is an injective bundle map j: F — Cl FE; since Cl(E,, g.) ~ A*E, as vector spaces, just
take C/ E to be the total space of the exterior algebra bundle A*E — M, and let j be
the map which identifies each v, € E, with its canonical image in A'E,. The declaration
J(v2)? := —g.(vs, v,) determines, by Proposition 6.1, a bilinear product in each fibre which
depends smoothly on z € M, and also determines isomorphisms (Cl E), ~ Cl(E,, g).

The complexification of C/ F — M is C/ E — M, the complex Clifford algebra bundle;
notice that C/ E = Cl E¢.

The module of smooth sections I'(C/ E) is thus an algebra under the pointwise Clifford
product (k€)(z) := k(x)&(x). If the rank of E— M is even, the centre of this algebra is
just A = C*(M), by identifying smooth functions on M with scalar-valued sections of the
Clifford algebra bundle.!

IThe continuous sections I'cont (Cf E) form a C*-algebra whose centre is the algebra C(M) of continuous
complex-valued functions on M. This C*-algebra is noncommutative, but in a fairly trivial way: it is “Morita-
equivalent” to the commutative C*-algebra C'(M). This means [46] that [eont (CC E) @K ~ C(M)RXK, where
X is the elementary C*-algebra of compact operators on a separable infinite-dimensional Hilbert space.
In particular, since X is a simple C*-algebra, there is a bijective correspondence between the irreducible
representations of these Morita-equivalent C*-algebras.
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FEzercise 7.1. Let ) — M be the principal O(n)-bundle of orthonormal frames for £ — M.
Check that any g € O(n) extends to an automorphism p(g) of the Clifford algebra C¢(n),
and that p(g)p(¢’) = p(gg’) for g,g € O(n). Then show that C{ E — M is the vector
bundle associated to ¢ — M via the representation p of O(n).

Definition 7.2. The Clifford bundle over a Riemannian manifold (M, g) is the bundle
of Clifford algebras C{(M) — M obtained by taking the tangent bundle T'"M — M as the
generating vector bundle, with the Riemannian metric g defining the Euclidean structure
on T'M. It would be more consistent to write C£T'M rather than C¢(M), but this is not
usually done, for the following reason. The cotangent bundle T*M — M is equivalent to
the tangent bundle via the bundle map g: TM — T*M induced by the metric (see the
discussion after Definition 3.2), and this in turn defines a Euclidean structure g on the
cotangent bundle by

g Ha, B) = g(aﬁ,ﬁﬁ) for «a,3¢€ AN M), (7.1)

where the vector field of is determined by g(af,Y) := a(Y). This extends to a bundle
equivalence g: C/TM — C¢T*M. Thus we may and shall regard sections of C{(M) — M
as Clifford products of vector fields or of forms, according to momentary convenience. We
shall, as before, write the scalar products in (7.1) as (a | 3) and (o | 3*) respectively.

Exercise 7.2. Verify that the map g: TM — T*M extends to an equivalence of the Clifford
algebra bundles C/T'M and C¢T*M by applying Proposition 6.1 on the fibres.

Ezercise 7.3. Let g;; := g(0/0x",0/0x7) be the matrix entries of the metric ¢ in local coordi-
nates, and let [¢"] be the inverse matrix to [g;;]; show that (dz")* = ¢"9/027 and conclude
that g~ 1(dz",dx®) = g"*, thereby justifying the notation g=* for the metric in 7% M.

In view of Proposition 5.2, the sections of the Clifford algebra bundle may be constructed
by an alternative method. Starting from a Euclidean vector bundle £ — M one can define
the tensor bundle T(E) — M as the (infinite) Whitney sum of the tensor product bundles
E®" — M, where E®° = M x R, the trivial rank-one bundle. The ideals I(g,) of T(E,)
glue together to give a bundle of ideals I(g) — M, and C/ E — M may be defined as the
quotient bundle T(£)/I(g) — M. The module of sections I'(I(g)) is an A-submodule of
['(T(E)), and the quotient A-module may be identified with I'(C¢ E). Note, in particular,
that I'(I(g)) is generated as an A-module by the elements s ® s + ¢(s, s), for s € T'(E).

Proposition 7.1. Any connection V on a Fuclidean vector bundle E — M which is com-
patible with the metric on E extends to a connection, also denoted by V, on CLE — M,
such that

Vx (k) = (Vxr)§ + K(VxE) (7.2)
for X € X(M), K, € I'(CLE); that is, each Vx is a derivation on the algebra I'(Cl E).

Proof. Compatibility of V with the metric is expressed by (5.7), which is equivalent to the
condition that (Vxs|t)+ (s|Vxt) = X(s|t) for s,t € ['(E), X € X(M). The operators V x
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on I'(E) extend to I'(T(E)) by setting Vx(s1® -+ ® s) 1= Z?Zl 510 @ Vxs;®- @ s;
it is clear that X +— Vx(s; ® --- ® s) is a connection on the bundle E® — M for each k.
Moreover, each Vx: I'(T(E)) — I'(T(FE)) is an A-linear derivation, i.e., it satisfies the Leibniz
rule

Vx(c@71)=(Vxo)@T+0® (VxT). (7.3)

On applying the extended V to a generator of the module of ideals T'(I(g)), we get

Vx[s®@s+(s|s)]=(s+Vxs)®(s+ Vxs)+ (s+ Vxs|s+ Vxs)
—5s®@s—(s|s)—Vxs®Vxs—(Vxs|Vxs).

Therefore, Vx preserves I'(I(g)), and so drops to the quotient algebra I'(C¢ E)). The deriva-
tion property (7.3) survives on passing to the quotient, and (7.2) follows. O

One may eliminate the vector field X in the usual way, by noting that both sides of (7.2)
are A-linear in X, and by extending the Clifford product in I'(C¢ E) to an A-bilinear form
from I'(CLE) x AY(M,ClE) to A'(M,C¢ E). Thus (7.2) may be rewritten as

V(ké) = (VR)E + k(VE)  for r, &€ T(CLE), (7.4)
which is an equation in A'(M,ClE).

Definition 7.3. The Levi-Civita connection on the Clifford bundle over M is the deriva-
tion V: I'(C¢(M)) — AY(M,Cl(M)) which extends the Levi-Civita connection on the tan-
gent bundle (or equivalently, its dual connection on the cotangent bundle). Whenever con-
venient, we shall denote any of these three connections by V¢,

Definition 7.4. A Clifford module over a Riemannian manifold M is a module of sec-
tions I'(F') of a superbundle F'— M, together with a Clifford action of the sections of the
complexified Clifford bundle I'(C¢(M)). Such an action is defined as an A-bilinear map
[(CUM)) x T(F) — T'(F), written (k,s) — c(k)s, such that ¢(1)s = s and ¢(k)c(§)s =
c(k€)s for all s € I'(F) and k,& € T'(Cl(M)), or else as a homomorphism c: I'(C{(M)) —
I'(End F), which is even in the sense that c: T'(C¢(*(M)) — I'(End* F).

The evenness of the action is equivalent to the condition that for any o € A'(M), the
operator ¢(a) interchanges I'(F'*) and T'(F ™).

If F— M is a Hermitian vector bundle, we say that the Clifford action is selfadjoint
if c(k)! = c¢(R) for K € CU(M), or equivalently, if c(a)! = —c(a) for any (real-valued)
a € AY(M). More precisely, this condition reads

(cla)s 1) + (s] c(a)t) = 0,
for s,t € I'(F'), using the scalar product obtained from the hermitian structure on F.

Obvious examples of Clifford modules are I'(C/(M)) itself, with the left multiplication
a(k)€ = k& and I'(C(M)) itself, with conjugated right multiplication ¢,(k)§ := k. An-
other example is the module of complex-valued exterior forms A®(M, C), with the Clifford
action obtained by applying the recipe (6.8) to each fibre:

cla)w = a Aw — 1fah)w.
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However, these examples are “too large”, since the Clifford actions on the fibres are reducible,
and it is to be expected that the global module should also be decomposable into a direct
sum of several submodules. Therefore we seek irreducible Clifford modules, where each fibre
is linearly isomorphic to the Fock space S = A*W of subsection 6.5 (provided n = dim M
is even). In that case, after choosing an oriented orthonormal basis for TM, the spin
representation of the group Spin(n) := Spin(R", ¢,) yields a homomorphism ¢: Spin(n) —
GL¢(F,); all such homomorphisms form a principal Spin(n)-bundle associated to the vector
bundle F'— M via the spin representation. There is, however, a topological obstruction
to the existence of such a principal bundle. Before we can proceed, we must identify this
obstruction, in order to know whether irreducible Clifford modules are available at all.

7.2 Existence of spin structures

Definition 7.5. A real vector bundle £ —— M is orientable if its transition functions
gi;: UiNU; — GL(r,R) can be chosen to satisfy detg;; > 0 for all 7,j5. A Euclidean
vector bundle has transition functions with values in the orthogonal group O(r); thus it is
orientable iff one can choose the g;; to satisfy det g;; = +1. (This may be expressed by saying
that the structure group of E can be reduced from O(r) to SO(r).)

To see whether a Fuclidean vector bundle is orientable or not, take a good covering U =
{U;} for M and choose transition functions g;; for U. Then det g;;: U; N U; — {£1} = Zo,
and since g;;g;r = ga on each nonempty U; N U; N Uy, we conclude that detg is a Cech
1-cocycle? in C'(U, Z,). Any set of transition functions is of the form g; = f;g;; f;' with
fi: U; — O(r), as follows from the proof of Proposition 1.5. (If a local system of sections
s; for E transforms as s; = g;;8;, and an equivalent system of local sections is given by
s} .= fj8;, the new transition functions satisfy g;; f; = figi;.) Hence det f € C°(U, Zsy) and
det g’ = det g + d(det f). Thus the class w,(E) := [det g] € H'(M, Z5) depends only on the
equivalence class [F] of the vector bundle. It is usually called the first Stiefel-Whitney
class of F [23, 39]. It is also customary to write wy(M) = wy(TM) when (M,g) is a
Riemannian manifold. We may summarize the situation as follows.

Lemma 7.2. A Buclidean vector bundle E — M s orientable iff wi(E) = 0 in H' (M, Zy).
A Riemannian manifold (M, g) is orientable iff wi(M) = 0.

Proof. The condition w;(E) = 0 means that transition functions g;; can be chosen to satisfy
det g;; = +1 identically. ]

Suppose now that £ — M is an oriented Euclidean vector bundle (i.e., that w;(F) = 0),
with transition functions g;;: U;NU; — SO(r) for a good covering U of M. Since each U;NU;
is contractible, one can lift these maps to the double covering Spin(r) of SO(r), i.e., we can
find smooth functions h;;: U; N U; — Spin(r) such that ¢(h,;) = g;; for all 4, j. The relation
d(hishirhy!) = gii9ikg;" = 1 in SO(r) shows that

aijk = hijhjkhi_kl =41

2We identify {£1} with Zs, in order to use additive notation when combining Cech cocycles.
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in Spin(r). Thus a is a Cech 2-cochain in C?(U,Z,); indeed, a is a Cech 2-cocycle, as a
short calculation shows.

Exercise 7.4. Compute da, to check that it is trivial in C®(U, Zy).

We can make random changes of signs of some of the h;;, i.e., we can let h;j = bijhi;
where b;;: U; N U; — {£1} are arbitrary (but constant) sign functions. Then b € C*(U, Z,),
and ajy, = hi;Rl(hi) 7" yields @' € C*(U,Zy) with @’ = a + 0b. Therefore, the class
wy(E) := [a] € H?*(U,Zsy) depends only on the equivalence class [E] of the vector bundle;
it is called the second Stiefel-Whitney class of E. One writes wy(M) := wo(T M) when

(M, g) is an oriented Riemannian manifold.

Definition 7.6. A spin structure on an oriented Riemannian manifold (M, g) of dimen-
sion m is a principal Spin(n)-bundle P —1, M together with a bundle map 7: P — Q where

Q %, M is the principal SO(n)-bundle of oriented orthonormal frames for the tangent bun-
dle TM — M, such that 7(p - g) = 7(p) o ¢(g) for p € P, g € Spin(n). We say that M is a
spin manifold if it admits at least one spin structure.

By Lemma 1.4, such a principal Spin(n)-bundle may be assembled from transition func-
tions h;;: U;NU; — Spin(n) satisfying ¢(h;;) = ¢,j, where the g;; are the transition functions
of the frame bundle, provided only that h;;jhj; = hi, on each nonempty U; N U; N Uy. Thus
M admits a spin structure iff wy(M) = 0 in H*(M,Z,).

Since 7: P — @ reproduces the double covering ¢: Spin(n) — SO(n) on each fibre, the
map 7 is two-to-one.

Inequivalent spin structures may arise from different choices of h;; covering the same
gij- The only freedom here comes from the sign changes b;; = £1 mentioned above, where
hgj = b;jh;; determine another spin structure on M. Since h;jh;i, = hy and similarly for
the h;j, it follows that b;;b;, = by, also; thus b is a Cech 1-cocycle. Now if b = dc with
c € C°(U,Zy), i.e., if bjj = c;/c; with all ¢; = £1, then hj; = (¢i/c;)hy; as functions from
U; NU; to the group Spin(n), so the corresponding principal Spin(n)-bundles are equivalent.
Conversely, a principal bundle equivalence yields relations h}; = (a;/a;)h;; for some smooth
functions a;: U; — Spin(n) satisfying a; = £a; on overlaps; thus, signs ¢; can be chosen so
that c;a; = cja; on overlaps, and consequently h;; = (¢;/cj)hij. In summary, the two spin
structures are equivalent iff b = dc for some ¢, which gives the following result.

Lemma 7.3. If M is a Riemannian manifold with wy (M) =0 and wg(J\/{) =0, the inequiv-
alent spin structures on M are classified by the Cech cohomology group H'(M,Zs). [

The computation of the Stiefel-Whitney classes for particular manifolds involves either
a good deal of combinatorial calculation (see [28], for instance) or general theorems from
topology [23, 39, 41]. One such general theorem is particularly useful: if £ — M is a complex
vector bundle and Er — M is the underlying real vector bundle, then w;(Fr) = 0 and
wy(ER) is the image of the first Chern class ¢;(F) under the canonical homomorphism from
H?*(M,Z) to H*(M,Z,) obtained from the standard homomorphism j: Z — Z; (namely,
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reduction modulo 2).*> That w;(Eg) = 0 should be no surprise, because a complex vector
bundle is always orientable. To see that, notice firstly that the unitary group U(r) can
be regarded as a subgroup of SO(2r), since U(r) permutes orthonormal bases in C", and
any such basis {ey,...,e,} yields an orthonormal basis {e, f1,...,¢,, f,} for R* by setting
f, :=ie,; and since U(r) is connected, it is therefore contained? in the identity component
SO(2r) of the orthogonal group of R?". Now, with respect to any Hermitian metric on E, a
local orthonormal basis of sections for I'(U, E) gives a local orthonormal basis of sections for
(U, Er), and the U(r)-valued transition functions of ' may thus be regarded as SO(2r)-
valued transition functions of Ff.

Since the first Chern class ¢;(H) of the hyperplane bundle H — CP™ is a generator of
H?(CP™,7Z) ~ 7Z, so that ¢;(H) « 1 under this group isomorphism, its modulo-2 reduction is
not zero: therefore, wy(Hg) # 0 in H?(CP™, Z,). Now it can be shown [28] that the tangent
bundle TCPP™ has the following property: if F, — CP™ denotes the trivial real bundle of
rank r, then TCP™ @ E, and Hg @ - -- @ Hg (with (m + 1) summands) are equivalent real
bundles over CPP™. These facts suffice to decide which of the CP™ are spin manifolds.

Proposition 7.4. The complex projective space CP™ is a spin manifold iff m is odd; and
for odd m, the spin structure on CP™ is unique.

Proof. The isomorphism C4(V, q) @ CLW,r) ~ CL(VBW, ¢®r) of Proposition 6.2, restricted
to the spin subgroups, shows that Spin(V, ¢) and Spin(W, r) may be regarded as commuting
subgroups of Spin(V @ W, ¢®r). Thus we may embed the direct product Spin(k) x Spin(l) as a
subgroup of Spin(k+(); and ¢ maps this to the usual embedding of SO(k)x SO(I) in SO(k+1).
Thus, whenever £ — M and F'— M are oriented Euclidean vector bundles, the transition
functions g;;®g;; of E®F take values in SO(k)x SO(1), and lift to h;;h;; in Spin(k)xSpin(l).
The second Stiefel-Whitney class therefore satisfies® the relation wy(EGF) = wq( E)+wo(F).
When M = CP™, we thereby obtain

wo(CP™) + 0 = wo(TCP™ @ Ey) = we(Hg @ -+ @ Hg) = (m + 1) wo(Hg). (7.5)

Any nontrivial element of the group H?(CP™, Z,) is of order two,% and wy(Hg) # 0, so the
right hand side of (7.5) vanishes iff m is odd.

To get uniqueness, we must show that H'(CP™, Zy) = 0. This follows from the Bockstein
homomorphism construction of subsection 1.11, applied to the exact sequence of abelian
groups

07257227, —>0,

3See Appendix B of [39] for a proof.

“If one chooses an orthonormal basis in C” for which g € U(r) is diagonal, i.e., g(e;) = e e;, then
g(ej) = cosaje; +sinay f;, g(f;) = —sina; e; + cosa; fj, so the image of g in SO(2r) is a direct sum of
2 x 2 rotation blocks.

SWhen E and F are not orientable, this additivity breaks down; there is a “product formula” of Whitney
[41] which yields the relation wy(F & F) = wa(E) + wy (F)w1 (F) + wa(F).

6Indeed, H?(CP™,Zsy) is a vector space over the field Z.
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where ‘2’ denotes multiplication by two, and j: Z — Zs is reduction modulo 2. The Bockstein
construction yields a long exact sequence in Cech cohomology

= HY(M, Zy) -5 H2(M, Z) 25 H2(M, Z) -2 HX(M, 7o) -2 H3 (M, Z) — - - -

for any compact manifold M. Let us chase this diagram backwards from H?(M,Z) in the
case M = CP"™. We know that H3(CP™,Z) = 0 from (2.5), so j, is surjective.” We know also
that H?(CP™,Z) = Z (these are the Chern classes found in subsection 5.10), so the image of
2., which equals the kernel of j,, is the subgroup 2Z of “even” Chern classes, and 2, is just
multiplication by 2, which is injective. This forces 9: H'(CP™, Zy) — H?*(CP™,Z) to be the
zero homomorphism, and thus j, : H'(CP™, Z) — H'(CP™, Z,) is onto; but H'(CP™,Z) = 0,
again by (2.5), so we conclude that H'(CP™, Z,) = 0. O

7.3 Spin® structures

What can be done about manifolds like CP?, which are complex manifolds but do not admit a
spin structure? Since our immediate aim is to describe an irreducible module for the complex
Clifford bundle over such manifolds, we could relax our requirements slightly by replacing
the required structure group of the tangent bundle by Spin®(n) rather than Spin(n). (Recall
that Spin®(n) is the product of the group Spin(n) and the unitary scalars U(1) within the
complex Clifford algebra C¢(V').) We say that a (compact, oriented, Riemannian) manifold
M admits a spin® structure if there is a principal Spin®(n)-bundle P°¢ —5 M and a bundle
map 7: P¢ — Q°, satisfying 7(p - g) = 7(p) o ¢°(g) for p € P and g € Spin°(n); here Q° is
a principal SO(n) x U(1)-bundle of the form Q x R — M, where® @Q is the SO(n)-bundle
of oriented orthonormal frames of the tangent bundle, as before, and R — M is a principal
U(1)-bundle which we may choose as we please.

Now a principal U(1)-bundle is just the frame bundle of a complez line bundle L — M,
so (up to equivalence) these are classified by H?(M,Z). The modulo-2 reduction j,[L]
is an element of H?(M, Zs), where the second Stiefel-Whitney class also lives. Suppose
that we(M) = j,[L*] in H*(M,Z,), i.e., that wa(M) + j,[L] = 0; then one can find local
sections Hij: U; N U; — Spin®(n) such that gbc(ﬁij) = \;jg;; are the transition functions
of TM @& L — M, which patch together properly to give the required principal bundle
P¢— M.
Ezercise 7.5. Assume that wy(M) + j.[L] = 0 and construct P°— M as indicated.

If a spin® structure exists, M is called a spin® manifold. The foregoing argument says
that this is the case iff wo(M) € j.(H?(M,Z)). Moreover, inequivalent spin® structures are
parametrized by the classes of complex line bundles, i.e., by H*(M,Z).

"Actually, the formula (2.5) refers to singular or de Rham cohomology; but we can establish an iso-
morphism between de Rham and Cech cohomology in degree 3 by a simple modification of the proof of
Proposition 5.5. For the isomorphism between the de Rham-Cech cohomologies in any degree, see [12, 17].

8The fibrewise product of principal bundles corresponds, by association, to the Whitney sum of vector
bundles; thus, if @ and R are the frame bundles of vector bundles E and F over M, with respective structure
groups G and H, then @ x R — M may be defined as the frame bundle of E® F'— M, which is a principal
G x H-bundle.
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Lemma 7.5. The complex projective space CP™ is a spin® manifold for any positive inte-
ger m.

Proof. In the proof of Proposition 7.4, we verified the surjectivity of the homomorphism
J«: H*(CP™,Z) — H?*(CP™,Z,), without reference to the parity of m. O

In fact, any compact complex manifold carries a spin® structure. This follows from the
relation wy(M) = j.(c1(ThaM)), where TyoM — M is the holomorphic tangent bundle,
i.e., the complex vector bundle whose fibres T}, M are spanned by the tangent vectors
(0/02")s,...,(0/02™),. To get a more concrete construction, we first regard U(m) as a
subgroup of SO(2m) and consider the homomorphisms 7: U(m) — SO(2m) x U(1) given by
7(g9) := (g,det g), and o: U(m) — Spin°(2m) defined as follows. For each g € U(m) there

is an orthonormal basis {e;,...,e,} of C™ which diagonalizes g, i.e., g(e;) = €' e;; write
fj = ie; and a; := €9/%(cos Loy + (sina;)e; f;) € CCH(2m); then o(g) = aras...a, €
Spin®(2m).

Ezercise 7.6. Check that all the a; commute,” that o is a well-defined homomorphism, and
that ¢p¢o0o = 7.

Ezercise 7.7. The linear map on R?™ determined by Je; := f;, Jf; := —e; is a complex
structure; and U(m) = {g € SO(2m) : gJ = Jg}. Write k := ey f1 + -+ + emfm € CLT(2m)
and check that exp(7k) = (—1)™ and ¢(exp(5k)) = J. Define the metaunitary group MU (m)
as {a € Spin(2m) : ak = ka } and verify that ¢(MU(m)) = U(m). Show that the centre of
the group MU (m) equals {exp(0k) : —m < 0 < 7w} ~ U(1) if m is odd, whereas the centre
is {fexp(bk):0<0<m} ~U(1) X Zy if m is even.

Now we can exhibit a spin® structure on a complex manifold M. Take any Hermitian
metric on M and let Q' — M be the unitary frame bundle of the holomorphic tangent
bundle Ty M — M. Associate to it, firstly, a principal Spin®(2m)-bundle P — M via
the homomorphism o, as in (1.3); and secondly, a principal U(1)-bundle R — M via the
homomorphism det: U(m) — U(1). The latter is just the frame bundle of the complex line
bundle K* — M where K — M is the so-called canonical line bundle on M, defined by
['(K) := A™%(M). Since ¢° o 0 = 7, the principal bundle P — M yields the required spin®
structure.

Of course, a spin manifold is automatically a spin® manifold. It suffices to use the trivial
U(1) bundle R = M x U(1) to build a spin® structure from a given spin structure.

Exercise 7.8. Complete the following construction of the spin structure for CP™, with m odd,
due to Dabrowski and Trautman [21]. Show that CP™ is diffeomorphic to the homogeneous
space U(m+1)/(U(1) x U(m)) and that the unitary frame bundle is given by @’ := U(m +

9For a fired orthonormal basis {e1, ..., e, } of C™, the elements ay, ..., a,, and the scalars e?1 generate
a subgroup T of Spin®(2m) which is isomorphic to an (m + 1)-dimensional torus T™*!; moreover, since
¢°(araz . ..am) is a block diagonal matrix over R?™, the centralizer of T in Spin®(2m) is T itself, so it is a
maximal torus. If b € Spin®(2m), then by pulling back ¢¢(b) to U(m) via 7 and diagonalizing the resulting
unitary matrix, one sees that b lies in some conjugate subgroup aTa~!. This exemplifies the well-known
theorem of Weyl [13] that the maximal tori in a compact connected Lie group are conjugate and cover the

whole group.
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1)/U(1). Let MU(m) be the metaunitary group of Exercise 7.7 and let P’ := MU(m +
1)/U(1), where the subgroup U(1) of MU(m + 1) is given as {exp(6k) : 0 < 0 < 7}, the
identity component of the centre. Check that the inclusion MU(m) C MU(m+1) drops to a
free right action of MU (m) on P’, and that the double covering ¢: MU(m+1) — U(m+1)
drops to a double covering 7": P’ — @', which intertwines the respective actions of MU (m)
and U(m). Finally, show how the inclusions MU(m) — Spin(2m) and U(m) < SO(2m)
associate to these new principal bundles P and @) together with a double covering 7: P — @
which yields the desired spin structure.

Catalogues of spin manifolds and spin® manifolds are given in several places, e.g., [29, 39)].
As well as the classes of manifolds just discussed, it is worth mentioning that any sphere
S™ is spin; any simply connected Lie group is spin; any orientable 2-dimensional manifold
is spin (e.g., any Riemann surface); any 3-dimensional manifold is spin; and any orientable
4-dimensional manifold is spin®. As counterexamples, we note that CP? is an orientable
4-dimensional manifold which is not spin; and the homogeneous space SU(3)/SO(3) is an
orientable 5-dimensional manifold which is not spin®.

7.4 The spinor module

Definition 7.7. Let M be a spin manifold of even dimension n = 2m, and let P — M be
the principal Spin(n)-bundle defining its spin structure.!® Let S = AW be an irreducible
Clifford module for C¢(n), i.e., a Fock space of complex dimension 2, and let ¢: Spin(n) —
Endc S denote the spin representation. Let S(M)— M be the complex vector bundle
associated to the spin structure P via the spin representation c. It is called the spinor
bundle over M. Its module of sections I'(S(M)) is an irreducible Clifford module, and will
be called the spinor module for the algebra I'(C{(M)).

Proposition 7.6. If M is an even-dimensional spin manifold, any Clifford module T'(F') is
of the form T'(W @ S(M)), where I'(W) is a trivial Clifford module, i.e., the Clifford action
is (k,w) — w for k € T'(CLM)), w e T'(W).

Proof. Let I'(F) be given. If A = C*°(M), any A-linear map from I'(S(M)) to I'(F) is of
the form 7, where 7: S(M) — F'is a bundle map, i.e., 7, is an element of I'(Hom(S (M), F)).
Thus any such map which intertwines the two Clifford actions belongs to I'(W), where W :=
Homgear) (S(M), F) is the vector bundle over M with fibres W, = Homgyn) (S (M )z, Fy).

From Exercise 6.17 it follows that w, ® o, +— w,(0,) gives an vector space isomorphism
W, ® S(M), ~ F,. (If w,(0,) = 0 for any nonzero o, then 0 = c(a){w,(0,)] = w,(c(a)o,)
for all a, so w, = 0 by irreducibility of S(M),.) The intertwining property w,(c(a)o,) =
c(a)[wy(0,)] shows that W, ® S(M), becomes a Cl(n)-module via the recipe ¢(a)[w, ®o,] :=
w, ® c¢(a)o,, and the aforementioned isomorphism intertwines this action with the given
action on F,. Globally, we obtain an invertible bundle map from W ® S(M) to F' and hence
an A-linear isomorphism from I'(W @ S(M)) to I'(F) which intertwines the action

c(k)|w® o] :=w®c(k)o (7.6)

10Tf M carries more than one spin structure, we choose and fix a particular one.
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with the given Clifford action on I'(F). O

Exercise 7.9. Prove that I'(Endge) F') ~ I'(Ende W); in other words, match A-linear op-
erators commuting with the Clifford action on I'(F') to A-linear operators on I'(1V).

Definition 7.8. The passage from the irreducible spinor module I'(S(M)) to a Clifford
module of the form I'(W ® S(M)) whose Clifford action is given by (7.6) is called a twisting
by the vector bundle W — M (which in principle may be any complex vector bundle). We
refer to ['(W ® S(M)) as a twisted Clifford module.

Notice, in particular, that any Clifford module I'(F') where F'— M has minimal rank
2™ is obtained by twisting the spinor module with a complex line bundle. Clearly, then,
the twisting may affect the global topology of F', but for algebraic properties of the Clifford
action it is enough to study the spinor module.

7.5 The spin connection

The next task is to show that the spinor module admits a distinguished connection, to be
called the “spin connection”, which satisfies a “Leibniz rule” with respect to the Clifford
action. This is not a trivial matter, as the spinor module is not “tensorial”, that is, its
existence has topological obstructions not faced by modules of tensors, vector fields, or
differential forms. Therefore the algebraic techniques used in Section 5 to construct new
connections from old ones are not enough to produce a suitable connection on the spinor
bundle.

What is needed is to use the spin representation. This we have defined, in Section 6,
as a group representation of Spin(V, ¢) as unitary operators on S which does not drop to a
representation of the special orthogonal group SO(V,q). It may, however, be regarded as a
projective (or “double-valued”) representation of SO(V,q). The corresponding infinitesimal
representations of Lie algebras are not troubled by this topological problem,'! and there is
a linear isomorphism 7: C*(V, q) — so0(V,q) between the Lie algebras.

Definition 7.9. Let i: s0(V,q) — End{(S) be the linear map given by
fu(A) = c(r71(4)), (7.7)

Note that fi(A) is skewhermitian since the Clifford action is selfadjoint, so c(b)f = ¢(b) =
—c(b) for b € C*(V,q) by Lemma 6.5. We call /i the derived spin representation.

Lemma 7.7. The derived spin representation satisfies the identity
[1(A), c(v)] = c(Av) (7.8)
for all A € so(V,q),velV.

"This is because V is finite-dimensional. In the infinite-dimensional case, the covering map ¢ has a
1-dimensional kernel (a circle), which gives rise to a “spin anomaly” in the infinitesimal representation of
SO(V,q). For details, consult [31].
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Proof. Tt is equivalent to show that [77'(A),v] = Av as elements of the Clifford algebra
Cl(V,q). However, this follows immediately from the formula of Lemma 6.7 for 771(A), and
from (6.15):

n

1

[7_1(A>7 U] = Z Z Q(A6j> ek) [ejek7 U]

k=1

1 n

=5 Z q(Aej, ex) (Q<€jvv)€k - Q(ekav)ej)

jkfl

1

— 53l 0)es 5D afens e = A
J:l k’ 1

on using the antisymmetry of A. m

It would be helpful to have a version of (7.8) which is valid when vectors v € V are
replaced by arbitrary elements b € C/(V,q). To accomplish this, one needs to extend the
operator A on V to a linear operator on C/(V,q). In fact, A extends as a derivation of the
Clifford algebra: define A(1) := 0, A(v) := Av for v € V, and

Zvl -1 (Avj)vjgr .. v (7.9)

for vy,...,v, € V.

Ezercise 7.10. Check that the definition (7.9) is consistent by first verifying that /Al(uv)A—l—
A(vu) = 0 for u,v € V. Then show that (7.8) extends to the identity [(A), c(b)] = c(Ab)
for all A € s0(V,q), b € Cl(V,q).

Now we can translate these algebraic identities to relations among sections of bundles over
a spin manifold M, by applying them at each fibre. Thus, if A € I'(End E) where E— M
is a Euclidean vector bundle, and if (As |t) = —(s | At) for s,t € T'(E), then A(z) € so(E,)
for © € M, so we may write A € I'(so(£)). In particular, if £ = TM is the tangent
bundle, the notation A € I'(so(7'M)) means that A is an operator on I'(TM) = X(M)
satisfying g(AX,Y) = —g(X, AY) for X,Y € X(M). We write j1(A) to denote the section
x — [1(A(x)) of the spinor bundle S(M)— M. This defines a map fi: I'(so(TM)) —
['(S(M)). Furthermore, by tensoring these A-modules of sections with A¥(M), we obtain
maps fi: A¥(M,s0(TM)) — A*(M, S(M)).

If V is a connection on the tangent bundle compatible with the metric, such as the Levi-
Civita connection for instance, then, locally at least, V = d + a where a € AY(U,s0(TM))
in view of the metric compatibility condition (5.7). Thus /() makes sense as an element of
ANU, S(M)), where U is the domain of a.

Theorem 7.8. Let M be an even-dimensional spin manifold and let ¥V be the Levi-Civita
connection on the complex Clifford bundle C¢(M) — M. Then there is a connection V° on
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the spinor bundle S(M) — M satisfying the following Leibniz rule:
V3 (c(k)o) = (VK)o + c(rk)(VZ0o), (7.10)
for all k € T(CUM)), o € T'(S(M)).

Proof. Let U = {U;} be a covering of M by chart domains and let {f;} be a smooth
partition of unity subordinate to U, with f;(z) > 0 iff z € U;. Then f;V is a connection
on U; compatible with the metric f;g. Suppose for the moment that there exist connections
V# on each restriction of the spinor bundle S(M)— M to Uj, satisfying V7 (c(k)o) =
c(fjVK)o+c(r)(V50), whenever o vanishes outside U;; then the recipe Vo7 := > VE(fiT),
for any 7 € T'(S(M)), defines a connection satisfying (7.10).

Therefore, we may replace M by any chart domain Uj; or we may equivalently suppose

that the vector bundles C{(M) — M and S(M) — M are trivial, and that the Levi-Civita
connection may be written as V = d + « with a € A'(M,s0(TM)). The formula V =
d+ «, defined initially on vector fields, is also applicable to Clifford products of vector fields,
provided ak is interpreted as the derivation action of o on k € T'(C{(M)), in view of the
Leibniz rule (7.4).
Now introduce a connection V¥ on S(M) by defining

V= d + fi(«). (7.11)

From (7.8), extended to Clifford algebra, we get [i(«), (k)] = c(ar) on I'(S(M)), and then

V(c(k)o) = d(c(k)o) + f(a)(c(k)o)

c(dr)o + c(k) do + [f(@), c(k)]o + c(k)i(a)o

c(dr)o + c(ar)o + c(k)(do + fi(a)o)

(VK)o + c(r)(VZ0),

verifying (7.10). O

We have constructed one solution V¥ to (7.10). If VS is another connection on S(M) sat-
isfying the same module-derivation property, then V5—VSis given by 3 € AY(M,End S(M))
such that G(c(k)o) = c¢(k)(fo). That is to say, £ lies in A'(M, Endceany S(M)) ~ A'(M) in
view of Exercise 7.9 and the irreducibility of S(M). Therefore, V° is unique up to addition
of a scalar action by a 1-form on M.

We may apply the same reasoning to any Clifford module, with the following result.

Proposition 7.9. Let I'(F) = T'(W ® S(M)) be a Clifford module over a spin manifold M,
and let V' be a connection on F' which is a module derivation, i.e., V(c(k)T) = ¢(VK)T +
c(k)(VT). Then there is a unique connection VW on W such that VWV @ 1+ 1@ V9 = V.

Proof. Since T € I'(F) is a finite sum of the form }_;w; ® 0;, we may rewrite the module

derivation property of V as V(w ® c(k)o) = w @ ¢(Vk)o + ¢(k)(V(w @ 0)). Let VIV be an
arbitrary connection on W. Then we also get

VYV @1+12V° 1®ck)](weo)=wc(Vk)a,
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s0 3=V — (V¥ @1+1@V?9) lies in A} (M, End F) and commutes with the Clifford action,
that is, 3 € A'(M,Endcean F). By Exercise 7.9 it is of the form 3 = a ® 1 for a unique

a € AY(M,End W). Writing VWV := V¥ +a now gives V=V"®1+1®V", as desired. [

Lemma 7.10. The curvature of the spin connection is fi(R), where R denotes the Rieman-
nian curvature, R € A*(M,so(TM)).

Proof. Tt suffices to check this on a chart domain U, where we may write V° = d+i(a). The
curvature form of the spin connection is given by (5.10) as w” := ji(da+aAa) = a(R). O

7.6 Local coordinate formulas

Definition 7.10. On a chart domain U of M with local coordinates {x!,... 2"}, we shall
write the basic vector fields as 9; = 9/027. If M is Riemannian, the Christoffel symbols
Ffj of the Levi-Civita connection on the chart domain U are the functions in C*°(U) defined
by

Vo,0; = T};0, (7.12)
or equivalently, VO, = Ffj dx' @ 0y,. In particular, Ffj = da* (vaiaj). Notice also that F’fj
give the matrix components of of o € A'(U, End TM).
Exercise 7.11. Check that the Levi-Civita connection on the cotangent bundle is determined
locally by V da* = —I'}; dz’ ® da?, or equivalently, Vo, da* = —T'}; da’.
Ezercise 7.12. From the definition (5.27) of the Levi-Civita connection, show that

Il = 59" (9ign + 0590 — Ougyy), (7.13)

using the relations [0;, ;] = 0.
Ezercise 7.13. Show that the Christoffel symbols on the sphere S? are given in spherical
coordinates by

F$¢ = Pie = cot 6, ngb = —sinfcosb, I’fj = 0 otherwise, (7.14)

by applying (7.13) to the metric g := df? + sin® 6 d¢?.
Ezercise 7.14. The components of the Riemann curvature tensor may be written [52] as
R, = dx'(R(0y, 0,)0;). Verify the “Ricci identities”:

J
R;lkl = ak,r;‘j — a,r;;j + F{"}FZm — rg;r;‘m,

by using the curvature formula (5.11).

It is somewhat more common to use the components Rijx = gim I}y = (0; | R(Ok, 0,05)).
One sees from (5.11) that, for k, 1 fixed, the matrix with (4, j)-entry R;j is antisymmetric.

Exercise 7.15. Verify that the curvature of the spin connection is given locally by
ws(ak, o) = —%Rijkl c(dx®) c(dx?), (7.15)

on account of (7.7).
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We now express the spin connection itself in local coordinates. Fix a chart domain
U C M, and write g = g;; da' - dz? there. Since the matrix G = [g;;] is positive definite, we
can find a matrix H = [h2] of functions in C*°(U) such that H'H = G. Indeed, if G'/? is
the positive definite square root of G, we may take H = AG'Y? where A is an orthogonal
matrix at each point of U with A: U — SO(n) smooth.'? Choose and fix such an H, and let
H™! = [ﬁg] be its inverse matrix. Recall that g=! = ¢"* 9, - O, is the metric on the cotangent
bundle T*M — M ; thus we have

hebaph] = gi,  hL6“PRY = gV
Orthonormal bases for A'(U) and X(U) are then given by
0% :=hj da? Eg = Bg@r.

(We use the convention of reserving Latin indices for coordinate bases and Greek indices for
orthonormal bases.) By construction, we get

g(EomEﬁ) = 50&57 g—l(ga’eﬁ) = 6aﬁ7

and also (0%)¢ = E,,, (E3)’ =60° on U.13

Locally, a smooth section of the spinor bundle looks like a smooth map from an open
subset U of M (which can actually be taken as the complement of the closure of an arbitrarily
small open set in M [19]) to the Hilbert space S of the spinor representation. Let {y* =
Yo :a=1,...,n} be a fixed set of unitary skewadjoint operators on S with the property

70+ oy = 25,
[For instance, take v* := c¢(e,) where {ey,...,e,} is an orthonormal basis for (V,q).] We set
c(dz") == hjpy”. (7.16)
From (7.7) it is immediate that
c(dx")e(dz®) + c(dz®)e(da”) = —2¢™ = —2(dx" | dx®), (7.17)

so that (7.16) in fact defines a local Clifford action of A'(U) on T'(U, S). Conversely, a given
Clifford action on the spinor bundle, which necessarily satisfies (7.17), together with a given
fixed set of 7, defines via (7.16) matrices [1] and [h¢] satisfying (7.7).14

It is convenient to introduce “mixed” or “orthogonal” Christoffel symbols ffa,
C>*(U) by

ffa in

v;)iEa = f?aEﬁ; VEEECM = ffaEﬁ‘

12We require det A = 1 so as to preserve the orientation when passing to orthonormal bases in (7.7).

13These last relations give rise to the common phrasing: “we need not worry about raising and lowering
indices, so long as we deal with orthonormal bases”.

4The possibility of varying the Clifford action by premultiplying H by arbitrary SO(n)-valued functions,
provided only that these be compatible with changes of local charts, reflects the noncanonical nature of the
spinor bundle.
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The ffa and ffa are antisymmetric in the indices «, §; for instance,
Lo+ U5 = 9(Vo, Ea, Eg) + g(Ea, Vo, Es) = 0:(8a5) = 0,

on account of the compatibility with the metric: o € A (U, s0(TM)).
The components of the spin connection are given by the End S-valued functions
1T B

wi= 1D e ve= il = Thiln s (7.18)

FEzercise 7.16. Show that h?ffa = —ai(hf )+ T fjhf . Deduce the formula
wi = $(Tgm — 0:(hS)daghy) c(da?) c(da'),

that expresses the spin connection in a coordinate basis.

Ezercise 7.17. Let X = a/9; be the local expression of a vector field on M. Show that the
contraction of X with the spin connection is given locally as an operator on C*°(U, S) by:

Vo = a (00 + wj)o,

and, in particular, that V%ﬁa = FE.0 4+ v(x)o.

Exercise 7.18. Check that V° is a hermitian connection on the spinor module.

8 Dirac operators and Laplacians

A Dirac operator is an operator of odd parity on a Clifford module over a spin (or spin®) ma-
nifold, which is a first-order differential operator whose corresponding Leibniz rule involves
Clifford multiplication by differentials of functions. Its square is therefore an even-parity
second-order differential operator, which gives a far-reaching generalization of the Laplace-
Beltrami operator on a Riemannian manifold: we may call this square a “generalized Lapla-
cian”, using the terminology of [9]. Moreover, any Dirac operator over a compact manifold
is elliptic, which implies that its inverse (off its finite-dimensional kernel) is a compact op-
erator, so it has a discrete spectrum of eigenvalues which give precise information about the
geometry of the manifold. Even more importantly, as Connes [18] has pointed out, the Dirac
operator determines the Riemannian metric, and therefore serves as a gateway for reformu-
lating the entire corpus of Riemannian geometry in analytic terms, allowing its extension to
discrete spaces, fractals, spaces of tilings and group orbits, and many other contexts whose
geometric structure seemed only a few short years ago to be hopelessly beyond reach.

8.1 Connections and differential forms

Definition 8.1. Let V be a connection on the cotangent bundle 7*M — M of a compact
manifold M; the Leibniz rule V(§ Aw) = (V&) Aw + A (Vw) extends it to a connection on
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the exterior product bundle A*T*M — M, so that V maps A*(M) to A'(M) ®4 A*(M).!
The exterior product defines an A-linear map ¢é: A'(M) @4 A*(M) — A*(M) by é(w®mn) :=
w A n. The composition ¢ o V is an R-linear endomorphism of A*(M). In local coordinates
Vw = da? ® Vy,w, and so é(Vw) = e(dz?) Vy,w where e(dz’) denotes exterior multiplication
by da’.

We introduce also a contraction map i: X(M) ®4 A*(M) — A*(M) by i(X ®n) := txn.
If (M,g) is a Riemannian manifold, we identify X(M) with A'(M) via the metric g, and
write (@ ®n) 1= t,:n. The composed map ioV is another R-linear endomorphism of A®(M).

Lemma 8.1. Let V be a connection on the cotangent bundle T*M — M ; and let T €
A2(M, TM) be the torsion of the dual connection V* on the tangent bundle. Then for any
we A (M),

é¢(Vw) = dw — 1w, (8.1)

where vp: A¥(M) — A¥1(M) denotes contraction with the torsion.

Proof. Write Vw = gF @ g, € AY(M) @ A*(M); then Vxw = B¥(X)n, by contraction.
Therefore, if X,Y € X(M) and w € A'(M),

VW)X, Y) = (B An)(X,Y) = B(X)ne(Y) — BV )me(X)
= (Vxw)(Y) — (Vyw)(X)
— X(w(Y)) - Y(w(X))—w(VXY ViX)
= dw(X,Y) —w(V5Y — Vi X — [X,Y])
= do(X,Y) — w(T(X,Y)). (8.2)

This establishes (8.1) for 1-forms. Moreover, tytx(é(Vw)) = tytx(dw) — vpex,yyw, for a form
w € A¥(M) of any degree, by an easy extension of the above argument. O

FEzercise 8.1. Generalize (8.2) to higher-degree forms.

Corollary 8.2. If V is a connection on the cotangent bundle T*M — M whose dual con-
nection is torsion-free, then € o'V equals the exterior derivation, d. 0

In particular, €0 VL¢ = d for the Levi-Civita connection V¢ (on the cotangent bundle).

There is a kind of dual formula relating the Levi-Civita connection with the codifferen-
tial 6. Before revealing that, it is useful to consider the divergence of a vector field on a
Riemannian manifold.

'We find it more convenient in this Section to write A"(M, E) = A" (M) ® 4 ['(E), reversing the order of
the tensor product given in (5.3). The Leibniz rule (5.4) is adapted accordingly, and the contraction operator
tx: AY(M,E) — T'(E) is now given by tx (8 ® s) := B(X) s.
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8.2 Divergence of a vector field

Definition 8.2. Let X be a vector field on an oriented manifold M with volume form v.
The divergence of X relative to v is the function div, X € C*°(M) determined by

(div, X)v := Lxv.

If f € C®(M) is never zero, fr is another volume form with (divy, X) fv = Lx(fv) =
(Xflv+ fLxv = (Xf+ fdiv, X)v, so that

X
divy, X =div, X + —f (8.3)

f

If (M,g) is a Riemannian manifold with Riemannian volume form 2, we write div. X =
diVQ X.

Since LxQ = d(1xQ) by Cartan’s identity, the identity [, (div X)Q = 0 (the divergence
theorem) is an immediate consequence of Stokes’ theorem.

Over a chart domain U, we may consider the local volume form p = dax! A --- A da™. If
X = X79; € X(U), then by computing Ly (dz' A--- A dx™) we obtain the standard formula
div, X = 9;X7. Since Q = y/det g on U by (3.3), we derive from (8.3) a local formula for

the Riemannian divergence:

. ) 1 .
divX = an] + X/ aj(ln \/detg) = W@(vadetg).
ety

Lemma 8.3. The Riemannian divergence of a vector field is obtained from the Levi-Civita
connection on the tangent bundle via the local formula

div X = da’ (V57 X). (8.4)

Proof. The connection V¢ is determined over a chart domain U by the Christoffel symbols
I} of (7.12), satistying T}, = da* (V5€0;). The Leibniz rule now yields, for X = X79; €
x(U), ' -

da? (V5EX) = 0, X7 + T3, X",

The verification of (8.4) thus reduces to checking the formula
ng = Or(In+/det g).

This relation is well known [36], but it is instructive to see how it goes. Recall that the
Christoffel symbols are given by (7.13):

% = 16"(0igji + 0191 — Drgij)-
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If [GY] denotes the adjugate matrix to [g;;] (that is, the matrix of cofactors), then by Cramer’s
rule g% = G/ det g. Now ¢/'(0;g1 — O1gx;) = 0 since the matrix [g;;] is symmetric, and so

. . 1 . 1 Odetg
IV =149, 0., = G oq = )
jk 29 k9l 2detg k9l 2detg agjl k9l
1
= Or(det g) = 10, (Indet
e Ohldetg) = 1(indet ),
on using the Cramer expansion det g = g;G7". O

If we choose local orthonormal bases {6} for A'(U) and {Ez} for X(U) with E, = (6)?,
we may write, as in (7.7), 0% = h% da’ and Eg = hj;0,. Then *(ViCX) = h$ da? (hEVECX),
so we obtain the alternative formula to (8.4), using local orthonormal bases:

div X = 0*(ViEX). (8.5)
Yet another divergence formula, for a particular set of vector fields, is the following.

Lemma 8.4. Let M be an oriented Riemannian manifold. Given ¢ € A¥(M) and n €
AFY(M), define Z € X(M) by w(Z) := (( |w A ) for w € AY(M). The divergence of this
vector field is given locally by

divZ = E,(C 6% An),

where {0',...,0"} and {E,,. .., E,} are local orthonormal bases of 1-forms and vector fields
respectively, with B, = (0%)%.
Proof. Since w — ((|wAn) is A-linear on A'(M), it indeed defines a vector field Z € X(M).

Since 2 = 6' A -+ A O™ locally, we find that tzQ = >0 (=1)* Y [0*An)O* A-Y-- AO™,
and it follows that £;Q = d(12Q) = E,(C| 0% An) Q. O

8.3 The Hodge—Dirac operator revisited

Lemma 8.5. If V¢ denotes the Levi-Civita connection on the cotangent bundle of an
oriented Riemannian manifold M, and 6: A*(M) — A*(M) is the codifferential, then i o
VEC = —§.

Proof. Choose ¢ € A¥(M) and n € A*~1(M) with k > 1, and define Z € X(M) by w(Z) =
(¢ |w An). Choose local orthonormal bases {6',...,0"} and {F},...,E,} of 1-forms and
vector fields, with E* = E,, = (6*)%. Since (£ | B Aw) = (14:€ | w) for any &,w € A*(M) and
B € AY (M), we obtain

(¢ dn) = (C| (V) = (¢ | e(0*)VETD)
= (tpe( | VEEN) = Ea(tpaC | n) — (Vi 1paC | 1)

= E.(C]0% An) — (Lo VECC | 1)
= divZ — (i(VF°0) | n),
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where we have used Corollary 8.2, the metric compatibility of V¢, and the commutation
relation [V x, ty| = ¢[x,y] (see Exercise 5.21). On multiplying both sides by €2 and integrating,
the term div Z is killed by Stokes’ theorem, and we obtain (6¢|n)) := {(|dn) = —{(i(VEC()]
n)); since 7 is arbitrary, this gives i(VF¢() = —4¢. O

Corollary 8.6. If ¢: I'(Cl(M)) @ A*(M) — A*(M) denotes the Clifford action on the
de Rham algebra of an oriented Riemannian manifold, and if VFC denotes the Levi-Civita
connection, then

coVC =d+56. (8.6)

Proof. If Vw = % @ ny, then ¢(Vw) = ¢(6%)my = e(B3%)n — ¢(gry7, so that é = é — i. Thus
(8.6) follows immediately from Corollary 8.2 and Lemma 8.5. O

In subsection 4.5, we referred to d+ 0 as the “Hodge—Dirac operator”, which we obtained,
in a somewhat ad-hoc fashion, as a square root of the Hodge Laplacian. The formula (8.6)
reveals its true nature as the composition of a Clifford action and a connection which is
compatible with this action (recall Proposition 7.1). This opens the way for the general
definition of Dirac operators.

8.4 Dirac operators

Definition 8.3. Let I'(F) be a selfadjoint Clifford module over a compact oriented Rieman-
nian manifold M, that is, let F'— M be a Hermitian vector bundle and let there be given
a selfadjoint Clifford action ¢: I'(Cl(M) @ F) — T'(F), where we write ¢(k ® ¢) 1= ¢(k)1.
Let V be a Hermitian connection on F'— M that satisfies the Leibniz rule V(c(k)y) =
c(VECR)Y +c(k)(VY), for k € T(CU(E)), ¢ € T(F). The Dirac operator associated to the
connection V and the Clifford action ¢ is

D:=¢oV.

Via I'(F') LA%:(M) ®al'(F) N ['(F), this I is a C-linear endomorphism of I'(F"). In local
coordinates, D) = c(dx?)Va, 1.

There are many Dirac operators to be found. First of all, if M is a spin manifold, we may
consider the irreducible Clifford module I'(S), i.e., the spinor module, with its spin connection
V9. Then P° := ¢ o V¥ is the original Dirac operator.? Any other Clifford module I'(.S)
on M is obtained by twisting, that is, S = W ® F where W — M is a Hermitian vector
bundle carrying the trivial Clifford action, and the compatible connection is determined,
via Proposition 7.9, by an arbitrary Hermitian connection on W. The Dirac operator d + ¢
on the de Rham algebra arises in this way, since A*T*M ~ S ® S’ where S’ — M is the
superbundle obtained from the spinor bundle by taking the opposite grading: (S')* := S7.

2Ip% is usually called the Dirac operator on the spinor module.
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FEzercise 8.2. If ¢: Cl(V') — Endc AZW is the Clifford action on Fock space, and if v € V' is
a unit vector, show that ¢/(a) := —c(vawv) is another selfadjoint Clifford action, whose restric-
tion to Spin(V, q) switches the two irreducible subrepresentations of the spin representation.
Conclude that there is an irreducible Clifford module S’ — M on any spin manifold, whose
“even” subspace ['(S'T) is the “odd” subspace I'(S™) of the spinor module, and viceversa.?

Ezercise 8.3. Define a Clifford action on the conjugate Fock space ¢: C¢(V) — Endg AW
by setting é(v)a = e(P_v)a — «(Pv)a for v € Vg, @ € W [compare with (6.13)]. Check
that ¢(w) = —u(w) for w € W and &(2) := €(2) for = € W. If v denotes, as usual, the
chirality element of C/(V'), show that ¢(y)a = (—1)*"'a whenever & € ALW [compare with
Proposition 6.3]. If S = AZW is the spinor module for C/(V'), the dual Hilbert space S* is
identified with ALW via

(ZL Ao ANz wy A Awg) o= 0,y det [2¢(Z,, wi)],

that is, the conjugation C': wy A+ -+ Aws — w1 A+ - AWy is the (antilinear) Riesz isomorphism
of S with S§*. Check that C' intertwines the action ¢ on S* with the action ¢ on S, and
conclude that S* is an irreducible Clifford module for C/(V') whose Zs-grading is given by
(S*)T=C(S7) and (S*)” =C(ST).4

Even if M is not spin, there may be many Clifford modules with compatible connections;
the de Rham algebra with the Levi-Civita connection is again the prime example. In any
case, since the obstruction to the existence of a spin structure is global, we can always
write I'(U, F) = I'(U,W ® S) over a chart domain (where W may depend on U) and from
any one compatible connection we can manufacture others by altering V" over U only.
Alternatively, we may vary the Clifford action by redefining (7.16) (which amounts to an
action of the SO(n) frame bundle), as explained in subsection 7.6. Moreover, we have the
further freedom of making a smooth change in the metric g and thereby changing the Clifford
action c on I'(F') (and also the connection, if necessary, to preserve compatibility). Thus any
one Dirac operator gives rise to a large family of “smoothly perturbed” Dirac operators on
the same Clifford module.

Any Dirac operator is a first-order differential operator. To avoid any possible confusion
of terminology, we make a formal definition.

Definition 8.4. Let E— M be a vector bundle. Any A € I'(End £) defines a C-linear
operator on I'(E) by left multiplication, that is, (As), := A.(s;) for s € I'(F), z € M. Any
connection® V on £ — M, when contracted by vector fields X € X(M), provides other

C-linear operators Vx on ['(E). The differential operators on £ — M are defined as
the elements of the subalgebra D(M, E) generated by I'(End E) and by { Vx : X € X(M) }.

3In more sophisticated terms, the spinor bundles S and S’ over a spin manifold are associated to the spin
structure P — M via the representations ¢ and ¢’ of Spin(2m); these vector bundles are inequivalent since
the representations ¢ and ¢ are inequivalent.

4We are indebted to William Ugalde for clarification on this point.

°In view of (5.5), two such connections differ by the action of an element of I'(End E), so only a single
connection is needed here.
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A finite sum of operators of the form AVy, ... Vx, with r < k (and r = k for at least
one summand) is called a differential operator of order k. By a partition-of-unity argument,
a differential operator is of order k if it can be written as such a sum in each chart domain
separately. Thus a Dirac operator I = ¢(da’)Vy, is a differential operator of first order.

As an operator on the superspace I'(F'), the Dirac operator I is odd, that is, ID(I'(F*)) C
[(FF), since ¢: AL(M) @4 T(F*) — T'(FT). Thus we may write

p= (@(L %‘) (8.7)

where [y : ['(F*) — T'(FF). Its square is an even operator: P%: I'(F*) — ['(F*); and

= (M0 )

Last but not least, a Dirac operator is essentially selfadjoint. This means that D: I'(F') —
['(F) extends uniquely to a selfadjoint operator on the Hilbert space L?(F) obtained by
completing the space of smooth sections I'(F') with respect to the inner product (¢ | ) :=
) (@] ) Q. Regrettably, ID is always an unbounded operator, so this selfadjoint extension
is still only densely defined. Rather than worry about identifying the precise domain of the
extended P, we will stick to the original domain I'(F'); a full proof of essential selfadjoint-
ness (see [39], for instance) shows that nothing is thereby lost, as the closure of ) on this
domain is the full selfadjoint extension.® We shall therefore show merely that [) is formally
selfadjoint, that is,

(Polv) = Lo Py)  for 0 €T (F). (8.8)
Proposition 8.7. The Dirac operator ID is formally selfadjoint.

Proof. The argument is similar to that of Lemma 8.5. By invoking partitions of unity, we
can reduce the problem to verifying (8.8) when ¢, v are smooth sections of F'— M which
vanish outside some chart domain; thus we write [ = ¢(6*)Vga, where {6', ... 6"} and
{E\, ..., E,} are local orthonormal bases of 1-forms and vector fields, with E® = E,, = (6%)F.
Now

(d)HM) (@] c(0")Vi ) = = (c(6%)0 | Vi)
—Eo(c(07)¢ | ¥) + (VE,c(0%)9 | ¥)
—Ba(c(0°)0 | ) + (c(VE 0D | ) + (c(0")VE,0 | )
—Ea(c(07)¢ | 9) + (e(VEI0)d [ ) + (P | ), (8.9)

In other words, I'(F) is a “core” for Ip [45]. The compactness of M is not indispensable here: essential
selfadjointness can be proven under the weaker assumption that the Riemannian manifold M is complete
[39, 53, 61].
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where we have used the skewadjointness of ¢(6%), the hermiticity of the connection V, and
the compatibility of V with the Levi-Civita connection on the cotangent bundle. We claim
that we can find a vector field Z € X(M), depending on ¢ and %, such that divZ =
—Eo(c(0*)9|0)+ (c(VES0%)$|4p). Then integration over M of both sides of (8.9) (multiplied
by the Riemannian volume form §2) yields the desired relation (8.8).

The vector field Z is defined simply by

w(Z) = (9| cw)v) = =(c(w)o [ V),
since the right hand side is A-linear in w € A'(M). Now
—Ea(c(07)0 | ) + (c(VE 07)0 | ) = Ea(0°(Z)) — (Vi 0°)(Z) = 0°(VE, Z)

from the definition of a dual connection. The divergence formula (8.5) says that the right
hand side equals div Z, as claimed. ]

8.5 Laplacians

Definition 8.5. Let VZ: T'(E) — AY(M,E) = T'(T*M ® E) be a connection on a vector
bundle F — M over a Riemannian manifold (M, g), and let VE .= VL0 @ VE be its tensor
product with the Levi-Civita connection on the cotangent bundle of M. Then VE maps
[(T*M ® E) to AA(M, T*"M @ E) =T(T*M @ T*M ® E), so it can be composed with VZ.
Contraction with the metric g~ on T*M gives an A-linear map Try: D(T*M @ T*M ® E) —
['(E). The composition of these three maps yields the following operator on I'(E):

AP = —Tr,oV¥ o V7,

called the Laplacian associated to the connection V¥. The minus sign is a convention’
which assures that A” is a positive operator whenever V¥ is a Hermitian connection.

To expressNAE in a more tractable form, we shall compute the result of contracting
the operator V¥ o V¥ with two vector fields X, Y € X(M). If s € I'(E), we can write
VEs = Bk @ s;, and so

Lybx(ﬁEvES) = Ly%)E((ﬂk ® sp) = 1y (BF @ VEsp + Vx3° @ s1)
= G°(Y) Visi + (VxB)(Y) s
= V(B (Y)se) = X(B4(Y)) + (VxB°)(Y) s
= VEB (Y )sk) — BX(VxY) s, = VE(VEs) —u(VxY)VEs

where we have written the Levi-Civita connection simply as V. In other words,

wix(VF o VF) = VEVE — Ve v

7Actually, the usual convention is to use the opposite sign; however, this results in operators, such as
> 8]2 on R™, which are negative definite.
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Since g~ = ¢¥0;- &’ on a chart domain, we get immediately from (7.12) the local expression

for the Laplacian: B
AP = —g7(V5Vy —TiVg). (8.10)
With a local orthonormal basis of vector fields {ej,...,e,}, this takes a slightly simpler

form:®
n

A== (VEVE -V ). (8.11)
a=1
It is immediate from (8.10) or (8.11) that the Laplacian AP is a second-order differential
operator.
FEzercise 8.4. Use the formulas of Exercise 7.11 to give an alternative derivation of (8.10).

Exercise 8.5. Show that the Laplacian A associated to the standard connection d on the
trivial line bundle S? x C — S? is

i.e., the Laplace—Beltrami operator on A°(S?).

Proposition 8.8. Let V¥ be a Hermitian connection on a vector bundle E over a Rie-
mannian manifold (M, g). Then its Laplacian is a formally selfadjoint and positive operator
on T'(E).

Proof. The strategy of the proof should by now be familiar: we choose sections s,t € I'(E)
and with them construct a vector field Z € X(M) such that (s| AFt) = div Z+Tr(VFs|VEL).

(The last term is locally expressed as > _n_(VEF s| VI t), where {ey,...,e,} are orthonormal
vector fields.) Multiplying these functions by 2 and integrating over M, we get the relation
(s | A"t) = (V¥s | VEL), (8.12)

where these brackets denote integrated inner products on I'(E) and A!(M, E) respectively.”?
Positivity follows from setting s = t, and formal selfadjointness follows by repeating the
argument with the roles of s and ¢ interchanged.

The vector field Z is defined by

9(Z,X) := —(s| V1) for X e X(M).
Its divergence may be computed with the formula (8.5):

divZ =04V .. Z2) =g(VeZ,e0) = —g(Z, Ve €0) + €a 9(Z, €4)
=(s| V€8a6at) —eq(s| Vf;t) = (s | AFt) — (Vfas | Vfat),

(with summation over «), so div Z = (s | AFt) — Tr(VEs | VFt) as claimed. O

8We rename the vector fields E, to e, temporarily to avoid a notational clash with the exponent E
denoting a vector bundle.
90n account of (8.12), the Laplacian is often denoted V*V, as in [39], for instance.
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We already know a second-order differential operator on the bundle A*T*M — M,
namely the “Hodge Laplacian”, which we now write Apogge. It is natural to ask whether this
operator equals the Laplacian AXC associated to the Levi-Civita connection on the exterior
bundle. It turns out that they are not the same: indeed, they differ by a differential operator
of order zero, that is essentially the Ricci tensor of Riemannian geometry [8, 36, 39].

Definition 8.6. The Ricci tensor on a Riemannian manifold is the symmetric tensor Ric
of bidegree (2,0) obtained from the Riemann curvature tensor R by defining Ric(X,Y) as
the trace of the A-bilinear form (W, Z) — (W | R(Z,Y)X) on X(M). Locally, Ric(X,Y) =
dz*(R(0,Y)X). In terms of the components of the Riemann curvature tensor, we get
RiC(@i, 8J) = Rfkg
By contracting with the metric, we obtain the curvature scalar'® K := Tr, o Ric of the

Riemannian manifold (M, g); notice that K € C*(M). Locally, K = g" R} ;.

Ezercise 8.6. Show that the Riemannian curvature tensor on the sphere S? satisfies Rgd)@ =1
and RZ% = sin?#, and deduce that Ric = g: the Ricci tensor coincides with the metric
on S?. Conclude that K = 2 on S%: the sphere is a surface of constant (Gaussian) curvature.

We can identify Ric with a tensor of bidegree (0,2) on M, also called Ric, via the metric g;
or better, with the element of I'(End T* M) defined by Ric(w)(X) := Ric(w? X). The relation
between the Hodge Laplacian and the connection Laplacian, as operators on A®*(M), is then
given by the so-called Weitzenbock formula:

Atoqge = AC + Ric. (8.13)

We shall not prove this here, though we have the means to do so; consult [9] or [39] for the
details.

Two things are notable about the formula (8.13). First of all, Apeqge = (d 4 0)? is the
square of the Dirac operator d + ¢ on the Clifford module A®(M), so the formula says that,
for the de Rham complex at least, the square of the Dirac operator is almost, but not quite,
a Laplacian; more precisely, it differs from the Laplacian by a differential operator of lower
order that, by the way, depends only on the curvature of the connection which defines both
the Dirac operator and the Laplacian. This is one of a family of formulae due variously to
Bochner, Weitzenbock and Lichnerowicz, which say that )% — A is a curvature-dependent
multiplication operator.

The second noteworthy feature is that Apeqge and AFC are positive (formally) selfadjoint
operators. What happens if the Ricci operator is positive too? For one thing, both A*¢ and
Ric must then vanish on the kernel of the Hodge Laplacian, namely, on the harmonic forms.
Thus, for example, on S? the Ricci operator kills O-forms and 2-forms but acts as the identity
on 1-forms since the Ricci tensor coincides with the metric; the upshot of (8.13) is then that
any harmonic 1-form on S* must be zero (as we already noted in Section 4), and therefore
Hjx(S*) = 0. This result is an example of a vanishing theorem, whereby certain cohomology
groups reduce to zero —a topological result— on account of positivity properties of certain
analytic operators.

10The curvature scalar is also called the Gaussian curvature when dim M = 2.
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8.6 The Lichnerowicz formula

Proposition 8.9. Let M be a compact spin manifold, let P° = ¢éo V* denote the Dirac
operator on the irreducible spinor module T'(S), and let A be the Laplacian associated to the
spin connection V°. Then

(o =85+ 7, (8.14)

where K is the curvature scalar of M.

Proof. 1t suffices to prove this on any chart domain; that is, we must show that, in a local
coordinate basis,

(c(da”)V5)" = —g" (V5,5 —T5V35) + K.
The left hand side is

c(d:t:i)VS (d:c]) = c(dx") c(d:cj)Vgivgj + c(dx") (Vaidq:k)vgk
= c(dx’) e(da’) (V5, V5 — T V5,) (8.15)

te(da’), ce(da?) ] (V3 V5, = THVE,) + se(da’) c(da?)[V5,, V5 ],

2

where we have used the symmetry Ffj = F;?Z» due to the zero torsion Vy,0; = Vy,0; of the
Levi-Civita connection. Now [c(dz’), ¢(dz?)] = —2¢" —recall (7.17)— and [V3 , V5] =
w®(Ok, 0)) = —+Riji c(dz") ¢(da?) by (7.15), so by taking (8.10) into account we arrive at

(%) = A% — LRyj c(da®) e(da’) e(da’) e(da?).

It remains only to check that the second term on the right reduces to }LK . We may rewrite it
as £ Ry c(dz®) c(da') c(dat) ¢(da?) since Rjjy is antisymmetric in the indices 4, j by (5.29).
Since the antisymmetrization of Rj;; in the indices ¢, k, [ vanishes by (5.28), it follows from
Exercise 8.7 below that this term reduces to

LRjim(—g" c(da’) c(da?) + g" c(dz”) c(da”) — g™* c(da') e(da)),

and since Rj;rg™ = 0 by antisymmetry of Rji in k, [, again by (5.29), this in turn reduces
to
LRijmg™ c(da') c(dz’) = LRE

]kz

c(dx?) c(dax?) = ”Rzkj = 1K,

due to the symmetry Ric;; := RE . of the Ricci tensor. [

ikj

Ezercise 8.7. If u,v,w are three vectors in a Euclidean vector space (V,q), denote their
antisymmetrized product by a := %(uvw—l—ku—i—wuv—uwv —wvu—vuw) € CUV,q). Show
that uvw = a — q(v, w)u + q(u, w)v — q(u, v)w.

The identity (8.14) is due to Lichnerowicz [40]. The proof generalizes in a straight-
forward manner [9, 27, 39] to the case of a twisted Clifford module. The only differences
consist in replacing the Laplacian A° by AF, where F' = W ® S, and the curvature term

se(da’) e(da?)w®(8;, ;) in (8.15) by ie(dat) c(da?)w? (8;,8;). Now by Proposition 7.9, the
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F F w

curvature w! can be decomposed as w” = w" +w?, where w" is the curvature of some com-
patible connection on W. This yields an extra term of the form ic(dz?)c(dz?)w™ (8, 0;),
which, in view of (6.10), we may write as Q(w"), where Q: A*(M, W) — C{(M) is the ex-
tension of the quantization map of Definition 6.12 to the (trivial) Clifford module A*(M, W).
The result is a generalization of (8.14) known as the Bochner—Weitzenbdck formula:

(PF? = A"+ 1K+ Q™).

Ezercise 8.8. When F' = A*T*M ~ S ® S, verify (8.13) by showing that Ric —}lK = Q(wop)
for a suitable wy € A*(M, S).

9 The Dirac operator on the Riemann sphere

This section is devoted to a detailed exploration of a single but fundamental example: the
Dirac operator on the irreducible spinor module over the sphere S?. While the sphere is
undoubtedly the simplest possible even-dimensional compact spin manifold, its Dirac oper-
ator exemplifies the full complexity of the general case while remaining directly accessible
by elementary computations. We give here an account of its action on spinors, show its
equivariance under the Lie group SU(2) of symmetries of the spinor module, compute its
spectrum and exhibit a full set of eigenspinors.

Surprisingly, such an account is not to be found in the current literature on spinors, so this
exposition breaks some new ground. The ingredients have been available for a long time, and
there is no reason why this story could not have been told thirty years ago. Indeed, before
the geometrical theory of Dirac operators was developed at all, the eigenspinors for the Dirac
operator on the sphere were considered (in 1938) by Schrddinger [47], who put his finger on
the basic module property (7.10) of the spin connection (albeit not in so many words). A
generation later, Newman and Penrose [43] introduced a family of functions on the sphere
that they called “spinor harmonics”, which generalize the ordinary spherical harmonics and
constitute the eigenspinors, as we shall see.

In order to keep the development of the Dirac operator on S? fairly self-contained, we
begin by reviewing some elementary notions. Everything can be done with elementary
calculus, provided one takes great care to get the signs and the constants right from the
beginning.

9.1 Coordinates on the Riemann sphere

The most direct way to reveal the Dirac operator on the sphere is to regard it as the Riemann
sphere CP', and use complex coordinates. Recall that CP' may be described by homogeneous
coordinates [2°: 2'] with 2% 2! not both zero, and is covered by two chart domains Uy :=
{[°: 2] : 24 0} and Uy := {[2°: 2] : 2! # 0}. We shall use the local complex coordinates

z:=2/2" on U, ¢(:=2"/2" onUi.

The coordinate change is just z = (!, ( = 271 on Uy N U}.
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We identify CP' with the sphere S? of unit vectors (u!, u?,u?) € R? by the stereographic
projections:

ub + du? ut —iu?
= — S? N =
z oS\ (N}, (=t

[0 on §*\ {5}
where N = (0,0,1) and S = (0,0, —1) are the north and south poles. This identifies Uy with
S\ {N} and U; with S$?\ {S}. It is important to notice that both stereographic projections
are orientation reversing.

We may also use the standard spherical coordinates (6, ¢), satisfying u! = sin 6 cos ¢,
u? = sinfsin ¢, u® = cos . The stereographic projections are then expressed as

, . ind 1+ cosf
_ Z¢ t Q _ 7’¢ Sin _ ’L(b
TN T T T s ¢ sing
‘ . ind 1 —cosf
e tand = e = emitm 07 9.1
(=¢ ang =¢ 1+ cosf ¢ sin (9.1)
The positive functions (2.6) on Uy and U; are given by
Qolz) =142 = —> QuO) =1+ = — 9.2)
z) = 27=—"— = = i
0 1 —cosf’ ! 1+ cos@

Observe that Q(z)/Q1(z71) = 2z. )
The local 1-forms dz, dz on Uy and d(, d¢ on U; are given —recall (2.14)— by

et e~

dz = (=do+isinbd),  dC=1 o

_1——COSQ (dQ—ZSIH9d¢),

and their complex conjugates; notice that d¢ = —e~%%Q,/Qq dz on Uy N U;. The basic local
vector fields are given by

2_ _ml—cosﬁ _2_ ) ﬁ 2_ i¢1+COSQ 3+ ) ﬁ (9.3)
9. ¢ 2 90 sm0ds) ac 2 \9f  smfog) '

and their complex conjugates; now 9/9¢ = —et?Qq/Q, 8/0z on Uy N Uj.
The Riemannian metric g on S? is the usual one:

g=do® +sin>0d¢? = 4dz - dz(1 + 22)> = 4d¢ - dC(1 + ¢0)? (9.4)

(although (2.13) differs from this by a factor of two). The Riemannian volume form is
Q =sinfdi Adp = —2iQy%dz A dz = —2iQ;?dC A d(, where the minus sign [compare
with (2.12)] indicates the reversal of orientation in passing from (6, ¢) coordinates to (z, z)
or (¢, () coordinates.

103



9.2 Sections and gauge transformations

A section of a complex line bundle L — S? is given by a pair of local sections over Uy, U,
respectively. Once we have chosen basic sections sy € I'(Uy, L) and s; € I'(Uy, L) which are
nonvanishing, any global section s € I'(L) is determined by a pair of smooth functions fo,
f1 on C such that

s(x) = fo(2) so(x) for x € Uy, s(z) = fi(¢) s1(x) for x € Uy,

where z, ( are the respective coordinates of the point # € S?. The basic local sections
are related by the transition function of the line bundle sy = gg151 (since the sphere is
covered by only two charts, one transition function suffices), which implies a corresponding
relation between fy(2z) and fi((), called a gauge transformation. In fine: a global section is
determined by a related pair of functions, and the line bundle is identified by the particular
gauge transformation relating them.

We start with a brief mention of the holomorphic line bundles. The tautological line
bundle L — CP' is defined, as in (5.12), by the fibres L, := { (A2, \z!) € C?: A € C} for
x = [2%: 21]; its basic sections are defined as 5¢(z) := (1,2) for x € Uy, 51(x) := ((,1) for
x € Uy. This yields §;(z) = 27'5¢(z) for x € Uy N Uy; the transition functions are therefore
G10(2) = 27, go1(¢) = ¢, which of course are holomorphic on Uy N Uy.

The hermitian metric on L is obtained from the natural inclusion of the fibres in C?; this
means that (3o | 50) = [|(1, 2)[|* = 1+ 22 = Qo(2) and (51 ] 51) = (¢, D[* = 1 +¢¢ = Q1(¢).
Its dual, the hyperplane bundle H — CP' has local sections &y, &; with (64 | 59) = @y " on
Up, (61]61) = Q7' on U; —recall (5.13)— and so they extend smoothly to global sections
on S? just by setting 6o(N) := 0, 51(S) := 0. The (holomorphic) transition functions are
Go1(¢) = ¢ and §y0(2) = 2. A global holomorphic section & € O(CP*, H) is given by a pair of
holomorphic functions fy, f; with a(x) = fo(z) 6o(z) and &(x) = f1(() d1(x) for all x. That
means that fy, fi are entire functions whose possible singularities at infinity can only be
poles, and fo(z) = zf1(27!) for 2 € C*; this relation identifies a Taylor series and a Laurent
series, and can only hold if fy, fi are of the form fy(2) = a + bz, f1({) = b+ a( for some
a,b € C: we have once again established that O(CP', H) ~ C2.

From now on, we shall normalize all basic sections and thus use only U(1)-valued tran-
sition functions. Thus we replace the basic sections of L by

s0:= Qo(2) %50, 1= Q1(¢) %5,

and likewise oo := Qy(2)Y26y, 01 := Qo(¢)"/?5,. This gives

Qo(2) @
Q1(z71) z

so the transition function is gio(2) = (£/2)Y/? = e7. A section s: CP' — L is then given
by a pair of functions (fo, f1) such that fy(2)so(z) = f1(¢)s1(z) on Uy N Uy, i.e., such that

folz) = (2/2) 2 A=Y, A(Q) = (C/OY2 ¢, (9:5)
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where the second equation is of course redundant. The formula (9.5) exhibits the U(1) gauge
transformation of the tautological line bundle.

It is clear from (9.5) that fo and f; cannot both be holomorphic, and in general neither
is holomorphic. Therefore, it would be more correct to write fo(z, 2) and f1(¢, ¢) to signal
the dependence of these smooth functions on both real coordinates. We shall do so whenever
the need arises.

For the hyperplane bundle H — CP', the very same argument shows that a global
section is given by a pair of functions (hg, k1) such that ho(z)og(z) = hi(¢)oy(x) on Uy N Uy,
and which are therefore related by the gauge transformation

ho(2) = (2/2) Pl (=7Y), (¢) = (¢/Q)ho(¢T). (9.6)

Ezercise 9.1. Show that for any Hermitian line bundle F — CP', the sections in T'(E) are
described by pairs of functions (fo, f1) satisfying the relation fo(z) = (2/2)*2f1(z7!), where
k € Z and k[H] is the Chern class of F.

We may decompose the complexified tangent bundle as TcS? = TH°S? @ T%!S?, where
the sections of the holomorphic tangent bundle T'°S? are locally of the form fy(z,2)d/0z
or f1(¢,¢)9/d¢. [The sections of the “antiholomorphic tangent bundle” T%'S? are of the
form ho(z,2)0/0z or hi(¢,{)9/9¢.] Then TH°S? — S? is a Hermitian line bundle, under
the metric determined by

B 4
As normalized local sections we take
E, = lQo(z)g over Uy —E; = —1Q1(C)£ over Uj.
z 2 aZ ) 2 ac

Since z = (! gives 9/0z = —(? /I, we find that E, = —(?Qo(2)/Q1(¢) E; = (2/2)(—E).
Thus a section of the holomorphic tangent bundle is given by a pair of functions fy, fi
satisfying fo(2) £, = f1(¢)(—E¢) on Uy N Uy, or equivalently

folz) = (2/2) fu(z7).

This establishes that [T7"°S?] = 2[H] in H(S? Z), i.e., the line bundles T7'°S? and H @ H
are equivalent.

Ezercise 9.2. Conclude from E, = (2/z)(—E,) that the complex line bundle T%'S? is equiv-
alent to L ® L.

Ezercise 9.3. Write T:S? = AMT*S? @ A% T*S?, where AM0(S?) = T(AYT*S?) has elements
fo(z,2)dz = f1(¢, ) d¢ and A% (S?) = T' (A% T*S?) consists of all hy(z,2)dz = hy(¢,¢) dC.
Use ¢! to define Hermitian metrics on both these line bundles, write down suitable normal-
ized local sections, and verify that AY°T*S? ~ L ® L and A®'T*S? ~ H @ H.

105



Definition 9.1. Let S — S? denote the irreducible spinor bundle. Since T¢S? ~ S ® S*, we
expect that S ~ L @ H, and that ST ~ L, S~ ~ H. Due to the noncanonical nature of the
spinor bundle, we bypass the construction of basic local sections and define a spinor v over
S? directly as a pair of functions on each chart, denoted % (2, 2) and ¥z (¢, ¢) respectively,
satisfying the gauge transformation rules:

Ui(2,2) = (2/2) P08 (7 2, (2, 2) = (2/2) Peg (27 2,
(G0 = (/ORI Y5GO = (¢/O) P . (9.7)

It is immediate from (9.5) and (9.6) that (%, &) determines a section of L and (¢, 1)
determines a section of H.'

9.3 The spin connection over the sphere

Lemma 9.1. The Levi-Civita connection on the sphere is determined by the local formulae

Vaiaj = — 3 (xﬁj + xj&- — 52-]-30]“ 8k), (98)

2
1+ 21+ 23
th 1 = x', 19 = 22, wh Uy 4a? = Uy and z* +iz? = U
with 1 = x, x9 = x°, where x* +ix° = z on Uy and x* + 1x* = ¢ on Ujy.

Proof. The metric (9.4) is given by g = 4(1 + 2?2 + 23)(dx? + dz2) on both charts, so
gi; = 41+ 2} + 23)720;; and ¢ = 1(1+ af + 23)269. Also, Orgij = —16xx(1+ 27 + 23) %6;;.
From (7.13) we get at once
—#(313451-C + ;68 — 26;5)
1+a? 227 70 e

from which (9.8) follows. O

k. _
It =

Local orthonormal bases of vector fields (on both charts) are given by E; := %(1 + 22 +
23)0/0xt, By := $(1 + a7 + 23)0/02*. With these bases, we get

2
\Y 'Ea = iaa 1 1 1 5 \Y ~aa = T 5 . 95 5@'04 ﬁE - aEi 5
0; T +2< +Z‘1+SE2) 0; 1+$%+I%( T g— )

or equivalently,
A

i —(51-(11;5 — 5?1’&).
1+ x% + x%

The spin connection components are given by (7.18) as w; = iffa v*vs, which yields
1 T
_ Bl., o _ 2 1
wi 2(1+x%+$%)(m VY8 — TaY M) T2
1 T
_ Brlry g Oy = — L A1 9.9
w2 2(1 +ZL‘% —|—$%) (I’ T — TaY 72) 1 _l_x% +Zl§'%7 V25 ( )

We label the local spinor coefficients N and S (north and south) in order to reduce the clutter of
numerical indices.
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To return to Complex notation, we notice that (w; + iws)(2) = —lfz =77, over Uy while
(w1 + iws)(C) = 1+C<7 72 over U;. These are related by a gauge transformation: (w; +

iwg)(z) = (2/2) (w1 + iwq)(C).

9.4 The Dirac operator over the sphere

Definition 9.2. We fix a local Clifford action on the spinor module by choosing a particular
matrix function H := [hj(z)] such that H'H = G~' = [¢"(z)] = (14 2%)* I over Uj. Let us
(arbitrarily) choose the positive square root H := G~1/2 = +(1422) 1. The Dirac operator
on the chart Uy is then defined as

Py = c(da? )V = ()77 (8; + wj(2))

=11+ 22)(v 585+7 ws(2))
s(1+22)(v' 0/0x" ++70/02%) — L (x1y' + 2277).

Here we have used the identities y'v'9? = —? and y?y14? = ++1.

It turns out that the Dirac operator over the chart Uy, which we shall write as Dg, is
now completely determined: the Dirac operator on the spinor module is determined by its
restriction to a single chart, no matter how small!? Indeed, this is a characteristic feature of
the spinor module [19]. However, in order to preserve the illusion of a symmetrical treatment
of both charts, we shall anticipate the corresponding formulas for [Pg. We therefore choose
the matrix [ﬁg({)] to be the negative square root of G™' = [¢"(¢)] = (1 + ¢{)*I, that is,

ﬁg(() := —3(1+¢¢)d5. This leads to

Ds :—%(14—(()( 8/8x1+728/3x2)+%(xwl—l—wa). (9.10)

Explicitly, /0x' = 0/0z+0/0z and 9/dz* = i(0/0z—0/9%) on Uy, and similar formulas
hold on U; with z replaced by (. This allows us to express the Dirac operators properly in
complex coordinates:

Py =30+22) ((71 " MQ)% +0 - iﬂ%) — 1(z(v" =) + 2(v +i97)),
(9.11)
Ps = _%(HCO((V +iy )aag (v' =i )084) +3CO0 =) + L0+ i),

These formulae are still a bit cumbersome; to obtain a simpler picture, we need to select a
particular representation for the operators v! and ~2.

20n more general compact spin manifolds, the restriction of the Dirac operator to a single chart determines
its restriction to neighbouring charts through its interaction with the gauge transformations; this in turn
determine their neighbours, and so on.
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Definition 9.3. The Fock space of R? is the two-dimensional complex superspace A°C @
A'C ~ C @ C. We may represent v and ~? as anticommuting odd operators of square —1;

a suitable choice is
1. (0 1 o (0 —i
v = (_1 o) =l ) (9.12)

1 0 0 2 0 0
. 1.2 . 1,2 1.2 _
The grading operator is 7y v* = <O _1). Since y' +iy” = <O O> and y"—iy (_2 O>’
the expressions (9.11) simplify to

D= (_%Z %) . Ds= (%]C _§<> : (9.13)

where 0, is the first-order differential operator®

0
0. :=(1+ ZZ)E -1z (9.14)
The operator 0, was introduced by Newman and Penrose [43] and further studied by
Goldberg et al. [30], with particular attention to its eigenfunctions. Since

0.9 = (14 22) o= — 5~ (1 + 22)¢ = (1 4 22)°/° %((1 +22)72), (9.15)

we get the identity 0, = 3/2(8/82)6251/2 in the algebra of differential operators on Uj.

The formal selfadjointness of I) is not perhaps apparent from (9.13), since the term —%2
in (9.14) seems to have the adjoint —1z rather than +3z. However, the inner product of
spinors ((¢|v)) involves integration over the sphere, i.e., integration over C with respect to to
the area form 2i(1 + 2z)"2dz A dz. Thus, if ¢, 1 are two spinors, then (9.15) gives

(1+22) 20} 0.05 = (1 + z%)”%a%((l +22) 7Py,

and it follows that (¢ | 9.9~)) = — (0.4 | /™)) on integrating by parts.

Proposition 9.2. The restriction of the Dirac operator to Uy is determined by its restriction
to Uo.

Proof. We must show that the form (9.13) of the operator g is completely determined by
that of [Pn. This is possible because these operators act respectively on functions w§ and
¥% which are linked by the gauge transformations (9.7), and because the Dirac operator is
odd, so the gauge transformations for both spinor parities must be invoked.

3The letter 9, from the Icelandic alphabet, is pronounced “edth”.
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Given a spinor ¢ with components ™ and ¢, let ¢ = Pb. Then (0.¢y)(z,2) =
o4 (2, 2) = (2/2)2¢5 (271, 271). On the other hand, with ¢ = 2! we get

. d N1/2 (. —1 =—1

TN (2,2) = o (/2 5 (7,2 7)
— %(ZZ>_1/2¢§(Z_1,§_1) . (2/2)1/22,—268%(2—1, 2—1)
— G0 (520 + u5(6.0).

and so the operator 0, transforms as follows:

B)(2:2) = (14 22) 98 (2,2) — 12652, 2)
T T (/73 LA

_ / _cZ7s 1 _

= (€O + O (~CHEGO + 156 0) = FHE05(¢.0)

= (/0 (~(1+ COFEGO + 3 + U (6.0 — 26056, 0)

= —(¢/Q)*0cys (¢,€) = —(2/2)P0cws (=71, 271). (9.16)
We conclude that ¢& = —01g. If we apply complex conjugation to (9.16) and replace ¢y
by ¢, and g by ¥, we find that

On(2,2) = —(0:4%)(2,2) = (2/2)/*0ug (=71, 271,
and it follows that ¢g = 0.
We have recovered the expression of (9.13) for D from the corresponding for [Dn and
from (9.7), without using the recipe (9.10) for Ds. This means that the “choice” hj(() =
—1(1 4+ ¢¢)d; which led to (9.10) is actually forced by the action of ) on spinors. O

Ezercise 9.4. Use (9.1) and (9.3) to obtain expressions for , and 9, in spherical coordinates
(6, ¢). Check that €0, = —e~"*0; — csc on Uy N Uj.
Proposition 9.2 shows that the only freedom in the choice of the Dirac operator, once

the metric and the spin connection are given, lies in selecting the matrix function H =
[h3(2)] which gives the local Clifford action on Uy. The condition H'H = G~ fixes the

matrix H up to premultiplication by an arbitrary SO(2) matrix function on Uy. We may
alternatively think of this as the freedom to select any local orthonormal bases of tangent
vectors compatible with the orientation of S?, since this amounts to picking a section of the
SO(2)-frame bundle. To express this in our complex-coordinate notation, we must bear in
mind that the stereographic projections (#, ¢) + (z, 2) and (0, ¢) — ((, ) are orientation
reversing; such a local orthonormal basis is therefore given by

E1\  (—cosa sina 0/06 (9.17)
Ey) " \ sina cosa) \csc0d/0¢ )’ '
where (6, ¢) is a smooth real-valued function which we call the spin gauge [25].
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Ezercise 9.5. Check that E, = J(E; — iE,) if and only if a = —¢, and —E; = (B — iE>)
if and only if a = ¢.

Exercise 9.6. Compute the mixed Christoffel symbols fzﬁa with the spin gauge (9.17) (use
Exercise 7.16) and verify that I';, = 0a/96, I';, = 0a /D¢ — cos 6.

Exercise 9.7. Use the results of the Exercises 9.5 and 9.6 to obtain the following local expres-
sions in spherical coordinates for the spin connection V* on the chart domains U, and U;:

V5 = 9 Vi = 8%5 F 2(1 £ cosf)y'y? (9.18)

where the upper signs are for U, and the lower signs are for Uj.

Ezercise 9.8. Compute the Dirac operator in spherical coordinates with the spin gauge (9.17),
using the results of Exercise 7.16: check that ) is given by

iwof O i 0 1 /0« i O
P-=e (_%  sinf 0o * 251n9<6_¢> _C080> a 5%)7

—iaf O it 0 1 /0« 1 O
Pr=e (% sin 0 H¢ 2sin9<8_¢ COSH) 5%)’

with the conventions of (8.7) and (9.12).4

9.5 The spinor Laplacian
Lemma 9.3. The spinor Laplacian A5 on the sphere S* is given locally by

0? 0 0? 1+cosf\> 1+cosf 0
P A + 129 1
(892 +Cowae+a¢2) +( 2sinf ) sz | 9g’ (9.19)

where the upper signs are for Uy and the lower signs are for Uy .

Proof. Tt suffices to check that the general local formula (8.10) for the Laplacian specializes,
in view of (7.14) and (9.18), to

5?2 1 (8 2 B,
A =—— ([ Fl14cost)y'y?] — ——(sinbcosh—
962~ sinZ 6 (a¢ T2l £cos)ry ) sin? (Sm cos ae)’
from which (9.19) is immediate. O

It is convenient to rewrite the spinor Laplacian in complex coordinates. From (9.3) we

derive 5 5 5 o _d
8_¢:i<2$_2£):_i(ga_C_ 8_C_> on UyNUi.

“The formulae (9.18) have been obtained by Dray [25] as the expressions of the Newman-Penrose operators
—0 and 0 on quantities of “spin-weights” —% and —|—% respectively.
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Using (9.2) and (9.3) it is readily checked that

0? ~, 07 0? 0 0?
azaz:<1+<02 +cotf— + ——

\2 _ v
(1+22) aCoC o 20 957

Since (1 + cos®/sinf)? = 2z and (1 — cosf/sinf)? = (¢ by (9.1), we arrive at

2

A= —(1+ 22)28582 + 1224+ 11+ 22) ir'y? <Z% - Z%) over Uy,
., 07 . - o -0
= —(14 G0 5 g + 10+ 51+ Q) i’ (Ca_c - Ca_g‘> over U. (9.20)

Lemma 9.4. The Dirac operator and the spinor Laplacian on S* are related by
PP =A+1

Proof. This follows, of course, from the Lichnerowicz formula (8.14), since the sphere has
constant scalar curvature K = 2; but it is instructive to make a direct verification. From

(9.14) we get

—0.0. = ((1+ ,2'2)8(9

_ 0
5~ 22 (-1 +22) 5=+ 32)

0? 0 0 0
=—(1+ 22)28282 + 2(1 + 22) (za + z£>—§zz +(1+ 22)(% — 25)

0? 0 0
_ )2 11,51 N2 9
=—(1+22) 5205 + 5+ 322+ 5(1 4 22) (282 Z@E)’ (9.21)

whereas

—0.0. = (—(1+=22) - 12)((1+ 22)% —1z)

0z
0? 9, 0
S 7)2 Lyl 1 N r— — 5
=—(1+22) 8z82+2+422 2(1+ZZ)<Zaz 282) (9.22)

by a similar calculation. The different signs of the last terms on the right in (9.21) and (9.22)
signify the presence of the grading operator iy!y? in the representation (9.12). Thus

2 _67;82 0
Py = ( 0 —6352)
2

0 0
+5+ 122+ 51+ 22) v (25 - 2£>. (9.23)

9
_ —\2
= —(+22) 5

There is an identical formula for Dg, on replacing z by (. Now a glance at (9.20) gives the
Lichnerowicz formula p? = AS + 1. O

111



9.6 The SU(2) action on the spinor bundle

Definition 9.4. The Lie group SU(2) of unitary matrices of determinant 1,

a 0 ) _ =
g—(_ﬁ @) with aa+ (606 =1,
acts transitively on the sphere S* by rotations. The identification g < (a, 3) € C? shows
that SU(2) is topologically the sphere S?, so it is compact. If [2°: z!] are homogeneous

coordinates of a point in CP', the action is given by g - [20: 2] = [a2 + B2 : =320 + az!].
On the charts Uy and Uy, the action of SU(2) is given by Mdbius transformations:
az + ﬁ / &g B B
=" (= , 9.24
—Bz+a g6 B¢+ a (9:24)

which clearly satisfies (¢ - 2)™' = ¢’ - (. Notice that g — ¢’ is an (inner) automorphism of

SU(2), since o | |
6-C)E A0 )

FEzercise 9.9. Any isometry (rotation or reflection) of the sphere S? takes circles to circles
and takes antipodal pairs of points to antipodal pairs of points. Conversely, any smooth
bijective transformation of S? with these two geometrical properties is either a rotation or
a reflection. Prove this converse, using the fact that a circle-preserving transformation of
S? corresponds, under stereographic projection, to a circle-preserving transformation of Cy,
which is either a Mobius transformation z — (az + 3)/(vz + §) or a conjugate Mobius
transformation z — (az + 3)/(vZ + J); and that a Mobius transformation is determined by
the images of three points in C..

Ezercise 9.10. The antipode of z = € cot %Q is e'™%) cot %(7‘(‘—0) = —1/z. Use this fact and
the preceding exercise to prove that any rotation of S? is given by a Mobius transformation
of the form z — (az + 3)/(—Fz + @).

Definition 9.5. The elements of SU(2) are conveniently described in terms of the Pauli

matrices:
(0 1 (0 —i (10
g1 = 1 0/ 09 (= i 0 s 03 = 0 1)
2

If 7 = (n',n? n3) denote Cartesian coordinates in R? of a point 7 € S%, we write 7 - & :=
nlo! + n?c? 4+ n303; then any g € SU(2) may be written in the form

g= exp(%iwﬁ . 5) = cos 31 + i sin %zﬂﬁ o (9.25)
with 7 € S? and —7 < ¢ < 7. This is called the angle-azis parametrization of SU(2). We
may identify the sphere S* with the submanifold {g : Trg = 0} of SU(2), where 1 € $?
corresponds to in - ¢ € SU(2); the rotation action p of SU(2) on the sphere is given by
conjugation: i1 - & +— g(inl - &)g~' =: ip(g)n - &. The isotropy subgroup of the point 7

consists of elements of the form (9.25) with ¢ arbitrary, which form a subgroup isomorphic
to U(1). Thus §* &~ SU(2)/U(1) as a homogeneous space.
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FEzercise 9.11. Show that p(g)ni = 7 if and only if g is of the form (9.25) for some ¢ € R.

Ezercise 9.12. Show that there is a group isomorphism between Spin(3) and SU(2), such
that if {e1, s, €3} is an orthonormal basis of R3, then the elements eyes, eseq, e1es € Spin(3)
correspond respectively to ioy,i0s,i03 € SU(2).

The quotient mapping n: SU(2) — S? may be described more economically by regarding
S? as CP' and proceeding as follows.

Definition 9.6. The Hopf fibration 1: SU(2) — CP"' is the map given by

7 (_O‘B g) = g (9.26)

a B\ [e/? 0 n B
-3 a 0 e 2] g

so SU(2) =& CP' is a principal U(1)-bundle, where the free right action of U(1) on the fibres
n~'(B/a) is given simply by multiplication on the right by the diagonal elements of SU(2).

It is immediate that

Exercise 9.13. The Hopf fibration decomposes the sphere S* ~ SU(2) into a disjoint union of
circles (the fibres), any two of which are linked. Regard S* as R*W{oc} via the stereographic
projection («, 3) — (w,t) where
a e C, t:= il
1—S30 1-S30

Check that x(w,t) := (2t +i(ww +t* — 1)) /2w € C is the expression in (w,t)-coordinates
of the Hopf fibration. Deduce that the equation x(w,t) = z represents the circle obtained
by cutting the sphere ww + t* — i(zw — zw) = 1 with the equatorial plane zw + 2w — 2t = 0;
in particular, x(w,t) = oo is the t-axis (including oco) and x(w,t) = 0 is the unit circle in
the ww-plane. Show that any other circle y(w,t) = z cuts the ww-plane obliquely at two
points, one inside and one outside the unit circle; conclude that the circles y(w,t) = 0 and
x(w,t) = z are linked.

e R.

The group SU(2) acts on itself by left translations \(g): h +— gh; since these commute
with right translations by U(1), they define a left action on the quotient manifold CP',

which is just the aforementioned rotation action. Indeed, if h = (1 + 2zz)™! (_12 i), then

n(h) = z, and from

1 <a ﬁ)(l z>_ 1 <a—ﬁz ozz+ﬁ)
1+22\-8 a)\-2z 1) 1+2z2\-B—az —pz+a

it follows that n(gh) = g - n(h) = p(g)n(h) for g,h € SU(2). Schematically, we get a
commutative diagram

su@) 29 sy

| o

SQ p(g) SQ
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which says that each pair of maps (A(g),p(g)) is a morphism of the principal U(1)-bundle
SU(2) - CP'.

We may say that the group SU(2) acts “equivariantly” on the principal bundle. The
corresponding type of group action on vector bundles is defined as follows.

Definition 9.7. A homogeneous vector bundle with symmetry group G (a Lie group)? is
a vector bundle E — M together with a pair of (left) actions 7: GXE — Eand p: GXM —
M such that each (7(g), p(g)) is a vector bundle morphism on E — M. We shall call such
a pair a bundle action of G.

A Hermatian homogeneous vector bundle is a Hermitian vector bundle with a bundle
action for which each 7(g), € End(E,) is unitary. If E = ET @& E~ is a superbundle, we say
the bundle action of G is even if 7(g), € End*(E,) for each x € M; in other words, if both
subbundles E* — M are G-homogeneous under the bundle action (7, p).

We seek to define an even action of SU(2) on the spinor bundle S — S?. This can be
pictured as a commutative diagram

| [

2 p(g) 2
which, in terms of the spinor components 1= € I'(S*), means that

T(9)¥n(2,2) = Ay(g, 2) Yn (g -2, (97" - 2)7),

T(9UE(C O = A5 QvElg ™ ¢ O (9.27)
for g € SU(2). By unitarity, the multipliers A* must be U(1)-valued functions; and they
must satisfy the following consistency conditions in order that (9.27) define a group action:

AZ(g'H,Q) = A5(g, QA (g - ). (9-29)
Ezercise 9.14. Show that A(g, 2) := (82 +a)* /(B2 + ) is a formal solution to the equation

A(gh,z) = A(g,2)A(h,g7 ' - 2), for g,h € SU(2), 2 € C,; and that this solution is well-
defined provided 2k is an integer.

Bearing in mind that

g_l‘Z:C_—kZ_ﬁ g/_l'C: aC+B
Bz+a —0B¢+a’
the gauge transformation rule (9.7) for the spinors 7(g)v yields
aC+pB  ac+p a—p¢ a—p¢

A9, Qv = (¢/¢)/ A% (g, ¢k - (9.30)
( ) ( )

—BC+a —pC+a

5This is often called a G-vector bundle, for short.

B+al B+al
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The gauge transformation

w(acw ac+ﬁ>:(a<+ﬁ a<+ﬁ)”2w+(a—5< a—ﬁ()
\-6(+a -G +a —BC+a/ —B¢+a) M\F+al f+ac

shows that the coefficients in (9.30) must satisfy the relation
4490 _ ( C(a¢ + B) (=5 + a)) " ((a + B (=B + a))”
C )

AXg.¢D) \C(=B¢+a)(ac+ ) (=8¢ +a)(a+ BT
or equivalently
A3 0) _( ﬁ<+a> /(ﬁz+a)/
A(g.2)  \“ACta Fota) 931
The following solution of (9.29) is therefore consistent with the spinor gauge transforma-
tions:
. _ (Bz+a\'? o (—B§+a)1/2
AN(g, 2) == (ﬁz+a) : AL(g', () == “Ata . (9.32)

Substituting these in (9.27) yields a bundle action of SU(2) on ST — §2.

The same procedure leads to a bundle action of SU(2) on S~ —S% One need only
replace the term (¢/¢)Y/? in (9.30) by (¢/¢)*? when invoking the gauge transformation rule
(9.7); this leads to the choice of Ay (g, 2) and Ag(¢',() as the complex conjugates of (9.32):

N _ar ~1/2
e = () aeo= () e

We summarize the foregoing in a definition.

Definition 9.8. The Lie group SU(2) acts on the spinor bundle via (7, p), where p is the
rotation action (9.24) on the Riemann sphere, and 7 is given by (9.27), where the multipliers

A% and A are defined by (9.32) and (9.33).

9.7 Equivariance of the Dirac operator

Lemma 9.5. Let T € End* (I'(Uy, S)) be a transformation of the form

(Tyh)(2, 2) == alz,2) 24k (b(2), b(2)),
(TYn)(2,2) = a(z,2) 2Py (b(2), b(2)). (9.34)
where a is a smooth function on C* and b is a rational function on C.,. Then TO, = 0,T

as operators from T'(Uy, S™) to T'(Uy, ST) if and only if a, b satisfy the pair of differential
equations

(1+ 22)% =a(z,z)(1+ b(z)Tz)),
(1+ 22) gz alz,2)%b(2) — za(z, 7). (9.35)

115



Proof. 1t is enough to notice that

Iy

T(@:93)(2,2) = a'*(1 4 bb) =52 (b, ) — 30 by (b, ),

whereas

_ _ _ _ap0a - _15db OV
0.(TYy)(z,2) =(1 JrZZ){—%a 3/25%\,(6, b) +a 1/2@8_;\/

using both halves of (9.34); and then to equate coefficients of 1y and 9y, /0z. O

(b,)} — Sza U (0,D),

Proposition 9.6. The Dirac operator on the sphere is equivariant under the action of SU(2)
on the spinor bundle, i.e., 7(g)Ip = P7(g) on T'(S), for all g € SU(2).

Proof. To show that 7(g)p = ID7(g) for all g, it is enough to check this for g belonging to
a collection of one-parameter subgroups which generate SU(2). Since aa + 33 = 1, we can
write v = exp (3¢ + 1) cos 30, f = exp(L¢p — £¢) sin 36; we thereby see that any g € SU(2)
is of the form k(¢)h(0)k(v)), where®

k<¢>=<€1§/2 6_9¢/z), h(O)Z(COS%Q Smée). (9.36)

. 71 1
sin 59 coS 56

Now 7(k(t)) is of the form (9.34) with a(z,z) = e™®, b(z) = ez, so the equations (9.35)
reduce to the identities

(14 22)e™™ = e (1 + 22), 0=e ez — ze ™"
On the other hand, 7(h(t)) is of the form (9.34) with

Z sin %t + cos %t Z COS %t — sin %t

a(z,z) = — , b(z) = — . 9.37
( ) Zsin %t ~+ cos %t ( 2z sin %t + cos %t ( )
for which ) )
0 Zsin =t 4 cos =t db 1
ﬁz_ma 2 e — (9.38)
0z (zsin 5t + cos 3t)? dz  (zsin 5t + cos 5t)?

From this it is easy to check that (9.37) satisfies the equations (9.35) for all ¢t € R.

Thus 7(9)0,¢y = 0.7(9)¢y for all g € SU(2). By applying complex conjugation, we
obtain 8,7(¢7!) = 7(¢~1)d, on functions ¥, and so 7(g) Px = Pn7(g) for all g. Replacing 2
by ¢ and g by ¢’ and adjusting a few signs, the same calculations show that 7(g)Ps = Ds7(9g)
for all g, as expected. O

Ezercise 9.15. Verify directly that (9.37) satisfies the equations (9.35).

6The parameters (¢, 6,1) in this product are the so-called Euler angles for the group SU(2).
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9.8 Angular momentum operators

Definition 9.9. The homomorphisms ¢ — g¢(7;t) := exp(3it7i - &) = cos 5t + isin it 7 - 7,
for each 77 € S?, yield all one-parameter subgroups of SU(2). The infinitesimal generators of
these subgroups are —%7i - & € su(2), where su(2) is the Lie algebra of antihermitian 2 x 2
matrices. The corresponding generator Jz of the spinor action of this subgroup is

d

SR = g T =

d

7 tzoat(z, 25205 (be(2), b:(2)), (9.39)

where the coefficient (—i) is inserted for convenience, so that J; is formally selfadjoint (rather
than skewadjoint).

For the three cardinal directions, where 7 - & = nioy; + nyos + nzos, we write the gen-
erators simply as Jp, Jy, J3 respectively; these are commonly called the angular momentum
generators.” As before, we write Jy := J; £ iJs.

With the notations ag(z, 2) := %L:Oat(z, z) and by(z) == %‘tzobt(z), the definition (9.39)
simplifies to

.9 — 0
Ja = =i(bol=) 5~ + bo=) 5= ) + Sto(z,2) 7' (9.40)
on recalling that iy'y? = 41 on I'(S*).
Thus, for the one-parameter subgroup { k(—t) : t € R}, where a;(z, 2) = " and by(z) =
ez, we get ag(z,2) =1, by(z) = iz, and so
g 0 4 0 :
J3 = 2— — 755 + Liyly? = —za—¢ + Liyly2, (9.41)
t € R}, a(2,2) and by(z) are given by (9.37) with
¢ replaced by —t. In this case ao(z, 2) = 3(z — 2) and by(z) = 3(2* + 1), leading to

, , o
Ja = H(: 4 D+ 4+ D~ He = 20

The one-parameter subgroup { cos %t + isin %tal :t € R} is generated by %O‘l, and a,(z, 2),
bi(z) are now given by

B cosS %t + ¢z sin %t Z COos %t — ¢ sin %t

ai(z, 2)

bi(2) =

- 1 . . 1 b 1 . . 1 )
cos §t —1zsIin §t cos §t — 7z sIln §t
for which ao(z,2) = 4(z + z) and bo(z) = 1(z* = 1). Therefore

o . o,
‘]1:_%(22_1)&1%(22—1)%—z(ZJrZ)WlWQ-

"The suitability of interpreting these generators as angular momentum operators for a magnetic monopole
is discussed at length in [10].
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The operators J. are therefore given by:

Jp =D +idy=—2"— — —= — 52077,

0
J_=J —iJo=— 42— — 1ziy'y% (9.42)
z

It follows from this and from (9.41) that [J,,J_] = 2J5. One also obtains that J? + J3 =
J J+ + 35 [J+, J_] - J_J+ + Jg.
Exercise 9.16. Show that the operators J. are given in spherical coordinates by

0 0 1+ cos6
=T + t0— — ————iv1a? ).
Jr=e ( 09+ZCO 0p 2sinf WV)

These operators arise in the theory of the magnetic monopole [10, 25] when the monopole
parameter® 1 = eg/hc takes the value p = 2

Exercise 9.17. Show that over U; the angular momentum generators satisfy the analogue
of (9.40), with z replaced by (. Verify that

0
J3 = — C+C—C—-wv,
9 = 170 1.2
+_8C+C—C—§CWV,
g 0 .
J_ = — 28_§_8_§_%C27172’ (9.43)

in the coordinates (¢, () over Uj.

There is one more operator worthy of mention, namely that corresponding to the “Casimir
element” X7+ X2+ X2 where { X, X5, X3} is an orthonormal basis for the Lie algebra su(2).
[The Casimir element belongs to the enveloping algebra U(s1(2)).] The image of this element
under a representation of the Lie algebra is called a “Casimir operator”.

Definition 9.10. The Casimir operator for the spinor bundle action of SU(2) is the
operator defined by C':= JZ 4+ J3 + Ji = J_J. + J3(J3+ 1) on I'(S).

Proposition 9.7. The Casimir operator satisfies the relations

C—AS 41— (9.44)

8The constants are c, the speed of light; &, Planck’s constant; e, the electric charge of a particle whose
total angular momentum is .J; and g, the magnetic charge of the monopole. The condition that 2y be an
integer is the quantization condition of Dirac [24], and arises from the necessary description of monopoles
by complex line bundles over the sphere.

9Strictly speaking the Casimir operator should be —C, on account of the factor (—i) in (9.39); but we
change the sign to obtain a positive operator. On I'(S), it is formally selfadjoint.
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Proof. Using (9.41) and (9.42), we compute that

C=J_Jp+ Js(Js+1)

.y 0P _ Ny o _0
=—(1+ zz)QaZ 55 + 114 22) + (1 + 22) in'y? (75& - 2£>
over Up, with an analogous formula over U;. A glance at (9.20) and (9.23) is enough to verify
(9.44). 0

This result shows that even in the simplest example of a spinor bundle over a compact
manifold, the three operators commonly referred to as “the Laplacian” are distinct, and
must be carefully distinguished. Though they only differ by constants, this has the important
consequence that their spectra are not the same. A similar shifting of the Laplacian occurs in
harmonic analysis on compact Lie groups [59], where the Casimir satisfies C' = A+ % dim G.
For SU(2), a 3-dimensional group, this leads us to expect C' = A + %, which is nicely
confirmed by Proposition 9.7.

9.9 Spinor harmonics

We come, finally, to the matter of diagonalizing the Dirac operator by finding an explicit
basis of eigenspinors for ). In view of the SU(2) symmetry, we may suspect, by analogy with
the diagonalization of the Hodge-Dirac operator in Section 4, that the members of this basis
should be closely related to the spherical harmonics Y, (6, ¢) on S?. We may also anticipate
that at some point we shall need to use some heavy artillery from the representation theory of
SU(2). However, we begin in a fairly pedestrian manner, with some polynomial calculations
over the chart Uj.

Lemma 9.8. The identity
0.((1+22)7"2"(=2)%)= (L4 22) (1 + 5 = )" (=2)* T + r2"(-2)%)
holds for all r,s € N and | € R. O

FExercise 9.18. Prove Lemma 9.8, and show also that the conjugate identity holds: —az((l +
22) 7" (=2)%)= (14 22) (L + 5 — 5)2" T (=2)" + s2"(—2)* 7).

These calculations show one method of finding eigenspinors: take for ¢, a linear combi-
nation of several terms of the form (1+ 2%)~'2"(—2)*, with a common value for the difference
of exponents (r—s), and choose the coefficients cleverly enough that the result of applying 0,
closely resembles a multiple of the original function. However, since we wish these functions
to be components of spinors, we must first consider the effect of the gauge transformation
rules.

Lemma 9.9. Let ¢: C — C be a smooth function of the form

$(z,2) = (1+22)" Y alr,s)z"(—2)"

r,seN
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Then ¢ represents a section in I'(Uy, ST) if and only if | + % 1S a positive integer, and
a(r,s) =0 forr >1F % ors>I[+ % Moreover, the coefficients must satisfy the symmetry
relations a(r,s) = (—1)*2a(l F s—rlEts—s).

Proof. Suppose that ¢ represents a section in I'(Up, ST). Then by (9.7) we obtain

d(2,2) = (2/2)2p(z"1, 774 = 27 V25 2 (22) (1 4 22) ! Z a(r,s)z""(-z)~°

= (1+22) /(=) 3 alr )2 72 (=),

r,s€N

where the exponents in the sum on the right hand side must also be nonnegative integers.
Thus [ — % € N, and the nonnegativity of the exponents on the right guarantees that
r e {0,1,...,0 — i} while s € {0,1,...,1 4+ 3}. The argument for sections in I'(Up, S™)

is similar. O

The structure of the symmetry relations among the coefficients, and the allowed ranges
of the exponents, suggests the introduction of the following spinors.

Deﬁn1t10n911 Foreach le N+ 1 ={3,2,2,...}, and for each m € {—I, -1 +1,...,1—
1,1}, let Y} € T'(S) be the spinors “whose components over Uy are 2~ 1/2Yi (2, 2), where

Y, (z,2) i= Cpp(1 4 22)7! Z | (l ; %) (l J; %) (—3)

r—s=m—3

Y (2,2) == Cpn(1 + 22) ™ _; ; (l t %) <l B %) 2 (—32)°, (9.45)

where the constants C,, are defined as'!

20+ 1 l+m' m)!
Cim Y \/ I z—-) (9.46)

Also, let Y;” € T'(S) be the spinor whose components are 272Vt (2, ) and —27Y/2Y, (2, 2).

The simplest examples of (9.45) are

1 (1T _ 1 (3Vi¥E
vm v vres) e g ()

10The range of allowed values of m is obtained by listing the possibilities for (r —s) in (9.45) and adjusting
by =. Notice that each m is a half-integer.

11The precise form of the constants Ci,, is obtained by looking ahead to the normalization (Y} |Y} ) =
for the present, we need only that the constants for Yl; and Y, be the same.

VLN
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The functions Y;! and Y, were introduced by Newman and Penrose [43], using the
notations _ 1 Y. and 1Yo respectively. In fact, these appear as a subfamily of functions
sYim with s € {—1,—{+1,...,1—1,1} which, for [, m, s integers, they called “spin-s spherical
harmonics”; for s = 0 they reduce to the everyday spherical harmonics Y, on S?. Newman
and Penrose also noted that their formulas make sense when [, m, s are all half-integers, and
christened such functions “spinor harmonics”; they were investigated further by Goldberg et
al [30]. Later, Dray [25] showed that these same functions occur as the spinor components
in the theory of the magnetic monopole [10].

Lemma 9.10. 3.Y, = (I + )Y} and -0.Y,} = (1+3)Y,,.
Proof. Using Lemma 9.8, we find that 0,Y] (2, Z) equals

1

Clm (1 + 22)7 _:Z ; (l J; %> (l _S 5) {U+L=r) (=2 +r2" 1 (—2)°}

= (14227 Y {(H 2 _j)(l;%) (11_—%1)

o +(j+1) C:%L) (l ' %> }Zj(—i)k~ (647

The term in braces can be simplified, using the binomial identities

()=o) o) =)
to the form
()6 e e (53,

so the right hand side of (9.47) equals (I + 3)Y;!. O

1
2

Corollary 9.11. The spinors Y, and Y, are eigenspinors for the Dirac operator, with
nonzero integer eigenvalues +(I + 3):

PYiu = (U4 3V PYi = =+ )i,
and each eigenvalue +(1 + 1) has multiplicity (21 + 1).
Proof. Just observe that

0 0.\ (Y.\ _ ((+3)Y,, 0 0.\ (Y | _ (—(+3)Y,
—0. 0)\Y,) \U+3)Y,)" \-0. 0)\-Y,) \(+3)Y, )
The multiplicity is just the number of possibilities for the index m, i.e., the (204 1) elements

of {—1,—l+1,....1—1,1}. O

Exercise 9.19. For a fixed [ € N+ %, express J3Y, . J.Y, and J_ Y] as linear combinations

of the spinors Y} withn € {—l, -l +1,...,1—1,}.
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9.10 The spectrum of the Dirac operator

Definition 9.12. A representative function for the group SU(2) is a function in L*(SU(2))
which may appear as a matrix element in some finite-dimensional unitary representation
of the group. It is a linear combination of the functions D/ . indexed by j € %N =

{0,3,1,2,2,...} and m,n € {—j,—j +1,...,j — 1,5}, which are defined in terms of the

Euler-angle presentation g = k(a)h(8)k(y) € SU(2) by

j GG =) et g 12
DI (a, B,7) = \/(]—i—m) = )'e( + )(sln2ﬁ)

x ;(—1)%%" (‘7 tm) (r i ;ﬁ n) (cot L3>, (9.48)

The Hilbert space L?(SU(2)) is described by defining the Haar measure on SU(2) in terms
of the Euler angles as dg = (167%) ™! sin 3 da d3 d, and the Parseval-Plancherel formula [37]
shows that the functions D7 = form an orthogonal basis for this Hilbert space:

[gU(Q)rh<g>12dg:Z2y+ S (@i )

27=0 m,n=—j

On comparing the definitions (9.45), (9.46) of the functions Y, (2, 2) with (9.48), we see
from z = € cot 16 that

21 1 20+ 1
Vit(2,2) = || T D (6,6,0), Vi(,2) = /T DY (6,6,0)

Ezercise 9.20. Show that, with ( = e™ tan %9, the formulae

_ 21 1 - 21 1
V(GO =\ T DLy L (6.0,-6), Yinl((.O) = /= D,

m(®:0,—0)

express Y, in terms of the SU(2) representative functions over U;.

We now (at last!) fix the normalization of the inner product of spinors by

1P = (@ | ) = — / TG+ + T07) sin6d A do. (9.49)

Proposition 9.12. The spinors{ Y], Y,! : 1 € N—l—%, m € {=L,...,l}} form an orthonormal
basis for the Hilbert space L*(S).

Proof. We associate to each spinor ¢ € T'(S) a pair of functions h* on SU(2) by
(9,0, 9) = Vare™ 2 yg(z, 2) = VareT TR Y Q).
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By integration over the ¢ variable, we see that h™ is orthogonal to D? —unless m = —%, and

h~ is orthogonal to D4 unless m = +1. The Parseval-Plancherel formula then shows that
1 _
[0 == [ (W@ + Ih(0)F) dy
T JSu(2)
(20+1) I 2 ! —\2
- B 24, )
:E:;L/§ﬁ¢+92
41 Jq2 tm

fZ\Yl;an!Y” ) (9.50)

1 _ 2
— [ Y v Q
+‘47T/2 lmw

This is a Parseval identity for the orthonormal family {Y; ,Y;”}, and so establishes com-
pleteness of this family in L?(.9). O

Corollary 9.13. The spectra of the Dirac operator, its square, the Casimir operator and the
spinor Laplacian are given by

{£(+3):1eN+3}=2\{0},
{(+2?:1eN+1},
{1l+1):1eN+1},
{P+1-1:1eN+1}

sp(

sp(1)*

sp(C
sp(A°

)
)
)
) =

The respective multiplicities are: 21 + 1 for the eigenvalue (1 + 35) of P, and 2(21 + 1) for
each listed eigenvalue of ID?, C and AS.

Proof. The eigenvalues of ) are those given by Corollary 9.11; the completeness relation
(9.50) shows that there are no others. The eigenvalues of C' and AS follow from (9.43).
Notice that the Casimir eigenvalues have the form (I + 1) (compare the spectrum of the
Hodge Laplacian), but with [ half-integral in the present case. O

We recall from (4.16) the definition of the index of (any) Dirac operator:
ind ) := dim(ker D) — dim(ker D),
We end with an important result.
Corollary 9.14. For the spinor module over S?, the index of the Dirac operator is zero. [

The Atiyah—Singer index theorem [9, 28, 39, 42] asserts the existence of a characteristic
class whose integral coincides with the index of the Dirac operator. In fact, the characteristic
form is given by A(R) := det™"/2(j(R)), where R is the Riemannian curvature and j(z) :=
(sinh 3z)/ %x Since the power series j(z) is even, however, only forms of degree 4k appear in
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the expansion of A(R) by degrees; in particular, the second-degree component is zero. Thus
for S* or indeed any compact two-dimensional manifold M, the integral (27i)~" [}, A(R)
(called the “A-genus of M ”) vanishes, and on that basis the vanishing of the index of the
Dirac operator is to be expected.

To get a Dirac operator with a nontrivial kernel, one only has to twist the irreducible
spinor module with a complex line bundle, such as H or L. In that context, the eigenspinors
(9.45) yield explicit solutions of the Seiberg-Witten equations [60].

10 Construction of representations of SU(2)

The theory of the Dirac operator on the Riemann sphere, developed in the previous chapter,
has a direct application to the construction of the irreducible unitary representations of the
group SU(2). There are three main routes to that goal. In view of the Peter-Weyl theorem,
an irreducible representation of a compact Lie group is finite-dimensional, unitarizable (that
is, the representation space may be provided with an inner product that is invariant under
the group action) and lies within the left regular representation of the group. The first route
to the irreducible unitary representations is an algebraic construction called the “theorem of
the highest weight” [13, 35, 37] which yields an abstract description of all such representa-
tions up to unitary equivalence, but does not exhibit them concretely. Secondly, the famous
Borel-Weil theorem [11, 50] constructs the representation spaces as spaces of holomorphic
sections of certain line bundles over coadjoint orbits of the compact Lie group in question;
this construction depends on the fact that these orbits are complex manifolds, and therefore
carry a spin® structure. It turns out that the maximal-dimensional coadjoint orbits in fact
carry a spin structure, compatible with the group action, and this opens a third path to the
construction of representations, whereby the representation spaces are the kernel spaces of
certain Dirac operators. (Indeed, this last recipe is related to the Borel-Weil-Bott construc-
tion by a “twisting” with a certain line bundle, so the second and third routes are thereby
equivalent.) Here we shall not attempt to give the construction for all compact groups, but
rather shall build up the particular example of SU(2), that contains all the features of the
general theory.

10.1 Characters of the maximal torus

Any compact connected Lie group G contains a maximal torus 7', and any two such tori
are conjugate, by a basic theorem of Weyl [13]. For G = SU(2), we may take T to be the
subgroup of diagonal unitary matrices k(¢) of (9.36), so that 7"~ U(1). Its characters are

/2 A
k(@) = (0 D) = e (10.1)

where m is necessarily an integer in order that x,, be a well-defined homomorphism from
T to U(1). The Hopf map n of (9.26) allows us to regard S* as the homogeneous space
SU(2)/T, whereby SU(2) — S? becomes a principal U(1)-bundle.
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Let x € S?; if it is not the north or south pole, let ( = 27! be its local coordi-
nates. Two particular local sections of this principal bundle are v, € I'(Uy, SU(2)) and

m € I'(Uy, SU(2)), given by

wo= a3 ) o ()

It is immediate that n(yo(x))

-1
are sections and implies that () = 71

n(v(z)) for x € UyN Uy, which verifies that these
x)h(¢) with h(¢) € T'; a quick calculation yields

_ (Ve o
0 V)

=
—
I
N2

so that X, (h(C)) = (¢/¢)"*.

Every complex line bundle over S? may be constructed as an associated bundle to this
principal bundle via a suitable character of the maximal torus 7. This can be seen directly
by exhibiting these associated bundles, since we have already classified all line bundles over
S? in Proposition 5.13. However, it should be said that one can take a more principled point
of view. On each such line bundle, we shall eventually construct an equivariant bundle action
of SU(2); the equivalence classes of such actions generate a commutative semiring (under the
Whitney sum and tensor product of equivariant vector bundles), and by formal subtraction
(the Grothendieck construction) they generate an abelian group, denoted Kgy(2)(S?) [48].
The characters of the maximal torus T form a ring R(T'), isomorphic to Z, and the matching
of equivariant line bundles and characters yields a canonical isomorphism Kgy2)(S?) =~ R(T).

The line bundle L™ — S§? associated to SU(2) — S? via the character x,, of T is given
by (1.2): the space L™ has elements [g,v] with g € SU(2), v € C, and [gh,v] = [g, Xm (k)]
whenever h € T. The local sections sy € I'(Up, L™) and s; € I'(Uy, L™) defined by s;(x) :=
[vj(x), 1] suffice to determine the class of L™. Indeed,

so(2) = n(@)h(¢), 1] = (), xm (h(C))] = Xm(A(O))s1(x) = (¢/O)™ 51 (),

so the transition function of L™ is go1(¢) = ((/¢)™? = e™"™%/2_ As before, we represent a
general section s: S* — L™ by a pair of functions (fo, f1) satisfying fo(z)so(x) = f1({)s1(x)
on Uy NU;. We therefore get the gauge transformation rule

F1(Q) = (/™2 fo(¢TH.

From Exercise 9.1 (compare also (9.5) and (9.6), which are particular cases), we obtain that
the Chern class of L™ is m[L] = —m/[H], so that L™ is indeed equivalent to the m-th tensor
power of the tautological line bundle, as the notation had anticipated.!

'The isomorphism K gp(2)(S?) ~ R(T) is thus given by m[L] — Xp.
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10.2 Twisting connections

In subsection 9.3 we have seen that the spin connection V° is defined over U; (say) by
V5, = 0 + w;, where ( = z' 4 iz? and wy, w, are given by (9.9). Since 0/9¢ = 5(9; — ida),
9/0¢ = 5(d1 + i>), we may rewrite (9.9) as?

S 8 Zé S o 2 . ZC 1
Vo =ac e e’ Vo T o Tauac)

If we use the presentation (9.12) of 4! and +2, in which the grading operator iy'~?
diagonal matrix, these become

o, ¢ LA S

Vin = pctaiicy VT T i c 12

Now S* = L, the tautological bundle over S%. If fi,..., fm, with m € N, are local
sections in I'(Uy, L), then their product is a local section in I'(Uy, L™). Denote by V™ the

tensor product of m copies of V5" this is a connection on the vector bundle L™ — S2, for
which

Vgzn)(fl---fm):Zfl f] lV (f])f]+1 - fmo
j=1

from which it follows that

8 mC (m) 0 mC

ac Tanxco Ve T o T a1+ cd) (10.3)

(m)
Va/ac

on F(Ul, Lm)

Erercise 10.1. If m is a negative integer, let V(™ be the tensor product of (—m) copies of
V97, i.e., the connection on L™ = H~™ dual to the connection V=™ on L~™; show that
(10.3) holds also in this case.

Exercise 10.2. The curvature wy, of the connection V™ is determined by the relation

wm(/0C,0/0C) = [V /BC] Check that wy, = —m(1 + ¢0)~2d¢ A dC.

Definition 10.1. Let S — S? denote the irreducible spinor bundle; let L™ — S? be the
complex line bundle with first Chern class m[L]; we call S® L™ — S? a twisted spinor bundle.
Clearly S ® L™ ~ L™ @ L™ 1. The twisted spin connection V := VS ® 1+ 1 V(™
is determined, in view of (10.2) and (10.3), by

. _ 0 (m=£1)¢ ~ 0  (mE1)¢
Vo= gt o Vo T ot a1 co) 104

2In this Section, we shall write explicit formulas over the chart domain U; with local coordinates (¢, C);
we leave the corresponding formulas for Uy to the reader.
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10.3 Twisted Dirac operators

Definition 10.2. The Dirac operator ID,, on the twisted spinor bundle S® L™ —S?is
given, in accordance with Definition 8.3, by D, := ¢(da')Vg, + ¢(dz*)Va, = c(d)Vaac +
¢(dC)V /¢ From (9.10), we get

@) = -3+ Ot + i) = (o "),
o(d¢) = =3(1+ ¢ (" —iv?) = (1 JSCE 8) :
so that D,, = C(do%g/ac + c(df)ﬁg/ag—; explicitly,

_ 0 —(1+¢¢)9/0¢ = 3(m — 1)¢
D= (14 oot - m s 1 ; )

ot 57 =8 %)

From (9.15) we get 3¢t + 3mCp = Q1(¢)0 /¢ + 5(m — 1)(0Q1/dC)1p, where we have
written Q1(¢) =1+ ¢¢. Also, 0,¢ — %mgw = @Q1(0)0Y/o¢ — %(m + 1)(0Q1/9¢)%. Thus,

D=~ @0 "I Qi

Pt = Qu(o)mor a% Qu(¢) VP, (10.6)

The kernel of D, is a subspace of I'(L™ ") and the kernel of P} is a subspace of
L(L™). Suppose that v € T(L™), and let ¥5(¢,¢) and ¥y(z,Z) be its component
functions over U; and U, respectively. These are related by the gauge transformation rule

YN (¢ = (¢/Q) Y 2hg (¢, C). From (10.6), ¢ € ker Jj iff
a(¢) == (1+ ¢ 2y5(¢, €) (10.7)
is an entire holomorphic function on C. Moreover,
Un (¢ = (14 ¢0¢/O) ™V a(0)

must be regular at ¢ = co. Since Q1(¢)™+1/2 = O(|¢|)™*!, for nonnegative m this is only
possible if a(¢) = 0. If m is negative, the entire function a(¢) is O(|¢])™=! as |¢| — oo, s0
that a(¢) is a polynomial of degree at most |m| — 1. To sum up:

0, ifm>0,
im|, if m <0.

dim ker ;= {
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The kernel of I, is found similarly. Suppose that ¢ € T'(L™"), with component func-
tions (¢, €) and gy (2, 2) related by o(¢, C1) = (¢/0)™D265(¢, 0). Then ¢ € ker oy,

iff
b(C) = (1+¢O) ™V 205(¢, Q) (10.8)

is antiholomorphic. The regularity at co of g (¢, (1) = ((14¢¢)¢/¢) ™™ D/2b((), together
with Q1(¢)~(™=Y/2 = O(|¢])*~™, shows that b(¢) = 0 for m negative or zero, while for m

positive b(() is a polynomial in ¢ of degree at most m — 1. In fine:

m, ifm >0,
0, ifm<O0.

dimker D, = {

We have in particular shown the following result.

Proposition 10.1. The index of the Dirac operator ID,, on the twisted spinor bundle S ®
L™ — §? is given by

ind ID,, = dimker 0, — dimker D, = —m,

that s, by the integer that labels the first Chern class of the twisting line bundle L™. 0

10.4 The group action on the twisted spinor bundles

Proposition 10.2. A bundle action of SU(2) on S @ L™ — S? is given by the formula
(9.27), where = € T(L™*Y), and where the multipliers Aﬁ, A§ are determined by

N (mE1)/2 _ar (m+1)/2
o= (50 o= ()

Proof. The analysis of the SU(2)-action on the untwisted spinor bundle, given in Section 9.6,
may be repeated verbatim, except that the gauge transformation factor (¢/¢)? in (9.30)
must be replaced by ({/¢)™*1/2. This leads to the necessary and sufficient condition (9.31),
with the exponent 1/2 replaced by (m +1)/2, and the cocycles (10.2) satisfy that condition.

]

Proposition 10.3. The Dirac operator ID,, is equivariant under the action of SU(2) on the
twisted spinor bundle S ® L™ — S* determined by (10.2).

Proof. Let T € End*(I'(S® L™)) be an operator that commutes with I0,, and is of the form

(T2)(¢.¢) = (¢, Oz (b(¢),b(C)). Then, as in Lemma 9.5, the identity T1;, = P;,T
—in Hom(T'(L™ 1), T'(L™"))— yields the relations

QI(C)C— (() E)b,<<) = Ql(b(<>>c+<<7 5)7

Jc_ N _

Ql(é)a—C = 5(m = 1)(b(¢)e+ (¢, ¢) — Ce- (¢, 0))- (10.9)
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Similarly, from T, = DT in Hom(T'(L™), T(L™ 1)) we get

Q1(Q)ex (¢ OV (C) = Qu(b(¢))e-(¢, <),

@OFE = —5m+ DO (6.0 — 6. 0). (10.10)

We check that these conditions are satisfied when 7" = T'(g) is the operator corresponding
to the diagonal element g = k(¢) of SU(2), determined by (10.2). Here b(¢) = ¢/ -
¢ = €C. Clearly Q1(b(¢)) = Q1(¢), so that (10.9) and (10.10) reduce to the conditions
ci (¢, Q) = ec_(¢, (), Oc_ /0¢ =0, and dcy /OC = 0, which together imply that c_ and c,
are independent of ¢ and ¢. Since the prescription ci(g () = e'mED9/2dictated by (10.2),
obeys ¢y = e®c_, we see that T'(g) commutes with 1D,,,.

In the same way, it is easy to show that the operator T'(h(0)), associated to h(#) of (9.36)
by b(¢) = k()" - ¢ and by (10.2), commutes with I0,,. Since elements of the form k(¢)
and h(6) generate SU(2), and since g +— T'(g) is a homomorphism on account of the cocycle
relations (9.29), we conclude that T'(g) D, = P, T (g) for all g € SU(2). O

Fxercise 10.3. Complete the proof of the previous Proposition by verifying that the coefficient
functions of T'(h(6)) satisfy (10.9) and (10.10).

Corollary 10.4. The bundle action of SU(2) on S ® L™ — S? determined by (9.27) and
(10.2) restricts to a finite-dimensional unitary representation p,, of SU(2) on the kernel of
the Dirac operator I ,,. O

To exhibit the representation p,,, it is useful to notice that with g’ L= (aC+B)/(—pC+
@), one has Q1(¢" " - ¢) = Q1(¢)| — B¢ + a|~? on account of a@ + 3 = 1. If m > 0, then for
Y € ker D, C T'(L™ 1), the bundle action (9.27) specializes to

a B o =BC 4\ al+3 al+p
(% D) uste 0y - (L) (et iy

Using (10.8), we can write ¢5(¢, () = Q1(¢)~™~1/2p(¢) with b a polynomial in ¢ of degree
less than m, and the previous formula simplifies to

pm (f‘ﬁ i) (@) V()] = @1(0<m”/2<—55+a>m1b<@5_+5>,

—B3¢ +
The right hand side is clearly also Ql D72 times a polynomlal in ¢ of degree less than m.

If we define ¥ (¢, ¢) := Q1(¢)~ ™V /QC’“ for Kk =0,1,...,m — 1, these form an orthogonal
basis for ker [0 . For these basis vectors,

P (_ag ﬁ) Yi(¢,¢) = Qu(Q)" V2 (@al + B)H(—=B + a)™ T, (10.12)

from which the matrix elements of the representation may be computed at once.
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When m < 0, we obtain similar formulas for p,,. Indeed, for ¢ € ker P} c T'(L™),
we obtain (10.11) with the exponent (m — 1)/2 replaced by (m + 1)/2. Since, by (10.7),
Vs(¢,¢) = Q1(¢)™+V/2¢(¢) with a a polynomial in ¢ of degree less than m, we get

a f (m+1)/2, — (m+1)/2(_ F)m-1, a¢ + 3 )
o (5 D) 1O 2a(0)] = @u(e) e + )t a( 2D o0y

and on the orthogonal basis ¢ (¢, () := Q1 (¢)~Im=Y/2¢k (k = 0,1,...,m — 1) for ker P},
we find that
Pm (_O‘B g) Ui(C,¢) = Qu(¢) MV (g + B)F(—=B¢ + )i, (10.14)

From the explicit formulae (10.12) and (10.14), it is evident that p_,, is the conjugate
representation to p,,.

Proposition 10.5. The representation p,, is irreducible.

Proof. If m = 0, there is nothing to prove. The case m < 0 mirrors the case m > 0,
on interchanging P with D, ; thus we may take m > 0. Then ker D,, = ker [P is an
m-dimensional Hilbert space with the orthogonal basis {¢y : k = 0,1,...,m —1}. It is
immediate from (10.12) that this basis consists of joint eigenvectors for { p,,(g) : g € T };
indeed, with g = k(¢) we get

P (K (@) )y, = €020y (10.15)

so the eigenvalues are generally distinct, and therefore any operator S on ker [0 that com-
mutes with each p,,(¢g) must have a diagonal matrix in this basis. On the other hand,
the one-parameter subgroup of operators ¢t +— p,,(h(t)) mingles the basis elements v: for
h(t), one has a = cosit, B = sinit, and from (10.12) we get (d/dt)‘tzopm(h(t))wk =
Thtbp—1 —3(m—k—1)tp41 if 1 <k <m—2. A similar calculation with the subgroup A’(t) for
which a = cos 1¢ and § = isin 1¢ gives (d/dt)‘tzopm(h’(t))gbk = Likp_1+ 3i(m—k— 1)1
Thus if S commutes with every p,,(g), it commutes with the “ladder operator” ¢y, — kiy_1,
and hence S is scalar. Irreducibility of p,, now follows from Schur’s lemma. m

In order to identify the unitary irreducible representation p,, of SU(2), it suffices to com-
pute its character. Since the character is a class function, it is determined by its restriction
to a maximal torus, so for m > 0 we obtain it immediately from (10.15):

m—1 im¢/2 | _ p—imé img/2 _ ,—ime/2
_ i(m—1)¢/2 —ik¢ _ € € e e
Xm(k(9)) = kz—o € € T 02 | _e—id | oid)2 _ p—ig)2

When m < 0, we similarly get from (10.14)
k(@) = D20y,
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and so its character is:

Im|—1 oimO/2 | _ gimd  gim[2 _ ,—im/2

o i(m+1)p/2 ke _ _
Xm(k(¢)) = Z € e = e—i0/2 1 — gi®  @i®/2 _ e—ip/2
k=0

Therefore the representations p_,, and p,, are equivalent.
This equivalence is to be expected on general grounds. The Weyl group of SU(2), namely
the normalizer subgroup of the maximal torus 7" modulo T itself, is just the two-element

group W =~ Zs, since the only nontrivial isomorphism ¢ of the diagonal subgroup 7' is the
0 1
-1 0)°
By (10.1), xm ©0 = X_m; so two characters of T lead to equivalent representations of SU(2)
iff they lie in the same orbit under the action of the Weyl group. This exemplifies the general
relation [13, 49]:

interchange of diagonal elements, that can be implemented by conjugating with

R(G) ~ R(T)".

This construction of the unitary irreducible representations of SU(2) directly from the
equivariant Dirac operator exemplifies the “universal quantization map” of Vergne [55]:

Q: KSU(2)<S2) — R(SU(2)),

which is already an instance of the index theorem of Atiyah, Segal and Singer [5, 6].

10.5 The Borel-Weil theorem

The construction of the irreducible unitary representations of SU(2) on the kernel spaces
of Dirac operators, developed in the preceding sections, produces two families of equivalent
representations, according as one twists the standard bundle with a tensor power of the
tautological bundle (L™, with m > 0), or with a tensor power of the hyperplane bundle
(H" ~ L™, with n > 0). Now only the latter line bundles admit nonzero holomorphic
sections, while only the former admit nonzero antiholomorphic sections. The celebrated
construction of Borel and Weil does not deal with spinor bundles, but rather uses the fact
that the coadjoint orbits of compact Lie groups are complex manifolds and constructs the
desired representations on the spaces of holomorphic sections of holomorphic line bundles
over those orbits. By a simple application of Liouville’s theorem —see Section 5.6 for the
details in the case M = (CIP’(m)— the compactness of the orbit implies that the space of
holomorphic sections is finite-dimensional. Indeed, in many cases, that of the trivial line
bundle for instance, the space of holomorphic sections reduces to zero. A variant of the
Borel-Weil construction produces representations on space of antiholomorphic sections of
the respective dual line bundles.

There is a simple relationship between the spinor-based and the Borel-Weil constructions:
one passes from one to the other by twisting or untwisting with a fized line bundle that can
be obtained directly from the spin structure of the maximal coadjoint orbit G/T'. Indeed,
this relationship is parallel to the replacement of the spin structure by a spin® structure
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on a spin manifold: for that, one needs to identify a particular principal U(1)-bundle that
combines with the spin structure to yield a spin® structure. (See the discussion in Section 7.3,
and also Appendix D of [39].)

If M is a complex manifold of complex dimension m, let K := A™°T*M; then K — M
is the so-called canonical line bundle, and T'(K) = A™°(M). The first Chern class of the dual
bundle K*, turns out [41] to be the element of H?(M,Z) whose modulo-2 reduction is the
Stiefel-Whitney class wy(M); thus wy(M) + j.(ci(K)) = 0 in H?(M,Zs), in the notation of
Section 7.3. If M is spin, so that we(M) = 0, then j.(c1(K)) = 0 also, so that ¢;(K) is even;
in other words, there is a complex line bundle K'/2 — M such that K'/? @ K'/2 ~ K. In
principle, the “square root of the canonical bundle” K2 may depend on the spin structure
chosen for M.

For the case M = S?, we know that K ~ L ® L = L? by Exercise 9.3. Thus we can take
K'?:= L. Tts dual line bundle is K~/ := H. Therefore we find that

SQK'?=(LoH) @H~E®H?*~AT"S?

where £ = S? x C denotes the trivial line bundle, and A%*T*S? — S? is the complex vector
bundle whose smooth sections form the module A%*(S?) = A%%(S?) & A% (S?). Over Uy,
such a section may be written as f(¢, () + h(¢, () dC.

Thus A%*(S?) = T'(S® L) is the domain of the twisted Dirac operator ) _;. Of course,
(10.5) for m = —1 simplifies to

(0 —@u©pfac+C
P (@1<<>a/ac 0 ) |

The operator T, : A%0(S?) — A%1(S?) has as kernel the holomorphic functions in A*°(S?) =
C>(S?), which are just the constant functions, by Liouville’s theorem. The factor Q;(¢) =
1+ ¢C is a normalization factor, that takes account of the metric on A%!(S?).

To see that, consider the twisted spinor bundle S ® L™ for any negative m, say m =
—(2j+1) with j a nonnegative half-integer.? Clearly S® L™ = A**T*S?@H% = H¥ @ H% 2,
so that ST ® L™ = H?% admits holomorphic sections. If s; denotes a section of H normalized
by (s1]51) = 1, then 57 is a normalized section of H%. We may select s; as s, := Q1 (¢) 201,
where o is the holomorphic section of H —s CP'1) of Section 5.6: the normalization follows
from (5.13), whereby we have (o1 | 01) = Q1(¢) ™.

It is convenient? to choose the metric 497 = Q;(¢)*(9/d¢) - (8/9C) on TEM, so that the
normalized section of A% (S?) is just s? = Q1(¢)~*d(. Tt follows that o2 = Q,(¢)~2dC.

Any section of A% (S?) is of the form h((,{)d( = Q1(¢)h(¢,()s?, and a section of
S® L' = L@ L2 can be written as ¢ = f((,() +h(¢,{) d(. Then the Dirac operator I)_;
can be identified as follows. Firstly,

phr=(@o)s =2

= | ST = — dé‘ = 5f
¢/t ¢

3By now it should be clear that it is preferable to label representations of SU(2) by nonnegative half-
integers j rather than the integers m.

4Without this normalization, the operator 0 in the following formulae should be replaced by /2 0; this
convention is adopted in [28], for instance.
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where 0 is the Dolbeault operator of Section 2.1.
The twisted Dirac operator I,,, with m = —(2j + 1), is

_ 0 —Q1(€)0/0¢ + (j + 1)¢
”m‘( ()0)9C + j¢ 0 )

by rewriting (10.5). An element of T'(H?) can be written (over U;) as f(¢,¢)o:’. Then
Pr(f(¢ Qo) = Pr(@i(O)7F(C Q) s7)
= (@2 + 1) @A) 7 = Quiy o oL s

¢ 36
=Q1(¢)? —é = g dl®o¥ =df @ 0¥, (10.16)

The Dolbeault operator extends to A%*(S?, H¥) := A%*(S?) @ ['(H¥) by setting O(w® s) :=
(w) ® s for s € T(H*). With this understanding,® we have the relation D*,. | = 9 as
operators from A%9(S? H*) to A% (S?, H*).

In order to identify D, , we must compute the adjoint of the Dolbeault operator. We
consider first the case m = —1.

Definition 10.3. The adjoint of 9: A%(S?) — A%Y(S?) is the operator 9*: A% (S?) —
A%0(S?) given by B B o

(0" (hdC) | ) = (hdC|Of)
where ((- | -)) denotes the integrated inner product in either space of sections, defined as in

(9.49) by integrating the appropriate pairing of sections over S? with respect to the volume
form (47)~tsinfdo A dp = (2mi) 1 Q1(¢) "2 d¢ A d¢. We find that

(0" (hdQ) | £) = (hdC | 0) = o / ag™ (e, Jg 4C)Qu(Q) 2 ¢ A g

L [:0f !
=50 /. aCdCAdg — ag

= —(@ ( )20h/0C | ),
on integrating by parts, so that 0*(hd() = —(1 + ¢{)? 0h/OC.

deAdC

From this it follows easily that

D= (hdl) = D~ (Q1h s3) = (—Q10/0¢ + () (Q1h) = —Q? 0h)/O( = 0" (hd().  (10.17)

Thus )~, = 0* on A% (S?).
Erercise 10.4. Show )~,; | = 0" as operators from A%'(S?, H¥) to A%°(S?, H¥).

®We could have written 5(2j) to denote the extended operator, but we suppress the index to reduce
notational clutter.
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We summarize these calculations as follows.

Proposition 10.6. The Dirac operator on the twisted spinor bundle S @ L=%~1 equals the

sum of the Dolbeault operator and its adjoint on the twisted bundle A>*T*S* @ H% .

Proof. The formulae (10.16) and (10.17), plus the previous exercise, establish that 7, | =
dand D—,; | = 0", thus

D 91 =0+0"
on the module A%*(S?, H%). O

The kernel of the Dirac operator [)_,;_; thus coincides with ker? @ ker 9*. The sec-
ond summand is zero since ker ~,; ; = 0. Thus ker PT,; | = kerd consists of sections

¥s(¢, Q) s7 = £(¢, Q) oy € A®(S?, H¥) for which 9f/d( = 0; these are precisely the holo-
morphic sections f(¢) o) € O(H¥). Since

¢S<C7C) 51] :f(C)Ul = f(Q)Q1(¢) 351

it follows from (10.7) that f(() is a polynomial of degree at most 2j. That is to say, we have
shown that dim O(H%) = 2j + 1. By suppressing the factors Q1(¢)™ in (10.13) and (10.14),
we arrive at the following representation 7; of SU(2) on O(H?%), that is by construction
equivalent to p_g;_1:

and on the orthogonal basis { &, .= (¥ o} : k=0,1,...,2j} for O(H%), we find that
a — _ . .
) (_ 5 g) & = (aC + )" (=pC + @) F o,

This completes the passage from the Dirac-operator-kernel construction of the irreducible
representations of SU(2) to their realization on finite-dimensional spaces of holomorphic
sections of line bundles over S?. The content of the foregoing construction is the Borel—
Weil theorem for the compact group SU(2), that we may now state as follows.

Theorem 10.7. Every irreducible unitary representation of SU(2) can be realized on a space
of holomorphic sections of a holomorphic Hermitian line bundle over S®. This line bundle
is determined, up to equivalence, by a character x of a maximal torus of SU(2) modulo the
action of the Weyl group Zy. Moreover, if E —S? is a holomorphic Hermitian line bundle
whose Chern class is m[H| with m > 0, then O(E) carries the representation corresponding
to the character x,, of the maximal torus. O

This result is of course well known; what we have done is to show how it arises from
the equivariant index of the Dirac operator on the flag manifold S?. We remark that our
construction is equivalent to the standard induced representation recipe for each ;, though
this is usually achieved by studying the complexification of the compact Lie group in question

[56).
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A Calculus on manifolds

In this Appendix, we briefly review the concepts and notations of calculus on manifolds, with
emphasis on the algebraic formulae which arise in differential geometry. Proofs are left to
the reader. General references are the books of Abraham, Marsden and Ratiu [1], Crampin
and Pirani [20], Singer and Thorpe [51], and Spivak [52].

A.1 Differential manifolds

Definition A.1. A differential manifold of finite dimension n is a paracompact Hausdorff
topological space M together with a family (or “atlas”) of local charts { (Uj,¢;) : j € J}
such that U := {U; : j € J} is a locally finite open covering of M, ¢;: U; — R" is a
homeomorphism onto an open subset of R, and the transition functions

¢i o ¢;13 ¢;(UiNU;) — ¢:(Ui N U;)

are smooth. A second atlas { (Vi,¢y) : k € K } is declared equivalent to the first if every
o; o wk’l is smooth (the “differentiable structure” of M is actually an equivalence class of
atlases). If M is compact, a finite atlas may be chosen.

If n = 2m is even, we can regard the chart maps ¢, as having images in C™. We say
that M is a complex manifold if the transition functions are holomorphic maps between open
subsets of C™.

Definition A.2. If M, N are two differential manifolds, a continuous map f: M — N is
smooth if for any pair of local charts (U, ¢) for M and (V1) for N, the composite map
Yo fop i p(UNFHV)) — (V) is smooth. When N = R, the set of all smooth functions
on M is a commutative algebra over R, which we denote by C*°(M,R); when N = C, the
smooth complex-valued functions on M forms a commutative C-algebra, C*°(M,C). We
often write simply C*°(M), if it is clear from the context whether real-valued or complex-
valued functions are to be used.

A diffeomorphism between M and N is a bijective smooth function f: M — N whose
inverse f~': N — M is also smooth. If such an f exists, we say that M and N are
diffeomorphic.

If (Uj, ¢;) is a local chart for M, we define z',...,2" € C~(U;,R) by a* := pr, o¢;,
where pr;,: R™ — R is the k-th coordinate projector. We say (z',...,2") is a system of local
coordinates for M on the chart domain U;.

The following two lemmas show that smooth functions are abundant.

Lemma A.1. If M is a differential manifold, and if V., W are two open subsets of M with
V. C W, there exists [ € C*(M,R) such that supp f C W, f=1onV, and 0 < f <1
on W\V. O

Lemma A.2. If M is a differential manifold, with atlas { (U;, ¢;) : j € J}, there exists
a smooth partition of unity subordinate to the locally finite covering U, that is, a family
{fj :jeJ} C C®MR) with 0 < f; <1 and supp f; C U; for each j, such that
Yjesfi(@) =1 for allz € M (the sum is finite for each x). O
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If M, N are two manifolds with respective atlases {(U;, #;)}, {(Vi,%r)}, the product
manifold is the cartesian product M x N with atlas {(U; x Vi, ¢; x 1) }; its dimension is
dim(M x N) = dim M + dim N.

A.2 Tangent spaces

Definition A.3. Let M be a differential manifold, x € M. Let C°°(M,x) be the set of all
smooth functions f: Vy — R whose domain is an open neighbourhood of = in M; this is a
commutative algebra that includes C*°(M). Indeed, C*°(M) = (,cp CF(M, ).

A tangent vector at z is an R-linear map v: C*°(M,z) — R which satisfies the “local
Leibniz rule”:

v(fg) =v(f)g(x) + f(x)v(g),  forall f,.geC™(M,x).

These form a real vector space T, M.
If (U;, ¢;) is a local chart for M, with local coordinates (2, ..., z"), then the directional
derivatives %}I: [ Di(fop ) (¢(x)) form a basis for T, M; in particular, dim T, M = n.
If v: I — M is a smooth curve, whose domain is an interval I C R, with ~(¢y) = z, its
velocity vector at x is Y(to) € T, M defined by 4(to)(f) := (f o) (to).

Definition A.4. If f: M — N is smooth, and x € M, the tangent mapping T, f: T,M —
Ty N is the R-linear map
T.f(v): h—wv(ho f),

forv e T,M, h € C®(N, f(z)). If (y',...,y") is a system of local coordinates near f(x) € N,
the matrix of T, f is has entries 9 f* /07|, := 52| (y* o f).

Definition A.5. A smooth mapping f: M — N is an immersion if for all z € M, the
tangent map T, f: T, M — Ty N is injective. If each T, f is surjective, f is a submersion.

If f is both an immersion and a submersion, then dim M = dim N, and the Jacobian
matrix of T, f (in local coordinates) is invertible, for each x; by the inverse function theorem,
f is a diffeomorphism between a neighbourhood of = and a neighbourhood of f(x), for each z;
we say f is a local diffeomorphism. However, f need not be injective or surjective on all
of M, so it need not be a global diffeomorphism.

A.3 Vector fields

Definition A.6. Let M be a differential manifold. A vector field on M is a R-linear
operator X : C®°(M) — C*°(M), which is a derivation of this algebra, that is, it satisfies the
Leibniz rule:

X(f9) = (Xf)g+ [(Xg),  forall f geC*(M).
These derivations form a vector space denoted by X(M). This is in fact a module for the
algebra C>(M), if we define! fX € X(M) by fX(h) := f(Xh).

IThere is a notational difficulty here, since expressions like fXh, while not ambiguous, are confusing. For
this reason, the derivation action of the vector field X on the function h is sometimes written X - h rather
than Xh; then the module structure can be defined by (fX)-h:= f(X - h), and so forth.
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IfY € X(M) and x € M, the recipe Y, f := (Y f)(x) defines a tangent vector Y, € T, M.

If (U,¢) is a local chart of M, any vector field X € X(M) determines a vector field
X|y € X(U) by restriction. If (z',...,z") is the local coordinate system for this chart, we
obtain n linearly independent local vector fields 2 € X(U) by writing

0 N
()= Di(f o6 )00

These form a basis for the C°°(U)-module X(U), that is, every X € X(U) is of the form
X=>",d 52, with a',...,a" € C=(U).

Definition A.7. The Lie bracket of two vector fields X,Y € X(M) is defined as
[(X,Y]: [ X(Yf) = Y(X).

It is easy to check that this is a derivation of C*°(M); it is clearly skewsymmetric, and it
satisfies the Jacobi identity:

(XY 2N+ Y (2, X+ 12, [X, Y] = 0. (A1)
Thus X(M) is an (infinite-dimensional) Lie algebra.

Definition A.8. If 7: M — N is a diffeomorphism, and X € X(M), we define the pushout
7.X € X(N) by:

7.X(h) == X(hoTt)o7™* for all h e C™(N).

For each x € M, we find that (7.X),) = T,7(X,). Note that this last formula makes sense
if 7: M — N is smooth and surjective, but not necessary invertible.

Lemma A.3. The pushout 7.: X(M) — X(N) is a Lie algebra homomorphism, i.e., T, is
linear and 7. [X,Y] = [n. X, 7.Y] for XY € X(M). If o: N — R is a diffeomorphism, then
(0oT)y =040T,. ]

Definition A.9. An integral curve of a vector field X € X(M) is a smooth curvey: [ — M
such that 4(t) = X, for all t € I.

One can always find a unique integral curve -, for X satisfying (0) = x in some maximal
interval I, 3 0, by the existence and uniqueness theorem for first-order ordinary differential
equations. We say the vector field X is complete if I, = R for all x € M; if M is compact,
every vector field is complete. Write ¢;(x) := 7,(t); then ¢;: M — M is a diffeomorphism
for all t € R, and ¢ 0 ¢ps = ¢y for all ¢, s.

The one-parameter group of diffecomorphisms {¢;} is called the flow generated by the
vector field X. The vector field may be recovered from the flow by noticing that

Jop—f i

Xf=lmi—"t—~L

P n a0t tzo(foébt)-
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A.4 Lie groups

Definition A.10. A Lie group is a differential manifold G which is also a group, for which
the multiplication (g, h) +— gh : G x G — G and the inversion g — ¢! : G — G are smooth
maps.

The left translations A\,: h — gh and the right translations py: h — hg are diffeomor-
phisms from G onto G. We usual write e to denote the identity element of G.

A finite-dimensional (real or complex) vector space V' is an additive Lie group. The group
GLg(V) of invertible linear operators on V' is a Lie group (since it is a dense open subset
of the vector space Endg(V)); if V' is a complex vector space, GLc(V) is a Lie group. We
write GL(n,R) := GLg(R"™) and GL(m,C) := GLc(C™).

Definition A.11. A vector field X € X(G) on a Lie group G is left-invariant if (), X = X
for all g € G. In that case, X is determined by its value at the identity, X, € T.G.

A Lie algebra is a real vector space with a skewsymmetric bilinear operation [, -] sat-
isfying the Jacobi identity (A.1). Since the Lie bracket [X,Y] of two left-invariant vector

fields X, Y is also left-invariant, 7.G becomes a (finite-dimensional) Lie algebra by defining
[X., Y] :=[X,Y].. We usually write g := T.G to denote this Lie algebra.

Definition A.12. If GG is a Lie group with Lie algebra g, and if X € g, let 7vx be the
integral curve of the corresponding left-invariant vector field such that vx(0) = e. Then
vx(s+1t) = yx(s) vx(t) for all s,¢ € R, so that t — yx(t) is a one-parameter subgroup of G;
also x (1) = vx(¢t) for t € R.

We write exp X := vx(1). This defines the exponential map exp: g — G, which
satisfies exptX = vx(t), and thus ¢ — exptX is a homomorphism.

Unless G is abelian, exp is not a homomorphism of the additive group g into G. However,
there is the important Campbell-Baker—Hausdorff formula:

exptX exptY =exp(t(X +Y) + 3t°[X, Y] + O(t?)),
and its corollary:
exptX exptY exp(—tX) =exp(tY + *[X, Y]+ O(t*)). (A.2)

If G is a closed subgroup of GLg(V'), the Lie algebra can be identified with the subspace
of operators { X € Endg(V) : exptX € Gforallt € R}, and the Lie bracket becomes
[(X,Y] = XY —YX € Endg(V). If W is a complex vector space, the Lie algebra of a
subgroup of GL¢(W) is likewise identified to a subspace of Endc ().

Definition A.13. A smooth left action of a Lie group G on a differential manifold M
is a smooth map ®: G x M — M : (g,z) — ®(g,2) = g - x, such that ez = z and
g-(h-z)=(gh)-z, for g,h € G, x € M.

Thus ®,:  — g -z is a diffeomorphism of M for each g € G.

If x € M, the isotropy subgroup for x is G, :={h € G : h-x = x }, and the orbit of z
isG-z:={g-x € M:ge G} C M. The natural bijection g - x — ¢gG, between G -z
and the left-coset space G/G, is a diffecomorphism when G/G, is given a natural differential
structure for which the quotient map n: G — G /G, is a submersion.
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We say that the action of G on M is free if no group element except e leaves any point
fixed; in that case, all isotropy groups are trivial and all orbits are diffeomorphic to G.

We say that that the action of G on M is transitive if there is only one orbit. If so, and
if H is the isotropy subgroup of some point of M, then M is diffeomorphic to G/H (and the
action of G on M corresponds to permutation of the left-cosets ¢’H +— gg’H). A manifold
with a transitive G-action is called a homogeneous space for the group G.

Definition A.14. A smooth right action of a Lie group G on a differential manifold M
is similarly defined, as a smooth map M x G — M : (z,g) — x - g such that z - e = z and
(x-g)-h=x-(gh), for gh € G,z € M.

If H is a closed subgroup of G, then H acts (on the right) on G by right translations
g — gh; the orbits of this action are the cosets gH.

Definition A.15. The adjoint action of a Lie group G on its Lie algebra g is the map
(9,X) — Ad(g)X given by

d
Ad(g)X = pr glexptX)g.
=0

It can be deduced from (A.2) that Ad(g)X € g. The map g — Ad(g) is a homomorphism
Ad: G — GL(g).

Definition A.16. A representation of a Lie group GG on a vector space V' is a homomor-
phism p: G — GL(V') for which (g,v) — p(g)v is a smooth map from G x V to V.
The derived representation of its Lie algebra g is the linear map p: g — End (V') given by

. d
p(X)v = 7 pexptX)v.
t=0

In particular, the derived representation ad of the adjoint representation Ad is given, on
account of (A.2), as ad(X)Y = [X,Y].

A.5 Fibre bundles

Definition A.17. A fibre bundle is a triple (£, M, 7), more usually written as £ —— M,
where E and M are differential manifolds (called, respectively, the total space and the base
space), and m: E — B is a surjective submersion,? such that each fibre E, := 7~ 1({z}) is
diffeomorphic to a fixed manifold F', called the “typical fibre”, and which is locally trivial in
the following sense. If U = {U, : j € J } is a covering of the base space by chart domains,
there are diffeomorphisms

Q/in 7T_1(Uj) — Uj x F (A3)

(called “local trivializations”) such that w(wj_l(a:, v)) =z forallz e Uj, v e F.

2We shall often omit explicit mention of the submersion 7 and simply write E — M to denote the fibre
bundle.
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Definition A.18. If E —~ M and E' " M’ are two fibre bundles, a bundle morphism
is a pair of smooth maps (7,0), with 7: £ — E’ and 0: M — M’, such that 7’ o7 =0 om.
(We also say that 7 is a lifting of the map o between the base spaces.)

A bundle equivalence is a bundle morphism (7, ) such that both 7 and o are diffeo-
morphisms.

A fibre bundle E — M is trivial if it is equivalent to the product bundle M x F =% M
via a bundle morphism (7,idys). Thus (A.3) says that any fibre bundle is locally a trivial
bundle.

Definition A.19. A vector bundle is a fibre bundle E —— M whose typical fibre is a (real
or complex) vector space V', and whose fibres E, are vector spaces of the same dimension,
such that the maps V — E, : v — wj’l(x, v) are linear isomorphisms.

The dimension dim V' is called the rank of the vector bundle.

The tangent bundle TM — M of a manifold M has total space TM = {(z,v) :
v € T,M }, with 7(x,v) := x. The local trivialization ¢;: 7#=1(U;) — U; x R" is given by
Yi(x,0) = (z;0!, . 0"), witho = 37, 0% 2| . The atlas { (71 (U;), (¢; xid)oty;) : j € J }
makes T'M a 2n-dimensional manifold. The fibre at © € M is the tangent space T, M.

The cotangent bundle T*M — M is formed similarly; its fibres are the dual spaces
T:M := (T,M)*. We define {dz'|,,...,dz"|,} as the dual basis in T:M to the basis

{% .,%}x} of T, M, and if £ = >", & da*|,, then ¢;(z, &) == (z;&1, ..., &)

Definition A.20. A smooth section of a fibre bundle E — M is a smooth map s: M — E
such that m o s = idyy, i.e., s(z) € E, for each x € M. We denote the totality of smooth
sections by I'(M, E), or simply by I'(E) if the base space M is understood; it is a C*°(M)-
module, where the action of C*°(M) is just scalar multiplication on each fibre:

(fs)(x) == f(z) s(x),

z)

for s e I'(E), f € C®(M).

If U C M is open, a smooth map s: U — 7 }(U) satisfying 7(s(x)) = z for z € U is
called a local section of E—— M; all such maps form a vector space I'(U, E), which is a
module over C*(U).

From the definition, it is easy to see that a smooth section of the tangent bundle
TM — M can be written in local coordinates on a chart domain U; as X = Y , a* %,
with each a* € C°°(U). Thus X is nothing other than a vector field on M; we have
D(TM) = X(M) as C°°(M)-modules.

A section of a trivial fibre bundle M x F 2% M is of the form s(z) = (z, f(z)) where
f: M — F is a smooth map. Thus sections of more general bundles can be thought of as

“functions” which take values in different sets at each point of their domains.
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A.6 Tensors and differential forms

Definition A.21. A differential 1-form on a differential manifold M is a map a: X(M) —
C>®(M) that is C°°(M)-linear, that is:

a(X+Y)=a(X)+aY),  a(fX)=fa(X),

for X,Y € X(M) and f € C°°(M). These form a real vector space A'(M), which becomes
a C*(M)-module on defining fa: X — fa(X).

If x € M, then o(Y)(z) = fa(Y)(x) if f is any smooth function with f(x) = 1, whose
support is an (arbitrary small) neighbourhood of z. Thus a(Y')(x) depends only on Y,
and so Y, — a(Y)(z) is an element «, of the dual space T;M of T,M; by definition,
a(Y)(x) = au(Yy)

Hence « can be identified with the section x — «, of the cotangent bundle T*M — M;
and T'(T*M) = AY(M) as C*°(M)-modules. In local coordinates over U, we can write
o =Y p_, frdz® with each f, € C=(U).

Definition A.22. A tensor of bidegree (p,q) on a manifold M is a multilinear map
T: X(M)? x AH(M)? — C>(M)

such that T(Xy,...,X,,al,...,a%) is C°°(M)-linear in each X; and each o*. The tensor
is called covariant if ¢ = 0, or contravariant if p = 0. Any such tensor T defines a smooth
section of a vector bundle over M whose fibre at x € M is (T M)®P & (T, M)®1.

Definition A.23. A Riemannian metric on M is a tensor g of bidegree (2,0) that is
symmetric, i.e., g(X,Y) = g(Y, X) for all X|Y € X(M), and positive definite: g(X,X) >0
for nonzero X € X(M). Locally, we may take g = g;; dz’ - da?, where [g;;] is a positive-
definite symmetric matrix of elements of C(U) and dz’ - da’ := 3(da’ ® da? + da? @ da);
a Riemannian metric may be defined globally on M by taking g = > i i gV, where ¢\ is a
metric on the chart domain Uj;, and the functions f; form a smooth partition of unity on M.

The pair (M, g), consisting of a differential manifold with a Riemannian metric g, is
called a Riemannian manifold.

A Hermitian metric on M is a tensor h of bidegree (2,0) with values in C*°(M, C), such
that A(X,Y) = h(Y, X) for X, Y € X(M) and h is positive definite. One often writes (X |Y)
instead of A(X,Y’). The same partition-of-unity argument shows that any manifold can be
given a Hermitian metric.

Definition A.24. A differential k-form on M is a covariant tensor w: X(M)* — C°°(M)
that is alternating, which means that w(X,ay,..., Xow) = (=1)7w(X1, ..., X}) for 0 € Sj.
The totality of k-forms on M is denoted A*(M), and is a C°°(M)-module.

Let A*T*M — M be the vector bundle whose fibre at z is A*T*M, the k-th exterior
power of T M; then A*(M) = T'(A*T*M).

The direct sum A*(M) = @,_, A*(M) = ['(A*T*M) is a Z-graded C*°(M)-module.
The zero-degree term is A°(M) := C>(M). Under the exterior product, A®*(M) is an algebra;
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in fact, it is Zs-graded by the parity of the degree k, and is a supercommutative superalgebra,
since this property holds in each fibre of A*T*M — M. Thus w A = (—1)*%y A w where
tw = k for w € A¥(M).

Thus if w € A¥(M), n € AY(M), and X, ..., Xy € X(M), then
1 g
(WAN(Xrse s X)) = Y (D 0Ky Xo) 1 Xo(es - s Xorn):

UESk+1

and in particular, (o A 8)(X,Y) = a(X)B(Y) — a(Y)B(X) for o, 8 € A(M). Moreover, if
al, .. af € AL (M) then o' A -+ A ok € AR(M), with

(@' A AR (X, .., X)) = det[a (X)),
In local coordinates, an element of A¥(U) is of the form w = D=k J dzit A -+ A dadk,

where J = {j1,..., 5k} € {1,...,n}.

A.7 Calculus of differential forms

Definition A.25. If 7: M — N is a diffeomorphism, and w € A¥(N), we define the pull-
back T*w € A*(M) by:

T*w(Xy, ., Xg) = w(n Xy, .o, T Xg) o T

In particular, 7*3(X) := f(1.X) o7 for 3 € AY(N). Thus (7°6).(Xs) := Br) (To7(X,)), so
that the linear map ;) — (7°0), : T7 N — T;M is the transpose of the tangent map
Tor: ToeM — T N.

If 7: M — N is any smooth map, not necessarily a diffeomorphism, the pullback 7*w of
w € A¥(N) is likewise defined by transposition:

(T"W)e(X1)zs -+, (Xi)a) = we@) (LT (X1)2)s - T ((Xk)2))-
For k = 0, we get simply: 7°f := for.

Lemma A.4. The pullback 7 : A*(N) — A®*(M) is a degree-preserving homomorphism of
exterior algebras, that is, 7" is linear and 7" (w A n) = T'w A T'n for w,n € A*(N). If
o: N — R is a smooth map, then (o o7)* = 7" 0 0*. N

Definition A.26. The contraction of a k-form w € A*(M) with a vector field X € X(M)
is the (k — 1)-form «(X)w = txw defined as

LXw(Xl, ce an—l) = w(X, Xl, . 7Xk:—1)~

For f € A%(M), we set vx f :=0. If a € A} (M), then 1xa = a(X) € C°(M).
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Lemma A.5. Contraction with X € X(M) is an odd derivation of the graded algebra A®*(M),
that is,
ix(WAD) = txwAn+ (=1D*w A uxn.

In particular,
k

ix(@' Ao Aab) = Z(—l)j‘laj(X) (ot A - LA o)

for aq,...,ap € AH(M). O

Proposition A.6. There is a unique operator d: A*(M) — A*(M), called exterior deriva-
tion, such that:

1. d is an odd derivation of degree +1, that is, d(A*(M)) C A*Y(M), and

dwAn) =dwAn+ (=1)*w A dn;

2. df(X) = X[ for f € A%(M) = C>®(M);
3. 2=dod=0;

4. d is natural with respect to restrictions, that is, if U C M is open and w € A*(U), then
d(wly) = (dw)],,. [

In local coordinates, d(},; fyda? A+ Adzit) =3 dfy Ada? A--- A da?*, where, for
feC™U), df = S0, (0f /07 da.

Lemma A.7. If w € A¥(M), its exterior derivative dw € A¥Y(M) is given by

k+1

do(Xi, o X)) = D (P X (w(X, 3 X))
D) (X X X V3 X)),
In particular, if o € AY(M), then da(X,Y) = X (a(Y)) — Y(a(X)) — a([X,Y]). O

Lemma A.8. The exterior derivative commutes with pullbacks: if T7: M — N is a smooth
map, and w € A¥(N), then d(t*w) = 7*(dw) in AF(M). O

Definition A.27. If X € X(M) is a complete vector field, whose flow is {¢;}, the Lie
derivative of a differential form w € A®*(M) is the form L yw defined by

* . ¢;&kw —Ww
— w = lim )
dt t:0¢t =0t

»E:Xw = (A4)

Notice that Lx f = X f for f € A°(M).
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If R is a contravariant tensor, we interpret ¢; R as the pushout ¢_. R by the inverse
diffeomorphism ¢_, = ¢;'; with this convention, (A.4) makes sense when w is any tensor,
and Lxw is a tensor of the same bidegree. In particular, if Y is a vector field,

d
LyY = —
X dt

d

Y = —
Pt o

t=0

Y(eo¢p_4)og, =[X,Y].

t=0

Lemma A.9. The Lie derivative Lx: A*(M) — A*(M) is an R-linear map satisfying:
1. Lx is an even derivation of degree 0, that is, Lx(A*(M)) C A¥(M), and

Lx(wAn)=LxwAn+wALxn; (A.5)

2. in particular, Lx(fw) = (Xf)w + fLxw;

3. Lx(dw) =d(Lxw); foralw,neA*(M), f € C®(M). O
Lemma A.10. The Lie derivative Lx: A*(M) — A*(M) is given by Cartan’s formula:
Lxw = i1x(dw) + d(txw),
ie., Lx =1xod+douiy, for X € X(M). O

Corollary A.11. For any w € A¥(M), Lxw is given by the formula:

Lxw(Xy, ..., Xp) = X(w(Xy,..., X)) — Zw(Xl, L IXOXG] X)),

In particular, Lxa(Y) = X (a(Y)) — a([X,Y]) for a € A} (M), X,Y € X(M). O

Notice that this last formula can be rearranged as: Lx(a(Y)) = Lxa(Y) +a(LxY). In
other words, the Leibniz rule (A.5) for Lx is valid not only for exterior products of forms,
but also for pairings of forms and vector fields. In passing, we note also that the Jacobi

identity (A.1) for vector fields can be written as Lx (Y, Z]) = [LxY, Z] + [V, Lx Z].

Lemma A.12. The map X — Lx from X(M) to End(A*(M)) is a Lie algebra homomor-
phism; that is,
L[ny]w = Lx(Lyu)) - Ly(LXuJ) (AG)

for all XY € X(M), w € A*(M). O

Note that if we substitute a vector field Z for w in (A.6), we again get the Jacobi identity.
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A.8 The de Rham complex

Definition A.28. A cochain complex (C*,d) is a sequence of abelian groups and homo-
morphisms

d
o0 do, o . om O, ol AL ek

such that d,, 41 o d, = 0 for all n. (The complex may terminate: it may happen that for
some N, C" = 0 for n > N.) We usually suppress the index of d and write simply that
d* = 0 at all stages. The elements of C™ are called “n-cochains”: ¢ € C™ is an n-cocycle if
dc = 0; it is an n-coboundary if ¢ = db for some b € C"!. The condition d*> = 0 says that
the totality of n-coboundaries B"(C*) is a subgroup of the group Z"(C*) of n-cocycles. The
quotient group
H™(C*):=Z"(C*)/B"(C*)

is called the n-th cohomology group of the complex.

A morphism between two complexes (C®,d) and (K°,d’) is a set of homomorphisms
fn: C" — K" which intertwines the d-maps, ie., f,41 0d, = d), o f, for all n. Thus
[n(Z7(C*)) € Z™(K*) and f,(B"(C*)) € B"(K*), so that f induces a homomorphism
H"f: H*(C*) — H"(K?*).

The components C™ of a complex may have more structure than that of an abelian group:
they could be vector spaces, modules over a commutative ring, etc.®> The cohomology groups
H"(C*,d) inherit a similar structure.

Definition A.29. The de Rham complex of an n-dimensional differential manifold M is
the terminating complex

A (M) = ANM) = - = AH(M) =AM — - =5 AT (M)

of C*(M)-modules; here d is the exterior derivation. We say a k-form w is closed if dw = 0,
and that w is ezact if w = dn for some (k — 1)-form n; thus Z¥% (M) = ZF(A*(M),d)
comprises the closed k-forms and BY;(M) := B*(A*(M),d) comprises the exact k-forms.
The k-th de Rham cohomology group

Ha (M) = H*(A*(M), d)
is a real vector space. We shall denote by [w] € HY; (M) the class of w € Z¥; (M).

By the de Rham theorems —see, for instance, [23]— if M is compact then HY; (M) ~
H¥*(M,R), where the latter is the k-th singular cohomology group, which is a finite-dimen-
sional real vector space depending only on the topology of M.

The most important single fact about de Rham cohomology is the following proposition,
often called the Poincaré lemma.

Proposition A.13. Suppose that U is a contractible manifold, i.e., for some xoy € U, there
is a smooth map f:[0,1] x U — U such that f(0,x) = x¢ and f(1,2) =z, forx € U. Then
H:(U) =R and Hi;(U) = 0 for k > 0.

3In fact, a complex can be formed from objects C™ and morphisms d,, in any abelian category.
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Proof. A contractible manifold has an atlas with a single chart (U, ¢), so we can suppose
that U C R™, that U is star-shaped about zg, and that f(¢t,z) = (1 — t)xg +tx. If w €
ARU), let 1 = p/0(f*w) € AF([0,1] x U). Now define hy: A¥(M) — AFY(M) by
hi(w) = fol ndt. Then one can check that the maps hy form a “cochain homotopy”, i.e.,
that hgyqy od + do hy = id for each £ > 0, and h; o d = id —xy. The triviality of the
cohomology groups follows at once, since dw = 0 implies w = d(hyw) for k > 0, and df =0
implies f = f(zo) for f € A°(M). O

A.9 Volume forms and integrals

Definition A.30. A volume form on an n-dimensional manifold M is a real n-form v €
A"™(M) which is nonvanishing, i.e., v, # 0 in A"TFM for all z € M. A volume form need
not exist; we say that M is orientable if one exists.

We say that two volume forms p, v on M are equivalent if = fv for some f € C*(M)
with f(z) > 0 for all z € M. (This is clearly an equivalence relation.) An equivalence class
for this relation is called an orientation on M; a pair (M, v) consisting of a manifold and a
volume form v in a given equivalence class is called an oriented manifold.

In a local coordinate system on a chart domain U, we have v = hdx! A --- A dx™ with
h € C*(U,R) nonvanishing. Under a change of local coordinates in the overlap of two chart
domains, & is multiplied by a Jacobian factor, det[dy"/dxz7].

Lemma A.14. A differential manifold M is orientable if and only if M has an atlas
{(U;,¢,)} all of whose transition functions ¢; o ¢;1 have positive Jacobians. O

On an oriented manifold (M, v), we therefore may and shall always choose an atlas such
that in every local coordinate system we have v = hdx! A -+ A dx™ with h > 0. (We say
that the corresponding charts are “positively oriented”.)

Proposition A.15. Let (M,v) be an oriented manifold. Then there is a unique linear form
Sy A (M) — R, called the integral over M, such that if n € A™(M) vanishes outside the
domain of a positively oriented chart (U, ¢) with local coordinate system (z',...,2"), and if
n=fdx' N - Ada™, then

/7]: f(z*, ... ") dat ... da™,
M #(U)

where the right hand side is a Lebesque integral on R™.

Proof. Uniqueness of [ 1 follows from the change-of-variables formula for multiple Lebesgue
integrals; existence follows by writing n = > ; finj where each n; is supported in a chart
domain and {f;} is a partition of unity. ]

Lemma A.16. [f(M,v) and (N, p) are two oriented n-dimensional manifolds and if T M —
N is an orientation-preserving diffeomorphism (i.e., T*p is equivalent to v), then fM TN =
[y for all n € A*(N). O
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An n-form on M is closed, since A"*1(M) = 0. If n = d¢ is an exact n-form, with
compact support in the domain of an oriented chart (U, ¢), then

[ on=[ac- [ = /¢ L0,

where ¢ = ¢~': ¢(U) — U. Since ¢*¢ = 3, g;dx' - v -Adz™ for some g; € C>=(U) having
compact supports in U, we conclude that d(¢*() = (Z] 8gj/8a:j) dx' A - A dx™; therefore,
fU d¢ = 0 by the fundamental theorem of calculus. By a partition-of-unity argument, we
obtain [, d¢ = 0 for any ¢ € A""'(M), so the integral vanishes on exact n-forms. (This is
the “boundaryless” case of Stokes’ theorem.) In consequence, ] — [ 1 1 1s a well-defined
linear form on HJy (M).
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