Show simple item record

dc.creatorAlfaro Córdoba, Marcela
dc.creatorHidalgo León, Hugo G.
dc.creatorAlfaro Martínez, Eric J.
dc.date.accessioned2020-04-30T20:39:20Z
dc.date.available2020-04-30T20:39:20Z
dc.date.issued2020-04-23
dc.identifier.citationhttps://www.mdpi.com/2073-4433/11/4/427es_ES
dc.identifier.issn2073-4433
dc.identifier.urihttp://hdl.handle.net/10669/80978
dc.description.abstractTrend analyses are common in several types of climate change studies. In many cases, finding evidence that the trends are different from zero in hydroclimate variables is of particular interest. However, when estimating the confidence interval of a set of hydroclimate stations or gridded data the spatial correlation between can affect the significance assessment using for example traditional non-parametric and parametric methods. For this reason, Monte Carlo simulations are needed in order to generate maps of corrected trend significance. In this article, we determined the significance of trends in aridity, modeled runoff using the Variable Infiltration Capacity Macroscale Hydrological model, Hagreaves potential evapotranspiration (PET) and near-surface temperature in Central America. Linear-regression models were fitted considering that the predictor variable is the time variable (years from 1970 to 1999) and predictand variable corresponds to each of the previously mentioned hydroclimate variables. In order to establish if the temporal trends were significantly different from zero, a Mann Kendall and a Monte Carlo test were used. The spatial correlation was calculated first to correct the variance of each trend. It was assumed in this case that the trends form a spatial stochastic process that can be modeled as such. Results show that the analysis considering the spatial correlation proposed here can be used for identifying those extreme trends. However, a set of variables with strong spatial correlation such as temperature can have robust and widespread significant trends assuming independence, but the vast majority of the stations can still fail the Monte Carlo test. We must be vigilant of the statistically robust changes in key primary parameters such as temperature and precipitation, which are the driving sources of hydrological alterations that may affect social and environmental systems in the future.es_ES
dc.language.isoen_USes_ES
dc.sourceAtmosphere 11, 427es_ES
dc.subjectCentral American climatees_ES
dc.subjectaridityes_ES
dc.subjectspatial correlationes_ES
dc.subjectvariabilityes_ES
dc.subjecttrend analysises_ES
dc.titleAridity Trends in Central America: A Spatial Correlation Analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doidoi:10.3390/atmos11040427
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físicaes_ES
dc.identifier.codproyecto805-B0-810
dc.identifier.codproyecto805-B8-766
dc.identifier.codproyecto805-B9-454
dc.identifier.codproyectoEC-497
dc.identifier.codproyecto805-C0-471
dc.identifier.codproyecto805-C0-610


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record