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Abstract
Telomere length has generated substantial interest as a potential predictor of aging-

related diseases and mortality. Some studies have reported significant associations, but

few have tested its ability to discriminate between decedents and survivors compared with

a broad range of well-established predictors that include both biomarkers and commonly

collected self-reported data. Our aim here was to quantify the prognostic value of leuko-

cyte telomere length relative to age, sex, and 19 other variables for predicting five-year

mortality among older persons in three countries. We used data from nationally represen-

tative surveys in Costa Rica (N = 923, aged 61+), Taiwan (N = 976, aged 54+), and the U.

S. (N = 2672, aged 60+). Our study used a prospective cohort design with all-cause mor-

tality during five years post-exam as the outcome. We fit Cox hazards models separately

by country, and assessed the discriminatory ability of each predictor. Age was, by far, the

single best predictor of all-cause mortality, whereas leukocyte telomere length was only

somewhat better than random chance in terms of discriminating between decedents and

survivors. After adjustment for age and sex, telomere length ranked between 15th and

17th (out of 20), and its incremental contribution was small; nine self-reported variables

(e.g., mobility, global self-assessed health status, limitations with activities of daily living,

smoking status), a cognitive assessment, and three biological markers (C-reactive pro-

tein, serum creatinine, and glycosylated hemoglobin) were more powerful predictors of

mortality in all three countries. Results were similar for cause-specific models (i.e., mortal-

ity from cardiovascular disease, cancer, and all other causes combined). Leukocyte telo-

mere length had a statistically discernible, but weak, association with mortality, but it did

not predict survival as well as age or many other self-reported variables. Although
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telomere length may eventually help scientists understand aging, more powerful and

more easily obtained tools are available for predicting survival.

Introduction
Human telomeres shorten with age in leukocytes as well as in other tissues [1]. Thus, telomere
length has generated substantial interest as a potential predictor of age-related diseases and
mortality. A number of studies that examined the association between leukocyte telomere
length (LTL) and all-cause mortality found a statistically discernible relationship [2–14], but
few studies explicitly compared LTL with other predictors of mortality: three [9, 15, 16] com-
pared LTL with other biomarkers, and one [17] compared LTL with both biomarker and other
predictors. These four studies [9, 15–17] focused on effect sizes and/or the significance of LTL;
none quantified the discriminatory ability of LTL and compared it with a range of established
mortality predictors such as those included in existing prognostic indexes [18]. A further limi-
tation of these four studies is that they were based on samples of very old individuals and in
one case [17] drew from a clinical population of discharged hospital patients. Unlike this inves-
tigation, none was based on a nationally-representative sample including cohorts young
enough to have only minimal bias from selective mortality.

Telomeres—the repetitive DNA sequences that cap the chromosomes to protect them from
fusion and degradation—shorten with each cell division [19]. Eventually, they reach a critical
minimum length, triggering the cell to stop dividing [20]. Thus at the cellular level, telomeres
act as a ‘molecular clock’, but to what extent they explain organismal aging—or mortality—is
debatable [21, 22]. Some suggest that cell senescence triggered by telomere dysfunction con-
tributes to the decline in tissue function we associate with aging [23]. Indirect evidence sup-
ports this view: some genetic diseases associated with premature aging also lead to telomere
shortening [24, 25], and genetically modified mice with short telomeres manifest symptoms
reminiscent of human aging [24]. Genetic variance studies have also identified several genetic
markers that are associated with both telomere length and various age-related diseases or mor-
tality [26, 27]. Thus, LTL has gained popularity as a marker of aging. Yet, a rigorous compari-
son of the ability of LTL versus well-established predictors to discriminate decedents from
survivors is lacking.

Our study focuses on all-cause mortality. Mortality is an attractive metric of aging because
death is a well-defined and salient outcome with minimal measurement error when vital status
is determined from virtually complete death registration records. Prior evidence regarding the
relationship between LTL and mortality has been mixed. Telomere length was found to be lon-
ger in a high longevity region of Costa Rica as compared to the rest of the country [28]. While
some studies have reported an inverse association between LTL and all-cause mortality [2–14];
others have found no relationship [15–17, 29–37] or only a marginally significant association
[38, 39]. Recently, the largest study to date [8] reported an association between short LTL and
mortality, including cancer mortality, although genetically-determined short telomeres were
protective of cancer mortality. Thus, the relationship between shorter telomeres and mortality
appears to be a complex one, potentially confounded by multiple factors, and causal linkages
have not been established [7]. Here we pose a more fundamental question: can LTL predict
mortality better than other well-established and less costly predictors?

Many studies of LTL and mortality focus on the significance of the association, but statisti-
cal significance is not a sufficient criterion to evaluate the incremental value of a marker.
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Similarly, the effect size or magnitude of the association (e.g., a hazard ratio) is useful for iden-
tifying risk factors, but it is not an appropriate statistical tool for quantifying predictive accu-
racy because even strong associations (e.g., large hazard ratios) may yield little improvement in
discrimination [40, 41]. For example, a large and significant hazard ratio associated with
extreme values of a particular biomarker may not distinguish well between survivors and dece-
dents in a statistical model if very few people have such extreme values of the biomarker. In
contrast to previous approaches, here we quantify the prognostic or discriminatory value of
LTL for predicting five-year all-cause mortality in terms of its ability to differentiate between
decedents and survivors compared with 21 well-established predictors of mortality. We use
data from nationally representative samples of older persons in Costa Rica (ages 61+), Taiwan
(ages 54+), and the U.S. (ages 60+).

Materials and Methods

Data
Data come from the second wave (fielded in 2006–08) of the Costa Rican Study on Longevity
and Healthy Aging (CRELES), the 1999–2002 waves of the National Health and Nutrition
Examination Survey (NHANES), and the 2000 wave of the Social Environment and Biomark-
ers of Aging Study (SEBAS). Details regarding sampling design and response rates for each
dataset are provided elsewhere [42–44].

Among 2364 respondents aged 61 and older who completed the CRELES wave 2 interview,
2166 provided a blood sample from which DNA was extracted and banked. A subsample (N =
994) of these respondents was selected for the LTL assay, including all those from the Nicoya
region and a probability sample of the remainder. The concentration of the stored DNA speci-
men was insufficient for 71 of those selected, leaving an analysis sample of 923.

For NHANES, we restricted the analysis to persons aged 60 and older (for comparability
with the other samples and to allow for the inclusion of cognitive function, which was not
asked of respondents younger than 60), among whom 3706 completed the interview, 3234 par-
ticipated in the exam, and 3068 were eligible for blood sampling. Of those eligible, the analysis
sample comprised 2672 individuals who supplied a DNA specimen.

Among 1497 respondents aged 54 and older who completed the 2000 SEBAS household
interview, 1386 were eligible for the exam and 111 were ineligible because of a health condition.
Of those eligible, 363 refused the exam and 47 had insufficient DNA, leaving an analysis sample
of 976.

Ethics Statements
All three surveys obtained written, informed consent from all participants and received human
subjects approval from the institutional review boards (IRB) at the institutions conducting the
studies: the Ethical Science Committee of the University of Costa Rica (VI-763-CEC-23-04)
[CRELES]; Princeton University IRB (#1848, #2193, #2791, #3391), Georgetown University
IRB (#1999–195), and the Joint IRB in Taiwan (NIFP-IRB-2000-01) [SEBAS]; NCHS Research
Ethics Review Board (Protocol #98–12) [NHANES].

Mortality
Survival status was determined based on administrative records and in the case of CRELES,
complementary survey follow-up (see S1 Appendix). The number of respondents who died
within five years was 276 in CRELES, 442 in NHANES, and 128 in SEBAS.
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Predictors
LTL was measured using quantitative polymerase chain reaction (Q-PCR) to determine the rela-
tive ratio of telomere to a single-copy gene (T/S ratio) in all three studies, although there were
some differences in the assay protocol (see S1 Appendix). The three datasets were analyzed inde-
pendently (e.g., LTL values from the three studies were not pooled). The inter-assay coefficients
of variation for the three studies were: 3.7% for CRELES, 6.5% for NHANES, and 7% for SEBAS.

Within each study, we tested LTL against a broad set of well-established predictors of mor-
tality, many of which are used in existing prognostic indexes (eprognosis.ucsf.edu). They com-
prise two demographic variables (age, sex), three social factors (marital status, education, and
social integration), two health behaviors (smoking, physical activity), six self-reported mea-
sures of health status (global self-assessed health, activities of daily living (ADL) limitations,
mobility limitations, history of diabetes, history of cancer, and number of hospital days/stays in
the past 12 months), a cognitive assessment, and seven biomarkers (systolic and diastolic blood
pressure, total cholesterol, glycosylated hemoglobin, body mass index, C-reactive protein, and
serum creatinine) in addition to LTL. See Table 1 for details.

Statistical Analysis
A substantial portion of each sample was missing data for at least one predictor. To maximize
use of the data, we followed standard practices of multiple imputation (see S1 Appendix).
Descriptive statistics were weighted to account for oversampling and differential response rates
(S2 Table). All models were fitted separately by country using a Cox hazards model with
unweighted data. To quantify the predictive ability of each variable, we used the Area Under the
Receiver Operating Characteristic Curve (AUC), a commonly used measure of discrimination
with values ranging from 0 to 1, where 0.5 indicates the model performs no better than chance
and 1.0 represents perfect accuracy. The AUC can be interpreted as the probability that the
model predicts a higher probability of death for those who died than for those who survived [52].
Pencina et al. [40] suggest that an increase of 0.01 in the AUC is a meaningful improvement.

We first tested each predictor individually using duration of follow-up as the metric for
time. Education, exercise frequency, and self-assessed health status were treated as categorical
in order to allow for non-linear effects. We tested each predictor for non-proportional hazards
(i.e., effect of the predictor varies with duration of follow-up). In cases where the interaction
between the predictor and duration was significant (p<0.05), we included that interaction in
the model. In CRELES, the effects of marital status, exercise frequency, systolic blood pressure,
and C-reactive protein diminished with time. For NHANES, the effect of diabetes weakened
over time. There was no evidence of non-proportional hazards in SEBAS.

Next, we ran models that controlled for age (i.e., using age as the time metric so as to esti-
mate age-specific mortality) and tested each of the remaining 21 predictors individually. To
allow for non-proportional hazards (i.e., effect of the predictor varies across age), we tested an
interaction between each predictor and age. We included in the final model interactions that
were significant: sex, social integration, C-reactive protein, and serum creatinine for SEBAS;
marital status, social integration, and exercise frequency for NHANES; but none for CRELES.

Our final models controlled for both age (as the clock) and sex. These models tested the
incremental contribution for each of the remaining 20 predictors individually. Again, we
included the interactions with age noted above.

Results
When the 22 variables were tested individually, chronological age was, by far, the single best pre-
dictor of five-year mortality (AUC = 0.78 in Costa Rica, 0.74 in Taiwan, and 0.71 in the U.S.;
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Table 1. Potential predictors included in the analysis.

Costa Rica [CRELES] Taiwan [SEBAS] U.S. [NHANES]

Demographic characteristics

1) Age at exam 61+ 54+ 60+

2) Sex Male, Female

Social factors

3) Marital status Categorical: Married/partner; Widowed; Divorced/separated; Never married

4) Educationa Completed Years Completed Years Categorical

Very low None None Less than 9th grade

Low 1–2 years 1–5 years 9th– 11th grade

Medium 3–5 years 6 years High school diploma/GED

High 6–9 years 7–11 years Some college or associate degree

Very high 10+ years 12+ years College graduate or higher

5) Social
integration indexb

Based on 5 items; Cronbach’s α = 0.58 Based on 11 items; Cronbach’s α = 0.73 Based on 3 items; Cronbach’s α =
0.72

Health behaviors

6) Smoking status Categorical: Never; Former Smoker; Current Smoker

7) Exercise
frequency

Dummy: Exercised 3+ times per week in
past 12 months

Categorical: None; <3 times per week; 3–5
times per week; 6+ times per week

Cumulative frequency of moderate/
vigorous leisure-time physical
activities in past 30 days, recoded:
None; <12, 12–29, 30+

Health status (self-reported)

8) Self-assessed
health status

Based on a simple question that is typically worded: “How would you rate your overall health?” and has five response categories
ranging from “poor” to “excellent.”

9) Number of ADL
limitationsc

Based on 5 ADLs Based on 6 ADLs Based on 5 ADLs

10) Index of
mobility limitationsd

Based on 4 physical tasks; coded on a
3-point scale from no difficulty to unable

Based on 8 physical tasks; coded on a
4-point scale from no difficulty to unable

Based on 8 physical tasks; coded on
a 4-point scale from no difficulty to
unable

11) History of
diabetes

Doctor told you that you have. . . Ever had. . . Ever told by a doctor. . .

12) History of
cancer

Doctor told you that you have. . . Ever had. . . Ever told by a doctor. . .

13) Hospital days/
stays, past 12
months

Days Stays Stays

Interviewer-administered assessment

14) Cognitive
functione

Based on tasks from the MMSE [45] (basic
orientation, immediate & delayed recall,
follow a 3-stage command, copy a
geometric design) as well as a reverse
recall task

Based on several items from the SPMSQ
[46] (basic orientation, serial subtraction), a
word recall task from the modified RAVLT
[47], & a modified version of the Digits
Backwards Test [48]

WAIS III (Wechsler Adult Intelligence
Scale, Third Edition) Digit Symbol
Substitution Test [49, 50]

Biomarkers

15) Systolic blood
pressure (SBP)

Mean of 1st & 2nd readings taken at home Mean of 1st & 2nd readings taken in the
hospital

Mean of 1st & 2nd readings taken in
the Mobile Exam Center (MEC)

16) Diastolic blood
pressure (DBP)

Mean of 1st & 2nd readings (at home) Mean of 1st & 2nd readings (in hospital) Mean of 1st & 2nd readings (MEC)

17) Total
cholesterol (TC)

Metabolic risk factor associated with cardiovascular disease

18) Glycosylated
hemoglobin
(HbA1c)

Marker of glucose metabolism

19) Body mass
index (BMI)

Measure of body fat computed as body weight (in kg) divided by height (in m) squared

(Continued)
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Table 2). Although LTL was significantly associated with mortality in all three countries
(Table 3, Model 1), LTL ranked 7th in Costa Rica, 10th in Taiwan, and 9th in the U.S. (Fig 1).
LTL was somewhat better than random chance in discriminating between decedents and survi-
vors: AUC = 0.59 in Costa Rica; 0.57 in Taiwan; 0.58 in the U.S. (Table 2). In addition to age,
several self-reported variables and the cognitive assessment were stronger predictors of mortal-
ity than LTL. Among the eight biomarkers, LTL ranked second in Costa Rica, fourth in Taiwan,
and third in the U.S. Body mass index (inversely associated with mortality) ranked higher than
LTL in all countries, while serum creatinine outperformed LTL in two of the three countries.
With the exception of LTL, the biomarkers tested here represent clinical markers commonly
used in treatment decisions. Yet, five of the eight biomarkers offered weak discrimination
(AUC<0.60) in all three countries.

The next set of models controlled for age and again included each of the remaining predic-
tors individually. LTL fell to 17th place in Costa Rica, 21st in Taiwan, and 16th in the U.S. (out
of 21). Net of age, the incremental contribution of LTL was substantially smaller
(ΔAUC<0.007) than the contributions of the best predictor in each country: self-reported
mobility in Costa Rica (ΔAUC = 0.017) and self-assessed health status in Taiwan
(ΔAUC = 0.02) and U.S. (ΔAUC = 0.042; Table 3, Model 2). Self-reported mobility was among
the top five predictors of mortality in all three countries.

Because LTL is strongly correlated with both age and sex [21, 22], we ran a final set of mod-
els that adjusted for both age and sex. LTL still ranked low (15th in Costa Rica, 17th in Taiwan
and the U.S.; Fig 2) and its incremental contribution was very small (ΔAUC<0.002; Table 4).

Table 1. (Continued)

Costa Rica [CRELES] Taiwan [SEBAS] U.S. [NHANES]

20) C-reactive
protein (CRP)

Inflammatory marker

21) Serum
creatinine (SCr)

Marker of renal function

22) Leukocyte
telomere length
(LTL)

Measured by the relative ratio of telomere to a single-copy gene (T/S ratio)

Abbreviations: ADL, Activities of Daily Living; MMSE, Mini-Mental State Exam; RAVLT, Rey Auditory Verbal Learning Test; SPMSQ, Short Portable

Mental Status Questionnaire.
a Because education was coded in five categories for NHANES, we recoded education (completed years) into categories for CRELES and SEBAS as

well.
b See S1 Table for a detailed list of the components included in the social integration index for each country.

Because the level of measurement varied across items, we standardized each of the components (based on the within-country distribution) and then

calculated the mean across valid items if at least 75% items were valid.
c ADLs included: eating; getting out of bed; moving around the house; bathing (CRELES, SEBAS); dressing (NHANES, SEBAS); standing up from a chair

(NHANES); using the toilet (CRELES, SEBAS).
d The index was based on difficulty performing various physical tasks without assistance.

Three of the tasks were asked in all three surveys (walking, climbing stairs, reaching overhead), although CRELES asked respondents to demonstrate

whether they could lift their arms above their shoulders whereas the other two surveys relied on self-report. The fourth task differed across surveys:

pushing/pulling large objects (CRELES), sitting for a long period (NHANES), and running a short distance (SEBAS). NHANES and SEBAS included four

additional tasks that were not asked in CRELES: standing for an extended period, lifting or carrying something somewhat heavy, grasping an object with

her/his fingers, and bending/kneeling/squatting. Based on the recommendations of Long & Pavalko [51], we constructed the index by summing the

available items (potential range: 0–8 in CRELES; 0–24 in NHANES and SEBAS), adding a constant (0.5), and taking the logarithm of the result, which

allows for relative rather than absolute effects.
e The summary measure of cognitive function is based on the respondent’s ability to perform various tasks administered by the interviewer.

doi:10.1371/journal.pone.0152486.t001
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Table 2. AUC and Rank for 22 Potential Predictors of All-Cause Mortality, by Country.

Costa Rica (N = 923) Taiwan (N = 976) U.S. (N = 2672)

Predictor AUC Rank AUC Rank AUC Rank

Age 0.776 1 0.744 1 0.714 1

Sex 0.536 18 0.520 20 0.557 14

Marital status 0.632 6 0.625 4 0.551 17

Education 0.564 13 0.591 7 0.56 11

Social integration 0.538 17 0.558 14 0.557 13

Smoking status 0.566 11 0.555 16 0.548 19

Exercise frequency 0.582 9 0.522 19 0.600 7

Self-assessed health status 0.534 19 0.578 9 0.618 6

Number of ADL limitations 0.676 4 0.555 15 0.633 5

Index of mobility limitations 0.727 2 0.671 3 0.674 2

History of diabetes 0.524 20 0.562 12 0.534 22

History of cancer 0.508 22 0.502 22 0.546 20

Number of hospital days/stays 0.546 15 0.554 17 0.556 15

Cognitive function 0.723 3 0.679 2 0.662 3

Systolic blood pressure 0.564 12 0.558 13 0.555 16

Diastolic blood pressure 0.585 8 0.511 21 0.576 10

Total cholesterol 0.540 16 0.568 11 0.549 18

Glycosylated hemoglobin 0.514 21 0.535 18 0.537 21

Body mass index 0.633 5 0.583 8 0.589 8

C-reactive protein 0.554 14 0.619 5 0.559 12

Serum creatinine 0.578 10 0.611 6 0.654 4

Leukocyte telomere length 0.593 7 0.570 10 0.580 9

doi:10.1371/journal.pone.0152486.t002

Table 3. Hazard ratios (HR) and gain in AUC attributable to LTL and selected best predictors of all-causemortality. CRELES (Costa Rica, N = 923),
SEBAS (Taiwan, N = 976), and NHANES (U.S., N = 2672).

HRa Gain in AUCb

CRELES SEBAS NHANES CRELES SEBAS NHANES

Model 1: Unadjusted vs. Random Chance (AUC = 0.50)

a) LTL 0.77*** 0.82* 0.70*** 0.093 0.070 0.080

b) Age 2.40*** 2.41*** 4.94*** 0.276 0.244 0.214

c) Self-Reported Mobility 2.13*** 1.79*** 1.71*** 0.227 0.171 0.174

d) Cognitive Function 0.65*** 0.59*** 0.63*** 0.223 0.179 0.162

e) ADL limitations 1.76*** 1.25*** 1.39*** 0.176 0.055 0.133

Model 2: Adjusted for age vs. Age only

a) LTL 1.05 0.93 0.85* <0.001 <0.001 0.006

b) Self-Reported Mobility 1.45*** 1.35** 1.53*** 0.017 0.013 0.036

c) Self-Assessed Health (SAH) 0.004 0.020 0.042

Poor (ref) 1.00 1.00 1.00

Fair 1.06 0.34** 0.42***

Good 0.90 0.37** 0.30***

Very Good 0.61+ 0.31** 0.21***

Excellent 0.89 0.17*** 0.19***

d) Cognitive Function 0.84* 0.73*** 0.66*** 0.008 0.016 0.026

(Continued)
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Net of age and sex, 13 variables were more powerful predictors of mortality than LTL in all
three countries: 10 self-reported (mobility, self-assessed health status, ADL limitations, cogni-
tive function, smoking, exercise, hospital stays/days, marital status, education, and social inte-
gration) and 3 biomarkers (C-reactive protein, serum creatinine, and glycosylated
hemoglobin). Self-reported mobility was consistently one of the best prognostic measures,

Table 3. (Continued)

HRa Gain in AUCb

CRELES SEBAS NHANES CRELES SEBAS NHANES

Model 3: Adjusted for age and sex vs. Age and Sex only

a) LTL 1.07 0.92 0.88+ 0.001 <0.001 0.002

b) Self-Reported Mobility 1.51*** 1.45*** 1.60*** 0.021 0.014 0.038

c) Self-Assessed Health Status 0.004 0.018 0.039

Poor (ref) 1.00 1.00 1.00

Fair 1.04 0.34** 0.42***

Good 0.89 0.36** 0.31***

Very Good 0.61+ 0.31** 0.21***

Excellent 0.89 0.16*** 0.19***

d) Cognitive Function 0.84* 0.71*** 0.67*** 0.008 0.015 0.021

e) ADL limitations 1.30*** 1.12* 1.30*** 0.012 0.007 0.026

f) CRP 1.23*** 1.42***, c 1.09*** 0.010 0.017 0.007

CRP x Age - - 0.99+ - -

Model 4: Adjusted for all sociodemographic controlsd vs. Sociodemographic controls only

a) LTL 1.06 0.94 0.88+ <0.001 <0.001 0.002

b) Self-Reported Mobility 1.48*** 1.41** 1.57*** 0.018 0.011 0.032

c) Self-Assessed Health Status 0.005 0.012 0.031

Poor (ref) 1.00 1.00 1.00

Fair 1.04 0.38** 0.43***

Good 0.82 0.41** 0.31***

Very Good 0.58+ 0.33** 0.21***

Excellent 0.82 0.21** 0.20***

d) Cognitive Function 0.81* 0.76** 0.66*** 0.006 0.008 0.013

e) ADL limitations 1.30*** 1.13* 1.29*** 0.010 0.004 0.025

f) CRP 1.24*** 1.52** 1.08*** 0.007 0.017 0.006

CRP x Age - - 0.99* - -

+ p < 0.10,

* p < 0.05,

** p < 0.01,

*** p < 0.001,

two-tailed.

Note: The best predictor of mortality for a given model in the specified country is indicated with bold type.
a With the exception of self-assessed health status and education, the HR represents the effect per SD of the specified predictor.
b Change in the AUC is based on a comparison between a model that includes the specified predictor with one that excludes that predictor.
c The effect of the predictor varied with age; the main effect represents the HR at age 54.
d In addition to age and sex, sociodemographic control variables include race/ethnicity (except in Costa Rica were race/ethnicity was not asked because

90% of the population is white/mestizo), marital status, and educational attainment.

In order to account for sampling design, the models for Taiwan also included urban residence and the models for Costa Rica included residence in the

Nicoya region.

doi:10.1371/journal.pone.0152486.t003
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ranking 1st in Costa Rica (ΔAUC = 0.021), 2nd in the United States (ΔAUC = 0.038), and 4th
in Taiwan (ΔAUC = 0.014).

Robustness to Alternative Specifications
Because the onset of cellular senescence is triggered by the shortest telomeres [53], LTL may
have a non-linear association with mortality. When we categorized LTL and the other bio-
markers into quintiles, the results remained similar (see S1, S2 and S3 Figs, Panel B). Net of age
and sex, LTL still yielded a small improvement in discrimination (ΔAUC<0.005) in all coun-
tries. We found no evidence of a non-linear relationship between average LTL and mortality.

Some have suggested that the association between LTL and mortality may be stronger at
younger ages [21, 54]. We explored this hypothesis using all respondents 20 and older for
whom LTL was assayed in the U.S. (N = 7822; data from Costa Rica and Taiwan did not
include younger individuals). We found no evidence that the effect of LTL on mortality varied

Fig 1. AUC for 22 Potential Predictors of Five-Year Mortality. (A) Costa Rica. (B) Taiwan. (C) U.S. Only the top 10 predictors are labeled. Abbreviations:
ADL, Activities of daily living; AUC, Area under the receiver-operating-characteristic curve; BMI, Body Mass Index; CRP, C-reactive protein; DBP, Diastolic
blood pressure; LTL, Leukocyte telomere length; SAH, Self-assessed health status; SCr, Serum creatinine.

doi:10.1371/journal.pone.0152486.g001
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significantly by age, whether we treated age as linear or categorical: 20–59, 60–74, 75–84, 85+
(see S2 Appendix and S3 Table). The findings based on respondents 20 and older (S4 Fig,
Panel A) were similar to those presented here. This consistency results largely from the small
number of deaths between ages 20 and 59, many of which result from external causes.

The strength of LTL as a mortality predictor may also vary by length of follow-up. For
example, among people who are critically ill, LTL might be inflated because of a shift in the dis-
tribution of leukocyte subtypes (e.g., an increase in the proportion of neutrophils, which tend
to have longer telomere length than lymphocytes [55]). An increase in LTL just prior to death
would weaken the relationship with short-term mortality. It is also plausible that LTL is a
stronger predictor of long-term than short-term mortality because telomere length reflects the
gradual process of cellular aging. However, our tests for non-proportional hazards showed no
evidence that the effect of LTL varied by duration of follow-up in any country. When we
excluded deaths within one year after LTL measurement (N = 64 in CRELES, N = 15 in SEBAS,
and N = 55 in NHANES) and modeled the association between LTL and mortality from one to
five years post-exam, LTL ranked lower relative to the other predictors. After extending the

Fig 2. Gain in AUC for 20 Potential Predictors of Five-Year Mortality After Adjustment for Age and Sex. (A) Costa Rica. (B) Taiwan. (C) U.S. Only the
top 10 predictors and LTL are labeled. Abbreviations: ADL, Activities of daily living; AUC, Area under the receiver-operating-characteristic curve; CRP, C-
reactive protein; HbA1c, Glycosylated hemoglobin; SAH, Self-assessed health status; SCr, Serum creatinine.

doi:10.1371/journal.pone.0152486.g002
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follow-up period to include all available data (mean 6.6 years for CRELES, 11.2 years for
SEBAS, and 9.9 years for NHANES) and including all U.S. respondents aged 20 and older, we
found that LTL contributed a negligible improvement in the AUC (<0.001) net of age and sex.
In sum, we found little evidence that the association between LTL and mortality differed by
length of follow-up.

Next, we re-estimated the models adjusting for a broader set of sociodemographic control
variables, including race/ethnicity, marital status, and education. The results were essentially
unchanged: LTL still ranked low and the incremental improvement in the AUC net of age and
sex remained very small (Table 3, Model 4 and S1, S2 and S3 Figs, Panel C).

Finally, results from a similar set of models using cause-specific mortality (i.e., cardiovascu-
lar disease, cancer, and all other causes combined; see S2 Appendix and S4 Table) as the out-
come were consistent with those presented here for all-cause mortality. Net of age and sex, LTL
yielded a negligible improvement in the AUC and ranked well below many other predictors
(S5 Table and S4, S5 and S6 Figs).

Discussion
Technological advances allow us to measure intricate details about human physiology. Yet, to
prove its worth, a novel biomarker should tell us more than we already know based on simpler
observables. The biological processes of telomere shortening and subsequent cell senescence
suggest potentially strong linkages between telomere length, aging, and survival. Previous
efforts that have identified statistically significant linkages between telomere length and mor-
tality seemingly provide some support for this expectation. However, prior to our analysis, the

Table 4. Gain in AUC after adjustment for age and sex for 20 potential predictors of all-causemortality, by country.

Costa Rica (N = 923) Taiwan (N = 976) U.S. (N = 2672)

Predictor Gain in AUC Rank Gain in AUC Rank Gain in AUC Rank

Marital status 0.006 10 0.006 11 0.008 10

Education 0.002 13 0.009 7 0.007 13

Social integration 0.002 14 0.003 15 0.004 14

Smoking status 0.009 7 0.006 10 0.016 6

Exercise frequency 0.006 9 0.005 13 0.020 5

Self-assessed health status 0.004 11 0.018 1 0.039 1

Number of ADL limitations 0.012 2 0.007 9 0.026 3

Index of mobility limitations 0.021 1 0.014 4 0.038 2

History of diabetes 0.000 19 0.010 6 0.011 7

History of cancer 0.000 20 0.000 19 0.003 15

Number of hospital days/stays 0.011 3 0.006 12 0.010 9

Cognitive function 0.008 8 0.015 3 0.021 4

Systolic blood pressure 0.000 16 0.000 18 0.001 18

Diastolic blood pressure 0.003 12 0.001 16 0.001 20

Total cholesterol 0.000 18 0.004 14 0.001 19

Glycosylated hemoglobin 0.009 6 0.007 8 0.008 11

Body mass index 0.000 17 -0.001 20 0.002 16

C-reactive protein 0.010 4 0.017 2 0.007 12

Serum creatinine 0.009 5 0.011 5 0.010 8

Leukocyte telomere length 0.001 15 0.000 17 0.002 17

doi:10.1371/journal.pone.0152486.t004
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discriminatory ability of telomere length relative to well-established variables in the social and
health sciences had never been evaluated.

Consistent with several studies that examined the relationship between LTL and five-year all-
cause mortality, we found a significant hazard ratio in an unadjusted model, although the effect
size was modest and was largely attenuated after controlling for age (Table 3). More importantly
for the purpose of prognosis, we found that LTL had little discriminatory ability and under-per-
formed many conventional predictors of mortality, including easily collected self-reported mea-
sures. Indeed, 13 variables were more powerful predictors of mortality than LTL in all three
countries. The self-reported measure of mobility limitations was consistently one of the stron-
gest predictors of all-cause mortality. Given that strong mortality predictors are almost certainly
proxies for myriad factors accumulated over a lifetime, the subjective nature of self-reports has
the advantage of capturing perceptions that may integrate complex information.

The weak contribution of LTL may result, at least in part, from the difficulty of measure-
ment. There is notable measurement error in LTL analysis resulting from various sources
including DNA quality and within- and between-well and -plate error [56]. In addition, normal
day-to-day variation in LTL represents noise that reduces statistical power to isolate the under-
lying signal [57]. Random variation—whether it results from measurement error or other fac-
tors—will lead to attenuation bias. If non-systematic error is greater for LTL than for other
variables, it would reduce the relative ranking of LTL. Importantly, the inter-assay coefficient
of variation of the three studies reported here ranges from 4 to 7%, which is on the lower end
of the reported variation for Q-PCR telomere length assays [56].

A further limitation is that this study evaluates only a one-time measurement of LTL. We do
not have the data to quantify individual-level changes in LTL over time for all three datasets, and
thus cannot assess whether the rate of telomere shortening might provide more prognostic power.
One important challenge in estimating the effects of LTL attrition is that measurement error
becomes a much bigger problem. If there is substantial measurement error, the apparent change
in LTL may reflect more noise than signal, and statistical power would be severely compromised.

An additional concern is that our analysis is limited to telomere length in leukocytes, which
may not reflect telomere length in other tissues. Although telomere lengths from various tissues
are well-correlated [1], that may not hold across all tissue types. Furthermore, the distribution
of leukocyte (white blood cell, WBC) subtypes may affect measures of LTL because the Q-PCR
technique yields a weighted average across a mix of different cell types. Although highly corre-
lated, different WBC subsets have different telomere lengths [55, 58, 59]. However, Glei et al.
[7] showed that controlling for WBC distribution had little effect on the association between
LTL and mortality.

Evidence suggests that it is the shortest telomeres, rather than average telomere length, that
determine the onset of cellular senescence [53]. Using the Terminal Restriction Fragment
method, Kimura et al. [37] found that the average length of the shortest telomeres was a better
predictor of mortality than the overall average LTL. Unfortunately, the Q-PCR technique used to
assay LTL in our study does not provide information about the distribution of telomere lengths.

The finding that LTL is a weak predictor of mortality in the general population might be
explained in part by competing risks. Both extrinsic risk factors and other intrinsic processes
may lead to death long before they lead to substantial telomere shortening. The association
between LTL and mortality may appear stronger in healthy subpopulations where many com-
peting risks are dormant. However, in exploratory analyses that excluded respondents who
reported poor or fair health, the increase in AUC attributable to LTL continued to be very
small (results not shown).

Finally, we have evaluated LTL and the other variables only in terms of their ability to pre-
dict mortality. This constraint entails two important limitations. First, while LTL is not a strong
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predictor of mortality among older people, it could be a valuable marker of healthspan or of
particular aging-related diseases. LTL has been associated with multiple diseases of aging, with
the strongest associations for coronary heart disease [60]. One study reported that short LTL
was associated with fewer years of healthy life, but not with shorter lifespan, supporting the
notion that LTL might be a biomarker of healthy aging, but not a biomarker of survival [31].
However, our auxiliary analyses of cause-specific mortality (i.e., cardiovascular, cancer, and all
other causes combined) suggest that LTL does not perform well against other predictors. Sec-
ond, the best predictors do not necessarily have causal effects on mortality; they may not repre-
sent root causes that can be modified or treated to lower the risk of premature mortality.
Nevertheless, accurate prognosis is important when patients and their doctors weigh the risks
and benefits of a given treatment.

We find that the molecular clock is nowhere near as powerful as chronological age when it
comes to predicting five-year mortality—at least among older humans. Net of age and sex,
numerous variables were better predictors of mortality than LTL including self-reported mobil-
ity, self-assessed health status, an assessment of cognitive function, smoking, exercise, an
inflammatory marker (C-reactive protein), and a marker of kidney function (serum creati-
nine). Although LTL may eventually help scientists understand aging, more powerful and
more easily obtained tools are available for predicting survival.
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