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Abstract—In this paper the Enhanced Normalized Normal
Constrained method is applied to find the optimal tuning of
second order PID controllers. This tuning takes into account both
the servo and regulatory modes simultaneously, as well as a closed
loop robustness criterion. The methodology is successfully applied
to a high order linear plant and to a non linear continuous stirred
tank reactor model, showing the effectiveness of the optimization
methodology to solve control related problems. Also, the method
is applied to a benchmark control system that takes into account
three different sources of disturbances.

Index Terms—PID control, Pareto optimization, Process con-
trol, ENNC.

I. INTRODUCTION

The design of controlled systems, always have to consider
multiple conflicting objectives. With this perspective, the task
of the engineer in charge of the control task, becomes to find
the optimal compromise between these different objectives
[1]–[3].

It is common to tune the parameters of industrial controllers
by means of an optimization problem. However, when the
control engineer is facing several objectives at once, this
optimization problem becomes a multi-objective optimization
(MOO) [4]. Particularly for industrial PID controllers, this
problem also becomes nonlinear and (possibly) non-convex,
which makes it a non-trivial problem.

In this sense, the multi-objective optimization of PID con-
trollers remains an open research topic, even though it has
been studied for several decades [5]–[7] and with multiple
optimization methods, including bio-inspired techniques such
as neural networks, fuzzy logic and genetic algorithms to solve
the problem of the optimization [8], [9].

In this paper the Enhanced Normalized Normal Constrained
(ENNC) method is used to solve the tuning of a two degrees
of freedom (2DoF) PID controller as a multi-objective multi-
variable non-linear optimization problem.

There exist various methods that transform the multi-
objective problem into a single objective optimization by
rewriting the problem. The Normalized Normal Constraint
(NNC) and Enhanced NNC (ENNC) are two of these method-
ologies that have been used in a multitude of application
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Figure 1. Feedback control loop.

cases. For example, in [7] the optimization of PI controllers
for First Order plus time delay (FOPTD) plants is computed
using the NNC methods and minimizing the Integral of the
Absolute Error (IAE) of the closed-loop response to a change
in the reference signal and the Total Variation (TV) of the
control signal. In [10], a piecewise NNC method is used to
solve a Multi-objective reactive power optimization problem,
where the active power loss and the square sum of voltage
deviation are simultaneously optimized in an AC–DC hybrid
power system.

The contribution of this paper is to apply the ENNC method
for the tuning of 2DoF PID controller for high order and
nonlinear plants, by means of a linear second order time
delayed (SOPTD) models. The IAE is used as the cost func-
tion for the reference tracking problem and the input/output
disturbance rejection problems simultaneously. In addition, the
optimization problem takes into account a measure of the
robustness of the closed loop controlled system.

The paper is divided as follows: in Section II, the method-
ology and the control problem are presented, in Section III,
the ENNC method is implemented for the tuning of PID
controllers for the control of a high order plant and a non-linear
continuous stirred tank reactor (CSTR). Also, the method
is applied to the tuning of a PID controller that takes into
account change in the reference, input disturbance and output
disturbance signals. Conclusions are presented in Section IV.

II. METHODS

A. PID control

A feedback control system as shown in Figure 1, is used as
the control topology for the application of the ENNC method
in this paper. The elements are:978-1-5090-2720-0/16/$31.00 c©2016 IEEE
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• C(s,θ) is the Two Degrees of Freedom (2DoF) Propor-
tional Integral Derivative (PID) controller with parame-
ters θ =

[
Kp Ti Td β

]T
.

• P (s) represent the controlled process, modeled as a
plant of Second-Order Plus Time Delay (SOPTD), with
a transfer function of the form:

P (s) =
Ke−Ls

(T1s+ 1)(T2s+ 1)
, (1)

It is common to define T2 as the less dominant lag time
of the system and therefore T2 = aT1.

The control signal of this controller can be computed as:

u(s) = Cr(s,θ)r(s)− Cy(s,θ)y(s), (2)

where the part applied to the set point signal is called servo
controller:

Cr(s,θ) = Kp

(
β +

1

Tis

)
, (3)

And the controller applied to the feedback signal is call the
regulator controller:

Cy(s,θ) = Kp

(
1 +

1

Tis
+

Tds

αTds+ 1

)
, (4)

α is the constant for the derivative filter.
It is important to guarantee a certain level of robustness for

the closed-loop controlled system to ensure that the controlled
system has a stable performance against variations in the
dynamic of the plant [11], [12]. A measure of the relative
stability or robustness, is the maximum sensitivity.

Ms = max
ω

{
1

|1 + Cy(jω)P (jω)|

}
(5)

The recommended robustness index value is in the range
1.2 ≤ Ms ≤ 2.0, where the higher Ms, the less robust the
closed-loop is [6].

B. Control problem

The controller tuning can be solved as a multi-objective op-
timization problem. One widely used indicator of performance,
is the Integral of Absolute Error (IAE) given by:

J =

∫ ∞
0

|e(t)| dt. (6)

The error signal e(t) it is calculated with:

e(t) = r(t)− y(t). (7)

In the case of disturbance rejection, the error signal be-
comes:

ed(t) = −yd(t). (8)

Evaluated for a change in the input disturbance (di), the
error signal becomes:

Jdi(θ) =

∫ ∞
0

|−ydi(t,θ)| dt, (9)
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Figure 2. Pareto frontier to optimize two objectives.

where, ydi corresponds to the response to an disturbance
input step change. For the change in the reference signal, the
criterion is given by:

Jr(θ) =

∫ ∞
0

|r(t)− yr(t,θ)| dt, (10)

where yr is the response to a step change in the set-point signal
(r). The optimal controller for the regulator response can be
obtained by minimizing (9), while the servo response can be
optimized by optimizing (10). But usually it is impossible to
minimize Jdi and Jr with the same set of parameters θ (so
this hypothetical solution is known as the utopia point). All
solutions that are closest to the utopia point, create the Pareto
frontier [13].

For a general explanation of this concept, in Fig. 2 the
Pareto front formed with two different cost function f1(x) and
f2(x) corresponds to the arc ACB. As it can be seen, when
the feasible region (the cost function values that are attainable
with the possible allowed values of the decision variables x)
is drawn in a plane whose axis are the values of the objective
functions, the Pareto front is the border of the feasible region
that gives the minimal values for both objective functions.

The points in the Pareto front can not have lower values
in one of the objective function without worsening the other
objective function. In this case, the point of utopia would be
exactly the origin of the plane (the point O), because that
point represents the minimum value for both cost functions.
It should be noted that, in general, this point is not within the
feasible region and therefore cannot be achieved. Points A and
B are called anchor points and represents the cases where at
least one of the functions are minimal.

Applying these concepts to the control problem and since
both functions (Jdi and Jr) have to be solved at the same
time, the controller tuning can be written as a multi-objective
optimization problem, by defining the cost function as:

J(θ) = [Jdi(θ), Jr(θ)]
T
, (11)

and solved by finding all possible optimal solutions of:

J(θ∗) = min
θ

J(θ),

s.t. Ms ≤Ms,max

(12)
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Figure 3. NNC optimization method.

where Ms,max is the maximum robustness value allowed. In
other words, this problem is equivalent to find the Pareto
front for all possible robust 2DoF PID controllers applied to a
SOPTD plant taking into account servo and regulatory modes.

C. The ENNC Method

The ENNC, is a new formulation of the original NNC
method [14] for multiobjective optimization problems.

The main idea of the NNC methodology is presented in
Fig. 3: the utopia plane, which is the plane that joins the
anchor points1 is parametrized using two variables α1NNC and
α2NNC . Each point X̄pj along the utopia plane, is computed
as:

X̄pj = α1NNC Ĵ(θ∗1) + α2NNC Ĵ(θ∗2). (13)

with α1NNC +α2NNC = 1 and Ĵ the normalized version of
J where, for each component i:

Ĵi =
Ji −min(Ji)

max(Ji)−min(Ji)

Then, the original feasible region is constrained using a
normal plane to the utopia plane that passes through X̄pj .
With this new feasible region, it is only required to minimize
one of the functions (e.g. Jr) in order to find the Pareto front.
By varying X̄pj , the Pareto front can be obtained solving the
optimization problem:

min
θ

Ĵdo(θ),

s.t. N̄T
1

(
Ĵ(θ)− X̄pj

)
≤ 0,

h(θ) = 0,

g(θ) ≤ 0,

(14)

where N̄1 is the vector that contains the direction of the
utopia plane. The NNC method however, supposes that for
that each anchor point contains only one of the minimal
value of each function and one of the maximum value. This

1in the case of minimizing only two functions, the utopia plane reduces to
a line
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Figure 4. The Pareto frontier for the benchmark process

is always true for the case of minimizing two functions,
however is not necessarily true when minimizing three or more
functions. For this reason, the ENNC proposes a redefinition
of the anchor points and a linear transformation between
the objective functions in order to obtained the correct scale
to improve the even distribution of the Pareto front when
applying the NNC [15].

Due to page constraint, a deeper review of the ENNC
method cannot be presented in this paper. However, the
interested reader can follow [15] and references therein for
a complete presentation of the method. The proposed steps
in this paper, in order to solve (12) can be summarized as
follows:

1) Define the parameters of the process according to (1).
2) Define Ms,max to select the desired level of robustness.
3) Apply the ENNC method in order to find all the needed

points of the Pareto-front.
4) Once the Pareto front has been obtained, proceed to select

the more appropriate tuning to the problem at hand.

III. RESULTS

A. Comparison of different PID tuning for a benchmark
problem

In order to test the capabilities of a 2DoF-PID controller
optimized using the ENNC method, a benchmark process
presented in [16] is used for comparison. It is a fourth order
plant given by:

P (s) =
1∏n=3

n=0(0.5ns+ 1)
. (15)

A low order model can be found in order to design a
suitable PID controller for the full order plant. Using the 123c
method [17], the obtained model is given by:

F (s) =
e−0.297s

(0.9477s+ 1)(0.6346s+ 1)
(16)

In Figure 4, the Pareto frontier obtained for the model (16) is
presented, the curve was obtained with the ENNC optimization
of the cost functions Jr and Jdi, and the optimal parameters
of PID controller with two degrees of freedom were obtained.

It is interesting to note that, in order to improve the response
of Jdi, Jr has to be augmented (worsening the regulator
response), however the degradation is not as much as the
improvement in the Jd function. This is a clear example of one
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Figure 5. Optimal response of the control system Jr
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Figure 6. Optimal response of the control system Jdi

of the many advantages of using a multi-objective framework
for controller tuning.

The optimal parameters for the 2Dof-PID controller, for
optimum tuning in disturbance rejection (Jdi) and optimal
servo control (Jr), are presented in in Table I, along with two
other tunings: the ART2 method [18] and the uSORT2 [19],
to compare the performance of the closed loop control. It is
important to clarify that these two tuning are just the extreme
points of the Pareto front, thanks to the ENNC method, the
control engineer is able to select any closed-loop response
between these two extremes, all of them equally optimal and
robust.

In Fig. 5, the response of the control loop with the four
different tunings is presented, for a change in the reference
value. The best system response is given by the ENNC optimal
controller Jr, emphasizing its characteristics of less IAE, as
shown in Table II.

The optimal controller for disturbance rejection is presented
in Fig. 6. Also it is clear how the loop response with optimal
controller for changes in reference value is the worst for
disturbance rejection.

B. 2DoF-PID optimized tuning for a non-linear CSRT process

Continuous stirred tanks reactors (CSTR) are one of the
most common sub-system in the chemical process field. De-
pending on the reaction, the dynamic of this plant can be

Table I
PID CONTROLLER PARAMETERS USING TWO DEGREES OF FREEDOM.

Tuning Kc Ti Td β

optimum Jdi 3.3750 1.0812 0.3095 0.5466
optimum Jr 3.0572 8.4419 0.3986 1.2329
ART2 3.3657 1.7636 0.4884 0.2971
uSORT2 3.1708 0.8997 0.3945 0.4731

Table II
SERVO PERFORMANCE RESPONSE

Tuning IAE Ms

optimum Jr 1.004 2
optimum Jdi 1.297 2
uSORT2 1.522 2
ART2 2.121 2
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Figure 7. Comparison between the nonlinear response of the CSTR and the
linear model.

highly non-linear, however, it is common to operate them
in a given operation point with the controllers tuned for
disturbances rejection.

Consider the CSTR non-linear model based on [20] and
references therein:

ẋ1 = −x1 +Da(1− x1)e
x2

1+x2/ϕ , (17)

ẋ2 = −(1 + δ)x2 +BDa(1− x1)e
x2

1+x2/ϕ + δu, (18)
y = x2, (19)

where x1 and x2 represents dimensionless reactant concentra-
tion and reactor temperature, u is the dimensionless cooling
jacket temperature which is considered as the control input,
y is the output of the system, Da = 0.072 is the Damköhler
number, ϕ = 20 is the activated energy, B = 8 is the heat of
the reaction and δ = 0.05 is the heat transfer coefficient. The
system is considered to be controlled from the equilibrium
point x1 = 0.931 and x2 = 7.095 with input u = 0.

In order to find a suitable PID controller for this plant, it is
necessary to find a low order linear model. After performing
a step change of amplitude ∆u = 10 in the input, the model
found is given by:

F (s) =
0.061e−0.0037

(0.9213s+ 1)(0.0056s+ 1)
. (20)

This model fits the plant dynamics at the operating point
very well, as can be seen in Fig. 7, where the integral of the
absolute error (IAE) between the output of the plant and the
output of the model is 0.33468.

In Fig. 8, the Pareto frontier obtained using the CSTR model
is showed. Again, the curve was obtained with the ENNC
optimization method with the cost functions Jr and Jdi.

The tuning parameters for a 2DoF-PID controller optimized
for this process, are presented in Table III. The response
obtained for an optimum tuning for changes in the reference
value is showed in Fig. 9, while the obtained performance
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Table III
2DOF PID CONTROLLER, FOR THE CSRT.

Tuning Kp Ti Td β

optimum Jdi 10 0.1 0.1 1.9406
optimum Jr 10 10 0.1 2.5759

values are presented in Table IV. While the tuning was
computed using the linear low order model, the simulation
presented in this paper was performed using the non-linear
model of the CSTR. It is clear how the performance of the
best Jr tune overcomes the closed loop response of the best
Jdi tune, presenting a minor IAE index.

In Table V, the corresponding values of IAE for the servo
and regulator responses are presented. Note the differences
between Jdi and Jr in tables IV and V. The obtained Pareto
front shows that considerable changes in Jdi does not cor-
respond to large degradation in Jr. This is consistent with
the simulation results shown, and therefore, one can initially
tune the controller for optimal Jdi, knowing that the servo
response is not highly degraded, while also guaranteeing a
safe robustness value. If a better servo response is needed,
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Figure 9. Setpoint tracking for the CSRT system.

Table IV
PERFORMANCE RATES WITH OPTIMAL TUNING Jr , FOR THE CSRT.

Tuning IAE Ms

optimum Jr 0.4547 2
optimum Jdi 0.5835 2

Table V
PERFORMANCE RATES WITH OPTIMAL TUNING Jdi , FOR THE CSRT.

Tuning IAE Ms

optimum Jr 4.9390 2
optimum Jdi 0.1108 2

it can be found by picking other tuning that also belongs to
the Pareto front, but with the knowledge on how this decision
affects the regulator response.

C. Optimization considering three sources of disturbances

One of the advantages of the ENNC method is that it
can tackle more than two cost functions using the same
formulation of the problem. Other methods like the LCR
performs better than the NNC and NBI [21], but are suited
only for two function problems.

Consider Fig. 1 where r(s), di(s) and do(s) are sources
of disturbances to the plant, since a change in any of these
signals drives a change in the output y(s). Using the same
multi-objective framework, it is possible to find all the Pareto-
optimal controllers that involve any of these three disturbances.

If Jdo(θ) is defined as:

Jdo(θ) =

∫ ∞
0

|−ydo(t,θ)| dt, (21)

The composite cost function is given by:

J3(θ) =
[
Jdi(θ) Jdo(θ) Jr(θ)

]T
. (22)

There is only one detail that has to be taken into account
when considering the function J3(θ). It is clear that Jdi(θ)
and Jdo(θ) do not depend on β, therefore, the anchor points
where these two functions are minimized are not unique,
because for any given β, the same minimum for Jdi(θ) and
Jdo(θ) is achieved. Considering this, in order to apply the
ENNC to the three functions problem, the anchor point are
define as follows:
• The value of β for the anchor point where Jdi(θ) is

minimum, is found by minimizing Jr(θ), but fixing the
values of Kp, Ti and Td that minimize Jdi(θ).

• The value of β for the anchor point where Jdo(θ) is
minimum, is found by minimizing Jr(θ), but fixing the
values of Kp, Ti and Td that minimize Jdo(θ).

• The anchor point where the minimum of Jr(θ) is found,
is computed as usual.

To simplify the analysis, the model of the controlled process
and the controller parameters are normalized [6]:

ŝ = Ts, τ0 =
L

T
, τi =

Ti
T
, τd =

Td
T
, κp = KpK.

Then the normalized parameters of the controller are, θ̂ =
[κ, τi, τd, β]

T .
Using this normalization, it is possible to find the optimal

controllers for a complete set of plants. If for example the
parameters of the normalized plant are κp = 1, τ0 = 0.5 and
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a = 0.1, the Pareto front found is presented in Fig 10. One
of the main reasons why the front is narrow, is because the
feasible region is constraint by the Ms = 2.0 criterion. This
particular Pareto contains 1042 possible controller tunings, all
of them optimal in the Pareto sense.

For this work, more than 500 different normalized plants
were considered. On average, for each plant, a Pareto of
1000 points was found, yielding near 500 000 different tuning
parameter, all optimal in the Pareto sense. With that data base,
two different options can be follow: in one hand, it is possible
to fit a tuning rule based on the data, and in the other hand,
a program can be written in order to interpolate a set of
parameters, based on the database and parameters of the plant.
Both approaches are going to be presented elsewhere.

IV. CONCLUSIONS

In this paper, the ENNC method was successfully applied
to find the optimal parameters of a 2DoF PID controller with
robustness constraints.

The method was also applied to a high order model and
to a non-linear CSTR plant with excellent results. The results
of the tuning were compared with other optimal/robust PID
tuning methodologies.

Finally, the tuning problem was augmented in order to
handle three different sources of disturbances (change in the
reference signal, change in the input disturbance signal and
change in the output disturbance signal). The methodology was
well suited for this problem and in fact, a database comprising
nearly 500 000 different controller tuning was found.
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