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Resumen

Algunos ensayos estadisticos iitiles en anilisis espectral se aplican a series
. temporales meteorolégicas provenientes de varias estaciones en el Oeste del
. Caribe. Los estimadores de la densidad espectral de potencia utilizados en
este trabajo son el periodograma, el estimador de Blackman y Tukey, y el
. modelo autoregresivo-media mévil. En el caso del dltimo estimador se utilizan
. varios métodos para estimar objetivamente el orden del modelo autoregresivo-
. media movil. En la mayoria de las series analizadas se encuentra que el
. modelo 6ptimo es un modelo autoregresivo puro de bajo orden. También se
. demuestra que la distribucién beta incompleta es la distribucién de probabi-
'~ lidad exacta del periodograma integrado de ruido blanco que se utiliza en
. uno de los ensayos estadisticos. Para ilustrar la aplicacién de ensayos estadis-
. ticos a series filtradas, se filtra una serie temporal con un pico espectral
. aparente con un filtro de paso de banda, y la potencia de salida se contrasta
con los dos posibles modelos estocdsticos.

Abstract

Some statistical significance tests which are useful in spectral analysis are
‘applied to meteorological time series from several stations in the Western
aribbean. The estimates of the power spectral density used in this work are
e periodogram, the Blakeman-Tukey and the autoregressive-moving average.
n the last case, several methods of objectively estimating the order of the
rocesses are used and it is found that in most cases the optimum models
rrespond to pure autoregressive processes of low order. It is shown that
e exact probability distribution of the integrated periodogram used in a
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white noise test is the incomplete beta function. A time series with an apparent
spectral peak is filtered with a band pass filter and the power of the output
tested against two possible stochastic models.

Introduction

During a study of synoptic wave-like disturbances in the 'tropica.l regior; using
spectral analysis, it was recognized the importance of having available o ]ect;ve
criteria to evaluate the statistical significance of. spectral featurf:s, such as, for
example, peaks, troughs and red or blue noise type behavior. 'The.l?rgg
variability of some of the power spectral deqs1ty estimates can easily mislea
the user in believing that an spurious pegk is real, or to regard two spectra
as due to different processes when in reality the dlfference?s could be the
natural ones arising in the realizations of the same stoghastlc model. Ev:;n
though statistical significance tests are very useful as gl{ldes, they s.houl;l he
complemented in the final analysis with the known physical properties of the
i involved. /
Vanl’?(t)):en::ny years spectral analysis has been u§cd succesfully in thg analy's15
of meteorogical time series. Jones (1972) has listed some of its main uses:

to locate the dominant scales of motion, )

to investigate the structure and dynamics. of the dom‘lnant wave modes,
the possible prediction of future behavior of the time series,
verification of dynamical theories, and g

to locate spectral shapes obeying power laws.

It is also well known that great care hast to be e)fercised in the practical
application of spectral analysis and in the interpretation of the results (Jones,
1972; Gutowski et al, 1978). It is the purpose of. this vs./ork to present some
statistical significance tests and objective criteria V&fthh can be qsefu! in
spectral analysis, and to illustrate their apphcatl'ons with meteorologlcaI. time
series from several stations in the Western Caribbean. The need of building
a complete statistical picture of the data will be stressed.

Data and methods

The geopotential, the meridional and zonal wind components at the tropospheric
levels of 850, 700 and 300 hPa were analyzed for periods qf several mopths
in the second half of the year and for different years and stations. The stations
and years used were: Swan Island (17°24’N, 83°56’W) and San Ar_ldres oIsla’rI:Id
(12°35°’N, 81°43'W) for the years (1970, 1971 and 1972; Santamaria (10°00 };
84°13'W) and Howard (8°59’N, 79°33’'W) for the years 1972 aqd 197?. I-':‘,jdc

of the time series was inspected for both gaps and dat'a dlscqntlnult}es.
Subjective synoptic analysis of data in the region and simple linear time
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interpolation were applied to missing data. Howard station showed the largest
percentage of missing data (7%) for the periods analyzed.

A comprehensive review of the available methods for estimating the power
spectral density can be found in Kay and Marple (1981). In this work we will
adhere closely to their definitions and conventions, unless otherwise indicated.

Periodogram

It is calculated using the Fast Fourier Transform (FFT) algorithm developed
by Sande and the prunning procedure of Markel (Robinson, 1983). It must
be remembered that the periodogram spectral estimate is not scaled properly
as a power spectral density, since it is the value of the peak, rather than the
area under the peak that is equal to power (Kay and Marple, 1981). The data
sometimes has to be zero padded to comply with a total length equal to a power
of two. Zero padding interpolates additional values between the independent
frequency components of then non-zero padded transform and lowers the
true average power of the time series. The first effect causes no trouble if the
statistical significance tests are carried out with the true number of independent
frequency components. The second effect is taken into account by scaling the
power spectra so that the sum of its terms equals the average power of the

. time series according to Parseval’s Theorem (Cooley et al, 1969).

The statistical significance of this estimate can be tested with the known
relation between the periodogram of white noise and the chi-square distribu-
tion (Olberg, 1982; Murphy and Katz, 1985). Let P, be the value of the
periodogram at frequency f; = J/Nt, where N is the order of the transform

. and 7 the sampling time. Then:

i) P/(0%/2N) is distributed as a chi-square distribution of order 2 for
J=1,23...., (N/2)-1, and with ¢ the average power.
ii) P =0, since in our case the mean is subtracted from the data.

iii) forJ = N/2, P;/(0*/N)is distributed as a chi-square distribution of order 1.

. White noise test

A time series can be tested against white noise by integrating the periodogram
(Jenkins and Watts, 1968; Jones and Hearns, 1976). The significance levels

~ usually used are calculated assuming a normal distribution and are independent
. of frequency. This independence implies that negative power values are

Possible near zero frequency and that near the Nyquist frequency the integrated
power can be larger than the observed total variance. In practice, the end

. points of the integrated spectrum are fixed because the Nyquist frequency

term is one for normalized spectra and the zero frequency or DC term is zero
since usually the mean is subtracted from the series. An expression for the
Probability distribution function of the integrated spectrum, which complies
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with fixed end points and is based on the chi-square statistics of the periodogram
estimate, is derived as follows

m
LetZ ‘=24 e gl (10§ 4 6o e, il , (N/2)—1, then the
|

normalized variable w = N/o® Z_, follows a chi-square

distribution with 2m degrees of freedom, since it is the sum of m stochastic
variables distributed as chi square of order two. Similarly, the total variance
o’ is distributed as chi-square distribution with 2N—1 degrees of freedom.
Therefore we are interested in the probability that w_/o” obtains a value less
than x under the condition that the variance obtained a value s?, that is, P
(w /o> < x | o?=s%, which is the incomplete beta function I (a,b) with a=m
and b= N—m—1/2 (Abramowitz and Stegun, 1970).

Blackman-Tukey estimate

The Blackman-Tukey (B-T) estimate of the power spectral density (Blackman
and Tukey, 1959) is calculated using the biased autocorrelation estimate and
the window proposed by Papoulis (1973), which has a slightly smaller variance
than Parzen’s window (Jenkins and Watts, 1968). For this window, the degrees
of freedom are 3.73 N/M and the badnwidth 1.87/M, where N is the length
of the time series and M the length of the autocorrelation. If N-1 samples of
the autocorrelation are computed, then the unwindowed B-T estimate and
the periodogram yield identical numerical results (Kay and Marple, 1981).
The statistical significance of the B-T estimate P(f), against the value P_(f)
predicted by a given model, can be calculated computing the ratio.

P(f)/P_(f) > CC¥n, 1)

where CC is the significance level of a chi-square distribution of n degrees of
freedom (Olberg, 1982).

Olberg uses Blackman-Tukey’s estimate of the number of degrees of
freedom, that is, n=2+(N/M — 1/3), which differs from the degrees of freedom
of the window proposed by Papoulis. The statistical significance level for a
peak in the B-T estimate should be somewhat higher or about the same than
the significance level for the same peak in the periodogram estimate, since
the B-T estimate can be considered as a smoothing of the periodogram. It was
found that the statistical significance tests are in agreement if one uses the
degrees of freedom suggested by Papoulis, whereas the estimates with Blackman-
Tukey’s proposed degrees of freedom tend to underestimate the significance
levels.
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Autoregressive-Moving average power spectral density estimate

If the data can be represented by an autoregressive-moving average
(ARMA(p,q)) model, the corresponding power spectral density estimate is:

o?1[1+2b, exp(—j2ufkr)]’

P =
i [1 +2a, exp(—j2ufkn)]?

)

where a_ are the p autoregressive coefficients, b, the q moving average
coefﬁcnents o’ the variance of the innovation process and 7 the sampling time
interval (Kay and Marple, 1981).

In practice, diagnostic checks must be carried out to see lf the more general
autoregressive-integrated-moving average ARIMA (p,d,q) process is neces-
sary to model the data (Box and Jenkins, 1970). A first estimate of the model
order is obtained from inspection of the autocorrelation and partial autocorrela-
tion functions. A final decision can be made inspecting the Bayesian Informa-
tion Criterion (BIC) (Katz and Skaggs, 1981), the Minimum Akaike Informa-
tion Criterion (MAIC) (Ozaki, 1971), and the Generalized Partial Autocorrela-
tion function (GPAC) (Woodward and Gray, 1981). The first two are based
on the residual variance, which decreases with increasing model complexity,
and a function, which is different for the two criteria, that penalizes the
increase in the number of parameters in the model. Thus, the optimum number
of parameters corresponds to those where the criteria is a minimum. The
third criteria is based in the generalized partial autocorrelation function whose
values are arranged in matrix form with rows labeled by the MA order, starting
with order 0, and columns labeled by the AR order starting with 1. One way
of identifying the model order is by locating a column with nearly constant
values, accompanied by a row of entries near zero. The label of the column
and row are the values of p and q, respectiveiy. The data used in this work
has been found to correspond to ARIMA (0,0,p) processes, that is, pure
autoregressive processes AR(p). The details of parameter estimation for
AR(p) processes are given below. '

Autoregressive power spectral density estimate

Of the several methods for estimating AR parameters, the forward-backward
linear prediction version (Robinson, 1983) was chosen because of its higher
resolution, lack of observed line splitting, reduced bias in the power estimates
and absence of sidelobes (Kay and Marple, 1981). An objective estimate of
the model order can be obtained from the Final Prediction Error coefficients
(FPE), Akaike’s Information Criterion (AIC), and with Parzen’s Criteria
Autoregressive Transfer function (CAT) (Kay and Marple, 1981). For the
data used in this paper the three methods agree in the order selected, except
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for very few exceptions. Once the order p and the AR coefficients a_are
determined, the spectra is calculated with Ec. 2, setting all b, coeficients to
ZEero. )

Filtered time series

In many applications it is useful to filter the data to enhance certain spectral
feature and/or to reduce noise. Olberg (1982) has derived expressions to test
the significance of the ratio of the power of the filtered data and the power
of a proposed model series filtered in the same way. For example, when
looking for an spectral peak, a band pass filter may be applied to the data
and the power of the filtered series tested against a white noise model. The
test gives the probability that the power observed may be due to an spurious
peak within the filter’s band pass.

Results
Choosing the appropriate model

Fig. 1 shows the autocorrelation and partial autocorrelation coefficients for
the geopotential at the 850, 700 and 300 hPa levels at Howard Base during
the period June 1 to August 31, 1979. In all three cases the autocorrelation
function does not dampen out, whereas the partial autocorrelation coefficients
are close to zero after the third or fourth. From this information one chooses
tentatively an AR(3) process for the 850 and 300 hPa levels and an AR(4)
for the 700 hPa level, although in this last case, the selection is dubious
because the fourth coefficient is between one and two standard deviations.
On inspection of the GPAC functions (Tables 1,2,3), it can be concluded that
all three series can be modeled with an order three autoregressive process,
although the near constant behaviour is lost at high q values. Table 4 shows
the BIC and the MAIC for the 850 and 700 hPa levels, which confirms that
an AR(3) process is the right choice, except in the case of the MAIC for the
700 hPa level that selects an order 4 process. Notice that the BIC has a more
pronounced minimum than the MAIC. All the criteria above, point to pure
autoregressive processes, and only the order of the 700 hPa level is doubtfull.
The FPE, AIC and CAT functions, which are applicable to AR processes,
predicted each one of them consistently for the 850, 700 and 300 hPa levels,
orders of 3,4 and 3, respectively, which can again be traced to the fact that
the 700 hPa level has the fourth partial autocorrelation coefficient near the
significance threshold boundary. Fig. 1 also compares the Blackman-Tukey
power spectral density estimate with the autoregressive estimates. The dif-
ferences in the spectra are not statistically significant. For example, the peak
near 0.25 day' for the B-T estimate of the 850 hPa level has a significance
level of 0.15 when compared with the power density predicted by the AR(3)
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Figure 1. The autocorrelation (ACF) and partial autocorrelation (PACF) functions
for the geopotential at the 850, 700 and 300 hPa levels at Howard Base are
shown on the left. The Blackman-Tukey (BT) and autoregressive (AR)
power spectral density estimates at normalized frequency are shown on the
right. The sampling interval is 1 day. The value corresponding to two
standard deviations for the PACEF is indicated by the horizontal lines. The
cross indicates the 0.01 significance level and the bandwidth of the BT
estimate.
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model, but when compared with the power density predicted by an AR(1)
model, its significance level is 0.007. In the particular case of the 700 hPa
level, both order 3 and 4 estimates show the same general trends of the spectra
and the differences are not statistically significant. Thus, an AR(3) process
could be chosen in the interest of parsimony.

Table 1
GPAC function for geopotential at Howard Base at the 850 hPa level

q/p 1 2 3 4 5 6

0 doyrioty e .003 278 .070 —031 sl A7,
1 D21 —45.1 R g 192 =29y 124
2 1.29 279 .361 . 950 .396 —.091
4 .960 .38 233 453 .099 ~:053
4 .603 —.418 1.18 .360 .282 .394

Table 2
GPAC function for geopotential at Howard Base at the 700 hPa level

q/p 1 2 3 4 5 6
0 477 .024 .303 129 —-.070 —-.096
1 516 —5.85 293 291 —.246 —.140
2 1.46 .343 476 -.018 .167 —.085
a 1.03 =1.80 .468 4.64 152 193
4 517 ~: 327 776 715 =390 518

Table 3
GPAC function for geopotential at Howard Base at the 300 hPa level

q/p 1 2 3 4 5 6
0 499 122 187 .031 1100 .041
1 .682 —~.630 .167 .627 —-.087 .604
2 =102 .485 418 .185 .468 131
3 786 | —1.07 741 ~.556 138 ~.401
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Table 4
BIC and MAIC for geopotential at Howard Base at
the 850 and 700 hPa level

850 hPa. 700 hPa.

p | q| BIC |MAIC | BIC |MAIC
30| 8180 | 809.9 | 838.9 | 830.8
2108237 | 8181 | 847.3 | 841.8
410 817 | 811.1 | 841.0 | 830.4
301|820 | 811.4 | 841.5 | 8309
2|1 8265 | 8184 | 851.4 | 843.4
4|1 |82.2 | 8131 | 8456 | 832.4
510 845.4 | 832.3
511 849.5 | 833.8

The zonal wind component at Swan Island for the period June 1 to October
31, 1972 is an example of a more typical behavior of meteorological data.
Similar spectra can be found in Julian (1971), Madden and Julian (1971), and
Jones (1974). The autocorrelation coefficients and the partial autocorrelation
coefficients are shown in Fig. 2 for the 850, 700 and 300 hPa levels. The autocor-
relations exhibit an exponential decay and only the first partial autocorrelation
coefficient is significantly different from zero, thus pointing to an AR(1)
model. This choice is confirmed by the GPAC functions shown in Tables. 5
to 7 and by the three FPE, AIC, and CAT functions (not shown) which
predict also order one. The periodogram power spectral density and the
Blackman-Tukey power spectral density estimates for all three levels are also
shown in Fig. 2. The red noise spectra is typical of AR(1) processes with a
positive autoregression coefficient. Because the mean has been subtracted
from the data, the periodogram has a value of zero at zero frequency, thus
producing a false peak at low frequencies. The B-T estimate also shows this
false peak, although smoothed out. Notice the peak near 0.25 day™' for the
B-T spectra of the 850 hPa level. Its significance level when tested against an
AR(1) model gives .0193. Since all the evidence points out that the AR(1)
model is correct, this peak can be considered spurious, in spite of its high
significance level. Similarly, the bumps at midfrequencies for the 300 hPa
level are all spurious with significance levels between .2 and .1.

White-noise test

The geopotential for the period from June 1 to Aug. 31, 1979 at Santamaria
Airport in Costa Rica, also presented the AR(1) behaviour in all three levels.
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Table 5
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GPAC function for geopotential at Swan Island at the 850 hPa level

q/p 1 2 3 4 5 6

0 .803 .073 .052 —.054 L —.006
1 .836 —.050 .128 -.110 =.051 S
2 .860 1.%7 747 -.049 = 037 .865
3 .820 —.647 372 %367 a0l .220
4 784 .085 .053 1.80 1.56 .065
5 .789 —.473 -2.40 1.58 1:42 —.849

Table 6
GPAC function for geopotential at Swan Island at the 700 hPa level

q/p 1 2 3 4 3 6
0 .786 .107 -.015 .030 w087 .061
T .838 216 .201 g, —.066 .098
2 .821 1.00 .402 -1.47 -.070 128
3 .846 2.20 —3.28 695 119 .063
4 767 .704 .994 150 —.870 = 114
&) .853 e 033 . 415 .848 o L0 =019 |

Table 7
GPAC function for geopotential at Swan Island at the 300 hPa level

q/p 1 2 3 4 5 6
0 .604 .053 038 .077 —-.059 .037
1 .660 .485 .059 .037 —-.015 .035
2 292 1.14 g % YA .049 .046 077
3 .790 .629 .294 w161 —.276 .198
4 .524 291 —1.48 291 —-1.12 —12.2
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2. The autocorrelation (ACF) and partial autocorrelation (PACF) functions
for the zonal wind component at the 850, 700 and 300 hPa levels at Swan
Island are shown on the left. The periodogram (P) and Blackman-Tukey
(BT) power spectral density estimates at normalized frequency are shown
on the right. The sampling interval is 1 day. The value corresponding to two
standard deviations for the PACEF is indicated by the horizontal lines. The
cross indicates the 0.01 significance level and the bandwidth of the BT

estimate.
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Figure 3. White noise test for the geopotential at the 850, 700 and 300 hPa levelg at
Santamaria Airport. The 0.01 significance level is shown calculated accqrdmg
to the normal distribution approximation (straight lines) and accordmg tg
the incomplete beta function (curved lines that pass through the fixe

endpoints).

F 10
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Fig. 3 shows the white noise test with the .01 significance level calculated
using both the normal distribution approximation and the exact distribution
for the integrated periodogram which was demonstrated above to be the
incomplete beta function. Although both methods recognize that the process
is not white noise at the stated significance level, the exact incomplete beta
test is more discriminating at the endpoints.

Filtering data

Following a similar procedure as outlined above it was found that the appro-
priate model for the meridional wind component in the 400 hPa level at San
Andres Island for the period June 1 to October 31, 1971, must be an AR(6)
process. Fig. 4 shows the B-T and AR(6) spectral density estimates. The AR(6)
spectra was calculated with the following parameters:

047227, -.019022, .23101, .04731, —.05628, and —.27182.

The significance level for the peak near 0.26 is 0.0055 when tested against an
AR(1) model. Also shown is the AR(3) estimate which is obviously not a
good fit.

The data was filtered with an ARMA(2,2) process with the following AR

- coefficients 0.0, —.59172 and MA coefficients 0.0 and 0.82645. This filter has
. maximum gain at a normalized frequency of 0.25 and half gain frequencies
~ at 0.21 and 0.29. The power of the filtered data was tested against the power
. of similarly filtered white noise, AR(3) and AR(6) models.

0.5

| -== BT
b OOC.AR (6) -
L —0-AR(3)

b | i I 1 1 1 1

0 "0.25 05

FREQUENCY

FREQUENCY

Figure 4. White noise test at the 0.01 significance level (left) and Blackmaq-Tukey
(BT) and autoregressive (AR) power spectral density estimates (right) of
the meridional wind component at the 700 hPa level at San Andres Island.
The sampling interval is 1 day. The cross indicates the 0.01 significance level
and the bandwidth of the BT estimate.
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hows that output power of the filtered AR(6) mgdel i§ closest to
theT;‘)aobV:/ZrS c§f the filtered cli)atal,)but neither tt‘le AR(3.) or v&(h}te noise rpodels
are significantly different at the .05 level, since thf:lr significance limits are
below 1.96. An inspection of the white noise test (Fig. 4), shqws that tl}e data
is only marginally different from a white noise process.,.whxch explams th;
results from filtering and the small autoregressive c‘:oeffxclents required Fo fit
the data. This example illustrates clearly that in this case t_he app.arentl). reczlal
spectral peak should be considered spurious, unless other evidence is provided.

Table 8
Power ratio test
Power ratio Significance limit
AR(3) 12212 1.1293
AR(6) .9883 .0478
White noise 1.2518 1.2934

Concluding remarks

Complementing the traditional spectral analy§is techniques v«'/ith ARIMA
modeling, fitting and checking, provides a fairly complete picture of thef
statistical properties of the time series being analyzed. .The‘carefu.l use ol
seemingly redundant tests and checks turns to be very frmtful in m.akl‘n'g fina
decisions in those cases where the model order selection or the significance
tests are marginal.

Two final points must be stressed. First, ARMA quels are very useful
because their mathematical structure provides a convenient statistical repre-
sentation of the data in terms of a small number of parameters. T.hese models
can only be viewed as an approximation, since there is no a priori reason that
meteorological observations should be generatc‘d'by an ARMA process (Katz
and Skaggs, 1981). Second, the statistical significance tests are, in general,
not intended to infer the nature of the typical or true spectra (J.ones,'197.2),
but the utility of spectral statistics for describing. a period ur'ldfar investigation
(Wallace, 1971). From the point of view of modelmg', the statlstlc.al S{gnlflcance
tests can be interpreted in terms of the success of different realizations of the
proposed model in reproducing the data.
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