ENSO and PDO Effects on Hydroclimatic Variations of the Upper Colorado River Basin

HUGO G. HIDALGO AND JOHN A. DRACUP

Civil and Environmental Engineering Department, University of California, Berkeley, Berkeley, California

(Manuscript received 4 June 2001, in final form 6 June 2002)

ABSTRACT

Linkages between tropical Pacific Ocean monthly climatic variables and the Upper Colorado River basin (UCRB) hydroclimatic variations from 1909 to 1998 are analyzed at interseasonal timescales. A study of the changes in these linkages through the years and their relationship to the Pacific Decadal Oscillation (PDO) is also investigated. Tropical Pacific climate variations were represented by atmospheric/oceanic ENSO indicators. For the UCRB, warm season (April–September) streamflow totals at Lee’s Ferry, Arizona, and precipitation averages at different periods (cold season: October–March; warm season: April–September; and annual: October–September) were used to study the UCRB’s response to tropical Pacific climatic forcing. A basinwide ENSO signature was found in the significant correlations between warm season precipitation in the UCRB and warm season SST averages from the Niño-3 region in most of the stations around the UCRB. This link is more evident during the warm phase of ENSO (El Niño), which is associated with an increase in warm season precipitation. The analysis also showed a link between June to November ENSO conditions and cold season precipitation variations contained in a principal component representing the high-elevation precipitation stations, which are the main source of streamflow. However, the amplitude and coherence of the cold season ENSO signal is significantly smaller compared to the general precipitation variations found in stations around the UCRB. Only when very few stations in the high elevations are considered is the ENSO signal in cold season precipitation in the basin revealed. Interdecadal hydroclimatic variations in the UCRB related to possible PDO influences were also investigated. There are significant shifts in the mean of UCRB’s moisture-controlled variables (precipitation and streamflow) coincident with the PDO shifts, suggesting a connection between the two processes. It has been suggested in other studies that this connection could be expressed as a modulation on the predominance of each ENSO phase; that is, strong and consistent winter El Niño (La Niña) patterns are associated with the positive (negative) phase of the PDO. In the UCRB this apparent modulation seems to be accompanied by a general change in the sign of the correlation between ENSO indicators and cold season precipitation in most stations of the basin around 1932/33. From 1909 to 1932 the basin has a predominantly cold season ENSO response characteristic of the northwestern United States (drier than normal associated with tropical SST warming and vice versa); from 1933 to 1998 the response of the basin is predominantly typical of the southwestern United States during winter (wetter than normal associated with tropical SST warming and vice versa). This apparent correlation sign reversal is suggested to be related to interdecadal changes in the boundary of the north–south bipolar response characteristic of the ENSO signal in the western United States during winter.

1. Introduction

Hydroclimatic variations in the Upper Colorado River basin (UCRB) are linked to climate variations in the tropical Pacific Ocean in this study. Changes in these linkages for different epochs are also studied, with the objective of better characterizing the dependency of the UCRB’s hydroclimate on the Pacific Ocean’s oceanic and atmospheric processes.

The influence of the tropical Pacific climate conditions in the form of El Niño–Southern Oscillation (ENSO) events to North American hydroclimatic variability has been well documented (e.g., Ropelewski and Halpert 1986, 1989; Kiladis and Diaz 1989; Cayan and Webb 1992; Kayha and Dracup 1993, 1994; Redmond and Koch 1991; Piechota and Dracup 1996, 1999; Piechota et al. 1997; Gershunov 1998; Dettinger et al. 1998, 1999; Higgins et al. 2000). In general, southwestern U.S. cold season precipitation tends to be wetter than normal during El Niño events (negative phase of the Southern Oscillation) and drier than normal during La Niña events (positive phase of the Southern Oscillation). The opposite effect is observed for the northwestern United States, creating a bipolar response between the two regimes (Ropelewski and Halpert 1986; Cayan and Webb 1992; Cayan et al. 1999). North–south contrast in zonal precipitation is also related to ENSO. The latitudinal center of winter zonal precipitation shifts south
Table 1. Partial list of references citing effects of North Pacific climate variation.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Variable studied/affected</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebbesmeyer et al. (1991)</td>
<td>40 physical and environmental variables</td>
<td>Pacific basin</td>
</tr>
<tr>
<td>Beamish (1993)</td>
<td>Increase in fish production</td>
<td>North American west coast</td>
</tr>
<tr>
<td>Trenberth and Hurrell (1994)</td>
<td>Eastward shift in Aleutian low pressure system; anomalous circulation in upper-troposphere affects temperature, rainfall, streamflow, and fish productivity</td>
<td>North Pacific Ocean</td>
</tr>
<tr>
<td>Diaz and Pulwarty (1994)</td>
<td>Seven climatic ENSO-sensitive indices, including paleoecological records</td>
<td>Periphery of the Indian and Pacific Oceans</td>
</tr>
<tr>
<td>McCabe and Fountain (1995)</td>
<td>Changes in glacial winter mass balance caused in part by winter atmospheric circulation changes</td>
<td>Central California</td>
</tr>
<tr>
<td>Dettinger and Cayan (1995)</td>
<td>Increase in snowmelt and runoff</td>
<td>Strait of Georgia, Fraser River</td>
</tr>
<tr>
<td>Beamish et al. (1995)</td>
<td>Chinook salmon productivity changes; synchronous increase in mean temperature, decline in river flows, decrease in marine survival of hatchery-reared Chinook</td>
<td>North Pacific Ocean</td>
</tr>
<tr>
<td>Deser et al. (1996)</td>
<td>Anomalous upper-ocean temperature profiles 0–400 m</td>
<td>North Cascade glaciers, Washington</td>
</tr>
<tr>
<td>Horner et al. (1997)</td>
<td>Increase in harmful algal blooms</td>
<td>U.S. West Coast</td>
</tr>
<tr>
<td>Piechota et al. (1997)</td>
<td>Streamflow</td>
<td>Western U.S.</td>
</tr>
<tr>
<td>Zhang and Levitus (1997)</td>
<td>Upper-ocean temperature anomalies</td>
<td>North Pacific Ocean</td>
</tr>
<tr>
<td>Beamish et al. (1997a)</td>
<td>Increase abundance of Pacific salmon</td>
<td>North Pacific Ocean</td>
</tr>
<tr>
<td>Beamish et al. (1997b)</td>
<td>Changes in abundance of sockeye salmon</td>
<td>Fraser River</td>
</tr>
<tr>
<td>Conversi and Hameed (1997)</td>
<td>Zooplankton biomass and sea surface temperature changes</td>
<td>Gulf of Alaska</td>
</tr>
<tr>
<td>Mantua et al. (1997)</td>
<td>Changes in salmon production</td>
<td>North Pacific Ocean</td>
</tr>
<tr>
<td>Weinheimer and Cayan (1997)</td>
<td>Varves from sediment record</td>
<td>Santa Barbara, California</td>
</tr>
<tr>
<td>Zhang et al. (1997, 1998)</td>
<td>Global sea surface temperature, sea level pressure, and other related variables</td>
<td>Pacific Ocean</td>
</tr>
<tr>
<td>Wiles et al. (1998)</td>
<td>Tree ring records and reconstructed temperature</td>
<td>Gulf of Alaska</td>
</tr>
<tr>
<td>Brown and Braaten (1998)</td>
<td>Changes in snow-depth records</td>
<td>Canada</td>
</tr>
<tr>
<td>McGowen et al. (1998)</td>
<td>Marine populations</td>
<td>U.S. West Coast</td>
</tr>
<tr>
<td>Downton and Miller (1998)</td>
<td>Salmon production</td>
<td>Alaska</td>
</tr>
<tr>
<td>Hare and Mantua (2000)</td>
<td>100 environmental time series: 31 climatic and 69 biological</td>
<td>North American coast, including Alaska</td>
</tr>
</tbody>
</table>

* Coupled also with tropical Pacific forcing.
1 Spectral and cross-spectral analysis of these variables was studied.
2 The glacier is affected by changes in the winter circulation patterns over the North Pacific and Canada.
3 Principal components extracted from 79 streamflow stations for ENSO years.
4 Connection mechanisms (bridge) between tropical and extratropical regions.
5 This study was focused on the finding of a 28.8-month signal corresponding to the quasi-biennial oscillation in these variables.
6 Strong interdecadal signal was found in these varves, which were not very sensitive to ENSO.

In recent years, an increased interest in the contribution of North Pacific decadal-scale climate variations to the North American physical environment has captivated considerable research efforts (Table 1). North Pacific decadal-scale oceanic variations are present in at least two of the first six rotated global modes of non-ENSO SST variability found by Mestas-Nuñez and Enfield (1999; Enfield and Mestas-Nuñez 1999), explaining a combined 13.2% of the variance. Two rotated principal components of monthly SST variability from a region of the Pacific Ocean from 20°S to 60°N latitude are related to precipitation, drought, and streamflow in the United States (Nigam et al. 1999; Barlow et al. 2001).

Decadal-scale climatic variations in the North Pacific drive episodic changes on climatic conditions over relatively short periods of time known as climatic regime shifts (Minobe 1999; Mantua et al. 1997). These shifts have significant effects on the North American physical environment, evidenced as steps in the mean and/or the variance of physical records such as glacial mass, streamflow, marine populations, ecological response variables, and fire frequency changes (Table 1).

The most extensively studied climate regime shift oc-
curred in 1976/77, a period characterized by a significant step in the mean toward wetter conditions in physical and environmental variables around the Pacific basin. This shift is strongly evident as a single event in the physical records of some regions (Ebbesmeyer et al. 1991; Trenberth 1990; Graham 1994), while in other studies (Mantua et al. 1997; Hare and Francis 1995; Minobe 1997; Zhang et al. 1997), the 1976/77 shift is just one realization of multiple shifts recorded in physical and environmental variables. These shifts are linked to a quasi-oscillatory mechanism associated with sign reversals of SST anomalies from an extensive region of the North Pacific (Mantua et al. 1997), and they are evident in November–March averages of the North Pacific SST leading principal component (PC), designated the Pacific Decadal Oscillation (PDO) index by Mantua et al. (1997). Additional sign reversals of the PDO index were recorded in 1924/25 and 1946/47, impacting physical and environmental variables around the North American coast (Mantua et al. 1997).

Anomalies in the oceanic component, which are more slowly varying and therefore contain a longer memory, are coupled with atmospheric pressure patterns having higher-frequency variations, which in turn produce changes in atmospheric wave and jet stream patterns, influencing regional temperature, precipitation and storm track location and intensity, and ultimately climatic variations at later seasons (Cayan 1992; Cayan and Webb 1992; Cayan et al. 1998; Dettinger et al. 1998; Trenberth 1990; Trenberth and Hurrell 1994). General references of ocean–atmosphere interactions can be found in Alexander et al. (1999). For the North Pacific in particular, Namias (1969) presented correlation maps between SST and sea level pressure (SLP) fields by season during the 1960s. Similar ocean–atmosphere field correlations for the period 1951–80 can be found in Trenberth and Hurrell (1994). In this latter study, the authors estimated the lag between SST and atmospheric circulation in the North Pacific to be from 1 to 2 months. Using an atmospheric general circulation model, Voldodin and Galin (1999) showed that differences between the periods 1946–76 and 1977–88 in the Northern Hemisphere near-surface temperature and pressure are related to SST variation. Finally, the strength and position of the wintertime Aleutian low is usually related to the interannual sign of the PDO index. A deeper and eastward-shifted Aleutian low is typical of the positive PDO phase (Mantua et al. 1997; Trenberth 1990; Trenberth and Hurrell 1994). The generally deeper Aleutian low after the 1976/77 climate regime shift was associated with advection of warmer and moister air to the North American west coast and colder air over the North Pacific, producing changes in atmospheric thermodynamic and moisture-carrying mechanisms, as well as altered ocean currents (Ingraham et al. 1991) and coastal SSTs (Trenberth and Hurrell 1994). These changes manifested as southward shifts of normal storm tracks, changes in the physical environment, and anomalous rainfall and streamflow patterns (Trenberth and Hurrell 1994). Changes in climatic conditions produced alterations in marine life, manifested in the general increase in the productivity of many fish species after the 1976/77 shift (Trenberth and Hurrell 1994; Mantua et al. 1997; Hollowed et al. 2001).

Although a strong connection between tropical and North Pacific climatic variations is generally accepted (Zhang and Levitus 1997; Zhang et al. 1997, 1998; Liu and Zhang 1999), at this time researchers are only beginning to fully understand coupling mechanisms and bridges between the two regions. Understanding the forcing mechanisms that affect hydroclimatic conditions in the UCRB will provide useful information for forecasting models (Hamlet and Lettenmaier 1999; Latif and Barnett 1996) and for water resources planning. In the following sections, we will present evidence of the ENSO and PDO signature in the UCRB. These effects are manifested differently in warm and cold season precipitation, as well as in streamflow; for this reason separate analyses for these variables are presented.

2. Data sources and characteristics

a. Streamflow

The streamflow dataset most commonly used for characterizing hydrologic variation in the UCRB is the Lee’s Ferry record. Lee’s Ferry, Arizona, is located 1 mile downstream of the confluence of the Colorado and the Paria Rivers, at the legal dividing point between the Upper and the Lower Colorado River basins. A monthly adjusted unimpaired streamflow record for Lee’s Ferry from 1906 to 1998 was obtained from the U.S. Bureau of Reclamation (USBR 1998). The data were adjusted by the USBR to account for upstream regulation and consumption, especially important after 1963, when operation of the Glen Canyon Dam and the filling of Lake Powell began. However, streamflow estimates prior to 1914 are less reliable, since the data were extrapolated from stations outside the basin (Stockton and Jacoby 1976). Data from 1914 to 1922 are compiled from estimates of the streamflows of the three main tributaries (Colorado, Green, and San Juan Rivers) and are considered accurate enough for hydrologic studies (Stockton and Jacoby 1976). A stream gauge was installed in 1923, reducing uncertainties associated with data collection from that time forward. The quality of the data after these adjustments is difficult to quantify; however, the annual averages of the streamflow record from 1909 to 1998 are strongly correlated with the basinwide annual averages of the Palmer drought hydrological index ($r = 0.82$) and precipitation ($r = 0.76$) in the basin (see next section), giving us confidence that the streamflow data contains an underlying hydroclimatic signal. Additionally, these high correlations are maintained in the first and the second halves of the records.
b. Precipitation

Monthly precipitation totals for stations around the UCRB were obtained from the National Climatic Data Center (NCDC 1999). The Global Historical Climatology Network (GHCN) dataset was updated using the Cooperative Station (COOP) dataset, both of which are from the NCDC. In addition, some of the Colorado station data were obtained from the Colorado Data Center (CDC) at Colorado State University. Stations showing a discrepancy in the data obtained from different sources of more than 38 mm in any given month were not used in the analysis. In cases when discrepancies below this threshold were found, averages were computed from the values reported by different sources. Only stations with data covering at least the 1931–98 period were considered as candidates for the analysis, and in some cases only the stations with data from 1909 to 1998 were used. The 1931–98 period was selected in many analyses to maximize the number of stations (high spatial resolution) while attempting to maintain the longest possible records. Additionally, stations with more than 5% missing data were not used. Missing values were estimated from a weighted average using the monthly means from the known data and the precipitation values from the neighboring 4 months. All resulting time series were visually inspected for outliers. In Table 2, the list of precipitation stations used in this study is shown. Figure 1 shows the monthly distribution of a subset of stations representing different elevations.

Since the UCRB comprises a highly varied selection of elevations and climate regimes, it is difficult to integrate all precipitation contributions into a single time series that is highly representative of the entire-basin precipitation. Basinwide precipitation estimates were obtained from a principal component analysis (Table 3; Fig. 2). The first component (PC1) is highly correlated with precipitation variations from most stations in the basin and is also highly correlated ($r = 0.94$) with an alternative basinwide precipitation estimation obtained by averaging data from the climate divisions covering the basin (not shown). Since the highly productive cold season regions (responsible for most of the runoff) represent only a small percentage of the basin’s area (see section 3a), the basinwide estimation represented by PC1 is biased toward the precipitation variations of the low and middle-elevation stations. This is also confirmed by the significant correlations found between warm season averages of the Niño-3 SST anomalies and PC1 (Table 3). In order to account for the cold season signal in the high elevations we included PC5 in part of the analysis (Fig. 2). Cold season variations of PC5 were shown to be strongly correlated with June–November averages of Niño-3 SST anomalies (4 months in advance) (Table 3). This lag was selected according to Redmond and Koch (1991), who related the Southern Oscillation Index (SOI) to climate division precipitation in the United States. Despite the high correlations found between PC5 and ENSO indicators, it should be noted that the significantly lower maximum loadings (Fig. 2) and the lower variance explained by this PC (Table 3) suggest that this signal is significantly weaker and less coherent than PC1. It also should be noted that the loading pattern of PC5 suggests that the boundary of the north–south bipolar response characteristic of the ENSO signal in the western United States during winter crosses through the basin. This implies that some parts of the basin present the characteristic ENSO response of the northwestern United States (wet conditions during La Niña and vice versa); while other parts present the typical ENSO response of the southwestern United States (wet conditions during El Niño and vice versa).

c. Sea surface temperature

A $5^\circ \times 5^\circ$ grid of monthly Pacific Ocean sea surface temperature (SST) anomalies data from 1856 to 1999 was obtained from an updated version of the Kaplan et al. (1998) dataset. The data were interpolated from ship observations from the U.K. Meteorological Office database (Parker et al. 1994) using optimal estimation from 80 empirical orthogonal functions. Sea surface temperature anomaly time series for regions Niño1 + 2 (0°–10$^\circ$S, 90$^\circ$–80$^\circ$W), Niño-3 (5°N–5°S, 170$^\circ$–90$^\circ$W), and Niño-4 (5°N–5°S, 170$^\circ$–120$^\circ$W) were averaged from the gridded data.

d. Other indices

The SOI data from 1866 to 1998 (Chelliah 1990) were obtained from the Joint Institute for the Study of the Atmosphere and Ocean database (JISAO 1999). Updated estimates of the Multivariate ENSO Index (MEI) from 1950 to 1998 were obtained from an updated version of the data by Wolter (1987). Tree ring chronologies were obtained from the National Oceanic and Atmospheric Administration (NOAA) International Tree Ring Data Bank (NOAA 1997).

3. UCBR response to ENSO events

a. Basinwide analysis

The UCRB is a semiarid basin covering approximately 280 600 km2. It is bordered by two high-elevation mountain ranges: the Rocky Mountains to the east and the Wasatch Mountains to the west. Warm season streamflow variations in the UCRB are heavily dependent upon cold season precipitation stored as snowpack. Although satellite images show that around 65% of the basin can be covered by snow during an average winter (Josberger et al. 1993), it is estimated that 85% of the runoff originates from only 15% of the area (Stockton and Jacoby 1976). This 15% includes all the very high elevation areas, which have high annual hydrologic yields. The strong dependence of streamflow
on cold season precipitation is also confirmed by the monthly streamflow distribution shown in Fig. 3. This type of streamflow distribution is characteristic of snow-governed basins in which the majority of the streamflow originates from snowmelt during the warm season months (April–September). The correlation between cold season (October–March) average precipitation and warm season (April–September) total streamflow from 1909 to 1998 in the UCRB is 0.76. The same type of correlation for the individual stations can be found in Table 2. Based on the previous reasons, April–September streamflow totals from the Lee’s Ferry record were used to characterize hydrologic variation in the basin. The distinction between cold and warm season processes was also studied separately on the precipitation time series. For precipitation, three time series were
prepared for use in latter sections of this study: 1) water year averages (October–September), 2) cold season averages (October–March), and 3) warm season averages (April–September).

Justification of ENSO’s influence on the basin is found in the significant correlations ($p \leq 0.01$) between UCRB’s hydroclimatic series (April–September streamflow, cold season precipitation, warm season precipitation, and water year precipitation averages) and ENSO indicators (Niño 1+2, Niño-3, Niño-4, and SOI) shown in Fig. 4. The correlations were computed using lags from 0 to 24 months. Additionally, the monthly ENSO indicators were averaged using 3–12-month windows for each lag. Lags and windows at which significant

Fig. 1. Monthly distributions (1933–98) from a subset of precipitation stations in the UCRB. The box is composed of the median and the upper and lower quartiles. The magnitudes of the whiskers are computed using the smaller value between 1.5 times the interquartile range or to the extend of the data. Notches represent a robust estimate of the uncertainty about the means for box-to-box comparisons. Values outside the whiskers (outliers) are represented with the symbol ‘+.’ Distributions with no outliers show a dot at the whisker’s end. Shaded contours are every 500 m starting at 1500 m. Darker contours represent higher elevations.
correlations were found are depicted as shaded areas in this figure. Nonsignificant correlations are not shown. For each ENSO indicator variable, there are 10 (thin) rows from top to bottom corresponding to each of the averaging windows (3–12 months). The highest correlations for each ENSO indicator are also shown.

Even though the correlations shown in Fig. 4 are higher for cold season than warm season, it should be remembered that the time series representing high-elevation stations (PC5) represents just a fraction of the total precipitation variance of these stations. Additionally, the lower maximum loadings for the PC representing the high-elevation stations (section 2b) suggest that the ENSO signal during the cold season is significantly less coherent than the broad precipitation variations from the basinwide estimations.

The previous results are verified by looking at the relationship between extreme ENSO events and precipitation and streamflow variations (Fig. 5). In this case, average monthly ENSO indicators for the seven strongest El Niño events (1957/58, 1965/66, 1972/73, 1982/83, 1986/87, 1991/92, and 1997/98) and the seven strongest La Niña events (1949/50, 1954/55, 1964/65, 1970/71, 1973/74, 1975/76, and 1988/89) selected using the MEI (Wolter 1987) from 1947 to 1998 are plotted along with the monthly averages of precipitation and streamflow in the UCRB. The values from the year previous to each ENSO event are also shown in Fig. 5 as a reference. The most evident feature in Figs. 5a and 5b is the maximum precipitation peak in September during years of strong El Niño events. There is some evidence that the UCRB may be wetter moving toward a strong warm ENSO event, and a secondary precipitation peak of smaller magnitude is also shown in April. This secondary peak is associated with the rising limb of the ENSO indicators. The inclusion of other large events in the future will reduce the uncertainty about the significance of this peak, and a more detailed study would verify its spatial extend. If this peak turns out to be significant at many precipitation stations, it may provide useful information for future forecasts in the basin.

A similar analysis for a subset of stations highly correlated with ENSO during the cold season at lag four is shown in Fig. 6. In this figure, monthly precipitation from stations with positive correlations (1947–98) between (June–November) Niño-3 SST variations and cold season precipitation (October–November) higher than 0.4 were averaged together to represent the southwestern part of the basin. The southwestern part of the UCRB is expected to be positively correlated with tropical SST variations, while the northwestern part of the basin is expected to present negative correlations (Fig. 2). A similar time series was obtained for the northwestern part of the UCRB, but precipitation from stations with negative correlations with magnitude higher than 0.4 was averaged. As can be seen in Fig. 6a, the increase in cold season precipitation during El Niño...
events in the southwestern part of the UCRB is greater than the decrease in precipitation in the northwestern part for the same events. During La Niña, there is a slight increase in cold season precipitation in the northwestern parts, and almost normal conditions in the southwestern part of the basin.

Figures 5 and 6 depict an asymmetry in the response of UCRB’s precipitation variation to ENSO. In general, the ENSO signature seems to be stronger and more evident in UCRB’s precipitation for El Niño than for La Niña. The September precipitation peak observed in the composite of the seven strong El Niño events (Fig. 5) represents about 168% of the monthly mean for this month, while the November peak in the southernmost part of the basin shown in Fig. 6 represents 178% of the monthly mean. While part of this intensification could be a reflection of the general tendency of El Niño events to be stronger than La Niña events, it should be mentioned that Figs. 5 and 6 do not provide information about the consistency of the ENSO signal. In other words, moderate La Niña events could still have more consistent response in the UCRB than moderate El Niño events.

b. Results for station data

In order to provide a verification of the results of ENSO influence on the basinwide precipitation estimates, an alternative analysis is presented in this section using monthly station precipitation data. The station data will also provide a finer spatial resolution, allowing better detection of the ENSO signal found in the high-elevation stations during the cold season.

Correlations between June–November Niño-3 SST anomalies (4-month lag) and cold season (October–March) total precipitation in the UCRB from 1909 to 1998 can be found in Fig. 7a. Correlations between warm season (April–September) Niño-3 SST anomalies and coincident (zero lag) warm season precipitation in the UCRB for the same years are found in Fig. 7b.

From Fig. 7a it can be seen that the correlations for
FIG. 5. Average ENSO indicators for the seven strongest (a) El Niño and (b) La Niña events from 1950 to 1998 computed using the Multivariate ENSO Index (Wolter 1987) and average composites of precipitation and streamflow values for the same years. The evolutions of the year previous to each El Niño event are also shown as a reference. In the precipitation and streamflow composites, the monthly means are shown with a dashed line as a reference.

FIG. 6. Average ENSO indicators for the seven strongest (a) El Niño and (b) La Niña events from 1950 to 1998 using the average precipitation of two subsets of stations showing strong ($r \geq 0.4$) correlations between cold season precipitation and (Jun–Nov) ENSO indicators. The top (bottom) figure represents the southwestern (northwestern) part of the UCRB, which is positively (negatively) correlated with ENSO.

cold season show a band of low negative correlations with ENSO, including sites in the Wasatch Mountain Range, the eastern side of the Wind River Mountain Range, and the western slope of the Rocky Mountains in Colorado. This is consistent with the loading pattern for PC5 shown in Fig. 2. Because there are positive and negative correlations, the basin has a mixed response. This detail is most probably not captured correctly by the basinwide estimates (PC1). The results from the correlation map shown in Fig. 7a are consistent with the analysis of the individual climate divisions, which suggests that the strongest cold season ENSO signal is contained in climate divisions representing the southwestern part of the basin (not shown), a result also in agree-
The mechanisms behind the intensification of warm season precipitation during the warm phase of ENSO were associated with direct or short-term effects of the subtropical jet stream and above-average SSTs in the eastern North Pacific Ocean by these researchers (Hereford and Webb 1992). Additionally, Ropelewski and Halpert (1986) suggested that the ENSO signal is in phase with the bimodal precipitation cycle (Hereford and Webb 1992) of the Great Basin region (GBR), including the UCRB. These authors found that the strongest ENSO signal in the region occurs in the April–October “season” (Ropelewski and Halpert 1986). Their results showed that 81% of the El Niño years studied were associated with increased precipitation in the GBR (Ropelewski and Halpert 1986). Higgins et al. (1999) produced composites of seasonal

Fig. 7. Correlation coefficients (1909–98) between (a) Jun–Nov Niño-3 SST variations (lag four) and cold season (Oct–Nov) precipitation, and (b) warm season (Apr–Sep) Niño-3 SST variations and coincident (lag zero) warm season precipitation for stations around the UCRB. The symbol convention is the same as in Fig. 2.

It is interesting to note that two of the largest El Niño events, occurring in 1982/83 and 1997/98 did not produce extensive wetter-than-normal anomalies during the cold season as they did during the warm season months. One possible reason for the lack of cold season response to El Niño events could be the location of the basin compared to the division of the north–south precipitation contrast characteristic of the western United States’ ENSO signature. The composites of precipitation anomalies from Figs. 8h and 10h and the correlation pattern from Fig. 7a confirm that the north–south boundary region of the western U.S. bipolar response to ENSO during the cold season (Ropelewski and Halpert 1986; Andrade and Sellers 1988; Cayan and Webb 1992; Cayan et al. 1999) crosses through the UCRB, producing a mixed response. This boundary region is located at a lower latitude in the eastern part of the UCRB (Rocky Mountains) than in the western part (Wasatch Range), and it is generally different in shape and position for El Niño and La Niña (Cayan et al. 1999). Only when few stations in the high elevations are considered is the
ENSO signal in cold season precipitation in the basin revealed. In contrast, the mechanisms responsible for the increase of warm season precipitation during El Niño events and a moderately dry response during La Niña are most probably associated with ENSO modulations on different climatic mechanisms than the ones responsible for the signal during the cold season.

4. North Pacific climatic signal

a. Basinwide hydroclimatic variations at interdecadal timescales

In this section we are interested in studying an apparent modulation of the PDO on ENSO that may be reflected in hydroclimatic variations in the UCRB at interdecadal timescales. To be consistent with the SST data used in the rest of the analysis, a PDO index was constructed using the Kaplan et al. (1998) dataset. The PDO index (Mantua et al. 1997) is defined as the first principal component of monthly SST variation in the North Pacific (poleward of 20°N). The PDO presents a predominant bidecadal oscillation (Biondi et al. 2001), while a pentadecadal signal in also observed during the winter and spring in the North Pacific (Minobe 1997, 1999).

A principal component analysis (PCA) was performed on the covariance matrix of monthly SST data covering a region of the Pacific Ocean poleward of 20°N and a time period from 1945 to 1998. Even though SST data from 1900 to 1944 are available in the Kaplan et
al. (1998) dataset, the 1945–98 period was chosen because pre–World War II gridded SST datasets are usually less reliable (Minobe and Mantua 1999). The averages, standard deviations, and eigenvectors from the 1945–98 period were used to produce time representations for the total dataset from 1900 to 1998. That is, the PC’s axes were chosen using only the most reliable data. The first PC determined here was named “PDO mode” (PDOm) to distinguish it from the PDO by Mantua et al. (1997), who used a different SST dataset in their analysis. The month-to-month correlation between the PDO and the PDOm time series from 1900 to 1998 is 0.78.

We looked for shifts in the mean of hydroclimatic variables in the UCRB coincident with sign reversals of the November–March (NDJFM) PDOm. The definition of cold season PDOm over the NDJFM months was selected for consistency with Mantua et al. (1997), since the variations from this period are known to contain significant changes in the mean at decadal timescales. For all other time series, cold season was defined as the period from October through March. Standardized values for the NDJFM PDOm and several hydroclimatic time series for the UCRB are presented in Fig. 12. As can be seen in the figure, the PDOm (NDJFM) experienced significant ($p \leq 0.05$) changes in the mean around the years 1924/25, 1946/47, and 1976/1977, consistent with the results found by Mantua et al. (1997). The effects of the 1976/77 shift are more clearly observed in UCRB’s hydroclimatic variables one year later (1977/78). Hare and Mantua (2000) have found empirical evidence that an additional climate regime shift may have occurred in 1988/89. This latter episode is found in the NDJFM PDO time series by Mantua et al. (1997).
Fig. 10. Same as Fig. 8, but for the seven strongest La Niña events.

(not shown), but it is not significant in the PDOm (NDJFM). The 1988/89 shift is only significant (at the 5% level) in warm season streamflow (Fig. 12), but it is seen with less definition in some of the time series. The time series which evidence a defined 1988/89 shift (such as in warm season streamflow), also present a wavelike shape in the 1977–98 period composed of the switch from wet to dry conditions in 1988/89 (Fig. 12). This wave can also be seen as a significant ($p \leq 0.10$) increase after 1976/77 in the wavelet (Torrence and Compo 1998) power spectra at periodicities between ~ 10 and 16 yr (Fig. 13) for warm season streamflow, water year precipitation, and warm season precipitation. The predominance of a bidecadal signal is evidenced in the NDJFM PDOm, along with a lower-amplitude signal in the pentadecadal period (Fig. 13). Precipitation from the high-elevation stations (PC5) showed a predominance of periodicities in the range 2–8 yr (the same dominant periodicities of ENSO), suggesting an ENSO signature in the variations of PC5.

Except for the 1946/47 shift, there are significant shifts in the mean of most of the UCRB’s moisture-controlled variables coincident with the PDOm shifts, suggesting a connection between the two processes. Warm season precipitation only presents a significant shift in 1976/77. This characteristic variation was also found in cold season and water year averages of the SOI (not shown), which shifted significantly ($p < 0.0000$) only during the 1976/77 shift, validating the connection between warm season precipitation and ENSO suggested in section 3. These shifts were also found in precipitation station (Hidalgo-Leon 2001; Hidalgo and Dracup 2002) and tree ring data (Fig. 14), confirming the connection between UCRB hydrocli-
matic data and North Pacific decadal-scale variations. Tree ring growth indices from high hydrologic yield areas are known to be associated with hydroclimatic variations in the UCRB (Stockton and Jacoby 1976; Hidalgo et al. 2000, 2001). In Fig. 14 more tree ring chronologies showed a significant shift (at the 5% level) during the 1924/25 and 1976/77 shifts than during the 1946/47.

The PDOm pattern of variation alternates between positive and negative phases for all consecutive climate regime shifts (Fig. 12). Hydroclimatic variables from other basins known to be strongly affected by the PDO (Fig. 5 of Mantua et al. 1997; Fig. 3 of Hamlet and Lettenmaier 2000) present shifts in the mean coincident with all shifts of the PDO index. This intuitively suggests a modulation by the PDO on the hydroclimatology of these basins. Using data from the period 1933–93, Gershunov and Barnett (1998) suggested that the modulation of the PDO on U.S. climatic variables could be an expression of the modulation of the PDO on the predominance of each ENSO phase. Strong and consistent El Niño patterns were found on U.S. climatic variables only during the positive phase of the PDO, while the patterns typical of La Niña winters are characteristically strong and consistent only during the negative phase of the PDO (Gershunov and Barnett 1998). In our case, the mean of hydroclimatic variables in the UCRB did not shift during the 1946/47 shift. As a result of this, high (low) PDOm epochs were inversely related to low (high) streamflow for the 1909–46 period, while for the period 1947–98 high (low) PDOm epochs are associated with coincidentally high (low) streamflow periods (Fig. 12). This is particularly important, since it suggests that not all regions influenced
by the North Pacific shifted during the late 1940s PDO shift, and if we assume that there is a modulating role of the PDO on ENSO of the type suggested by Gershunov and Barnett (1998) then the sign of the correlation between ENSO and the UCRB’s cold season hydroclimatic variations has changed at some point around the 1946/47 shift. It should be remembered that the basin can have a mixed ENSO response during the cold season (Figs. 2, 7); in this case the basinwide correlations mentioned in the previous sentence are referred to the correlations in the southwestern part of the UCRB during the cold season. Most likely, any modulation of the PDO on ENSO and its response on the UCRB involves a complex mechanism, including modulating cold and warm season precipitation differently, as well as the modulation of the PDO and ENSO on other climatic mechanisms. In the next section we provide some insights about this modulation by studying the response of the UCRB for different phases of ENSO and the PDO.

Fig. 12. Standardized time series of Nov–Mar Pacific Decadal Oscillation mode (PDOm), and several hydroclimatic variables in the UCRB. Horizontal lines indicate the mean for each climate epoch defined by times of sign reversals of PDOm. The numbers indicate the probability of no change in the mean at each shift year computed using intervention analysis (Box and Tiao 1975; Box et al. 1994). The “n.s.” label was used for probabilities not significant at the 5% level. The PDOm show significant shifts in the mean in 1924/25, 1946/47, and 1976/77.
5. Interpretation of tropical and North Pacific influence by PDO epochs

In this section we examine changes over time in the strength and consistency of the links between Pacific Ocean and UCRB climatic variations, with the objective of providing insights about the nature of the shifts in the mean of the times series observed in Fig. 12. The station precipitation data will be used to determine changes in the relationships between ENSO and UCRB cold season precipitation through the years. Correlations between June–November averages of Niño-3 SST anomalies and cold season precipitation from 1909 to 1932 (Fig. 15a) suggest that the basin had weak negative correlations during this period. In contrast, the more recent period (1933–98) shows that the lower parts of the basin present more generalized positive correlations with tropical Pacific SST variations characteristic of the ENSO response in the southwestern United States (Fig. 15b) and an area of negative correlations in the northern part of the basin. The generally positive correlations between warm season precipitation and tropical SST variations discussed in section 3b is maintained during both periods (not shown).

A possible explanation for the change in sign of the relationship between ENSO and UCRB cold season processes could be related to a change in the boundary of the north–south bipolar ENSO response. If this boundary was significantly lower from 1909 to 1932, that could explain the negative correlations with tropical SSTs, since the basin would be having the characteristic response of the northwestern United States: wetter-than-normal cold season conditions associated with La Niña and vice versa. There would probably be a transition period of weak correlations around 1933. From 1933 to 1998 the basin has the mixed response found in previous sections (Figs. 2, 7), with the lower part of the basin having significant positive correlations with tropical SSTs and generally weaker negative correlations in the northern parts of the basin (Fig. 15b). This hypothesis could be further verified by studying a larger area to determine the position of the boundary at different periods.

6. Conclusions and discussion

As shown throughout this study, the ENSO signal found in warm season precipitation is more consistent at all stations than the ENSO signal in cold season precipitation. ENSO affects warm season precipitation in the basin almost synchronously or at a very small lag. This implies a fast teleconnection triggered by ENSO on warm season circulation patterns or in other summer atmospheric mechanisms. Only when very few stations in the high elevations are considered is the ENSO signal in cold season precipitation revealed. Cold season precipitation is the most important source of streamflow in the UCRB. The correlation patterns between ENSO indicators averaged 4 months in advance and UCRB’s cold season precipitation is consistent with other studies (Fig. 3.2 of Cayan and Webb 1992; Fig. 1 of Redmond and Koch 1991).

Using data from the period 1933–93, Gershunov and Barnett (1998) suggested that the modulation of the
PDO on U.S. climatic variables could be an expression of the modulation of the PDO on the predominance of each ENSO phase. Strong and consistent El Niño patterns were found on U.S. climatic variables only during the positive phase of the PDO, while the patterns typical of La Niña winters are characteristically strong and consistent only during the negative phase of the PDO (Gershunov and Barnett 1998). In the UCRB, we provided some knowledge about a possible PDO/ENSO modulation of cold season precipitation in the basin. This apparent modulation seems to be accompanied by a general change in the sign of the correlation between ENSO indicators and cold season precipitation in most stations of the basin around 1932/33. This sign change is thought to partially explain hydroclimatic variation in the basin and the observed shifts in the mean of these variables at interdecadal timescales. However, the particular mechanisms behind the change of the correlation signs between ENSO and the basin are still unknown.

The modulation of the PDO and ENSO on other climatic mechanisms that can influence the UCRB’s hydroclimatic variations, such as the changes in the strength of the North American monsoon, predominance of PNA-like patterns, as well as shifts in the subtropical jet and its effects on moisture and summer temperature, is still under investigation. Additionally, it should be noted that the results from the initial part of the records are less reliable, because the hydroclimatic data and the SST data are less reliable at earlier times. More research using paleoclimatic indicators (especially tree rings) could improve our knowledge of these variations beyond the period covered by instrumental records.

In this study we presented some relationships between the Pacific Ocean and the UCRB climate. The results show that these relationships have not been fixed over the twentieth century, but the connection between both regions is modified by changes in the forcing mechanisms at synoptic to global scales (McCabe and Dettinger 1999). The results from this research are useful for the development of forecast models in the UCRB and at the same time provide an alternative way for investigating snowmelt-controlled basins from other regions and their relation to remote forcing mechanisms.

Acknowledgments. This work is partially supported by the University of California Water Resources Center under award WRC-889 and the by National Science Foundation under award NSF 9421030. The authors express thanks for the comments from Dr. David Silverman, Levi Brekke, the three anonymous reviewers, and the chief editor for the Journal of Hydrometeorology, Dr. Dennis P. Lettenmaier.

REFERENCES

Hare, S. R., and R. C. Francis, 1995: Climate change and salmon production in the northeast Pacific Ocean. Climate Change and Northern Fish Populations, R. J. Beamish, Ed., Canadian Special Publication of Fisheries and Aquatic Sciences, 121 pp.

