Dynamics of a two-dimensional discrete-time SIS model

 dc.creator Barrera, Jaime H. dc.creator Cintrón Arias, Ariel dc.creator Davidenko, Nicolas dc.creator Denogean, Lisa R. dc.creator Franco González, Saúl Ramón dc.date.accessioned 2015-05-19T18:21:10Z dc.date.available 2015-05-19T18:21:10Z dc.date.issued 2012-04-26 00:00:00 dc.identifier.citation http://revistas.ucr.ac.cr/index.php/matematica/article/view/190 dc.identifier.issn dc.identifier.uri http://hdl.handle.net/10669/12828 dc.description.abstract We analyze a two-dimensional discrete-time SIS model with a non-constant total population. Our goal is to determine the interaction between the total population, the susceptible class and the infective class, and the implications this may have for the disease dynamics. Utilizing a constant recruitment rate in the susceptible class, it is possible to assume the existence of an asymptotic limiting equation, which enables us to reduce the system of, two-equations into a single, dynamically equivalent equation. In this case, we are able to demonstrate the global stability of the disease-free and the endemic equilibria when the basic reproductive number (Ro) is less than one and greater than one, respectively. When we consider a non-constant recruitment rate, the total population bifurcates as we vary the birth rate and the death rate. Using computer simulations, we observe different behavior among the infective class and the total population, and possibly, the occurrence of a strange attractor. dc.description.abstract Analizamos un modelo bidimensional SIS en tiempo discreto con una población total no constante. Nuestra meta es determinar la interacción entre la problación total, la clase susceptible y la clase infectada, y las implicaciones que esto puede tener para la dinámica de la enfermedad. Usando una tasa de reclutamiento constante en laclase susceptible, es posible asumir la existencia de una ecuación limitante asintótica que permite reducir el sistema de dos ecuaciones a una sola ecuación dinámicamente equivalente. En este caso, somos capaces de demostrar la estabilidad global de los equilibrios libres de enfermedad y la endemia, cuando el número básico reproductivo (R0) es menor que uno y mayor que uno, respectivamente. Cuando se considera una tasa de reclutamiento no constante, la problación total se bifurca cuando se varía la tasa de natalidad y la tasa de mortalidad. Usando simulaciones computacionales, observamos diferentes comportamientos entre la clase infectada y la población total, y posiblemente, la ocurrencia de un extraño atractor. dc.format.extent 199-216 dc.relation.ispartof Revista de Matemática: Teoría y Aplicaciones Vol. 7 Núm. 1-2 2012 dc.title Dynamics of a two-dimensional discrete-time SIS model dc.title Dynamics of a two-dimensional discrete-time SIS model dc.type info:eu-repo/semantics/article dc.type info:eu-repo/semantics/publishedVersion dc.date.updated 2015-05-19T18:21:10Z dc.language.rfc3066 es dc.identifier.doi 10.15517/rmta.v7i1-2.190
﻿