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ABSTRACT 

 The yellow-bellied sea snake, Pelamis platura, is the most broadly distributed snake 

species. Despite being endowed with a highly lethal venom, a proteomic analysis of its 

toxin composition was unavailable. The venoms of specimens collected in Golfo de 

Papagayo and Golfo Dulce (Costa Rica), where two distinctive color morphs occur, were 

chromatographically compared. The latter inhabits a fjord-like gulf where the transit of 

oceanic sea snakes into and from the basin is restricted, thus possibly affecting gene flow. 

RP-HPLC evidenced a conserved venom protein profile in both populations, despite their 

divergent color phenotypes. Following a trend observed in other sea snakes, P. platura 

venom is relatively simple, being composed of proteins of the three-finger toxin (3FTx), 

phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP), 5'-nucleotidase, and 

metalloproteinase families. The first three groups represent 49.9%, 32.9%, and 9.1% of 

total venom protein, respectively. The most abundant component (~26%) is pelamitoxin 

(P62388), a short-chain 3FTx, followed by a major basic PLA2 (~20%) and a group of three 

isoforms of CRISPs (~9%). Whereas isolated pelamitoxin was highly lethal to mice, neither 

the PLA2 nor the CRISP fraction caused death. However, the PLA2 rapidly increased 

plasma creatine kinase activity after intramuscular injection, indicating its myotoxic action. 

Differing from myotoxic PLA2s of viperids, this PLA2 was not cytolytic to murine 

myogenic cells in vitro, suggesting possible differences in its mechanism of action. The 

median lethal dose (LD50) estimates for P. platura crude venom in mice and in three 

species of fishes did not differ significantly. The sea snake antivenom manufactured by 

CSL Ltd. (Australia), which uses Enhydrina schistosa as immunogen, cross-recognized the 

three major components of P. platura venom and, accordingly, neutralized the lethal 
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activity of crude venom and pelamitoxin, therefore being of potential usefulness in the 

treatment of envenomations by this species. (297 words) 
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1. INTRODUCTION 

 Snake venoms are complex mixtures of bioactive molecules, including enzymes, 

non-enzymatic proteins, and several inorganic components [1]. In the last fifteen years, the 

application of proteomic methods to assess the compositional diversity of venoms has 

revolutionized our knowledge of toxic secretions in advanced snakes, leading to a deeper 

understanding of their biological functions and medical implications [2-6]. Not 

surprisingly, most studies in ‘venomics’ have been conducted in species of great medical 

importance, although the description of venoms from other species continues. These studies 

convey that an integral catalog of the secreted toxins is needed in order to fully understand 

the pathophysiology of envenomations and to improve their treatments [7]. In addition, 

assessing venom proteomes provides insights into the evolution of toxins and the contexts 

in which they evolved [8]. In some cases, phylogenetically related snake species resemble 

each other in venom activity and composition [9,10], and thus venom makeup could result 

from the evolutionary history of those species [11]. However, both substantial divergences 

and convergences in toxin constituents and/or their proportions have also been noticed 

between closely related species as well as between phylogenetically distant taxa [12-14]. 

Since venom denotes a key adaptation to subdue and digest prey, this situation implies that 

venom variation also results from natural selection acting upon differences in the identity or 

type of prey [13-15]. 

 Regardless of the causes that shape it, venom variation endows snakes with the 

ability to adapt to different ecological niches and to diversify within them. One group that 

has recently done so is comprised by the true sea snakes (Hydrophiinae: Hydrophiini), a 

clade of nearly sixty species of elapids that diverged from a common ancestor and 

experienced rapid radiation in the last 1.5-3 million years [16]. The Hydrophiini evolved 
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the ability to persist in the severe conditions imposed by marine environments: high levels 

of solar radiation and salinity, extreme temperatures, and underwater shelters. They present 

a characteristic paddle-like tail that enhances their swimming ability, and are 

ovoviviparous, spending most of their lives in their aquatic habitats [17,18]. Most sea 

snakes are benthic predators that exhibit great diet specialization and are constantly looking 

for prey in crevices of rocks and corals, or on the muddy bottom of their habitats [19]. A 

notable exception to these modes is the yellow-bellied sea snake Pelamis platura (recently 

proposed to change to Hydrophis platura; [16]), the only truly pelagic species that 

completes its lifecycle in the water column [20]. 

 The yellow-bellied sea snake is an abundant species throughout most of its range, 

and can be often observed floating on the surface of slicks, i.e. long smooth lines in the 

surface where sea currents converge [21,22]. Unlike other sea snakes [23], P. platura feeds 

on a variety of small fishes on the water surface [21,24-26]. Its venom contains 

pelamitoxin, a three-finger toxin (3FTx) acting as potent postsynaptic blocker with high 

lethality to experimental animals [27,28]. Despite P. platura being a widespread sea snake 

species with a highly lethal venom, a comprehensive account of its venom constituents was 

still lacking, perhaps as a consequence of its low medical impact. 

 Along its broad distribution in tropical and subtropical waters of the Indo-Australian 

region and the Pacific coast of the American continent [29], the largest for any snake 

species, two types of populations have been described for P. platura [30]: those restricted 

to particular areas in warm temperature waters (i.e. resident populations); and those 

composed of individuals that drift in currents throughout a wider region (i.e. waif 

populations, often in cooler waters). A resident population of P. platura restricted to the 

Golfo Dulce, in southwestern of Costa Rica, was reported recently [31]. In this locality, 
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most individuals are bright yellow (Fig.1D), but this morph is extremely rare in other 

localities of the species distribution [21,22,24]. Dominance of the yellow-morph in this 

locality might reflect gene flow restrictions. Biogeographically, Golfo Dulce is a fjord-type 

gulf, where the sea water enters slowly [32,33] and restricts the movement of oceanic sea 

snakes into and from the basin [31,34]. In contrast, the population off the Pacific coast of 

Costa Rica exhibits a typical bicolored or tricolored pattern (Fig.1A) that prevails 

elsewhere along the species distribution [24,25]. 

 The apparent restriction of gene flow in these distinct color-morph populations is of 

great interest [35] because it could lead to differences in the expression of venom 

constituents, and in turn could reveal differences in the evolutionary forces that underlie 

venom variation in this sea snake, as observed in other wide-ranging venomous snakes 

[36,37]. Therefore, the present study first compared the chromatographic profiles of 

the venoms of these two morphologically distinctive populations of P. platura from 

Costa Rica, and then, since they showed identical chromatograms, the venom 

composition of P. platura from Golfo Dulce was analyzed using venomics and the 

assessment of several in vitro and in vivo activities. In addition, the neutralization of 

this venom by a sea snake antivenom from Australia was evaluated. 

 

 

2. MATERIALS AND METHODS 

2.1 Venom samples 

 Adult individuals of P. platura were collected at approximately 2 Km from the 

shore, at two locations along the Pacific coast of Costa Rica (Fig.1B): Golfo de Papagayo 
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(~10°34'30''N, 85°43'19'' W; Guanacaste province; 47 individuals), and Golfo Dulce 

(~8°35'36'' N, 83°16'09'' W; Puntarenas province, 84 individuals). At the first location, all 

individuals exhibited the bicolored or tricolored pattern of the yellow-bellied sea snake, 

whereas all individuals from the second locality were yellow morphs. Venom was extracted 

directly into non-heparinized microhematocrit tubes, and specimens were thereafter 

released near their collecting sites. Venoms from each of the two populations were pooled, 

and finally conserved by freeze-drying and storage at -20°C. 

 

2.2 Reverse-phase HPLC comparative profiling 

 The venoms (~2 mg) of P. platura from Golfo de Papagayo or Golfo Dulce, 

respectively, were dissolved in 200 L of water containing 0.1% trifluoroacetic acid (TFA), 

centrifuged at 15,000 xg for 5 min to remove debris, and fractionated by RP-HPLC on a 

C18 column (Teknokroma; 4.6 x 250 mm, 5 m particle) using an Agilent 1200 

chromatograph. Elution was performed at 1 mL/min by applying a gradient towards 

solution B (acetonitrile, containing 0.1% TFA), as follows: 0% B for 5 min, 0-15% B over 

10 min, 15-45% B over 60 min, 45–70% B over 10 min, and 70% B over 9 min. 

Absorbance of the eluent was recorded at 215 nm and chromatograms were compared using 

the ChemStation B.04.01 software (Agilent). 

 

2.2 Venomic characterization 

 Since the comparison by RP-HPLC of the venoms of P. platura from Golfo de 

Papagayo and Golfo Dulce did not reveal differences (Fig.2), only the venom from Golfo 

Dulce was subsequently analyzed following the 'snake venomics' strategy [4,38], with 
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slight modifications [10]. Briefly, HPLC fractions were collected manually, dried in a 

vacuum centrifuge, re-dissolved in water, and further separated by SDS-PAGE under 

reducing conditions (5% 2-mercaptoethanol at 100°C for 5 min) in 12% gels. After 

Coomassie blue R-250 staining, gel images were recorded using ChemiDoc/ImageLab 

(Bio-Rad) for densitometry analysis, which was combined with the integration of 

chromatographic peak areas to obtain estimates of protein relative abundances. Protein 

bands were then excised and subjected to in-gel reduction (10 mM dithiothreitol), 

alkylation (50 mM iodacetamide), and overnight digestion with trypsin in a ProGest 

processor (Digilab), following manufacturer's recommendations. The resulting peptides 

were extracted and characterized by tandem mass spectrometry, as described below. 

 

2.3 Mass spectrometry 

 Tryptic digests were dried in vacuo, redissolved in 10-40 l of 0.1% formic acid, 

depending on band size, and submitted to nano-UPLC-ESI-MS/MS mass spectrometry. 

Toward this end, tryptic peptides were separated by nano-Acquity UltraPerformance LC
®

 

(UPLC
®
) using a BEH130 C18 column (100 µm x 100 mm, 1.7µm particle) on-line with a 

Waters SYNAPT G2 High Definition Mass Spectrometry System. The flow rate was set to 

0.6 µl/min and the column was developed with a linear gradient of 0.1% formic acid in 

water (solution A) and 0.1% formic acid in acetonitrile (solution B), isocratically 1% B for 

1 min, followed by 1-12% B for 1min, 12-40% B for 15min, 40-85% B for 2min. Doubly- 

and triply-charged ions were selected for collision-induced dissociation (CID) MS/MS. 

Fragmentation spectra were interpreted manually, processed in ProteinLynx Global 

SERVER 2013 version 2.5.2., or by using the online form of the Mascot program at 

http://www.matrixscience.com against the NCBI non-redundant database. MS/MS mass 
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tolerance was set to ± 0.6 Da. Carbamidomethyl cysteine, and propionamide cysteine and 

oxidation of methionine were fixed and variable modifications, respectively. Some tryptic 

peptides were analyzed by MALDI-TOF-TOF on a 4800 Plus Proteomics Analyzer 

(Applied Biosystems) using -cyano-hydroxycinnamic acid as matrix, under previously 

described conditions [10]. 

 

2.4 Venom lethality 

 Animal experiments were conducted in CD-1 mice of either sex, following 

protocols approved by the Institutional Committee for the Use and Care of Animals 

(CICUA), University of Costa Rica. Mice were housed in cages for groups of 4-6, and 

provided food and water ad libitum. The lethal potency of the venom was tested by 

intraperitoneal (i.p.) and intravenous (i.v.) routes, respectively, in groups of five mice of 

16-18 g body weight. Deaths induced by the injection of varying doses of venom (1.25-10 

g), dissolved in 0.12 M NaCl, 0.04 M sodium phosphate buffer (PBS; pH 7.2), were 

recorded after 48 hr. The median lethal dose (LD50) was estimated by probits. In addition, 

the lethal potency of the crude venom was tested in three species of fish: spotted snapper 

Lutjanus guttatus (Lutjanidae), scissortail damselfish Chromis atrilobata (Pomacentridae), 

and sleeper goby Dormitator maculatus (Eleotridae), after permits issued by the Ministry of 

Environment of Costa Rica SINAC-ACAT 069-2012. The first two are common species off 

the Pacific coast of Costa Rica and thus are sympatric with both populations of P. platura, 

and at least C. atrilobata has been observed by one of the authors (M. Sasa) to be a prey for 

this snake.  The sleeper goby is a freshwater species, abundant in permanent creeks along 

the Pacific coast of Central America. Venom was injected by i.p. route in groups of five 
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fishes of similar weight (variation coefficient <10%), kept in 20 L aquaria. Water (marine 

or freshwater) temperature was maintained at 22 °C, and varying doses of venom (0.02-

1.50 g), dissolved in distilled water, were adjusted for the mean weight of the group. 

Deaths were recorded after 48 hours, and the LD50 was estimated by probits. 

 

2.5 Myotoxic activity 

 Groups of four mice (18-20 g body weight) received an intramuscular (i.m.) venom 

injection of 1 or 2 µg, respectively, in 50 µL of PBS, into their right gastrocnemius. A 

control group was treated with PBS alone. After three hours, blood samples were obtained 

from the tip of the tail and collected into heparinized capillary tubes; then, after 

centrifugation, the plasma creatine kinase (CK) activity was determined using a UV kinetic 

assay (CK-Nac, Biocon Diagnostik) [39]. CK activity was expressed in units/L. Mice were 

euthanized by CO2 inhalation 6 h after venom injection, and samples of the injected muscle 

tissue were obtained, fixed in 10% formalin, embedded in paraffin, and processed for 

histologic evaluation of hematoxylin/eosin-stained sections. 

 

2.6 Cytotoxic activity 

 The cytotoxic effect of the venom was assayed on the murine myogenic cell line 

C2C12 (ATCC CRL-1772), as described [40]. Varying amounts of venom, diluted in 150 

L of Dulbecco’s Modified Eagle’s Medium supplemented with 1% fetal calf serum (assay 

medium; DMEM, 1% FCS), were added to near-confluent cell monolayers in 96-well 

plates, after removal of growth medium (DMEM, 10% FCS), in triplicate wells. Cells were 

tested both in their myoblast stage and after differentiation to multinucleated myotubes, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 11 

obtained 4-6 days after confluence, grown in the presence of 1% FCS. Controls for 0 and 

100% toxicity consisted of assay medium, and 0.1% Triton X-100 diluted in assay medium, 

respectively. After 3 h at 37 °C, cell supernatants were collected to determine the lactic 

dehydrogenase (LDH) activity released from damaged cells, using a UV kinetic assay 

(LDH-P, Wiener Laboratories). Venom of the Central American coral snake, Micrurus 

nigrocinctus (Elapidae), was included as a comparative control. 

 

2.7 Phospholipase A2 activity 

 Venom phospholipase A2 (PLA2) activity was determined on the monodisperse 

synthetic substrate 4-nitro-3-octanoyl-benzoic acid (NOBA) [41]. Varying amounts of 

venom, dissolved in 25 µL of water, were added to 200 µL of 10 mM Tris, 10 mM CaCl2, 

0.1 M NaCl, pH 8.0, in triplicate wells of a microplate. After mixing, 25 µL of NOBA (1 

mg/mL in acetonitrile) were added, to achieve a final substrate concentration of 0.32 mM. 

The mixtures were incubated for 60 min at 37 ºC, and absorbances at 405 nm were 

recorded. PLA2 activity was expressed as the change in absorbance x 1000. Venom of the 

Central American coral snake, Micrurus nigrocinctus (Elapidae), was included as a 

comparative control. 

 

2.8 Neutralization of lethality by antivenom 

 The ability of the equine CSL Ltd. sea snake antivenom (Victoria, Australia; batch 

054908201, expiry date 04-2015; 167 g protein/L) to neutralize the lethal effect of P. 

platura venom was tested in mice. Mixtures were prepared containing a fixed 

venom/antivenom ratio (0.2 mg/mL), and incubated at 37 ºC for 30 min. This single ratio 

was chosend on the basis of the authors' experience on the potency of antivenoms against 
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other elapidic venoms such as Micrurus nigrocinctus. Then, aliquots of the mixture, 

containing four LD50 of venom, were injected either i.p. or i.v. into CD-1 mice (16-18 g). 

Control mice received four LD50 of venom incubated with PBS instead of antivenom. 

Deaths occurring during 48 h were recorded. The neutralizing ability of this antivenom was 

additionally tested against the lethal effect of the isolated major neurotoxin of the venom 

(pelamitoxin). Control mice received an i.v. injection containing four LD50 of toxin alone, 

whereas a mixture of toxin and antivenom (0.2 mg toxin/ml antivenom), preincubated for 

30 min at room temperature, was injected to another group of mice under otherwise 

identical conditions. In addition, the equine Central American coral snake antivenom 

(Elapidae) manufactured at Instituto Clodomiro Picado (University of Costa Rica; batch 

5200313, expiry date March 2016; 30 g protein/L) was tested against the crude venom of P. 

platura, under identical conditions as for the CSL sea snake antivenom. 

 

2.9 Immunochemical analyses 

 The cross-recognition of P. platura venom and its three major components (peaks 1-

-2, 9, and 16; see Results) by the CSL antivenom was analyzed by enzyme-immunoassay 

(EIA) [42] and gel immunodiffusion (GID) [43]. In EIA, whole venom (1 g/well) or 

fractions (0.2 g/well) were adsorbed onto 96-well microplates in 100 L of 0.1 M Tris, 

0.15 M NaCl, pH 9.0 buffer by overnight incubation at room temperature, in duplicate. 

After five washings with PBS, non-specific binding sites were blocked with 100 L of PBS 

containing 2% bovine serum albumin (BSA) for 30 min. Varying dilutions of CSL 

antivenom, prepared in 0.2% BSA-PBS, were then incubated for 2 h, followed by five 

washings with PBS. Bound antibodies were detected by addition of an anti-horse 
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immunoglobulin-alkaline phosphatase conjugate (Sigma), diluted 1:3000 in 0.2% BSA-

PBS, and further incubation for 2 h. After four washings with PBS, and a final wash with 

0.05 M Tris, 0.15 M NaCl, 20 M ZnCl2, 1 mM MgCl2, pH 7.4 buffer, color was developed 

with p-nitrophenylphosphate (1 mg/ml in diethanolamine buffer, pH 9.8) for 30 min and 

measured in a microplate reader (Thermo) at 405 nm. Normal equine serum from a non-

immunized animal was included as a control for background signal. 

 GID was performed in 1% agarose dissolved in PBS, pH 7.2. Wells were punched 

and filled with 40 L of either CSL antivenom, whole venom, or each of the three major 

venom components described above. After 24 h of diffusion at room temperature, 

precipitation lines were recorded using the ChemiDoc/ImageLab software. 

  

2.10 Statistical tests 

 Results of in vitro assays are presented as mean ± SD. Comparisons between means 

of two groups were performed with the Student’s t-test, and values of p<0.05 were 

considered significant. Venom LD50 estimations for each in vivo model (mice or fishes) 

were conducted under a probit model. The goodness of fit of each data set to the model was 

evaluated using Chi
2
 tests.  The LD50 values for each species were compared using the 

doses ratio test [44] implemented in POLO-Plus (LeOra Software, version 2.0). This test 

computes the ratio of one lethal dose to another and estimates 95% confidence intervals for 

each ratio using the parameters of the probit function. The ratio test is a more powerful 

method of comparison than the classical analysis of confidence interval overlap [45].  
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3. RESULTS AND DISCUSSION 

 As reported in the literature [31,34,46], obvious color pattern differences were 

found in the two populations of P. platura sampled (Golfo de Papagayo and Golfo Dulce). 

Individuals from the latter location exhibited a mostly patternless, yellow body coloration 

phenotype (Fig.1D), differing from the black dorsum/yellow-bellied morphology (Fig.1A) 

most commonly reported for this species in the Golfo de Papagayo. Due to the conspicuous 

phenotypic differences, and considering that the population inhabiting Golfo Dulce, a fjord-

like gulf protected from strong surface currents, might have been genetically isolated from 

the oceanic coastal populations [31,43,35], venom variation between the two color morphs 

was assessed. As shown in Fig.2, a comparison of their venom RP-HPLC profiles revealed 

a conserved phenotype, and thus the distinctive color pattern variation between these two 

populations is not associated with any significant differences in their expression of venom 

proteins. 

 The chromatographic profile of P. platura venom appears relatively simple 

(Fig.3), and shows similarities to those of venoms from some terrestrial elapids analyzed in 

our laboratories using the same methodology, such as the African spitting cobras [47] and 

some coral snakes [48,49], or the marine elapid Hydrophis cyanocinctus [50]. The venom 

of P. platura was separated into twenty fractions (Fig.3), and 32 out of the 36 protein bands 

obtained after electrophoretic separation of the chromatographic peaks could be assigned to 

known protein families following in-gel digestion and tandem mass spectrometry (Table 1). 

The scarcity of venom precluded pursuing further the identification of few minor 

components that remained unknown (altogether <1.5% of the protein content). As 

represented in Fig.1C, half of the protein constituents of P. platura venom belong to the 

three-finger toxin (3FTx) family (49.9%), whereas one-third correspond to PLA2s (32.9%). 
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Cysteine-rich secretory proteins (CRISP) also represent a considerable proportion of this 

venom (9.1%), but only a few other types of commonly found snake venom components 

were detected, including 5'-nucleotidases (5'-NU) and metalloproteinases (SVMP), both 

below 1% in relative protein abundance (Fig.1C). In agreement with the colorless visual 

aspect of this venom, L-amino acid oxidase (which provides yellow color to snake venoms 

owing to its typical adsorption maxima at 465 and 380 nm due to the flavide adenine 

dinucleotide cofactor [51]) was not detected. Altogether, these findings follow the general 

trend observed for sea snake venoms, which biochemically tend to be simpler than those of 

terrestrial venomous snakes [17]. Unexpectedly, low amounts of hemoglobins  and  

(2.1%), albumin (1.1%), and transferrin (1.8%) were identified in the venom (Fig.1C), but 

their presence could be explained by mild contamination with blood, possibly due to slight 

trauma during the difficult venom extraction procedure for this snake species. In addition, 

transferrin has previously been reported in the proteomic analysis of at least one snake 

venom, that of Pseudechis australis [52], therefore the possibility of its presence 

representing a true product of venom gland secretion in P. platura cannot be ruled out. 

 Among the various 3FTx components of P. platura venom, internal peptide 

sequences characteristic of both "short-chain" (type I) and "long-chain" (type II) subgroups 

of this protein family were identified (Table 1), in agreement with the early origin of these 

two types of 3FTx in elapid snakes, before the division between terrestrial Australian 

elapids and sea snakes, and terrestrial African and Asian elapids [53]. 3FTxs often display 

-neurotoxic activity by means of their high-affinity binding to nicotinic acetylcholine 

receptor in the motor end-plate at the neuromuscular junction of diverse groups of animals 

[54], therefore showing potent paralyzing and lethal effects. The most abundant component 
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of P. platura venom (~26%; peaks 1-2 of Table 1) was identified as "pelamitoxin a" 

(P62388), a short-chain 3FTx previously isolated and sequenced [27,28,55]. The existence 

of an isoform named "pelamitoxin b" was reported later [56], differing from the former by a 

single amino acid at the tenth residue (Q/E), and this might explain the close elution and 

undistingushable isotope-averaged molecular mass observed for the overlapping peaks 1-2 

(Fig.3), which were pooled for further functional and immunochemical analyses. 

Expectedly, the various 3FTx peptide sequences obtained showed high similarity to 

proteins from phylogenetically-related marine elapid genera such as Enhydrina, Hydrophis, 

Lapemis, and from diverse terrestrial elapids (Table 1). Likewise, the PLA2 peptide 

sequences obtained are closely related to those of basic enzymes previously reported in 

these snake genera [57-60]. 

 The three most abundant components of P. platura venom (peaks 1-2: 3FTx 

pelamitoxin; peak 9: PLA2; and peak 16: CRISP) were collected for further study, and their 

possible roles in the toxic activities of this venom were evaluated. The crude venom was 

highly lethal to mice. By the i.p. route, its estimated LD50 was 2.3 g/mouse (95% 

confidence limits: 1.5-3.6 g; 0.13 g/g body weight), whereas by the i.v. route the LD50 

was 3.9 g/mouse (95% confidence limits: 0.8-6.4 g; 0.23 g/g body weight). These 

estimates agree with an earlier report on the venom of P. platura from the Guanacaste 

province in Costa Rica by Bolaños et al. [61], who reported it being the "most fluid, the 

most rapidly absorbed, the most potent for mice, and the most homogeneous of the venoms 

of Costa Rican snakes", as well as with other studies compiled by Mackessy and Tu [17]. In 

lethality experiments, mice showed signs of neurotoxicity few minutes after injection, with 
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evident difficulty for breathing, and died within the first 20 min. Mice that did not die 

within this short time span survived the rest of assay. 

 Crude P. platura venom was also highly toxic to sympatric marine (m) and 

allopatric freshwater (fw) fishes: estimated LD50 values by the i.p. route were 0.11 g/g 

(95% confidence limits: 0.06-0.24 g) for Lutjanus guttatus (m); 0.26 g/g (0.04-0.31 g) 

for Chromis atrilobata (m); and 0.089 g/g (0.04-0.17 g) for Dormitator maculatus (fw). 

At high doses (>0.2 g/g) the swimming capabilities of fishes were reduced, and they 

became paralyzed in as little as 5 min after the injection. Evident dyspnoea, as inferred by 

labored breathing and more rapid gill movement, was also noticed. Unlike what happened 

in mice, all fishes that showed initial signs of envenomation eventually died. For all tested 

species, the values for goodness of fit were not large in fishes (Chi
2
 < 1.4, df=3, p>0.192 in 

all cases), indicating that the data fits the probits model. In addition, the hypothesis of 

parallelism among the fishes and mice data sets was not rejected (Chi
2
= 3.23, df=3, 

p=0.357) thus changes in toxicity per unit change in the doses are similar among the 

species. Ratios for LD50 values were not significantly different between the murine and the 

fish models (Fig.7). 

 In myotoxicity experiments performed in mice, venom doses of 2 g or higher 

injected by the i.m. route resulted in rapid death, precluding blood sampling at an adequate 

time for assessing muscle damage. Therefore, this activity was tested at a maximal dose of 

1 g. At this low dose, no evidence of myonecrosis was recorded, since CK activity levels 

in the plasma of mice that received venom (158 ± 120 U/L) were not significantly different 

from those of mice that received only PBS (217 ± 60 U/L), three hours after injections 
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(p>0.05). Thus, the search for myotoxic activity in the venom was followed by the analysis 

of the isolated, most abundant PLA2. 

 The PLA2 present in peak 9 (Table 1) showed an isotope-averaged mass of 13332 

Da (Fig.5B). This protein was tested for lethality and myotoxicity in mice. No deaths were 

observed at doses of 20 µg, either by i.v. or i.m. routes of injection. Furthermore, a single 

mouse that received 40 µg i.v. also survived, thus indicating that this PLA2 is not 

neurotoxic. However, when the dose of 20 µg was injected i.m., in the gastrocnemius, there 

was a clear increase in the plasma CK activity after three hours. Control mice receiving 

PBS alone showed a CK activity of 307 ± 232 U/L, whereas the activity of plasma of mice 

receiving 20 µg of the PLA2 was 2992 ± 685 U/L (p<0.05), thus indicating that this PLA2 is 

myotoxic. This was confirmed by histological observation of muscle tissue (results not 

shown). At this dose, no macroscopic evidence of myoglobinuria was observed. 

 In vitro, the whole venom of P. platura showed detectable, although weak PLA2 

activity (Fig.4A), which in comparison to the venom of the coral snake M. nigrocinctus 

(Elapidae), included as a control, was markedly lower. On the other hand, P. platura lacked 

cytotoxic effect upon C2C12 myoblasts in culture, also in sharp contrast to the venom of M. 

nigrocinctus, used as a control (Fig.4B). Since a subtype of elapid 3FTxs, the 

cytotoxins/cardiotoxins, typically display a potent in vitro cytolytic effect on many cell 

types [54], this result suggests that the abundant 3FTxs present in P. platura venom do not 

belong to such a subtype. 

 Differentiation of cultured myoblasts into myotubes has been shown to increase 

their susceptibility to certain myotoxins of snake venoms [40,62]. Exposure of 

differentiated myotubes to P. platura venom also led to negative results (data not shown), 

confirming its lack of cytotoxic activity. Interestingly, although its isolated PLA2 induced 
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myotoxicity in vivo, it was not cytolytic when added to myotubes at 25 g/well (165 

g/mL) (data not shown). The behavior of the newly isolated PLA2 myotoxin from P. 

platura coincides with that of notexin, a potent myotoxic PLA2 from the Australian 

terrestrial elapid Notechis scutatus [63,64] which was reported to lack cytotoxicity upon 

myogenic and other cell lines using the same method here tested [40,65]. This finding is in 

sharp contrast with PLA2 myotoxins from viperid venoms, which induce a rapid cytolytic 

effect upon myogenic cells and other cell types [40,65]. Such functional difference suggests 

that myotoxicity of some elapid (group I) and viperid (group II) PLA2s, despite leading to a 

similar pathological outcome, may involve distinct molecular mechanisms, in line with the 

convergent evolutionary processes that independently led to the acquisition of this toxic 

effect in these two groups of PLA2s [66]. 

 Peak 16 was identified as a CRISP (Table 1), which by nESI-MS analysis was 

resolved into three close molecular masses (24459, 24559, and 24661 Da; Fig.5C) that very 

likely correspond to isoforms. CRISPs represent a widely distributed protein family in 

viperid snake venoms [67,68]. Neurotoxic CRISPs have been identified and characterized 

from the Australian elapids Pseudechis australis and P. porphyriacus. These molecules 

target cyclic nucleotide-gated ion channels and inhibit smooth muscle contraction [69,70]. 

However, injecting fraction 16 into mice by the i.v. route, at a dose of 20 g (1.05 g/g), 

did not cause death or any evident behavioral alterations, suggesting that this relatively 

prominent CRISP component of the venom (~9%) does not play a role in its lethal activity, 

at least in mice. It would be of interest to assay the possible effects of this CRISP fraction 

in fish, being the natural prey of P. platura. We were only able to inject a single Dormitator 

maculatus fish of 4.3 g by i.p. route, using 0.29 g/g body weight of the CRISP component, 
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resulting in no evident alterations or lethality. On the other hand, the major 3FTx, 

pelamitoxin (Fig.5A), was highly lethal to mice, with an LD50 of 3.9 g/mouse by the i.p. 

route (95% confidence limits 1.7-8.2 g; 0.23 g/g body weight), in agreement with earlier 

studies of Liu et al. [55] on the characterization of pelamitoxin isolated from specimens 

collected in northern Taiwan. It is worth to note that an LD50 of 3.9 μg pelamitoxin/mouse 

would correspond to an LD50 of 15 μg crude venom/mouse, which is 6.5-fold higher than 

that determined above. This figure suggests that, at least in the mouse model, other venom 

components may contribute synergistically with pelamitoxin to venom lethality. 

 Altogether, the present data indicate that the potent lethal effect of the whole venom 

is mainly mediated by its abundant 3FTxs with -neurotoxic activity, most notably the 

pelamitoxin component (~26%), which probably plays a key role in subduing the elusive 

fish that constitute this snake’s diet. Although functional studies were conducted in mice, 

on the basis of its myotoxic activity and lack of neurotoxicity, we hypothesize that the 

major PLA2 studied here (~20%) might contribute to the muscle digestion of fish prey, but 

would not appear to be involved in lethality. The role of the CRISP proteins in this venom, 

however, remains unknown. 

 Although very rarely described in the literature [17,71-73], potential human 

envenomations by P. platura can raise medical concern due to the unavailability of a 

specific antivenom in many regions of its distribution, as a consequence of the inherent 

difficulties to obtain sufficient venom for the immunization of large animals. Bolaños et al. 

[61] reported an average venom yield as low as 0.38 mg per individual, from specimens 

collected in Guanacaste, Costa Rica. In this regard, the cross-reactivity toward P. platura 

venom of the sea snake antivenom manufactured by the CSL in Australia, using the venom 
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of Enhydrina schistosa as immunogen, was evaluated. In agreement with studies reviewed 

by Mackessy and Tu [17] and Pickwell [74], a clear effectiveness of this antidote in the 

neutralization of the lethal effect of P. platura venom from Costa Rica was confirmed. 

Control mice receiving four LD50 of venom by either the i.v. or the i.p. routes died within 5 

min. In contrast, when venom was incubated with this antivenom (at a ratio of 0.2 mg 

venom/mL antivenom) and then injected by either of these two routes, all the mice survived 

and showed no signs of neurotoxicity. On the other hand, as expected, the possible cross-

neutralization of P. platura venom by the equine antivenom against Micrurus nigrocinctus 

manufactured at Instituto Clodomiro Picado (Costa Rica) was ruled out, since none of the 

mice receiving venom/antivenom mixtures (under the same experimental conditions as for 

the CSL sea snake antivenom) survived (data not shown). Although a full titration of the 

neutralizing potency of the CSL antivenom was not performed owing to the scarcity of P. 

platura venom, results obtained at the fixed level of 0.2 mg/mL clearly imply that 

significant antigenic similarities exist between proteins of E. schistosa and those of P. 

platura venom involved in its lethal effect. The ability of the CSL antivenom in 

neutralizing the toxicity of the venoms of true sea snakes as well as that of the 

taxonomically divergent yellow-lipped sea krait, Laticauda colubrina [75], is consistent 

with the parallel but independent streamlining of both marine lineages, and the low level of 

phylogenetic variation of their 3FTxs [53,76]. 

 Cross-recognition of P. platura venom by the CSL antivenom was further 

characterized by EIA and GID analyses. The antivenom generated a clear precipitin line 

against whole venom by GID, together with an additional, although barely visible diffuse 

precipitate (Fig.6A), and a strong EIA signal in its titration against solid-phase adsorbed 

whole venom (Fig.6B). In addition, GID tests using the three major components of P. 
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platura venom resulted in the formation of three independent precipitation systems against 

the 3FTx, PLA2, and CRISP, respectively, by their corresponding antibodies in CSL 

antivenom (Fig.6C). By solid-phase EIA, a higher signal in the recognition of PLA2, 

followed by the 3FTx, and a weak recognition of CRISP were obtained (Fig.6D). Thus, the 

cross-recognition of P. platura venom by the CSL antivenom involves at least these three 

types of components, PLA2 being more immunogenic than the other two according to EIA 

signals. Finally, in agreement with results of immunochemical tests, the CSL antivenom 

was able to neutralize the lethal effect of the isolated 3FTx, pelamitoxin, at a ratio of 0.2 

mg toxin/mL antivenom: all mice receiving a lethal i.v. injection of the toxin previously 

incubated with the antivenom survived. 

 

 

4. CONCLUDING REMARKS 

 Only 100 species in the snake lineages Acrochordidae, Laticaudinae, 

Homolopsidae, and Hydrophiini have independently colonized marine habitats [76]. The 

Hydrophiini, with 60 species in 19 genera, are the most diverse and widely distributed of all 

the lineages of marine snakes [20,77]. Unsurprisingly, sea snakes possess a number of 

morphological and biochemical adaptations to aquatic life [78]. Noteworthy, the specialized 

venoms of sea snakes tend to be biochemically simple despite being among the most toxic 

venoms known [79]. Lacking the high visual acuity or scent cues used by terrestrial snakes 

to prevent the escape of prey, which in the case of sea snakes consists largely of fish or fish 

eggs, and occassionally squid and cuttlefish, sea snakes have evolved venoms largely 

dependent on rapidly acting, highly toxic neurotoxins. However, sea snakes are not 

particularly aggressive, and human snakebite accidents are rare, occurring mainly among 
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marine fishermen while snakes are being removed from nets. It has been suggested that P. 

platura, with its small mouth and low venom yield, poses little threat to humans. Indeed, 

asymptomatic bites by P. platura have been reported and human deaths caused by this 

species remain unproven [71]. 

 The venoms of P. platura from two localities of Costa Rica that differ strikingly in 

color phenotype do not vary in their protein profiles, as assessed by RP-HPLC. Proteomic 

analyses revealed that the venom of this widely distributed sea snake presents a relatively 

simple composition, including three major types of components that belong to the 3FTx, 

PLA2, and CRISP protein families, respectively. This finding seems to be in concordance 

with the suggestion of Fry and colleagues of a strong functional association between the 

relatively simple venoms of sea snakes and their teleost-based diet of a single vertebrate 

class (fish) [80,81]. In contrast to some terrestrial elapid venoms that possess a complex 

protein pattern with a high number of isoforms, for example that of Micrurus nigrocinctus 

[82], the venom of P. platura might have evolved without a strong pressure for isoform 

diversification through gene duplication and divergence, or alternatively, might have 

undergone a secondary genetic simplification as part of its adaptation to the marine 

environment and a relatively specific type of prey, essentially consisting of small fish [24]. 

Future genomic analyses would be needed to discern between these possibilities. 

Regardless of the evolutionary history, and in line with observations on other marine 

snakes [17,50,81], P. platura presents a limited diversity in its toxic arsenal. An abundant 

3FTx, pelamitoxin, is likely to play the main role in the paralyzing and lethal actions of this 

venom against its natural preys, while at least another major component, a PLA2, is capable 

of damaging skeletal muscle, without causing neurotoxic effects, presumably contributing 

to the initiation of prey digestion. However, due to the scarcity of purified proteins the toxic 
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activity of 3FTxs and PLA2s was only tested in mice, essentially because these experiments 

allowed comparison with reported studies using well-characterized homologous toxins. 

Thus, although the results indicated that the major PLA2 eluted in peak 9 (which accounts 

for ~20% of the total venom proteins) was not lethal to mice, the possibility that this 

protein exhibits taxon-specific activity, as reported for other toxins [83-87], requires future 

detailed investigation. Finally, of relevance from a clinical standpoint, the sea snake 

antivenom manufactured by CSL in Australia using the venom of E. schistosa displays 

sufficient immunological cross-reactivity to provide protection from the lethal effects of P. 

platura venom in preclinical mouse assays, therefore being of potential usefulness in the 

event of envenomations by this species. 
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LEGENDS FOR FIGURES 

 

Figure 1: Two color morphs of Pelamis platura (A, C) from different geographical origins 

in Costa Rica (B), Golfo de Papagayo and Golfo Dulce, respectively, do not express 

differences in their venom protein profiles (see Fig.2). Relative abundances of venom 

protein families are shown as percentages of the total protein content in (C). 3FTx: three-

finger toxins, PLA2: phospholipases A2; CRISP: cyteine-rich secretory proteins; 5'NU: 5'-

nucleotidases; SVMP: metalloproteinases; TRF: transferrins; ALB: albumins; HBG: 

hemoglobins; UNK: unknown/unidentified. 

 

Figure 2: Comparison of the protein elution patterns of the venoms of Pelamis platura 

collected in Golfo de Papagayo and Golfo Dulce, respectively, by reverse-phase HPLC 

fractionation on a C18 column, as described in Methods. 

 

Figure 3: Elution profile of Pelamis platura (Golfo Dulce) venom proteins by reverse-

phase HPLC. Venom (2.1 mg) was fractionated on a C18 column (4.6 x 250 mm) eluted 

with a gradient of acetonitrile containing 0.1% trifluoroacetic acid, as described in 

Methods. The gradient line is omitted for clarity. Venom fractions were analyzed by SDS-

PAGE (top insert), under reducing conditions, in 12% gels, and stained with Coommassie 

blue R-250. Molecular weight markers (M) are indicated in kDa, at the right. The tryptic 

digests of the proteins were characterized by nESI-MS/MS or MALDI-TOF-TOF, as 

described in Methods. The three most abundant venom peaks (indicated by stars), were 

further characterized. 

 

Figure 4: (A) Comparison of the phospholipase A2 activity of Pelamis platura and 

Micrurus nigrocinctus venoms, upon the monodispersed synthetic substrate 4-nitro-3-

octanoyl-benzoic acid (NOBA), as described in Methods. Each point represents mean ± SD 

of triplicate assays. (B) Comparison of the cytolytic activity of P. platura and M. 

nigrocinctus venoms on the myogenic nurine cell line C2C12 in vitro, estimated as the 

release of lactate dehydrogenase 3 hr after exposure of myoblasts to the venoms, as 

described in Methods. Each bars represents mean ± SD of triplicate assays. 
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Figure 5:  Isotope-averaged molecular mass of the three major components (Fig.3) of the 

venom of Pelamis platura (A: peak 1-2, 3FTx; B: peak 9, PLA2; C: peak 16, CRISP) as 

determined by direct infusion nESI-MS on a QTrap3200 instrument (ABSciex) operated in 

positive, enhanced multi-charge mode. Graphs show the corresponding deconvolutions of 

m/z peaks of the multicharged ion series of the intact proteins, using the Analyst v.1.5 

software (ABSciex). 

 

Figure 6: Immunochemical cross-reactivity of the CSL sea snake antivenom (V) toward 

the whole venom of Pelamis platura (A, B) or three isolated components (C, D), evaluated 

by gel immunodiffusion (A,C) or enzyme-immunoassay (B,D). In (C), the major precipitin 

line formed between the antivenom and the venom fuses with the 3FTx line, revealing its 

identity. Precipitin lines formed between antivenom and PLA2 or CRISP components, 

respectively, show a non-identity pattern. In (B) and (D), points or bars represent mean ± 

SD of duplicates, and all differences between antivenom and negative control values are 

significant (p<0.05). 

 

Figure 7: Effect of Pelamis platura venom in Lutjanus guttatus. (A) The crude venom was 

injected by intraperitoneal route at a dose of 0.25 g/g body weight. Death of the individual 

occurred approximately five hours after the injection. Notice the exposed gill filaments and 

arch (arrow) and the wide opening of the mouth, in comparison to the normal control 

individual in (B). 

 

Figure 8: Comparison of the median lethal doses (LD50) of Pelamis platura venom in the 

mouse and three species of fishes. Venom was injected by the intraperitoneal route and 

deaths were scored after 48 h. LD50 values (with 95% confidence intervals indicated by the 

error bars) were calculated by Probits. No significant differences in LD50 are found among 

the four species. 
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Table 1: Assignment of the RP-HPLC isolated fractions of Pelamis platura venom to protein families by nESI-MS-MS or MALDI-

TOF-TOF of selected peptide ions from in-gel trypsin-digested protein bands. 
 

  

Peak % Mass 

[kDa] 

Peptide ion MS/MS-derived or N-terminal (Nt) sequence Sco Protein family;   ~ related protein * 

   m/z z    

1 

 

 

 

 

26.2 6680.4 748.8 

725.3 

465.2 

453.2 

918.3 

2 

2 

2 

2 

2 

MTCCNQQSSQPK 

TTTNCAESSCYK 

KTWSDHR 

GCGCPQVK 

SGIKLECCHTNECNN 

165
a
 short-chain -neurotoxin (pelamitoxin a); P62388 

  

2 - 6704.1 748.8 

775.3 

652.3 

453.2 

918.3 

2 

2 

2 

2 

2 

MTCCNQQSSQPK 

TTTNCAESSCYKK 

IERGCGCPQVK 

GCGCPQVK 

SGIKLECCHTNECNN 

118
a
 short-chain -neurotoxin (pelamitoxin a); P62388 

  

3 0.7 [7] 453.2 

465.2 

2 

2 

GCGCPQVK 

KTWSDHR 

dn short-chain -neurotoxin (pelamitoxin a); P62388 

4a 1.0 [17] 777.4 

453.2 

465.2 

2 

2 

2 

MTCCNQQSSQPK 

GCGCPQVK 

KTWSDHR 

dn short-chain -neurotoxin (pelamitoxin a); P62388 

4b 6.8 [7] 734.8 

775.3 

2 

2 

MTCCNQQSSQPK 

TTTNCAESSCYKK 

102
a
 short-chain -neurotoxin (pelamitoxin a); P62388  

5a 0.4 [14] 620.3 

892.9 

902.4 

2 

2 

2 

MVCDCDVAAAK 

NAYNNANYNIDTNKR 

M
ox

VCDCDVAAAKCFAR 

115
a
 phospholipase A2; ~ Q8UW08 Hydrophis hardwickii 

5b 0.6 [8] 453.2 

 

481.8 

2 

 

2 

GCGCPQVK 

 

(185.1)ELGCTAK 

dn 

 

dn 

short-chain -neurotoxin (pelamitoxin a); P62388 

 

long-chain -neurotoxin; ~ Q8UW29  
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5c 2.1 [7] 481.8 2 (185.1)ELGCTAK dn long-chain -neurotoxin; ~ Q8UW29 

6a 1.5 [16] 601.8 

675.8 

2 

2 

GGSGTPVDELDR 

IHDDCYGEAEK 

40
a
 phospholipase A2; ~ Q9PUI0 

 

6b 1.6 [14] 892.9 

1393.1 

2 

2 

NAYNNANYNIDTNKR 

SSLDYADYGCYCGAGGSGTPVDELDR 

86
a
 phospholipase A2; ~ Q8UW08 

6c 7.0 7725.7 481.8 

514.7 

1070.1 

2 

2 

2 

(185.1)ELGCTAK 

CDGFCSIR 

(312.3)YQPETCPPGQSLCYK 

dn long-chain -neurotoxin; ~ Q8UW29 

7a 0.6 [14] 620.3 

595.6 

1393.1 

 

668.8 

2 

3 

2 

 

2 

MVCDCDVAAAK 

NAYNNANYNIDTNKR 

SSLDYADYGCYCGAGGSGTPVDELDR 

 

IHDDCYGEAEK 

379
a
 

 

 

 

207
a
 

phospholipase A2; ~ Q8UW08 

 

 

 

phospholipase A2; ~ Q8UW30 

7b 0.3 [8] 453.2 

 

481.8 

514.7 

2 

 

2 

2 

GCGCPQVK 

 

(185.1)ELGCTAK 

CDGFCSIR 

 short-chain -neurotoxin (pelamitoxin a); P62388 

 

long-chain -neurotoxin; ~ Q8UW29  

7c 1.3 [7] 1070.1 

514.7 

481.8 

2 

2 

2 

(312.3)YQPETCPPGQSLCYK 

CDGFCSIR 

(185.1)ELGCTAK 

dn long-chain -neurotoxin; ~ Q8UW29 

8a 1.0 [14] 620.3 

595.6 

1393.1 

 

690.6 

 

601.8 

2 

2 

2 

 

4 

 

2 

MVCDCDVAAAK 

NAYNNANYNIDTNKR 

SSLDYADYGCYCGAGGSGTPVDELDR 

 

IHDDCYGEAEKQGCYPK 

 

GGSGTPVDELDR 

223
a
 phospholipase A2; ~ Q8UW08 

 

 

 

phospholipase A2; ~ Q8UW30 

 

phospholipase A2; ~ Q9PUI0 

8b 1.4 [7] 1070.1 

481.8 

507.7 

769.4 

2 

2 

2 

2 

(312.3)YQPETCPPGQSLCYK 

(185.1)ELGCTAK 

CDGFCSIR 

(216.4)TDNCNTVANWK 

dn long-chain -neurotoxin; ~ Q8UW29 
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453.2 

 

2 

 

GCGCPQVK 

 

short-chain -neurotoxin (pelamitoxin a); P62388 

9a 20.2 [14] 619.2 

668.8 

690.6 

1393.1 

1078.1 

 

975.4 

 

595.6 

 

601.8 

2 

2 

3 

2 

3 

 

2 

 

3 

 

2 

KVCDCDVAAAK 

IHDDCYGEAEK 

IHDDCYGEAEKQGCYPK 

SSLDYADYGCYCGAGGSGTPVDELDR 

SSLDYADYGCYCGAGGSGTPVDELDRCCK 

 

NLVQFSYVITCANHNR 

 

NAYNNANYNIDTNKR 

 

GGSGTPVDELDR 

570
a
 phospholipase A2; ~ Q8UW30 

 

 

 

 

 

phospholipase A2; ~ P00610 

 

phospholipase A2; ~ Q8UW08 

 

phospholipase A2; ~ Q9PUI0 

9b 2.1 [7] 481.8 

514.7 

1070.1 

2 

2 

2 

(185.1)ELGCTAK 

CDGFCSIR 

(312.3)YQPETCPPGQSLCYK 

dn long-chain -neurotoxin; ~ Q8UW29 

10 3.7 [14] 620.3 

892.9 

1393.1 

 

668.8 

 

601.8 

2 

2 

2 

 

2 

 

2 

MVCDCDVAAAK 

NAYNNANYNIDTNKR 

SSLDYADYGCYCGAGGSGTPVDELDR 

 

IHDDCYGEAEK 

 

GGSGTPVDELDR 

270
a
 phospholipase A2; ~ Q8UW08 

 

 

 

phospholipase A2; ~ Q8UW30 

 

phospholipase A2; ~ Q9PUI0 

11a 0.4 [14] 620.3 

892.9 

1393.1 

 

668.8 

2 

2 

2 

 

2 

MVCDCDVAAAK 

NAYNNANYNIDTNKR 

SSLDYADYGCYCGAGGSGTPVDELDR 

 

IHDDCYGEAEK 

149
a
 phospholipase A2; ~ Q8UW08 

 

 

 

phospholipase A2; ~ Q8UW30 

11b 0.2 [8] 453.2 

 

481.8 

2 

 

2 

GCGCPQVK 

 

(185.1)ELGCTAK 

dn short-chain -neurotoxin (pelamitoxin a); P62388 

 

long-chain -neurotoxin; ~ Q8UW29  

11c 0.2 [7] 453.2 2 GCGCPQVK dn short-chain -neurotoxin (pelamitoxin a); P62388 
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481.8 

 

2 

 

(185.1)ELGCTAK 

 

long-chain -neurotoxin; ~ Q8UW29  

12 

 

 

 

 

 

 

3.5 [14] 620.3 

595.6 

1393.1 

 

668.8 

 

601.8 

2 

3 

2 

 

2 

 

2 

MVCDCDVAAAK 

NAYNNANYNIDTNKR 

SSLDYADYGCYCGAGGSGTPVDELDR 

 

IHDDCYGEAEK 

 

GGSGTPVDELDR 

212
a
 phospholipase A2; ~ Q8UW08 

 

 

 

phospholipase A2; ~ Q8UW30 

 

phospholipase A2; ~ Q9PUI0 

13 1.6 [38] 

 

579.3 

 

454.7 

 

700.4 

2 

 

2 

 

2 

QGEALNQLER 

 

TLCAQCR 

 

(244.1)LQLNSPFLPK 

dn unknown 

 

5'-nucleotidase;  ~ ETE67245 

 

metalloproteinase; ~ AAR19274 

14 

 

0.5 [14] 634.7 

 

428.3 

2 

 

2 

(YG)WCNNNQGR 

 

GPPNSDGSR 

dn unknown 

15 0.6 - - - no protein band - unknown 

16a 0.9 [58] 433.7 

529.3 

597.8 

671.8 

888.9 

2 

2 

2 

2 

2 

SSIATPYK 

SHLLGCASAK 

EIVDKHNALR 

CTFAHSPEHTR 

YLYVCQYCPAGNIR 

149
a
 cystein-rich secretory protein; ~ Q8UW1 

16b 8.2 24449 

24550 

24649 

433.7 

482.7 

529.3 

597.8 

671.8 

888.9 

1342.5 

2 

2 

2 

2 

2 

2 

3 

SSIATPYK 

CQTEWIK 

SHLLGCASAK 

EIVDKHNALR 

CTFAHSPEHTR 

YLYVCQYCPAGNIR 

SGPSCGDCPSACVNGLCTNPCEYE... 

...DAYTNCNDLVK 

190
a
 cystein-rich secretory protein; ~ Q8UW11 

17 1.8 [92] 469.3 2 VASHAVVVR dn transferrin;  ~ CAK18224 
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769.4 

574.8 

829.9 

2 

2 

2 

ESCAPGASLE(536.3) 

DFPELICVR 

NLLQWSGTESG(486.3) 

 

18a 1.1 [68] 452.2 

578.4 

462.8 

515.3 

2 

2 

2 

2 

FIMTHEK 

AXVVVLLEATK 

LLPQAPASK 

LVEQLQSGR 

dn albumin;  ~ S59517 

18b 0.1 [62] 414.2 2 ETVLLPR 36
a
 metalloproteinase; ~ D6PXE8 

18c 0.2 [28] - - - - unknown 

18d 0.1 [24] 444.7 2 LGEEEVGK     dn unknown 

18e 0.3 [16] 493.2 

532.8 

2 

2 

VHWSAEEK 

VLTSFGEALK 

47 hemoglobin ; ~ P22743 

19 0.8 [15] 1331.7 

2128.2 

1078.7 

1500.8 

1837.9 

1687.9 

985.6 

1 

1 

1 

1 

1 

1 

1 

CFQVSLATHLR 

VIDALTEAVNNLDDVAGALSK 

LFIVFPQSK 

TYFSHYNLSPGSK 

TYFPHFDLSPGSNDLK 

GTLSQLSDLHAYNLR 

LFAAHPTTK 

251 hemoglobin ;  ~ Q7ZT83 

20 1.0 [15] 1500.8 

1837.9 

1054.6 

1687.9 

1288.8 

1 

1 

1 

1 

1 

TYFSHYNLSPGSK 

TYFPHFDLSPGSNDLK 

VFTAFGDAVK 

GTLSQLSDLHAYNLR 

LLIVYPWTQR 

117 hemoglobin , ; ~ P16418 

        

 
* Cysteine residues are carbamidomethylated, unless indicated by underlining, corresponding to propionamide. X: Leu/Ile; B: Lys/Gln; 

ox
: 

oxidized; Sco: probability score values calculated by 
a
Mascot (www.matrixscience.com); dn: manual de novo interpretation of spectra. 
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Graphical abstract 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 50 

Highlights 

 The yellow-bellied sea snake, Pelamis platura, is the most broadly distributed snake species 

 Two distinct color morphs of this sea snake inhabit the Pacific coast of Costa Rica 

 Venoms of both populations are conserved, despite their remarkable color phenotype divergence 

 A proteomic and functional analysis of this highly lethal snake venom is presented 

 Cross-neutralization of this venom by a sea snake antivenom is demonstrated 
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Biological significance 

 Integrative analyses of animal venoms that combine the power of proteomics (venomics) with the characterization of their 

functional and immunological properties are significantly expanding knowledge on these remarkable bioweapons, both from a basic 

and a medical perspective. Costa Rica harbors a unique population of the yellow-bellied sea snake, Pelamis platura, that is restricted to 

a fjord-like gulf (Golfo Dulce). This population differs markedly from oceanic populations found elsewhere along the Pacific coast of 

this country, by presenting a patternless bright yellow coloration, instead of the typical bicolored or tricolored pattern of this species. It 

has been suggested that the dominance of this yellow-morph in Golfo Dulce might reflect gene flow restrictions, caused by the 

oceanographic conditions at this location. The presents study demonstrates that the remarkable phenotypic variation between the two 

color morphs inhabiting Golfo Dulce and Golfo de Papagayo, respectively, is not associated with differences in the expression of 

venoms components, as shown by their conserved RP-HPLC profiles. Proteomic analysis revealed the relatively simple toxin 

composition of P. platura venom, which contains three predominant types of proteins: three-finger toxins (protein abundance: 49.9%), 

phospholipases A2 (32.9%), and cysteine-rich secretory proteins (9.1%), together with few minor components. Further, the 

involvement of these most abundant proteins in the toxic effects of the venom, and their cross-recognition and neutralization by a sea 

snake antivenom produced against the venom of Enhydrina schistosa, were analyzed. 


